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Abstract
We introduce an alternative to Monte-Carlo techniques for solving radiance transport problems for participating
media. We use a reformulation of the volume rendering equation from its standard integro-differential form to a
purely differential form. We then leverage the large body of work in numerical methods for solving differential
equations by framing and analyzing the problem as a differential equation. To our knowledge, this is the first
application of such techniques in the area of photo-realistic rendering of volumes based on ray optics.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Color, shading, shadow-
ing, and texture

1. Introduction

Accurately rendering scenes with various surface reflec-
tion properties and under complex lighting is a challeng-
ing problem in computer graphics. This problem is further
complicated if a participating medium, such as smoke, is
present since light rays from the surfaces and from within
the medium itself interact to contribute to the measured ra-
diance along these rays. Many techniques based on Monte-
Carlo integration have been proposed for solving this prob-
lem [CPCP∗05]. We instead apply numerical methods for
solving differential equations (NMDE) and validate the use-
fulness of such techniques for solving rendering problems.
As a consequence of this new formulation we can also lever-
age the methodologies used in the NMDE literature for care-
fully analyzing and solving problems while providing guar-
anteed bounds on the error.

1.1. Contributions

Our main contribution is the application of NMDE analy-
sis and algorithms to solving a reformulation of the volume
rendering equation [Cha60]. To the best of our knowledge,
NMDEs have never been applied to rendering volumetric
effects using the equations of ray optics. NMDEs litera-
ture have previously been used to render refractive materials
using the equation of geometric optics [IZT∗07, SZS∗08],
however no analysis of the efficiency or error of these al-
gorithms was conducted. We will compare the performance

and accuracy of several NMDEs to determine the properties
of algorithms well-suited for solving this problem.

2. Previous Work

We will overview key contributions in accurate rendering
techniques for participating media, as well as NMDEs.

Rendering techniques for participating media based on
the radiative transfer equation have been studied extensively
in computer graphics, starting with the seminal work for ray
tracing of Kajiya and von Herzen [KH84], and Rushmeier
and Torrance for radiosity [RT87]. Since then, many tech-
niques have strived to increase the generality of produced
results to include accurate single and multiple scattering ef-
fects for media consisting of both homogeneous and het-
erogenous material combinations. Including the effects of
isotropic and anisotropic phase distributions within media is
also an area of current work. Cerezo et al. [CPCP∗05] pro-
vide a thorough survey of the area, and many recent works
by Jarosz et al. [JDZJ08,JZJ08a, JZJ08b] have addressed in-
tegration, generalization and performance of offline render-
ing techniques for participating media.

Numerical methods for solving differential equations
have been studied for nearly a century. Issues surrounding
the design of robust single and multi-step algorithms with
fixed or adaptive step sizes, the propagation of error in so-
lutions for stiff and non-stiff problems, analyzing the order,
performance and convergence of the proposed algorithms,
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Figure 1: Results of solvers with guaranteed error bounds.

and trade-offs between these different conditions are among
the many sub-areas of research in the field [AP98, Hai00].
While providing a complete literature review is beyond the
scope of this paper, we will summarize the design and anal-
ysis issues related to our application of these techniques.

3. Terminology and Problem Definition

The radiance at a point in a participating medium, L(x,~w), is
described by the radiative transfer equation [Cha60]

(~w ·∇)L(x,~w)+σt(x)L(x,~w) = E(x,~w)+

σs(x)
∫

S2
p(x,~w,~wi)L(x,~wi)d~wi (1)

where σt and σs are the extinction and scattering coeffi-
cients, p is the (potentially anisotropic) phase function, E
is the medium’s self-emission, and S2 is the set of directions
on the unit sphere. In order to solve this equation for a par-
ticular eye ray, ~wo, we parameterize points along the ray as

outgoing radiance
single scattering

surface scattering

),( owL


x
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Figure 2: Radiance along rays in participating media.

x = xo + t ·~wo (see Fig. 2) and equation 1 becomes

L′(t) = E(t)−σt(t)L(t)+σs(t)
∫

S2
p(t,~wi)L(t,~wi)d~wi

≡ F(L(t), t) . (2)

As in previous works, t is integrated only along points within
the volume, and includes the closest surface radiance in-
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Figure 3: Effects of different interpolants during integration.

tersected within or outside the volume (xs.) At this point
we break away from previous approaches which continue
to manipulate equation 2 until the more common integro-
differential form of the volume rendering equation is ob-
tained and solved using Monte Carlo integration. In Section
4 we will overview the different classes of NMDE integra-
tors which may be appropriate for solving this problem, and
we will discuss the potential benefits and trade-offs of using
these techniques as opposed to Monte Carlo techniques.

4. Choosing an Appropriate Solver

Equation 2 defines a 1st order scalar initial value problem
(IVP) where the solution L(t) is defined along a ray within
the volume with an initial value of L(xs,~wo), and integration
occurs towards the eye over the interval [xs,xo].

Furthermore, the solution L(t) does not typically exhibit
stiffness. In other words, the radiance along the ray varies
smoothly within the volume regardless of the radiance at the
edge of the volume (e.g. L(xs,~wo).) Thus, the more expen-
sive class of implicit integrators are not necessary and we
instead use explicit integrators which do not need to com-
pute the solution of an algebraic system at every step along
the ray, L(ti+1). We will now discuss the remaining factors
necessary for picking a suitable solver: differences between
one-step and multi-step methods, the order of the method,
and fixed versus adaptive step sizes.

One-step methods do not use any of the previously cal-
culated points along the ray when calculating the next

point, whereas multi-step methods do use a (sometimes
variable) number of previously calculated points (e.g.
{L(ti−1), . . . ,L(ti−n)} .) Choosing between these two types
of solvers depends on the cost of evaluating the differential
equation, the accuracy requirements, and the smoothness of
the underlying problem, and there is no rigorous way to de-
termine a-priori which technique is most suitable for a given
problem. Therefore, we will experiment with both one-step
and multi-step methods in Section 6 in order to determine
which is more suitable in our case.

Order of a solver relates the total error and error introduced
per step along the ray to the size of the step. Roughly speak-
ing, if the solution has continuous high-order derivatives (see
Section 4.1), then the error per-step of a pth-order method
will be O(hp+1) and the total error is O(hp). As with the
choice between one-step and multi-step approaches, choos-
ing the order of your solver depends on accuracy require-
ments, smoothness of the problem, and cost trade-offs. Sec-
tion 6 will also compare solvers with various orders.

Step sizes can either be fixed or adaptive. Fixed size ap-
proaches are easier to implement and, with a small enough
step size, can yield accurate results. However, adaptive step
size approaches explicitly monitor the error introduced per
step and use the data to increase the step size where suit-
able (e.g. where the solution varies slowly.) Typically, adap-
tive approaches are more efficient as the cost of perform-
ing the per-step error analysis and step size adjustment is
justified, for both increasing the accuracy and performance.
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Figure 4: A smoke dataset exhibiting both emission and scattering effects. (Left) Rendered with an emission-only integrator
using Equation 3. (Right) Rendered with a single-scattering integrator using Equation 4.

Monte Carlo techniques in graphics with variable step-sizing
heuristically divide the steps based on contrast or variance
estimates between adjacent samples, whereas the adaptive
Runge-Kutta solver we introduce in Section 4 divides the ray
based on maintaining a guarantee on the error tolerance with
dynamically computed error estimates (see the Appendix for
the mathematical exposition.)

4.1. Data Continuity Requirements

As mentioned earlier, many of the NMDE approaches make
error and convergence guarantees based on assumptions on
the behavior of the solution. Namely, the existence of contin-
uous higher-order derivatives is necessary. We experimented
with piece-wise constant, linear and b-spline interpolants of
the spatially varying properties (σt(t), σs(t), p(t,~w), and
E(t)). Figure 3 illustrates the effects on the quality and per-
formance of an adaptive solver with these interpolants. The
effects of using these different interpolants on the behavior
and performance of the different solvers will be discussed.
Using the B-spline interpolant increased the number of steps
required to converge using an adaptive Runge-Kutta solver,
however it resulted in a much smoother result (with the same
tolerance used across integrators: tol = 0.005.)

4.2. Setting Tolerance

With NMDEs, we can set an error tolerance to be maintained
throughout integration. We experimented with various toler-
ances and found that stringent settings only improve numeri-
cal convergence, not visual convergence. We use tol = 10−2

whereas other simulations, such as those of large physical
bodies, require settings on the order of 10−7 [AP98].

5. Solving the Radiance Transport Equation

We will discuss the details involved in applying different
NMDE integrators to solving various forms of Equation 2.

Emission Only: The simplest form of participating media
is one that only absorbs and emits light, but does not scatter
any. In this case, Equation 2 can be simplified to

L′(t) = E(t)−σt(t)L(t) (3)

and serves as a starting point for experimentation since ro-
bust algorithms exist in the NMDE and graphics literatures
for solving this type of problem.

Single Scattering: In order to include scattering events, the
integrated incident radiance at each point along the ray is
simplified to only include single scattering events: light that
has only scattered once within the volume at x, Li(x,~wi),
replaces the L(x,~wi) term in the integrand of Equation 2.

L′(t)+σt(t)L(t) = E(t)+

σs(t)
∫

S2
p(t,~wi)Li(t,~wi)d~wi . (4)

We use an NMDE solver to integrate along each direction,
~wi, accounting for the light that bounces towards x after
a single scattering event. We experimented with different
solvers and tolerance settings for the separate integrals along
L and Li, however we found it difficult to predict the effects
on the results when multiple solvers or tolerance settings
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were coupled. Moreover, we are able to obtain high-quality
results using a single solver for both components of the so-
lution.

Figure 4 compares and illustrates the effects of scattering
and emission between both using our solvers and a reference
path-tracing solution.

6. Experimental Results

We will compare the performance and behavior of six in-
tegrators on various scenes comprising participating media
with different volumetric properties and surrounding geom-
etry. Of these six integrators, three are constant step-sizing
techniques (of which one is a multi-step approach), and three
are adaptive step-sizing Runge-Kutta techniques. We will
give a brief overview of the integrators below.

The Euler integrator is the simplest of the six and is
very similar to the constant step-sizing algorithms typically
used in Monte Carlo integration for participating media. This
solver has order 1 and evaluates the differential equation F
once per step along the ray:

L(ti+1) = L(ti)+hF(L(ti), ti) , (5)

where h is the step size. We will experimentally determine
whether the low order of this solver affects the quality of the
results it generates in the context of the accuracy require-
ments for the purposes of generating perceptually correct
renderings (see Figure 5).

The second integrator is an order 4 Runge-Kutta method.
This integrator performs four function evaluations per step:

L(ti+1) = L(ti)+
h
6
(k1 +2k2 +2k3 + k4) (6)

where

k1 = F(L(ti), ti)

k2 = F(L(ti)+
h
2

k1, ti +
h
2
)

k3 = F(L(ti)+
h
2

k2, ti +
h
2
)

k4 = F(L(ti)+hk3, ti +h) . (7)

Of the family of constant-step Runge-Kutta solvers, this
solver is particularly attractive since Runge-Kutta formulas
with order p higher than 4 require more than p function eval-
uations per step. The constant-step, one-step Euler and 4th-
order Runga-Kutta solvers can be characterized in Runge-
Kutta tableau form:

α1 β11 · · · β1s
...

... . . .
...

αs βs1 · · · βss

ω1 · · · ωs

- -
1
2

1
2 -

1
2 0 1

2 -
1 0 0 1 -

1
6

1
3

1
3

1
6

0
1

General Tableau 4th-order Runge- Euler
Kutta Tableau Tableau

where s is the number of stages and

L(ti+1) = L(ti)+h(ω1k1 + · · ·+ωsks)

k j = F

(
L(ti)+h

s

∑
r=1

β jrkr, ti +hα j

)
. (8)

The third constant step-size integrator we implemented
is the multi-step algorithm of Adams-Bashforth. This in-
tegrator has order equal to the number of stages used, s. The
blending weights, β j, can be obtained by solving a simple
integral equation [Hai00] and the solver has the form

L(ti+1) = L(ti)+h
k

∑
j=1

β jL
′(ti+1− j) . (9)

Apart from requiring s− 1 function evaluations to boot-
strap the first iteration, this solver only evaluates F once per
subsequent step and can therefore yield high-order results
without incurring large computational penalties (assuming
the integration is performed over a number of steps much
larger than s.)

We have implemented three adaptive step-sizing Runge-
Kutta solvers. The first is a 5th-order integrator based on
the Verner equations [HEJ76] implemented by Hull et al.
We also implemented two more 4th-order solvers based on
the equation pairs introduced by Fehlberg [E.69] and Cash-
Karp [CK90]. Unlike Monte Carlo adaptive step-sizing tech-
niques, these integrators estimate the error at every integra-
tion point by taking the difference between the pth-order
estimator and its paired (p + 1)th-order equation (see the
Appendix for mathematical details.) This difference can be
be used to increase the order of the solver instead without
changing the step-size, or to adaptively change the step size
without using the higher-order accuracy. While these tech-
niques require more function evaluations than the previous
approaches, we will experimentally investigate whether us-
ing adaptive step-sizes yields an overall increase in perfor-
mance. Like the constant step-size Runge-Kutta techniques
introduced earlier, (p, p+1) Runge-Kutta pair equations can
be expressed in a very similar generalized form (see Table 1)

- -
α2 β21 -
...

... . . .
...

αs βs1 · · · βs−1,s -
ω1 · · · ωs
ω̂1 · · · ω̂s
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Ground Truth Euler Runge-Kutta

Figure 5: (Left to right) Ground truth rendering, and equal-time renderings (120 seconds) with the 1st -order Euler and 4th-order
Runge-Kutta constant step-size integrators. As we can see, banding artifacts from insufficient steps are significantly reduced
with the Runge-Kutta solver.
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1
4

37
378 0 250
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594 0 512
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Fehlberg Tableau Cash-Karp Tableau

Table 1: Runge-Kutta paired equation tableaus.

where

L(ti+1) = L(ti)+h(ω1k1 + · · ·+ωsks)

L̂(ti+1) = L(ti)+h(ω̂1k1 + · · ·+ ω̂sks) . (10)

For all comparisons, timings only include volume integra-
tion calculations (not the time required to perform surface
shading) and ground truth renderings are generated using
a high-order solver with a small step size. Figure 5 com-
pares equal-time renderings with 1st -order Euler and 4th-
order Runge-Kutta solvers with step size equal to 1% of the
minimum volume dimension to a ground truth rendering.

The cost of evaluating F four times per step in the higher-
order one-step solver did not justify the added accuracy
when compared to an equal-time rendering of a lower-order
one-step technique with reduced step-size. Figure 6 illus-

trates renderings of the 4th-order Runge-Kutta and kth-order
Adams-Bashforth (k = 4) solvers to compare one-step and
multi-step solvers of equivalent order.

Adams-Bashforth generates better results in less time than
a one-step method of equal order, combining the benefits
of fewer function evaluations and increased accuracy. Our
final experiment compares Adams-Bashforth and adaptive-
step Runge-Kutta solvers in Figure 7. Adams-Bashforth out-
performs the adaptive step-size solver significantly.

7. Conclusions and Future Work

In general, our solvers perform at least as well as standard
Monte-Carlo techniques and often converge to less noisy
results faster. Multi-step approaches out-perform one-step
approaches as well as adaptive step-sizing algorithms of
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Adams-Bashforth (128s) Runge-Kutta (3439s)

Figure 6: One and multi-step algorithms.

equal order. Adaptively changing the step-size improved re-
sults when compared to equivalent constant step-size algo-
rithms. Given these results, we expect adaptive multi-step
approaches to be even better suited for this volume render-
ing application. We are also investigating a hybrid NMDE-
photon-mapping approach for simulating multiple-scattering
effects.

Appendix - Adaptive Step-Size Tolerance Conditions

The adaptive Runge-Kutta solver attempts to adjust the step
size as close to the largest value while still maintaining the
tolerance criteria:O(hp+1) error per-step andO(hp) total er-
ror. Given the formula pairs of our particular adaptive solver
(p = 5), we can estimate the current step to 5th and 6th-order
accuracy, L(ti) and L̃(ti) respectively, as well as estimating
the error at this step [HEJ76]

L(ti) = L̂(ti)+O(hp+2)

L̃(ti) = L̂(ti)+A(F) hp+1 +O(hp+2)

errori = L̃(ti)−L(ti) =−A(F) hp+1

where L̂ is the estimated pth-order function and A(F) are the
(p + 1)th-order terms of the Taylor expansion of L. A scale
factor, ζ, is required such that during the next step

errori+1 = tol h′

with h′ = ζ h. Since

errori+1 =−A(F) h′p+1 = ζ
p+1 errori

then

h′ = αh
(

tol h
|errori|

)1/p

where α < 1 compensates for systematic errors. We use α =
0.9.
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Adams-Bashforth (137s) Adaptive Runge-Kutta (639s)

Figure 7: Comparing adaptive step-size Runge-Kutta and constant step-size Adams-Bashforth solvers.
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