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Abstract

We consider several Optimization problems that are originated in the study of linear systems cap-
turing Satisfaction problems. We obtain lower bounds for the rank of the associated polytopes, and
integrality gaps after linear many liftings of the Sherali-Adams Lift and Project system. Finally, we
show how some of these results can be extended to the stronger Lift and Project system of Lasserre.

Specifically, we show linear rank lower bounds for the Pigeonhole Principle, for Tseitin Tautology
on random graphs, and for random k-LIN and k-CNF instances, k ≥ 3. As an immediate corollary, we
obtain tight integrality gaps for linear many rounds of Sherali-Adams for MAX-k-LIN and MAX-k-CNF,
and a 7/6 integrality gap for VERTEXCOVER .

We refine the connection between the Sherali-Adams system and probabilistic reasoning, as was laid
forth by Fernández de la Vega and Kenyon-Mathieu and by Charikar, Makarychev and Makarychev, and
supply a methodology which we call “between local and global” that defines probability distributions on
small sets using a simple distribution over large, yet not-too-large sets.

1 Introduction

A standard approach in approximating NP -hard problems is to formulate the problem as a 0-1 integer
program and then relax the integrality condition to get a linear program which can be solved efficiently. The
quality of such an approach is intimately related to the integrality gap of the relaxation, namely, the ratio
between the optimum of the relaxation to that of the original problem. In some contexts, we are interested
in linear relaxations of integer programs that may have no solutions at all. In these cases, the relevant
information about the relaxation is under what conditions it is feasible, that it behaves differently than its
integral counterpart.

In order to remedy the problem of discrepancy between integral and fractional solutions, a Linear Program-
ming relaxation may be tightened by adding inequalities that are valid with respect to the original problem
on one hand, and that exclude some fractional solutions on the other. Such tightenings can be done in an
ad-hoc fashion, whereby relevant inequalities are identified ”somehow” and are added to the relaxation. In
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contrast, several methods (or procedures) were developed in order to obtain tightenings of relaxations in
a systematic manner. These procedures, normally referred to as Lift and Project methods, use polynomial
reasonings together with the fact that in the 0/1 domain, general polynomials can be reduced to multilinear
polynomials (utilizing the identity x2 = x), and then apply linearization which view of that information.
Such procedures include the Lovász-Schrijver system [21], Sherali-Adams system [27], and Lasserre system
[19] (see[20] for a comparison).

Lift and project systems are applied in rounds1. The bigger the number of rounds used, the more accurate
the obtained tightened relaxation is. In fact, if as many rounds as the number of variables are used, the
final relaxation is exact, all its feasible solutions are distributions of integral solutions, whence no integrality
gap occur. More generally, the projection of a solution that is valid after t rounds, is a convex combination
of integral solutions on these t variables. What distinguishes the different systems is the way they apply
their nonlinear extension, and whether they pose some positive semidefinite conditions. Another common
feature to all systems is an upper-bound on the time it takes to optimize over relaxations after a given
number of rounds r, as a function of r. If the original relaxation admits a polynomial separation oracle,
then optimizing over tightenings obtained after r of rounds can be done in time nO(r) [21]. Interestingly, in
none of the systems does it seem possible to improve on the above bound (if one ignores the hidden constant
in the exponent). This connection to time complexity has motivated researchers to study the (worst case)
behaviour of the application of the systems to particular LP relaxations of NP-hard problems. Specifically,
a major goal that emerges from the above discussion is to analyze the integrality gap after varying number
of rounds of application of particular systems.

Do Lift and project systems in fact ”deliver” and serve as an important ingredient in the domain of algorithm
design? It seems like there are compelling evidences that the answer should essentially be positive. One type
of algorithms is the one that uses SemiDefinite Programming, but adds some extra restrictions (described
as ”ad-hoc additions” at the beginning of this section). Examples for these are the Goemans-Williamson
algorithm for Max-Cut [13], the Karloff-Zwick algorithm for Max-3-SAT [18], Karakostas algorithm for
Vertex Cover [17], and the ARV algorithm for Sparsest-Cut [3]. While these algorithms are not presented
as instances of Lift and Project systems, they can be viewed as a weaker version of tightened SDPs that
are obtained by applying the Lovász-Schrijver system with positive semidefinite constraint for a constant
number of rounds. Another type of algorithms are ones that make a “dynamic” use of the aforementioned
accuracy/round tradeoffs. These are algorithms which lead to Polynomial-time Approximation-Schemes
(PTAS) by using as many as r(ε) rounds to achieve approximation (or integrality-gap) 1 + ε where r(ε) is
a function that depends only on ε. Fernández de la Vega and Kenyon-Mathieu [11] have provided a PTAS
for Max Cut in dense graphs using Sherali-Adams . In [22] it is shown how to get a Sherali-Adams based
PTAS for VERTEXCOVER and max-INDEPENDENT-SET in minor-free graphs. Chlamtac and Singh [7] gave
an approximation algorithm for INDEPENDENT-SET based on the Lasserre system, with the performance
depending on the number of rounds applied. Interestingly, no PTAS are known for the weaker system
of Lovász-Schrijver which highly motivates investigating the performance of Sherali-Adams and Lasserre
over that of Lovász-Schrijver . Considerable effort was also invested in the lower bound department. See
[2, 29, 28, 26], [5, 9, 1, 25, 12], and [11, 6], for the Lovász-Schrijver , Lovász-Schrijver with PSD constraints
and Sherali-Adams systems respectively. Special credits should be also given to the very recent result by

1For the Sherali-Adams and Lasserre systems, where one carries out a number of subsequent liftings and only one projection
at the end (and which are static systems in contrast to the Lovász-Schrijver system where one applies subsequent liftings and
projections), it might sound more appropriate to refer to the number of tightenings as the level of the relaxation. Instead we choose
to refer to this as the number of applied rounds, since we are thinking of the Sherali-Adams and Lasserre systems as systematic
procedures for producing valid constraints for the integral hull, the same way cutting planes procedures do.
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Schoenebeck [24], who independently from this work proved rank lower bounds and integrality gaps for the
same random instances we do, for the stronger Lasserre system.

A related measure of efficiency of these methods is the rank of linear inequalities in a particular system: let
ψ be a linear inequality that is satisfied for every integral solution of the problem. The rank of ψ with respect
to a system is the number of rounds required before this inequality is implied. Equivalently, all points that
satisfy the tightened relaxation after this many rounds (but no less) satisfy ψ. It is useful to notice that this
essentially generalizes the first notion of integrality gaps after a certain number of rounds. Indeed, if the
inequality that says that the objective function is bigger than α is not implied after r rounds, then there is a
solution with objective value α after r many rounds. But the notion of rank is more versatile as it can be used
even for the case where no integral solutions to the problem exist at all; in this case the inequality 1 ≤ 0 is
valid to all integral solutions, and asking about the rank of this inequality is tantamount to asking how many
rounds are needed before the tightened relaxation has no feasible solutions. Such settings are relevant in the
context of proof complexity where the input is an (algebraization of an) unsatisfied propositional formula.
We view the systems as a tool to derive valid inequalities, with the original inequalities being the axioms,
and the goal is to “prove” the inequality 1 ≤ 0. The rank captures the depth of the shortest proof.

Results: In the current work we provide rank lower bounds to certain tautologies, that immediately imply
tight integrality-gaps lower bounds for optimization problems. Specifically, we show rank lower bounds for
the Pigeonhole Principle, the Tseitin Tautology, and for random mod 2 constraints and CNF formulas.
The rank lower bound for the Pigeonhole Principle is tight, while the rest of the rank lower bounds are
linear. The rank lower bounds for mod 2 constraints and CNF formulas imply tight integrality gaps for the
corresponding optimization problems MAX-k-LIN and MAX-k-CNF, with k ≥ 3. The lower bound of
the Tseitin Tautology is also extended to a Lasserre rank lower bound. Finally, the tight integrality gap for
MAX-3-LIN implies a 7/6 integrality gap for VERTEXCOVER for linear many Sherali-Adams tightenings.

Techniques: Fernández de la Vega and Kenyon-Mathieu [11] gave a probabilistic interpretation to
Sherali-Adams solutions. Roughly speaking, they consider an ensemble of probability spaces over 0/1
assignments of certain subsets of variables. These distributions should be supported on feasible integral
solutions for the sets at hand (i.e., to constraints that are contained in these sets), and they should also be
consistent with one another in the natural way: the probability of a partial 0/1 assignment to a set of variables
is the same regardless of the superset over which the distribution is defined. Given such an ensemble, the
vector with marginal probabilities of variables being 1 can be shown to be in the resulting Sherali-Adams
lift and project after r rounds, where the subsets in the ensemble relate in some simple fashion to r. (This
type of thinking was in fact implicit in [11] and was made explicit in [6], but both deal only with the case of
MAXCUT . We formalize it later in Proposition (1).)

Notice that there is a very simple way to get a good ensemble: consider a distribution of (global) integral
solutions, and define the different probability space as restrictions of that global distribution to the set they
represent. Clearly such an ensemble satisfies the required conditions. Of course this construction is not very
interesting as all it says is that points that are convex combination of integral solutions are in the Sherali-
Adams system, which is obvious. In particular, no integrality gaps can be shown this way. When trying to
show a lower bound, the goal then is to provide an ensemble of probability spaces that cannot be “explained”
by a global probability space, and moreover, behaves quite differently with respect to the probabilities for
singletons which correspond to the original variables of the problem.
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The starting point of the main result of this this work (Section 5) is the paper of Buresh-Oppenheim et
al. [5] that gives lower bounds to the same family of problems in the Lovász-Schrijver systems. A lower
bound in the Lovász-Schrijver system can be viewed as a prover-adversary game and in the same time as
an exposure process in a probabilistic domain. The fact that the Sherali-Adams system is stronger than
the Lovász-Schrijver system is reflected by the fact that the exposure process in [5] is not enough for our
need. In the Sherali-Adams world we need to supply an ensemble of probability spaces as was outlined
above. Assuming, as is the case with all the problems we deal with, that locally the set of constraints are
satisfiable, we may try to apply the following naive approach: for a set S of variables, define ΩS as a uniform
distribution over assignments to S that satisfy the constraints that contain S variables only. Local consistency
(or local-agreement) of this approach is guaranteed if all distributions are uniform over all variables; but to
be able to use such distributions we need to require that the sets never contain a single constraint. This type
of reasoning is used in Sections (3) and (4) where we demonstrate simple lower bounds for Sherali-Adams .

As we later point out, there is no way to achieve the local agreement in the strategy defined above if we
want to go beyond the size supported by a constraint. Roughly speaking, trying to define a distribution on a
set just by looking at the constraints contained in it, but ignoring any other variables, is too local and bound
to fail. Our main technical contribution is developing a methodology that goes beyond this barrier which
we call “between local and global”. For a set S we define a set S̄ which we call the advice-set of S. Now,
instead of defining a probability distribution that is uniform over valid solutions on S we take the uniform
distributions over valid solutions of S̄ (projected back to S). The precise way we obtain S̄ is related to
expansion properties of the constraints-variable graph that is associated with the system, similarly to the way
that expansion is used in the Buresh-Openeheim et al. paper [5] and also in a result by Alekhnovich, Arora
and Tourlakis [1]. The main technical challenge remains to show that such a method leads to distributions
that have the local agreement property.

It is interesting to contrast our work to the recent and stronger result by Schoenebeck [24] that was obtained
independently. Both results prove rank lower bounds for random k-LIN instances and subsequently give as
corollary integrality gaps for a series of optimization problems. It is not surprising that both lower bounds
rely on the same family of random instances that enjoy nice structural (expanding) properties. In both cases
one has to define appropriate solutions of strong relaxations obtained after linear many tightenings. It seems
that the most convenient and actually the only way we know for designing such solutions is to think of them
as probability distributions of valid local solutions, a property which is inherent to both Sherali-Adams and
Lasserre systems. Most importantly, both results stick with the uniform distribution over valid solutions
of specially defined constraints. The way these constrains are defined lies in the heart of the problem, and
individually to each of the two results. Our current work first tries to unify the way rank lower bounds for the
Sherali-Adams system are proven. Proposition 1 provides such a framework which although was implicit
in [11] and in particular in [6], it was not offered in its full and current generality. Given this tool, our
work also tries to elucidate the (unavoidable) strategy followed almost by all previous negative results on
lift and project systems; that is, given a set of variables over which a probability of local integral solutions
is required, first define appropriate supersets and then consider the “simplest” possible distribution of valid
solutions. These settled ideas give two instructive and simple applications. First in Section 3 we improve the
best previous known rank lower bound for the Pigeonhole Principle, and the proof appears to be significantly
simpler. Second, in the same concept Section 4 provides one more simple rank lower bound edifying on one
hand the necessity of a “correction” phase, and on the other justifying that “simple” distributions of integral
solutions seem to be the right choice. Given this instructive background, our work then, in Section 5, clarifies
that the expanding properties of an instance is the natural obstacle that the Sherali-Adams system cannot
overcome, by drawing the connections between expansion and advice-sets. In contrast, the same ideas are
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hidden in Shoenebeck’s result who uses resolution as a black box in order to define what we call advice-sets.
In particular, Schoenebeck shows that whenever a set of constraints eludes bounded width r resolution, it
also fools Ω(r) Lasserre rounds. Why Lasserre fails to disprove the appropriately chosen set of constraints
remains esoteric in the lower bound for resolution, however this elegant connection allows Schoenebeck to
satisfy the extra positive semidefinitness conditions of the Lasserre system, that we fail to satisfy.

2 Preliminaries

2.1 The Sherali-Adams system

Denote by Pn
t all subsets of [n] of size at most t.

Definition 1. Consider the polytope P ⊆ Rn, defined by the linear constraints αT
l x− b ≤ 0, l = 1, . . . ,m,

0 ≤ xi ≤ 1, i = 1, . . . , n. We define SAt(P ) ⊆ RPn
t+1−1 to be the set of all z ∈ RPn

t+1−1, that satisfy the
lifted linear system that is constructed as follows: for every constraint ψ(x) ≤ 0 of P , for every U ∈ Pn

t ,
and for every W ⊆ U , consider the valid constraint

ψ(x)
∏
s∈W

xs

∏
s∈U\W

(1− xs) ≤ 0,

and for every I ∈ Pn
|U |+1 replace

∏
s∈I xs by zI . Add the resulting linear inequality to the set of constraints

defining SAt(K).

The projection of z that satisfies the above linear system onto the singleton indices is what we call the t-th
Sherali-Adams tightening of P . We denote this tightening as St(K). Finally we define the Sherali-Adams
rank of the polytope P as the minimum integer t such that St(K) is the integral hull of K.

Next we give a condition for proving lower bounds in the Sherali-Adams system. A similar statement was
first used in [11] and was stated explicitly in [6]. However, those version dealt specifically with MAXCUT

and did not immediately give abstract treatment as the one we give here. Further, the proof below avoids the
“inclusion-exclusion manipulations” that existed in the other variants.

Proposition 1. Consider a polytope P defined on n variables. For any I ⊆ [n], |I| ≤ r + 1, and for any
constraint of P with support J , consider some distributions D(I), D(I ∪ J) of 0/1 assignments for I and
I ∪ J respectively, and define the vector z ∈ RPn

r+1 , as zI = PrD(I)[all elements of I are 1]. Suppose that
this collection of distributions satisfy the following properties.

For every U ⊆ [n], |U | ≤ r + 1, and for every constraint of P with support J

1. (feasibility): D(U ∪ J) is a distribution of assignments that satisfy the constraint with support J

2. (local agreement): For every i ∈ J and H ⊆ U , D(H ∪ {i}), D(U ∪ J) agree on H , that is

PrD(H∪{i})[all elements of H ∪ {i} are 1] = PrD(U∪J)[all elements of H ∪ {i} are 1]

Then z ∈ SAr(P ).
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Proof. Consider some constraint αTx ≤ b of P with support J . Fix also some U ∈ Pn
r , and W ⊆ U . In

the resulting lifted linear constraint, every term, that is every variable xi, i ∈ J , and the constant term b will
be multiplied by ∏

s∈W

xs

∏
s∈U\W

(1− xs)

Now, for two disjoint sets K,L ⊆ U ∪ J , define

yK,L = PrD(U∪J)[all elements of K are assigned 1 & all elements of L are assigned 0].

Notice that the mapping P (K,L) =
∏

s∈K xs
∏

s∈L(1 − xs) 7→ yK,L is an homomorphism that sends∏
i∈I xi to yI,∅. This can be verified inductively on the size of L by noticing that P (K,L∪ i) = P (K,L)−

P (K ∪ i, L) and that yK,L∪i = yK,L − yK∪i,L.

Now, notice that local agreement is precisely saying that yK,∅ = zK , and therefore the assignment zI serves
as a substitution of xi with

yW∪{i},U\W = PrD(U∪J)[all elements of W ∪ {i} are 1 & all elements of U \W are 0],

while constant b is replaced by yW,U\W · b. All probabilities below are with respect to D(U ∪ J). We have∑
i∈J

ai · yW∪{i},U\W

=
∑
i∈J

ai

∑
{Pr[σ] : σ is an assignment on U ∪ J that is 0/1 on W ∪ {i}, U −W resp}

=
∑
{Pr[σ] : σ is an assignment on U ∪ J that is 0/1 on W,U −W resp}

∑
i:σi=1

ai

=
∑
{Pr[σ] : σ is an assignment on U ∪ J that satisfies ψ and that is 0/1 on W,U −W resp}

∑
i:σi=1

ai

≤
∑
{Pr[σ] : σ is an assignment on U ∪ J that satisfies ψ and that is 0/1 on W,U −W resp} · b

= yW,U\W · b

where the second last equality follows from the feasibility condition and the inequality follows since by
definition

∑
i:σi=1 ai ≤ b for σ that satisfies ψ.

2.2 The Extension to the Lasserre System

The Lasserre system extends the Sherali-Adams system. Instead of supplying definition to Lasserre , we use
the terminology of Definition (1). Consider the vector z ∈ SAt(P ). We say that z is of PSD form if we can
associate every set I with a vector v ∈ RPn

t+1 such that for every pair of sets I, J such that |I ∪ J | ≤ t+ 1,
it holds that

vI · vJ = zI∪J .

If in addition to the conditions of Definition (1) z is of PSD form, then z ∈ LAt(P ), that is z is a lifted
solution for t many Lasserre tightenings of P . Analogously to Definition 1, we abbreviate the projection of
LAt(P ) onto the singleton indices by Lt(P ).
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Notice now that the conditions of Proposition (1) along with the positive semidefiniteness of z is a sufficient
condition for z ∈ LAt(P ).

2.3 Linear Relaxation of mod 2 Linear Systems

Consider a set M of mod 2 equations on n variables. For j ∈ M denote by Γ(j) the set of variables that
appear in equation j, so that constraint j is of the form

∑
i∈Γ(j) xi ≡ b mod 2, b ∈ {0, 1}.

Any set M of mod 2 equations can be naturally formulated as a CNF formula in the following way. For
every xi introduce the Boolean variable zi (zi is true iff xi is assigned the value 1). Consider an equation j ∈
M , and all partitions Y,N of Γ(j) with |Y | being even. What we require is that ¬ ((∧t∈Y zt) ∧ (∧t∈Nzt)).
From there it is obvious how to formulate the problem as a linear program. The previous subformula for
example will be converted to

∑
t∈Y zt −

∑
t∈N zt ≤ |Y | − 1. The resulting linear program relaxation we

denote by PM .

3 The Pigeonhole Principle

The Pigeonhole Principle of order n, is the following infeasible linear system. Intuitively, we have n + 1
pigeons and n holes. The semantics of xij is that pigeon i goes to pigeonhole j.

xit + xjt ≤ 1 ,∀i, j ∈ [n+ 1], i 6= j, ∀t ∈ [n]∑n
t=1 xit ≥ 1 ,∀i ∈ [n+ 1]

xit ∈ {0, 1} ,∀i ∈ [n+ 1],∀t ∈ [n]

By relaxing the variables to xit ∈ [0, 1],∀i ∈ [n + 1],∀t ∈ [n] we obtain a nonempty polytope that we
denote by Pn.

Pn has provided separation between the performance of the Lovász-Schrijver system and the Gomory-
Chvátal cutting planes procedure (see [5] for the definition). As it is implied by [15] and later proved in
[5, 4], the Gomory-Chvátal rank of Pn is O(log n). In [5] it is shown that the rank of Pn with respect to the
weakest version of Lovász-Schrijver system is exactly n− 1, which directly implies that the Sherali-Adams
rank is at most n − 1. Further it is known [14, 21] that the rank of Pn with respect to the Lovász-Schrijver
SDP system is 2. Altogether, in this section we provide a rank separation between Sherali-Adams , Gomory-
Chvátal and Lovász-Schrijver SDP tightenings. Below we show that the rank of Pn is n−1, improving upon
[23].

Denote by Eit the event that pigeon i goes to hole t, i.e. xit = 1. For a set of pigeons {i1, . . . , is}, s ≤ n, we
define a distribution U(S) of assignments of S into the n holes: choose one of the

(
n
s

)
s! different assignments

of pigeons to different holes uniformly at random. This distribution of valid assignments satisfies a form of
local agreement property as the next lemma suggests.

Lemma 2. For every two setsR = {i1, . . . , ir}, S = {j1, . . . , js} of pigeons, such that |R∪S| ≤ n and for
every set of holes T = {t1, . . . , tr}, distributions U(R),U(R∪S) agree on the event E = Ei1t1 ∩ . . .∩Eirtr .

Proof. Notice that the lemma states a simple fact, which is that a set of pigeons is matched to holes with
probability that is not affected by the existence of other pigeons, as long as there are less than n pigeons in
total of course. Here is a formal explanation.
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Assume without loss of generality thatR and S are disjoint, as otherwise we take S\R instead of S, arriving
at the same conclusion. Define Q to be the event that none of pigeons in S goes to any of the holes in T .
We have

PrU(R∪S) [E ] = PrU(R∪S) [Q]PrU(R∪S) [E|Q] =

(
n−r

s

)
s!(

n
s

)
s!
· 1(

n−s
r

)
r!

=
1(

n
r

)
r!

= PrU(R) [E ] .

For every I = {i1t1, . . . , irtr}, r ≤ n − 1, denote GI = {i1, . . . , ir} and define the distribution D(I) =
U(GI). Let N = n(n+ 1). Define also z ∈ RPN

n−1−1 as

zI = PrD(I)[Ei1t1 ∩ . . . ∩ Eirtr ]. (1)

Proposition 3. For z ∈ RPN
n−1 as defined in (1), we have z ∈ SAn−2(Pn).

Proof. We show that the distributions D(I) satisfy the conditions of Proposition 1. A critical point is that
the distribution that is defined for a set T only depends on GT . Since there are at most 2 pigeons in any
constraint of the polytope, the maximal number of pigeons in U ∪ J (using the terminology of Proposition
1) is not more than n. Further, the local agreement with respect to sets of pigeons immediately implies
local agreement of the distributions of variables. Feasibility is guaranteed by the fact that any assignment of
pigeons that does not assign more than one pigeon to the same hole, will satisfy the original constraints.

To conclude, Lemma 2 gives the local agreement property. Feasibility is implied by the definition of the
experiment. All conditions of Proposition 1 are met, and the proposition follows.

As an immediate application of Proposition 3 we get the desired rank lower bound.

Corollary 4. For every n, the vector (1/n, . . . , 1/n)T ∈ Rn is in Sn−2(Pn). Therefore, the Sherali-Adams
rank of Pn is at least n− 1.

4 An Easy Rank Lower Bound for the Tseitin Tautology

Consider a graph G = (V,E) on n vertices and the problem of assigning 0/1 values xij to all edges ij, such
that ∑

j∈Γ(i)

xij = 1 mod 2, ∀i ∈ V (2)

where Γ(i) are all adjacent vertices of i. For i ∈ V , we will refer to the constraint that involves all edges
incident to i as the degree constraint of i.

The Tseitin tautology of a graph on odd number of vertices is the infeasible 0/1 system of constraints (2).
The same system can be described as a 0/1 integer program (of exponential many constraints with respect
to the degree of G) on |E| many variables. By allowing the variables to assume values in [0, 1] we obtain a
nonempty polytope that we denote by TSG; note that the all 1/2 vector is always a feasible solution.

As a warm up we show a simple rank lower bound of the Tseitin tautology that depends on the minimum
degree of a graph.
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Theorem 5. Let G = (V,E) be a graph on odd number of vertices, with minimum degree d. Then the
Sherali-Adams rank of TSG is at least d− 1.

We need to show that the Sherali-Adams tightening of TSG even after d− 2 liftings is nonempty. For this,

we define z ∈ RP|E|
d−1 such that z ∈ SAd−2(TSG). The indices of z will be again defined using a distribution

of 0/1 assignments that enjoy the local agreement property.

We start with a graph G = (V,E) of minimum degree d. Every set J ⊂ E of size at most 2d− 2 dominates
at most one constraint, that is there is at most one edge constraint j with Γ(j) ⊆ J . For such a set J ⊂ E,
consider the following distribution of 0/1 assignments D(J): choose uniformly at random one of the 0/1
assignments of J among those that do not contradict any dominated constraint. Note that if there is no
dominated constraint, this is just the uniform distribution over all 0/1 assignments. An assignment that does
not contradict a j dominated constraint we call j-consistent.

The next observation establishes the local agreement property. For i ∈ V , we denote by E(i) the set of
edges incident to i.

Claim 6. For every U ⊆ E, |U | ≤ d − 2, and for every H ⊆ Γ(i) ∪ U , where i ∈ V and |H| ≤ d − 1 we
have

PrD(H)[all edges in H are assigned 1] = PrD(E(i)∪U)[all edges in H are assigned 1] (3)

The justification of claim 6 is very intuitive. Every 0/1 assignment of variables H can be extended to the
same number of consistent assignments for E(i)∪U . This property becomes formal in Lemmata 11 and 12.

Proof. (of Theorem 5) For I ⊆ E, |I| ≤ d− 1, define z ∈ RP|E|
d−1 as

zI = PrD(I)[all edges in I are assigned 1].

It is enough to argue that z ∈ SAd−2(TSG). This is implied by Proposition 1: local agreement follows from
Claim 6 and feasibility from the experiment described above.

The simplicity of the lower bound above, or more specifically, the fact that it hinges on uniform distribution
of 0/1 assignments (zI = 2−|I| for all I of size < d− 1) translates to a lower bound in the stronger Lasserre
system.

Fix some orthonormal basis {uS}S⊆[n], and for I ⊆ Pn
d−1 define

vI =
1

2|I|
∑
S⊂I

uS .

For I, J ⊂ Pn
d−1 we have,

vI · vJ =
1

2|I|+|J |

(∑
S⊂I

uS

)
·

(∑
S⊂J

uS

)
=

1
2|I|+|J |

∑
S⊆I∩J

u2
S =

2|I∩J |

2|I|+|J |
=

1
2|I∪J | .

As a consequence we get s a stronger version of Theorem 5:

Theorem 7. Let G = (V,E) be a graph on odd number of vertices, with minimum degree d. Then the
Lasserre rank of TSG is at least d− 1.
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For the special case when G is the complete graph on n (odd many) vertices, the rank of TSG is at least
n − 2. It is also possible to achieve a rank lower bound of order N1−ε for any ε > 0; simply consider
n1/ε-regular multigraphs on n vertices and apply Theorem 7.

Corollary 8. For every ε > 0, there exist graphs on n variables and N = O(n1/ε) edges, for which the
Lasserre rank of the Tseitin Tautology is Ω(N1−ε).

Remark 1. Corollary 8 is interesting in the sense of pushing the rank lower bound nearly to being linear.
However, the corresponding Tseitin tautology has a description of n2n1/ε−1 many constraints and in this
sense it does not seem very informative. In Section 5 we discuss polytopes defined on O(n) constraints that
still have linear Sherali-Adams rank.

5 Main Result: the “between Local and Global” Approach

In this section we are dealing with sets of mod 2 constraints on n variables. For a set M of mod 2 equa-
tions, define its constraint graph GM , as the following bipartite graph from L to R. The left hand side L
consists of a vertex for each constraint of PM . The right hand side R consists of a vertex for every vari-
able of PM . There is an edge between a constraint-vertex j and a variable-vertex i, whenever variable i
appears in constraint j. We abbreviate by G, instead of GM , the corresponding constraint bipartite graph
of PM from the set of constraints L to the set of variables R. For A ⊆ R, we call a constraint u ∈ L,
A-dominated if Γ(u) ⊆ A. We denote by G−A the bipartite subgraph of G that we get after removing A
and all A-dominated constraints.

Below we will be interested in polytopes defined by well expanding constraints.

Definition 2. Consider a bipartite graph G = (V,E) with partition L,R.

Edge expansion: The expansion of X ⊂ L is the value |Γ(X)|/|X|. The edge expansion2 of G is the
minimum expansion over subsets of size at most |V |/2. G is (r, ε) expanding if the minimum edge
expansion over subsets of L of size at most r is at least ε.

Boundary expansion: The boundary expansion of X ⊂ L is the value |∂X|/|X|, where ∂X = {u ∈ R :
|Γ(u) ∩X| = 1}. G is (r, ε) boundary expanding if the minimum boundary expansion over subsets
of L of size at most r is at least ε.

The next fact is easy to verify.

Fact 9. A bipartite graph G = (V,E) of maximum degree d that is (r, ε) expanding is also (r, 2ε − d)
boundary expanding.

5.1 Establishing the Local Agreement Property

For everyA ⊂ R, we denote by U(A) the uniform distribution over all 0/1 assignments ofA that is consistent
with A, namely that doesn’t contradict any A-dominated constraint.

2Note that since G is a bipartite graph, the edge expansion of any subset of L is the same as the standard vertex expansion.
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Theorem 10. Let A ⊆ B ⊆ R such that (i) G−A is (ξ, ε) boundary expanding for some ε > 0 and (ii) there
are at most ξ many B-dominated constraints. Then U(A) and U(B) agree on A.

Remark 2. Before we prove the theorem, we give an indication that in general we cannot expect the theorem
to be true without conditions (i) and (ii), as was the case in the previous section. Indeed, consider two
constraints j1, j2 ∈ L that share a common variable i ∈ R. Set B = Γ(j1) ∪ Γ(j2), and A = B \ {i}.
Assuming that the support of no other constraints is contained in B, we get that distribution U(A) sets
any variable in A to 0/1 with probability 1/2 independently, but some of these assignments are not even
extendible to B meaning that U(B) will assign them with probability zero.

The proof of Theorem 10 follows by Lemmas 11 and 12. Consult appendix for both proofs.

Lemma 11. (Lemma 4.6 in [5]) Let A ⊆ B ⊆ R as in the statement of Theorem 10. Then for every
A-consistent assignment α there exist a B-consistent assignment β such that α, β agree on A.

For an A-consistent assignment α we denote byA(α) the set of B-consistent assignments that agree with α
on A (which by Lemma 11 is nonempty). We have the following lemma.

Lemma 12. (Lemma 4.5 in [5]) For any two A-consistent assignments α1, α2 we have |A(α1)| = |A(α2)|.

Proof. (of Theorem 10) From Lemma 11, any A-consistent assignment is extendible to some B-consistent
assignment. By Lemma 12 and for an A-consistent assignment α, the size of A(α) does not depend on α.
Hence, for any event E of A,

] B-consistent assignments that satisfy E
] B-consistent assignments

=
] A-consistent assignments that satisfy E

] A-consistent assignments

The first and second ratios equal PrU(B)[E ] and PrU(A)[E ] respectively.

5.2 Towards Defining Appropriate Advice-Sets

We now need to define distributions over every set I of bounded size. Clearly, such sets will not always
satisfy condition (i) of Theorem 10 (see Remark 2). Since on the one hand we can no longer use uniform
distributions over assignments that are consistent with I , and on the other it seems hard to reason about
a distribution that uses a totally different concept from uniformity, we take the following approach: For
a set I we define a superset I such that I is “global enough” to contain sufficient information, or more
specifically to satisfy condition (i) of Theorem 10, while it also is “local enough” to satisfy condition (ii) of
the theorem. We then define D(I) as U(I). In other words, set I “inherits” the distribution from a simple
uniform distribution over consistent assignments with respect to I . The next algorithm is used to obtain this
superset I which we call the advice-set of I , and is inspired by the correction procedure in [5].

Theorem 13. Algorithm Advice, with internal parameters e1, e2, r, returns Y ⊆ R such that (a) G|−Y is

(ξY , e2) boundary expanding, (b) ξY > r − |Y |
e1−e2

, and (c) Y ≤ |Y |+ e2r,

Proof. Suppose that the while loop terminates with ξ = ξY . Then
∑x

t=1 |Mt| = r − ξY . Since G is (r, e1)
boundary expanding, the set M = ∪x

t=1Mt has initially at least e1(r− ξY ) boundary neighbors. During the
execution of the while loop, each set Mt has at most e2|Mt| boundary neighbors. Therefore, at the end of
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Algorithm 1 Advice
The input is an (r, e1) boundary expanding bipartite graph G, some e2 ∈ (0, e1), and some Y ⊆ R,
|Y | < (e1 − e2)r, with some order Y = {y1, . . . , yi}.

Initially set Y ← ∅, t← 0 and ξ ← r
While t ≤ |Y | do

t← t+ 1
Y ← Y ∪ {yt}
If G−Y is not (ξ, e2) boundary expanding then

Find maximal Mt ⊂ L, |Mt| ≤ ξ such that |∂Mt| ≤ e2|Mt|
Y ← Y ∪ ∂Mt

ξ ← ξ − |Mt|
Return Y

the procedureM has at most e2(r−ξY ) boundary neighbors. It follows that |Y |+e2(r−ξY ) > e1(r−ξY ),
which implies (b).

From the bound size of Y we know that ξY > 0. In particular, ξ remains positive throughout the execution
of the while loop. Next we identify a loop invariant: G|−Y is (ξ, e2) boundary expanding.

Indeed, note that the input graph G is (ξ, e1) boundary expanding. At step t consider the set Y ∪ {yt},
and suppose that G−(Y ∪{yt}) is not (ξ, e2) boundary expanding. We find maximal Mt, |Mt| ≤ ξ, such
that |∂Mt| ≤ e2|Mt|. We claim that G−(Y ∪{yt}∪∂Mt)

is (ξ − |Mt|, e2) boundary expanding (recall that
since ξ remains positive, |Mt| < ξ). Now consider the contrary. Then, there must be M ′ ⊂ L such that
|M ′| ≤ ξ− |Mt| and such that |∂M ′| ≤ e2|M ′|. Consider then Mt ∪M and note that |Mt ∪M | ≤ ξ. More
importantly |∂(Mt ∪M)| ≤ e2|Mt ∪M |, and therefore we contradict the maximality of Mt; (a) follows.

Finally note that Y consists of Y union the boundary neighbors of all Mt. From the arguments above, the
number of those neighbors does not exceed e2(r − ξY ) implying (c).

5.3 Proving Rank Lower Bounds for Linear Systems with the Expansion Property

We are ready to state and prove the main theorem. For this we need to define appropriate distributions of
0/1 assignments. For a set I ⊆ R we define

D(I) = U(I),

where I is obtained by algorithm Advice of Section 5.2, and U is as defined in Section 5.1.

Theorem 14. (Main) Consider a polytope P on n variables defined by constraints of support at most d, and
such that the constraint bipartite graph GP is (r, e) boundary expanding and (r, 1) expanding. Then the
Sherali-Adams rank of P is at least cr − d− 1, where c = min{e/8, 1/8}.

Proof. Consider I ⊆ R, |I| ≤ cr − d, and a constraint of support J ⊆ R. Run algorithm Advice of
Section 5.2 to obtain the advice-sets I and I ∪ J , with parameters e1 = e, e2 = c (note that |I ∪ J | ≤ cr <
(e1 − e2)r as required by the algorithm). For every I ⊆ R, with |I| ≤ cr, we define z ∈ RPn

cr as

zI = PrD(I)[all elements of I are 1].
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The theorem follows after checking that conditions of Proposition 1 are met. For this we need to show
that both local agreement and feasibility are satisfied. Feasibility is directly implied by the definition of
distributions. To show that our distributions meet the local agreement property, we need to show that D(I)
and D(I ∪ J) agree on I .

First we show that D(I ∪ J) and U(I ∪ I ∪ J) agree on I ∪ J . By Theorem 13 we have that (a) G−I∪J is

(ξI∪J , c) boundary expanding, (b) ξI∪J ≥ r− |I∪J |
e−c ≥

6
7r , and (c) |I∪I ∪ J | < 2(|I∪J |+cr) ≤ 4cr < r/2.

Set A = I ∪ J and B = I ∪ I ∪ J . We claim that there exist at most r/2 many B-dominated constraints.
Indeed, if there wasX ⊆ Lwith Γ(X) ⊆ B and |X| ≥ r/2, then there should beX0 ⊆ X , with |X0| = r/2
and Γ(X0) ⊆ B. Since G is (r, 1) expander, we should have |X0| ≤ |B|, or in other words |X0| < r/2, a
contradiction.

We are eligible to apply Theorem 10, because A ⊆ B ⊆ R, G−A is (6r/7, c) boundary expanding, and
there are at most r/2 many B-dominated constraints. It follows that D(I ∪ J) and U(I ∪ I ∪ J) agree on
I ∪ J . Similarly we show that D(I) and U(I ∪ I ∪ J) agree on I . It follows that D(I) and D(I ∪ J) agree
on I ∩ I ∪ J and therefore on I as well.

All rank lower bounds follow immediately from Theorem 14 by considering appropriate instances. Follow-
ing the lines of [5], we consider good expanders of bounded degree.

Definition 3. Consider the sample space of all 2
(
n
k

)
linear mod 2 equations on n variables, each involving

exactly k variables. Define the probability distribution Mk,n
m on linear systems of equations mod 2 that

chooses m such equations uniformly and independently.

Consider also the sample space of all 2k
(
n
k

)
clauses on n variables, each involving exactly k literals. Define

the probability distributionN k,n
m of CNF that consists ofm uniform and independent choices of such random

clauses.

For every ∆, ε, k, there exist α > 0 such that if F is chosen fromMk,n
∆n, then the constraint bipartite graph

GF is almost surely (αn, k − 1 − ε) expanding [8]. Consequently, what follows is an immediate corollary
of Theorem 14 and follows the same line of arguments as in [5] (Corollary 4.10).

Corollary 15.

1. Let H be a degree d expander with edge expansion c ≥ 1. Then, the Sherali-Adams rank of TSH is
at least n

16 − d− 1.

2. Let k,∆ be constants such that k ≥ 3 and ∆ is sufficiently large. Let F be a system of linear
equalities drawn uniformly fromMk,n

∆n. Then almost surely the linear relaxation associated with F
has Sherali-Adams rank Ω(n).

3. Let k,∆ be constants such that k ≥ 3 and ∆ is sufficiently large. Let C be a system of CNF formulas
drawn uniformly from N k,n

∆n . Then almost surely the linear relaxation associated with C has Sherali-
Adams rank Ω(n).

Proof.
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1. Notice that when we view Tseitin Tautology over H as a set M of linear equations mod 2, GM is just
the incidence graph of H . This means that the size of the edge expansion of a subset of vertices S is
exactly the boundary expansion of the set S inGM (if e is cut by S, it means that the vertex associated
with e is in the boundary of the set S in GM , and vice versa). Therefore GM is (n/2, c) boundary
expanding. Theorem 14 immediately implies the result now.

2. For big enough constant ∆, F ∼Mk,n
∆n is unsatisfiable with high probability. Since the graph associ-

ated with F is almost surely (αn, k−1−ε) expanding, we get by Fact 9 that it is also (αn, k−2−2ε)
boundary expanding. For small enough ε and for k ≥ 3, the boundary expansion remains positive.
Again, this shows that Theorem 14 applies.

3. Start with a k-CNF formula C ∼ N k,n
∆n which for big enough ∆ is unsatisfiable with high probability.

Convert C to the k-CNF formula C ′ as follows: for every clause with odd (even) many positive
literals, add all clauses on the same variables with odd (even) many positive literals. The resulting
formula C ′ is unsatisfiable with high probability and it has Sherali-Adams rank not more than the
Sherali-Adams rank of C. Now for C chosen from N k,n

∆n , we have that GC′ is a bipartite constraint
graph of some F chosen fromMk,n

m . As before, GC′ is (αn, k − 2 − 2ε) boundary expanding, and
the claim follows.

6 Integrality Gaps for Linear Number of Rounds of Sherali-Adams

Theorem 14 is quite general, and allows us to obtain fairly easily a few integrality gap results.

6.1 Tight Integrality Gaps for MAX-k-LIN and MAX-k-SAT

For a system {f1, . . . , fm} of m many mod 2 equations over n variables and with support k, we denote
by MAX-k-LIN the optimization problem of determining the maximum number of constraints that can be
simultaneously satisfied. The corresponding decision problem is NP-hard and optimal inapproximability
results are known [16].

Given a set F = {f1, . . . , fm} of m many mod 2 equations over n variables, let ft be
∑

i∈It
xi ≡ bt

mod 2, It ⊆ [n]. For every t = 1, . . . ,m introduce a new variable yt. Then the next optimization problem
is an exact formulation of MAX-k-LIN.

max
∑m

t=1 yt

s.t. yt +
∑

i∈It
xi ≡ bt + 1 mod 2 t = 1, . . .m

xi, yt ∈ {0, 1} i = 1, . . . n, t = 1, . . .m
(4)

As explained in Section 2.3, the constraints of (4) can be naturally transformed to an equivalent 0/1 integer
program. By further relaxing the variables xi, yt to assume values in [0, 1], we obtain the natural linear
program relaxation for F , that we denote by KF . If instead we start with a system of k-CNF formulas, we
define the corresponding optimization problem MAX-k-SAT. Following the same formulation, we obtain
KC , the linear program relaxation for MAX-k-SAT.
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Given a set F of m many mod 2 equations, a random 0/1 assignment satisfies m/2 constraints. Similarly
for a set C of m many k-CNF formulas, a random Boolean assignment satisfies

(
1− 1

2k

)
m many of them.

Consequently, the integrality gap forKF ,KC is at most 2 and 2k

2k−1
respectively. As in [5], the next theorem

establishes optimal and unconditional inapproximability lower bounds, (see Theorems 5.1 and 5.2 in [5] for
complementary justification). Again, Theorem 16 follows as a corollary of Theorem 14.

Theorem 16.

1. For all k ≥ 3 and for every ε > 0, there exist ∆, such that if F ∼ Mk,n
∆n, then almost surely the

integrality gap of KF after Ω(n) Sherali-Adams rounds is 2− ε.

2. For all k ≥ 3 and for every ε > 0, there exist ∆, such that if C ∼ N k,n
∆n , then almost surely the

integrality gap of KC after Ω(n) Sherali-Adams rounds is 2k

2k−1
− ε.

Proof.

1. As noted in [5] (using standard concentration arguments), for every ε > 0 there exist ∆ > 0 such that
for big enough n and for F ∼ Mk,n

∆n, no more than 1/2 + ε equations are simultaneously satisfied in
KF . Set yt = 1 and consider the distribution of valid solutions used in Theorem 14 and Corollary
15.It follows that the integrality gap of KF is at least 2− ε′ after Ω(n) Sherali-Adams tightenings.

2. As above, for every ε > 0 there exist ∆ > 0 such that for big enough n and for C ∼ N k,n
∆n , no more

than 2k−1
2k + ε clauses are simultaneously satisfied in C. Again set yt = 1, and the same argument

shows that the integrality gap is at least 2k

2k−1
− ε′ after Ω(n) Sherali-Adams tightenings.

6.2 A 7/6 Integrality Gap for VERTEXCOVER

Given a graph G = (V,E), a subset of V touching all edges is called a vertex cover. Determining the vertex
cover of minimum size is one of the classic NP-hard problems. Our goal here is to study the performance
of Sherali-Adams when applied to the standard LP for VERTEXCOVER (for the definition of the VERTEX-
COVER polytope consult any of [2, 29, 26], [25, 12] and [6], who showed different types of integrality gaps
in the Lovász-Schrijver , Lovász-Schrijver with PSDness and Sherali-Adams systems respectively).

Following the work of Feige and Ofek [10] and Schoenebeck et al. [25] we consider INDEPENDENT-SET

instances obtained by random 3-LIN systems through the classical FGLSS reduction. Given a 3-LIN system
σ we construct a graph Hσ as follows: for every equation C of σ we introduce four vertices corresponding
to the partial assignments that satisfy C; two vertices are connected when their corresponding partial as-
signments are contradicting. Note that there is a natural correspondence between assignments variables to
independent sets, where the number of equations satisfied equals the size of the independent set.

For Hσ = (V,E) we define a good probability ensemble on small subsets of V that satisfy the conditions
of Proposition 1. We obtain such an ensemble almost mechanically using (i) the reduction σ 7→ Hσ, and
(ii) the tools developed in Section 5. For a vertex i of Hσ, denote by λ(i) the set of three variables of σ
associated with i and, for a set of vertices I , let ΛI = ∪i∈Iλ(i). We now relate the above to the setting of
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Section 5. Associate with σ the constraint bipartite graph Gσ on sets L and R. For ΛI ⊆ R, consider the
distribution D(ΛI) of valid 0/1 assignments on R, as defined in Section 5.3. For the Sherali-Adams system
applied to the standard LP relaxation of INDEPENDENT-SET we define

zI = PrD(ΛI)[ all variables in ΛI are assigned consistently with all i ∈ I]. (5)

As was mentioned, our starting point are random instances of 3-LIN systems. More precisely, we use the
distribution M3,n

m (see Definition 3), restricted to instances where every two equations share at most one
variable; call this distribution L3,n

m . The same distribution was used by Schoenebeck et al. who showed
(Lemma 5 in [25]) that a constant ∆ can be chosen so that this restriction does not change significantly two
important properties ofM3,n

∆n: (i) expansion of the corresponding bipartite graph is still large enough and
(ii) no more than 1/2 + ε constraints can be satisfied in σ, for some ε > 0 that is arbitrary small when ∆ is
set to be sufficiently large.

Putting everything together, we start with a random 3-LIN system σ ∼ L3,n
∆n, and we define Hσ = (V,E)

with |V | = N = 4∆n. By the above, Hσ has no vertex cover smaller thanN − (1/2+ ε)N/4 almost surely.
Also notice that |ΛI | ≤ 3|I| for I ⊆ V , and therefore for β > 0, sets I of size ≤ βN , we get that ΛI is of
size at most 3βN = 12βn, and for β small enough this will allow us to use Theorem 14. It follows that the
distribution ensemble used in defining the lifted variables (5) of the INDEPENDENT-SET polytope satisfies
the local agreement property. Feasibility is implied by the reduction from σ to Hσ. To conclude we only
need to notice that if V = {i1, . . . , iN}, then the vector (z{i1}, . . . , z{iN}) survives Ω(N) Sherali-Adams
tightenings of the INDEPENDENT-SET polytope, or equivalently (1 − z{i1}, . . . , 1 − z{iN}) survives Ω(N)
Sherali-Adams tightenings of the VERTEXCOVER polytope.

Finally, consider i ∈ V . The expansion we guaranteed for σ implies that in the graph Gσ, we have that
G−λ(i) has positive boundary expansion, and hence the advice-set λ(i) is λ(i) itself. It follows that z{i} =
1/4, since i is one of the 4 satisfying assignments of the (unique) λ(i)-dominated constraint of Gσ. We just
sketched the proof of the next theorem.

Theorem 17. For every ε > 0, there exist a family of graphs on N vertices, for which the VERTEXCOVER

polytope has integrality gap 7/6− ε after Ω(N) Sherali-Adams tightenings.

In a recent result, Charikar, Makarychev and Makarychev [6] showed that for every ε > 0, there exist γ > 0,
where γ goes to 0 with ε, and an infinite family of graphs on N vertices, such that the integrality gap of the
VERTEXCOVER polytope is 2 − ε after Ω(Nγ) Sherali-Adams tightenings. Comparing this result to ours,
the tradeoff is in the tightness of the integrality gap (achieved by Charikar et. al.) vs the asymptotically tight
(linear) number of rounds (achieved by the current result).
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Appendix

Proof. (of Lemma 11)

Consider a set X of ξ many B-dominated constraints. It suffices to show that X admits a 0/1 solution. Note
that X has positive boundary expansion.

First we describe inductively an 1-1 correspondence from X = {c1, . . . , cξ} to ∂X . At step i − 1, we
will have a matching (c1, v1), . . . , (ci−1, vi−1), where v1, . . . , vi−1 ∈ ∂X − ∂(X \ {c1, . . . , ci−1}). At
step i ≤ ξ, the set X \ {c1, . . . , ci−1} is not empty, and so there exist vi ∈ ∂(X \ {c1, . . . , ci−1). Choose
ci ∈ X \ {c1, . . . , ci−1} whose neighbor is vi (note that vi does not have any other neighbor).

To that end, set arbitrarily all variables in ∂X \ {v1, . . . , vξ}; set also variables v1, . . . , vξ to 0/1 so that X
is satisfied.

Proof. ( of Lemma 12 )

For two distinct 0/1 assignments α1, α2 of A, we describe an 1-1 mapping from A(α1) to A(α2). Let
β1 ∈ A(α1) and β2 ∈ A(α2) and define f : A(α1)→ A(α2) such that for β ∈ A(α1) and for every i ∈ B,
f ◦ β(i) = (β(i) + β1(i) + β2(i)) mod 2. We claim that f meets the desired property.

First note that indeed for every β ∈ A(α1), we have f ◦ β ∈ A(α2). To see this, consider a B-saturated
constraint j ∈ L. Then ∑

i∈Γ(j)

f ◦ β(i) =
∑

i∈Γ(j)

(β(i) + β1(i) + β2(i)) mod 2.

Each one of the individual sums for β, β1, β2 add up to some odd number, as these assignments do not
contradict any B-saturated constraint. Hence, f ◦ β does not contradict j.

Next we claim that f ◦ β agrees with α2 on I . Indeed, since β, β1 ∈ A(α1), they agree on every i ∈ I .
Therefore f ◦ β(i) = β2(i) and since β2 ∈ A(α2) the claim follows.

Finally, consider β, β′ ∈ A(α1) that assign different value for at least a variable i ∈ J . Then

f ◦ β(i)− f ◦ β′(i) ≡
(
β(i)− β′(i)

)
mod 2 6≡ 0 mod 2.

We have shown that |A(α1)| ≤ |A(α2)|. Similarly we show the other direction.
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