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Abstract

Classification of proteins based on their structure provides a valu-
able resource for studying protein structure, function and evolutionary
relationships. With the rapidly increasing number of known protein
structures, manual and semi-automatic classification is becoming ever
more difficult and prohibitively slow. Therefore, there is a growing
need for automated, accurate and efficient classification methods to
generate classification databases or increase the speed and accuracy of
semi-automatic techniques. Recognizing this need, several automated
classification methods have been developed. In this survey, we overview
recent developments in this area. We classify different methods based
on their characteristics and compare their methodology, accuracy and
efficiency. We then present a few open problems and explain future
directions.

Introduction

Classification of protein structures is an interesting and challenging problem
in the field of computational biology that plays an important role in sev-
eral tasks for studying protein function. These tasks include protein struc-
ture and function prediction, studying structural and evolutionary relation-
ships between proteins, and identification of potential functional residues
and binding sites. Several classification databases exist [1, 2, 3, 4, 5, 6]
from which SCOP! [3] and CATH? [2] are the most widely used and ac-
tive databases. These databases are updated intermittently using manual
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and semi-automatic methods. For example, SCOP has been updated every
seven months on average during the last seven years, while CATH has been
updated annually.

On the other hand, the number of newly determined protein structures
is constantly increasing. The Protein Data Bank (PDB) [7] currently con-
tains 46,051 structures (as of October 2007), of which 6,358 structures were
released during the first three quarters of 2007. This is roughly double the
number of structures in the year 2004. This rapid increase in the number
of structures calls for more efficient, accurate and automated classification
methods. Automated methods may not be able to completely replace the
manual and semi-automatic databases that incorporate the judgement of an
experienced biologist. However, with the rapid increase in the number of
known structures, they can (and currently do) play an important role as a
preprocessing step for high-quality manual classification of proteins.

Consequently, several automated classification methods have recently
been developed. These methods differ in several aspects including their
structure comparison criteria, the type of their input and the output of the
classification. In most of the automated classification methods, the goal is
to automatically assign a protein structure or domain to an existing class of
a manual classification scheme, mainly SCOP and CATH. Some are specif-
ically designed to predict only SCOP or only CATH classes while others
provide a more flexible classification framework that is capable of assigning
SCOP, CATH or other existing method’s classes to input structures. Al-
though the main objective of automated methods is to accurately classify
the input structures, recent methods consider efficiency as an important
criterion in their evaluation as a result of the rapid increase in the number
of known structures. Another desirable feature of a classification method is
the ability to detect new classes when structures cannot be classified into
existing classes.

In this paper, we present a survey of major existing protein structure
classification methods. These methods are listed in Table 1 along with
their structure comparison criteria. The methods that are purely based on
sequence comparison are efficient, but they often fail to identify remote ho-
mologs of structurally similar proteins. Methods based on only structure
comparison are effective in classifying at fold level, but not necessarily at
family and superfamily levels. Methods that combine sequence and structure
information for classification are generally more accurate but computation-
ally more expensive.

Table 2 shows the type of the input and the output of the classification
methods discussed in this paper. Some methods perform classification on a



Table 1: Protein structure classification methods discussed in this paper

Method Based on
SUPERFAMILY (Gough et al., 2001 [8] and 2007 [9]) Sequence
F2CS (CO) (Getz et al., 2002 [10] and 2004 [11]) Structure
SGM  (Rogen and Fain, 2003 [12]) Structure
SCOPmap (Cheek et al., 2004 [13]) Structure/Sequence
DTree (Gamoglu et al., 2005 [14]) Structure/Sequence
ProtClass (Aung and Tan, 2005 [15]) Structure
proCC  (Kim and Patel, 2006 [16]) Secondary Structure
fastSCOP  (Zemla et al., 2007 [17]) Structure

query protein chain. In these methods, first domain boundaries are identified
using an integrated domain prediction technique and then a classification
label is assigned to each identified domain. Other methods do not address
the domain boundary prediction problem and only classify an input domain.
The output of the classification process is a class label or class labels of a
classification scheme. Some methods only predict one level of classification
in the hierarchy of SCOP or CATH such as SCOP family or superfamily
while others are capable of assigning the input structure to all different
levels of the classifications’ hierarchy.

In the rest of this paper, we briefly overview the classification method-
ologies of the methods listed in Table 12. We highlight important features of
each method and present discussions on how each of these methods perform
comparing with others. We finish this paper by discussing some open prob-
lems and several ideas for further improvement in the task of classification
of proteins structures.

SUPERFAMILY

SUPERFAMILY [8] was initially designed to provide protein domain assign-
ments at the SCOP superfamily level. The most recent release of SUPER-
FAMILY [9] added the assignment of family level as well. SUPERFAMILY
deploys a library of profile hidden Markov models (HMMSs) that represent
all proteins of known structure. The HMM library is implemented based on

3Since these methods differ in many features as shown in Tables 1 and 2, we do not
group them together based on their features. Instead, they are ordered chronologically by
the date of their first published results.



Table 2: Input and output in the classification methods

Method Input Output
SUPERFAMILY | Structure | SCOP superfamily [8] and family [9]
F2CS (CO) Domain | SCOP fold and class
CATH topology and architecture
SGM Domain | full CATH hierarchy
SCOPmap Structure | SCOP superfamily and fold
DTree Domain | SCOP family, superfamily and fold
ProtClass Domain | SCOP fold - possibly other levels
proCC Domain | SCOP family, superfamily and fold
full CATH hierarchy
fastSCOP Structure | SCOP superfamily

Sequence Alignment and Modeling (SAM) HMM [18] package for sequence
comparison. SUPERFAMILY’s input is a protein structure. However, no
domain boundary detection method is used. Instead, every model is scored
(using a Viterbi algorithm) across the whole sequence detecting any occur-
rences of a domain belonging to the superfamily which the model represents.
A specific heuristic strategy is used to select the regions of the sequence that
correspond to a domain and match with a superfamily. In its latest release,
SUPERFAMILY uses 10,894 models to represent the 1,539 superfamilies in
SCOP 1.69. The model and structural assignments are available from a
public web server at http://supfam.org. To the best of our knowledge, there
is no comparison of the accuracy of SUPERFAMILY with other existing
methods in the literature.

F2CS (CO)

Getz et al. [10] present a method, Classification by Optimization (CO), to
automatically assign SCOP fold level and CATH topology level labels to in-
put protein domains. This method is based on the FSSP (Fold classification
based on Structure-Structure alignment of proteins) database [1] which uses
DALI (Distance ALignment algorithm), a fully automated structure com-
parison algorithm, to calculate a pairwise structural similarity (the S-score)
between protein chains. FSSP computes statistically meaningful Z-scores by
shifting and rescaling S-scores, and uses Z-scores of all pairs of structures
and a hierarchical clustering algorithm to generate a fold tree. CO is an op-
timization procedure that finds the assignment of minimal cost, where cost



is defined in terms of Z-scores. The method is available online as a prediction
server, F2CS [11], at http://www.weizmann.ac.il/physics/complex/compphys/f2cs/.
The accuracy of CO method at predicting both SCOP fold level and CATH
topology level was reported to be 93%. Refer to [10] for details of their
evaluation methodology.

SGM

Scaled Gauss Metric (SGM) [12] is a measure of similarity of protein shapes
based on Gauss integrals. In this measure, each domain is mapped into a
point in N30 (a 30-dimensional vector) and then the distance between two
domains is defined to be the usual Euclidean distance between the points.
Rogen and Fain [12] show that SGM is a proper pseudo-metric satisfying,
for example, triangle inequality on CATH (version 2.4) unlike previously
proposed measures such as RMSD. They discovered that under this metric,
protein structures naturally separate into fold clusters. Therefore, SGM is
used to construct an automatic classification procedure for CATH database.
The method is very fast since it does not need alignment of structure or all-
pair comparison. It assigns 95.51% of the input domains to proper CATH2.4
hierarchy (class, architecture, topology and homologous superfamily).

SCOPmap

SCOPmap [13] has been developed to automatically map domains in protein
structures to the SCOP database at the superfamily level. It also performs
assignments at the SCOP fold level when confident superfamily level assign-
ments cannot be made. Apart from finding appropriate SCOP superfamily
for domains within newly solved proteins, SCOPmap can be used to find new
links in SCOP by identifying potential evolutionary relationships between
existing SCOP families. The general strategy used by this algorithm is to
combine several existing sequence and structure comparison tools applied
to a query protein of known structure to find the homologs already classi-
fied in SCOP and assign class labels based on the labels of those homologs.
The tools used in SCOPmap include the gapped BLAST [19], RPS-BLAST
[20], PSI-BLAST [19], COMPASS [21], MAMMOTH [22], and DaliLite [23].
This strategy is not limited to SCOP and can be used with other existing
classification schemes as well. When applied to SCOP database, SCOPmap
performs with roughly 95% accuracy, i.e., for ~95% of the inputs, it pre-
dicts the superfamily correctly or no assignment is made as appropriate.
SCOPmap performs better than SUPERFAMILY both in overall accuracy
and in the detection of domain boundries.



DTree

A method for automatically classifying protein structures into SCOP classes
based on decision trees, which we call DTree, is presented by Camoglu et
al. [14]. In this approach, the decision of assigning a class label to an input
domain is made by combining the decisions of multiple classifiers using a
consensus of committee (or an ensemble) classifier. Specifically, they use
two sequence classifiers and three classifiers based on structure. Sequence
classifiers are SUPERFAMILY [8] and a classifier based on PSI-BLAST [19].
The structure classifiers include a classifier based on CE algorithm for struc-
tural alignment [24], DALI structure-similarity comparison tool [25] and a
classifier based on Vast [26] algorithm for identifying remote homologies.
Given an input protein domain, first the method determines whether the
domain belongs to an existing category (family, superfamily, fold) in the
SCOP hierarchy. For those that are predicted as members of current cat-
egories, the consensus classifier computes their family-, superfamily-, and
fold-level classification. The authors present an elaborate comparison of
their method with the individual classifiers and at different levels of classi-
fication. In summary, they show that their method based on decision trees
achieves error rates that are 3-12 times less than the individual classifiers’
error rates at the family level, 1.5-4.5 times less at the superfamily level,
and 1.1-2.4 times less at fold level.

ProtClass

ProtClass (Protein Classification) [15] is an automatic structure classifica-
tion method which does not require detailed structural alignment or binary
classifications. The classifier in this method is built by using an existing
classification database as the training data. The scheme presented in [15] is
implemented and evaluated based on SCOP fold-level labels, although the
authors state that other levels and classification databases can also be used.
The classifier is trained by encoding the protein structure in each class into
their concise formats and extracting some important pieces of information
from each distinct class. In this way, prior knowledge and expert human
judgement is used for automatically predicting the class labels for unseen
structures. When classifying a new structure, again it is represented in
its concise format, filtering and a nearest neighbour search is performed in
order to efficiently and effectively predict the possible class label(s) for it.
Experiments for evaluation of ProtClass are performed on using a 10-fold
cross validation strategy on a relatively small dataset consisting of 600 pro-
teins. The method is compared with the authors’ previous work, SGM and
a classification based on DALI [25]. The results of their experiments show



that ProtClass is slightly better than SGM in accuracy and much faster,
but less accurate comparing with the classification based on DALI although
extremely faster.

proCC

Kim and Patel [16] present proCC, a unified framework for structure clas-
sification and identification of novel protein structures. This framework
consists of three components. Given an unclassified query domain, first a
structure comparison component employs an efficient index-based method to
quickly find domains with similar structures. The comparison is performed
using secondary structure elements (SSEs), which is more efficient than us-
ing atomic coordinates of C, atoms. The scoring function used is similar to
that of DALI [25] for tertiary structure comparison, but uses SSEs as basic
unit of comparison rather than individual residues. This makes this scoring
method computationally much faster than DALI. The second component of
proCC is a classification component that assigns the query to an existing
class label or marks it as unclassified based on the results of the structure
comparison component. The classification of a query is performed using
top k structure neighbours in the database and a support vector machine
(SVM) trained using training data (known class labels in SCOP or CATH).
Finally, a clustering component takes all domains marked as unclassified and
detects potentially novel folds by clustering them using a graph-clustering
method on a weighted graph constructed from all unclassified structures. In
this graph, nodes represent the unclassified structures. Two nodes are con-
nected if their similarity score is above a certain threshold and the similarity
score is the weight of that edge.

Comparing with other automatic classification methods, a major feature
of proCC is that not only it is capable of accurately classifying new domains
into existing classes, it can effectively identify new classes. Emphasis in the
evaluation of proCC is on identification of novel domains. For example, for
comparison with SGM, the parameters of SGM are set to produce the best
accuracy for new class detection, and then it is shown that proCC outper-
forms SGM in classification precision and error rates. In the evaluation on
SCOP version 1.69, proCC correctly classifies 86.0%, 87.7%, and 90.5% of
new domains at familiy, superfamily, and fold levels. Comparing with SGM
(when its parameters are set to produce the best accuracy for detecting new
classes), proCC performs 15-19% more accurate in the family, superfamily
and fold levels of SCOP | and is slightly more accurate than SGM in clas-
sifying CATH. In the detection of new classes, SGM could perform equally



well. Comparing with SCOPmap, proCC is marginally better in overal pre-
cision but is about 20% more accurate in detecting novel structures. Note
that unlike SCOPmap, proCC has to use another tool for domain boundary
detection.

fastSCOP

The fastSCOP [27] server is the most recent proposal for automated clas-
sification of protein structures. The fastSCOP is a web server that quickly
recognizes protein structural domains and SCOP superfamilies of a query
protein structure. The server uses 3D-BLAST [28] (a method developed
by the same authors, for quickly finding similar structures) to scan quickly
a large classification database, namely latest release of SCOP. The top 10
hit domains which have different superfamily classifications are obtained.
MAMMOTH [22], a detailed structural alignment tool, is adopted to align
these structures to refine domain boundaries and identify SCOP superfam-
ilies. The classification accuracy of this server on 586 query structures (in-
cluding 464 single-domain and 122 multi-domain proteins that are in SCOP
1.69 but not in SCOP 1.67) on SCOP 1.67 is ~98% with ~5 seconds average
execution time on a modest personal computer. The fastSCOP web server
is available at http://fastscop.life.nctu.edu.tw.

Outlook

Automated classification of protein structures is an attractive research topic
with many interesting directions for future work. In this section, we discuss
some open problems as well as interesting ideas for further improvement in
the accuracy and efficiency of the classification procedure. One important
point to have in mind is that although many methods have been developed,
a fully automatic high-quality classification database or a semi-automatic
database that is updated frequently enough is yet to be developed. This re-
mains the main challenge for computational biologists active in this area. An
important step to be taken for manual and semi-automatic methods, SCOP
and CATH, is to utilize several new techniques discussed in this paper to
speed up their classification process and keep their high-quality classification
databases more up-to-date without losing the quality of their classification.

Possible improvements in existing methods: All the methods dis-
cussed in this paper have still open problems and possibility for further im-
provements. SUPERFAMILY uses a specific domain boundary detection
mechanism as a part of its methodology. More effective boundary detec-



tion techniques can replace the boundary detection mechanism in SUPER-
FAMILY. F2CS(CO) uses a simple clustering algorithm (average-linkage
hierarchical clustering algorithm) to generate its fold tree. More accurate
and efficient hierarchical clustering algorithms can improve the effectiveness
of this method. The SGM method opens up lots of interesting future di-
rections by the novel measure of similarity of structures proposed based on
Gauss integrals. SGM method is initially proposed to accurately classify
domains into CATH hierarchy. The evaluation in [16] shows SGM does not
perform equally well on SCOP. SGM method can be extended for prediction
of SCOP hierarchy. For this, the classification algorithm should be made
more elaborate by incorporating cluster-specific information. SGM method
can also be combined with a domain boundary detection method and be
extended to predict domain boundaries of input structures as well. The
SCOPmap method, as stated in the description of its methodology, can be
extended for prediction of CATH hierarchy as well. An interesting feature
of SCOPmap is that it uses several existing sequence and structure compar-
ison tools as a part of its classification process. Therefore, new proposals
for highly accurate and efficient sequence and structure comparison such as
3D-BLAST][28] can be added to this method to make it even more effec-
tive. DTree has also the feature of incorporating existing tools for building
its classifier based on decision trees. Similarly, these tools can be replaced
by recent more effective techniques. An obvious extension would be using
fastSCOP instead of SUPERFAMILY in DTree to significantly improve the
performance of the method. In ProtClass, the nearest-neighbour classifi-
cation strategy can be replaced by a more effective classification technique.
The flexible framework of proCC can also be extended in several ways.
It can be combined with a more effective boundary detection method such
as recently proposed CATHEDRAL [29] to further improve its effectiveness
comparing with SCOPmap. Its clustering method can also be enhanced
with more effective graph clustering algorithms to enhance its accuracy in
identification of novel folds. The fastSCOP server is very accurate and
highly efficient but is only capable of classifying at SCOP superfamily level.
Extending fastSCOP’s approach for CATH classification and other levels of
SCOP would be an enticing direction for future work.

Automated clustering of structures: Instead of classifying input struc-
tures into known classes of existing databases, structures can be clustered
into groups of related structures. A very recent work [17] presents STRALCP,
a method for STRuctural ALignment-based Clustering of Protein structures.
The goal of this method is to automatically identify structurally conserved



regions for a given set of protein structures and use them to cluster results
similar to those that would be obtained by manual inspection (e.g., SCOP
curators). STRALCP uses a specific structure alignment algorithm as a
part of its clustering algorithm. Several other alignment and clustering al-
gorithms exist that could be investigated for generating clusters similar to
SCOP or CATH, or results that could be used in the automated and semi-
automatic classifications techniques.

Classification based on information bottleneck method:. Recently,
there has been an increasing interest in methods based on information the-
ory concepts for clustering and classification techniques in the information
retrieval and databases community [30, 31]. One such method is called in-
formation bottleneck (IB). In a simple IB algorithm, clustering is performed
by first assuming that each record is a separate cluster and then iteratively
merging the clusters n — k times to reduce the number of clusters to k. In
each iteration, two clusters are chosen to be merged so that the amount of
information loss as a result of merging the clusters is minimum. Information
loss is given by a specific formula derived from information theory concepts.
This formula could be adopted for clustering and classification of structures
based on a structure comparison measure such as Z-Scores of DALI [25].

A hybrid method: As described in the above sections and also shown in
Tables 1 and 2, each classification method is designed and performs better
for a specific output. For example, fastSCOP is only capable of prediction
of SCOP superfamily, although it is highly accurate and efficient. The accu-
rate results of fastSCOP in superfamily level can be combined with results
of another method such as proCC that can classify other levels, in order
to predict full classification hierarchy of an input structure. This is in par-
ticular useful in methods like DTree and SCOPmap that use other tools as
part of their classification process and also proCC and SCOPmap that make
the decision based on top k similar structures in an existing database. Us-
ing this technique, irrelevant results from the top k structures can be pruned.

Other supervised learning methods: Several methods described in this
paper are based on a supervised learning technique. A classifier learns the
classification rules from the training data and reapplies these rules to clas-
sify new unseen inputs. There exists several classification methods in the
machine learning literature including nearest-neighbor search (NN), support
vector machines (SVM), neural networks, and Bayesian networks, some of
which were used as a part of the methods presented in this paper. Adopting
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novel classification methods for existing classification methods or in a novel
framework could be an interesting future work. Hidden Markov models
(HHMs) are used for sequence comparison as in SUPERFAMILY method.
A similar method based on HMMs but on SSEs (as in proCC) or other rep-
resentations of protein structures (as in SGM or ProtClass) is one possible
novel classification technique.

Conclusion

We presented a survey of recent proposals for automated classification of
protein structures. We provided an overall comparison of the methodology
of different methods and briefly explained important features of each tech-
nique. Automated classification of protein structures is still an attractive
research topic with a lot of interesting possibilities for further improvements
in the accuracy and efficiency. Recent developments in detection of domain
boundaries [29] can be used to improve the performance of a flexible frame-
work such as proCC [16]. More advanced machine learning techniques can
also be used for training an accurate classifier. Another interesting direction
for future work is adopting ideas from information theory field to provide
an accurate and efficient algorithm for classification of protein structures.
Having developed several accurate and efficient classification methods, the
manual and semi-automatic classification databases are now able to utilize
these methods to keep their high-quality classification more up-to-date.
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