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Abstract

In this paper, we design large reliable, distributed publish/subscribe (P/S) systems that are ca-

pable of coping with concurrent failure of multiple nodes and links. Our fault-tolerant algorithms

exploit multi-path forwarding to ensure both liveness and safety in the face of up to δ failures

(δ-fault-tolerant). Furthermore, in the case the number of failures exceed δ, the algorithms guar-

antee safety with a chance that liveness may be compromised. We provide in-order exactly-once

publication delivery semantics as part of our reliable P/S service. It is challenging to ensure the

latter since upon detection of a failure our algorithms may trigger retransmission of messages

over a different path. We define and enforce a legitimate message propagation property in a way

that honors reliability and δ-fault-tolerance requirements. Based on this property, we propose a

novel scheme that allows nodes to detect duplicate arrival of messages only by keeping track of

the sequence numbers assigned by their nearby peers (within distance 2δ + 1). We prove the safety

properties of our approach.

Keywords: Publish/subscribe, reliability, Fault-tolerance, distributed systems, content-based

routing

Categories: Distributed systems; Fault tolerant systems; Middleware; Reliability, availabil-

1A modified version of this paper has been submitted to Dependable Systems and Networks, 2009.



ity and safety; Networking and networked systems

1 Introduction

Publish/subscribe (P/S) is a message-passing communication paradigm that has gained much

attention from both industry and academia in recent years. It provides an abstract and high-

level interface for data producers (publishers) to publish messages and consumers (subscribers) to

receive messages that match their interest. Distributed P/S systems strive to achieve scalability

and avoid a single point of failure, by using an interconnected network of routers (brokers) that

collectively perform the task of delivering publications to subscribers.

The flexibility and decoupling provided in this model is a major driving force for its adoption

as the main communication substrate in an increasing number of enterprise-level applications

[6, 1, 7, 2]. There are several standards-based industrial messaging platforms [3, 4, 5] supporting

various flavors of publish/subscribe (e.g., content-based and topic-based). There are also several

proprietary P/S solutions that are customized for particular application areas. For instance, Tibco

Rendezvous [2] disseminates highly delay-sensitive financial market, and Google uses a proprietary

P/S platform to disseminate advertisements to massive server farms [1]. Emerging new directions

in research are also investigating P/S-based coordination and execution of business processes [15].

The reliability requirements of these new application areas are extensive and beyond the best-

effort quality of service (QoS) provided by mainstream P/S systems. In our previous work [14, 17]

we proposed reliable and fault-tolerant distributed P/S algorithms that tolerate concurrent crash

failure of up to δ brokers (δ-fault-tolerant). Reliability in this context refers to per-source in-order

and exactly-once delivery of publications to all matching subscribers, and δ denotes a system

configuration parameter determined by system administrator.

In our approach, network nodes (i.e., brokers, subscriber, and publishers) are organized in a tree-

based topology, and each maintain a topology map data structure. A node’s topology map captures

the layout of other peers in the topology within a certain radius (δ + 1 hops away). Brokers also



maintain a subscription routing table data structure that stores subscription tuples each containing

a client’s subscription predicate, as well as partial information about the path towards to the

issuing subscriber. Nodes use subscription predicates to filter unwanted publications and forward

only those that match the clients’ interests. In the face of node failure, the combination of the

information in the topology map with the subscription tuple’s path information help to reconnect

the network, and prevent interruptions to publication flows. Our tree-based topology enables

flexible content-based message routing which is otherwise hard to achieve (e.g., using Distributed

Hash Tables (DHT) [19]). Moreover, since typical P/S infrastructures maintain a large volume of

routing state across network brokers, organization of subscription routing tables and the topology

maps in our approach allows for quick reaction to failures without the need to re-propagate

subscriptions.

In this paper, we extend our δ-fault-tolerant system w.r.t. three important features: (i)

partition-tolerant subscription propagation; (ii) node recovery; and (iii) improvements to mes-

sage traffic. The partition-tolerant subscription propagation algorithm (Section 3) delivers clients’

subscriptions to brokers and updates subscription routing tables. We properly address scenarios

in which due to link failures or node crashes parts of the network become unreachable and do not

receive some subscriptions. Based on the fact each node’s topology map is confined to a limited

radius, we characterize two cases: small and large fragments. In the former, the information in

the topology map is sufficient to reconnect the overlay and deliver subscriptions to the rest of the

network’s nodes. Parts of the network that are unreachable will nonetheless remain unaware of

the subscription and we ensure that these nodes do not violate reliable publication delivery by

mistakenly dropping matching publications. Moreover, once network unreachability conditions

are resolved we deliver the missed subscription tuples as part of the recovery algorithms (Section

4).

In the latter case however, the information stored in the topology map is not sufficient to

reconnect the overlay. As a result large network subtrees may not receive some subscriptions.

We properly identify these unreachable parts via a partition information data structure, parInfo,



and convey this information to the subscriber. Furthermore, once communication is resumed we

transfer all partially propagated subscriptions. Compared to small fragments, large fragments take

longer to recover since subscriptions propagate more hops. Before recovery concludes, we tag all

publications that are received from the previously unreachable nodes with parInfo. This allows

the subscriber to identify messages that may have been potentially dropped before the recovery

procedure concludes.1

For the purpose of fault-tolerance, forwarding nodes maintain a copy of the publication until

it is delivered to all downstream subscribers. In our original algorithm [14] this was carried out

via propagating confirmation messages for individual publications in order to acknowledge their

delivery. In this paper, we devise a novel approach (Section 8) based on aggregated acknowledg-

ments to avoid the extra overhead of confirmation messages. We address the challenges associated

with content-based P/S systems, in which the destination of publications are not known a pri-

ori and are determined by matching. Each publication can be delivered to a different subset of

subscribers. This makes the nature of the problem different from that in the reliable multicast

literature.

The rest of the paper is organized as follows: Section 2 gives an overview of P/S algorithms

and our previous work. We present the partition-tolerant subscription propagation algorithm in

Section 3, and the recovery procedure in Section 4. Section 8 provides details of our approach to

use acknowledgment messages. Implementation details and experimental evaluations are presented

in Sections 9 and 10. We review the related work in Section 11 and conclude the paper in Section

12.

1In a separate research, we are investigating historic data access in distributed P/S systems. We intend to use
this mechanism to retrieve publications issued before or during recovery.



2 Background

2.1 Typical P/S Systems

Distributed P/S systems are composed of an interconnected overlay of brokers to which clients

(subscribers and publishers) connect. Typically, nodes are aware of their immediate neighbors

only. Subscribers issue subscription messages that are propagated throughout the network. Bro-

kers store the subscription as well as the neighbor’s identifier (address) from which the subscription

was received. When a publication arrives, subscriptions are evaluated against the content of the

publication in order to determine a matching subset. The publication is forwarded to those neigh-

bors that previously forwarded the corresponding subscription messages. This way the publication

arrives at subscribers by traversing subscriptions’ propagation paths in reverse.

2.2 Reliable δ-Fault-Tolerant Algorithm

We proposed a reliable δ-fault-tolerant P/S forwarding algorithm [14] that can be seen as a gen-

eral extension of typical P/S systems. In our system, nodes are organized in a tree-based topology

that is used to disseminate publications. Each node maintains a topology map that captures a

partial layout of the topology constrained to the nodes within distance δ + 1. This information

is updated as nodes join the system such that the type (broker, subscriber, or publisher), ad-

dress, and the topology path to nodes in the topology map are known (details can be found in

[14, 17]). Brokers also maintain subscription routing tables that contain entries corresponding to

subscriptions inserted into the system (subscription propagation presented in Section 3). Each

subscription entry is in form of a tuple, ⟨pred, from, seqV ect⟩, where pred is the predicate filter

specified by the subscribing client and specifies the type of messages it is interested to receive;

seqV ect is a vector of sequence numbers each generated by a node on the propagation path of the

message; from is the identifier of another node determined as follows:

� If the subscriber is at most δ + 1 hops away, from points directly to the subscriber;
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Figure 1. The from field of entries in the subscription routing tables points back to a node on the
connecting path to subscriber.

� Otherwise, from points to a node on the connecting path to the subscriber that is δ + 1

hops closer to the subscriber.

Figure 1 illustrates the above invariants for subscription routing entries. It is worthy to note that

from always points to a node located in the topology map.

For each publication message, p, a forwarding node generates a unique increasing sequence

number upon initial receipt of p. This sequence number is added to the seqV ect of the publication

message when it is being sent. Considering the path that p traversed to arrive at B as upstream

(and the other direction as downstream), B’s forwarding task is to send p to those downstream

subscribers that are interested in p’s content. This is done by first identifying the subscription

tuples whose predicate field match and are evaluated to true by the content of the publication

message. B inserts the from field of these subscription entries that are downstream from B w.r.t.

p’s propagation path into a local data structure called the recipient set, RCPT
p
B:

RCPT
p
B = {from∣∃⟨pred, from⟩ ∧matches(p, pred) ∧ from downstream of B w.r.t. p}

Using its local topology map, B then generates a set of associated topology paths for each node

in RCPT
p
B. This set is referred to as outgoing paths, outPath

p
B.

Under non-faulty conditions B is connected to its immediate neighbors in the topology, and

forwards p to these nodes (Figure 2(a)). This effectively enables the node to deliver p to all

downstream subscribers by sending only a few copies to its neighbors (multicast effect). Once an
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Figure 2. A sample network that can tolerate two failures (δ = 2). Publication p matches subscriptions
{S1, S3, S4}; nodes A and B compute RCPT

p

A = {F,E}, RCPT
p

B = {S1, S2, S3}. Arrows between
nodes indicate connections over which p is sent.

immediate neighbor becomes unavailable B uses its topology map to connect to the next nodes

one hop away (from the failed peer). If any of the new connections also fail, B proceeds with the

next neighbors. Roughly speaking if the number of failed attempts does not exceed δ, B will be

able to maintain the network’s connectivity and use its connections to forward messages. This is

illustrated in Figures 2(c) and 2(d) in which B uses its new connections and the knowledge of the

outgoing paths, outPath
p
B, to forward p bypassing failure of other nodes.

Once p arrives at a matching subscriber, it issues a confirmation message, conf p, to the sender

of the original message. Every forwarding node collects all confirmation messages, discards its

local copy of p, and issues a new conf p message upstream.

3 Partition-Tolerant Subscription Propagation

3.1 Overview

The subscription propagation protocol serves to deliver clients’ subscriptions to network nodes

and establish subscription routing entries. The subscriber generates a subscription message, s,



containing its subscription predicate, pred, and a vector of sequence numbers, seqV ect of size

3δ + 1. Each element in this vector is of the form Ni ∶ seqs
Ni

, where Ni is a forwarding node along

the propagation path of s and seqs
Ni

is the sequence number generated at node Ni upon arrival of

s for the first time. A subscriber, initially fills s.seqV ect with its own sequence numbers, and this

vector is updated properly at other forwarding nodes to reflect the sequence numbers assigned by

the last 3δ + 1 nodes on the propagation paths. If Ni sends a copy of s bypassing (skipping) some

nodes, Ni+1,⋯,Ni+k, the corresponding positions in s.seqV ect are filled with Ni+1 ∶ �,⋯,Ni+k ∶ �,

where � designates null.

The subscription propagation algorithm is in its core similar to the publication forwarding

algorithm (Section 2) with the following exceptions:

� Recipient set: As opposed to publications which are sent on selected paths (towards sub-

scribers) based on the result of matching, subscriptions are intended for all brokers in the

network. This is achieved by inclusion of all known downstream brokers (within distance

δ + 1) in the recipient set;

� Subscription table updates: Once all confirmation messages are received a new subscription

tuple, t = ⟨pred, from, seqV ect⟩, is added to the subscription routing table. pred and seqV ect

correspond to same fields in the subscription message, and from is the (i + 1)th node id on

seqV ect.

As described above, a subscription is intended for all brokers in the network. A broker crash

or unreachability may lead the entire subscription propagation process to a deadlock since its

corresponding confirmation is never received. In the remainder of this section, we introduce

the notions of small and large fragments in order to precisely characterize these unreachability

conditions, and then propose our approach to deal with them in a deadlock free manner.
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Figure 3. Intersecting small and large fragments on multiple subscription propagation paths (δ = 2).

3.2 Active Connections and Fragments

Let a sub-pub-path between S and P , P(S�P ) = ⟨N0,N1,⋯,Ni,⋯,Nl⟩, be the topology path

from subscriber, S = N0, to publisher, P = Nl, and consider the outward (inward) direction on

this path to be from S to P (P to S). At any point, each node Ni maintains a number of

connections (possibly zero) to some other nodes on this path. Let outwardNi
be the set of these

connection endpoints to nodes located within distance δ outward from Ni on P(S�P ). If outwardNi

is non-empty we refer to the connection to the closest node in this set as the active connection.

When a connection becomes active at Ni, we say that it has been activated. An active connection

to Nj may bypass the sequence of intermediate nodes ⟨⟨Ni+1,⋯,Nj−1⟩⟩S which we refer to as a

small fragment (on P(S�P )). On the other hand, if outwardNi
= ∅ we say that Ni has no active

connection on P(S�P ), and refer to the sequence of nodes ⟨⟨Ni+1,⋯,Ni+k⟩⟩L as a large fragment (on

P(S�P )) where k = min(δ + 1, l − i). In either case, we name Ni as the lead node of the fragment.

Figure 3 illustrates formation of possibly intersecting fragments.

3.3 Failure Detection

Our protocol manages the nodes in the outward set by using the output of a local failure detector

which signals unavailability of a node.2 Initially, nodes have active connections to their immediate

outward neighbor (on any pub-sub-path), i.e., Ni+1 ∈ outwardNi
. This node is monitored and if

becomes unavailable, the protocol proceeds to connect to the next outward node, i.e., outwardNi
←

outwardNi
∪Ni+2 −Ni+1. This creates a small fragment of size one. If more outward nodes become

2The failure detector in our implementation uses heartbeats which may mistakenly identify a non-faulty node
as failed. Our approach is resilient to such mistakes.



unavailable, the above process repeats (a maximum of δ + 1 times) thus expanding the small

fragment. Eventually, either an available node, Ni+k, is found, or a large fragment is formed

(outwardNi
= ∅).

3.4 Legitimate Propagation Paths

Consider the portion of seqV ect that corresponds to the last 2δ+1 nodes along the propagation

paths of a message, m, we say the propagation path of m is legitimate, iff, the number of � values

in this portion does not exceed δ. Roughly speaking legitimacy ensures that m has been forwarded

by a majority of nodes on their propagation path.

To check for legitimacy, nodes simply count the number of � values in messages’ seqV ect.

Illegitimate propagations may only occur if the network suffers from extensive (at least δ +1) link

or node failure that are also relatively close (on a chain of 2δ + 1). Depending on the value of δ

this is likely to be rare, and our handling of these situations may only compromise liveness, but

not safety. Due to space limitation, we do not elaborate further on how to deal with illegitimate

propagations here. In general, this involves retransmission of messages once previously bypassed

nodes become available. We elaborate more on this in Section 5.5.

3.5 Subscription Forwarding Algorithm

We now present the details of how subscription s issued by subscriber S is forwarded by a node,

Ni, on its propagation paths. Ni computes outPaths
Ni

to be the union of all paths to downstream

publishers located in the topology map, as well as paths to all downstream nodes at (exactly)

distance δ + 1. Each P ∈ outPathss
Ni

fully intersects with possibly many sub-pub-paths between

S and publishers Pi downstream from Ni. For all paths, P there are two possibilities:

Case 1: If Ni has an active connection, it sends a copy of s outward and Ni waits to receive

the corresponding confirmation message, conf s. Once all confirmations are received, Ni takes the

following confirmation steps: (STEP-I) issues its own conf s to the sender(s) of s; (STEP-II) add

the corresponding subscription tuple to its own subscription routing tables; and (STEP-III) if



it has a connection to an inward node different from the sender(s), the tuple is also sent to the

closest such node. If an active connection bypasses nodes on a small fragment, it may indeed be

the case that some fragment nodes remain unaware of the subscription message. We deal with

such cases during recovery (Section 4).

Case 2: If Ni does not have an active connection for path, P, a large fragment is formed. Ni

issues a partial confirmation message, ˆconf
s
, after receiving confirmations from all other paths

P ′ ∈ outPathss
Ni

. A partial confirmation message contains a set of partition information tuples,

{parInfo}, each conveying information about one large fragment that blocked complete propa-

gation of the subscription. A parInfo tuple is of the form: ⟨Ni, seqNi
, lF rag⟩, where Ni is the

lead node, lF rag is the sequence of nodes on the large fragment, and seqNi
is a sequence number

generated by Ni. These tuples are also stored locally in a set called partition information table.

Now consider the propagation of ˆconf
s

towards the subscriber, S. Nodes between S and Ni

that receive a partial confirmation must also issue a partial confirmation that carries the partition

tuples that were received plus any additional tuples corresponding to new large fragments that are

formed. Finally, nodes (including S) add the partition tuples to their local partition information

table if lead node is closer than 2δ + 1.

Publication Tagging

Before a large fragment recovers (Section 4) it is possible that some fragment nodes create an active

connection to a node inward from the fragment’s lead node and attempt to forward publications.

Any such publication, p, may match s.pred and yet come from portion of the network that is still

unaware of s. In particular, presence of a fully propagated subscription, s′, that matches p may

lead to such scenarios. It is thus unsafe to pass these publications normally, since there might be

a following publication, p′, that matches s but is discarded as it does not match s′ (or any other

fully propagated subscription).

To deal with this scenario, we tag such publications with parInfo. This takes place at any of the

nodes located within distance 2δ + 1 of the fragment’s lead node that have this information in its



partition information table. Subscribers with partially confirmed subscriptions that receive these

publications will then be able to compare this tag with the partition information they received

with ˆconf
s

and identify the publication as one that has been delivered due to overlapping effect

of other subscriptions.

4 Recovery

Formation of small and large fragments as a result of nodes crash or links failure may lead to

situations where some subscriptions are not delivered to parts of the network. Nodes execute the

recovery protocol described in this section, in order to (i) reconnect to fragments, (ii) restore miss-

ing partition information and subscription tuples; and (iii) (re-)send messages through recovered

fragment.

4.1 Reconnecting to Fragment Nodes

The lead node of a fragment periodically checks availability of the fragment nodes. If a new

connection is successfully established it becomes active. Likewise, if any node on the fragment

initiates a connection to the lead node, it immediately becomes active.

4.2 Recovery Data Transfer

Once a new connection is activated (becomes active) a hand shake is performed and nodes

exchange portions of their partition information and subscription routing tables. As illustrated in

Figure 4, either side of the connection may lack information about subscriptions that came from

subscribers in their own or the other side’s subtrees. The exchanged partition information tuples

include those that correspond to lead nodes within distance 2δ + 1 of the receiving peer. The

receiver uses the sequence number of each parInfo entry to determine if it had prior knowledge

of the tuple. New tuples are added to its own partition information table and also sent to other

nodes to which an active connection is present.
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4.2.1 Small Fragments

Let, N be the activating side of the connection and M be the other endpoint3, and for now assume

that N has no knowledge of a large fragment that includes M . N notifies M about the new state

of their connection (i.e., activated) and requests its last sequence number, lSeqN , that M has

received in a message. M looks through its own subscription tuples to identify lSeqN present

in seqV ect of a subscription tuple, and replies accordingly. N , uses lSeqN to compute a subset

of its subscription tables that M may be missing. This subset, bypassedSubSetM , contains all

subscription tuples at N that were assigned a sequence number that succeeds lSeqN . This set is

sent to M in order to be merged with its subscription routing tables.

Some tuples in bypassedSubSetM may be already present in M ’s subscription routing tables.

These entries might have been added as a result of a propagation path of the corresponding

subscription that did not pass through N . Thus, it is necessary for M to properly check the

received tuples in order to remove duplicates. For this purpose, it maintains a set, {X ∶ lSeqX},

of the last sequence number received from nodes within distance 3δ + 1. A subscription tuple,

t ∈ bypassedSubSetN (similarly for bypassedSubSetM) is duplicate if it has any element, X ∶ seqX ,

that does not succeed lSeqX . After removing duplicate entries, the tuples are added to the local

subscription tables. The from field of the added tuples are computed appropriately using the

tuples’ seqV ect such that it points to a node δ+1 hop closer to the subscriber. Finally, the resulting

tuples set is sent to any other node, to which N has an active connection. The receiving node

3A connection can be active only at one endpoint.



processes the tuples4 in a similar manner, i.e., duplicate elimination, subscription table update,

sending out on active connections.

4.2.2 Large Fragments

Now consider the case in which N has a set of parition tuples {parInfo} containing large frag-

ments, lF rag = ⟨⟨⋯,M,⋯⟩⟩L (M is on the large fragment). N may have a set of partially confirmed

subscriptions, parConfSubsparInfo, that did not propagate fully outward on lF rag. These sub-

scriptions need to be forwarded on the reminder of their propagation paths. This is done by

sending {parInfo} along with {parConfSubsparInfo}, to M . M further forwards these sets over

its active connections on the corresponding paths and updates its own partition information table

accordingly. The entire subscription set is processed at each node as a whole, and the confirma-

tions are issued likewise. For simplicity, here we consider that there is no other large fragments

affecting the propagation of this information. Thus, once the confirmation messages arrive, M

updates its subscription routing table, and replaces each partition tuple, parInfo with parInfo,

indicating recovery of the large fragment. This is reflected in the partition information tuple

and reported to N , which updates its own partition information table accordingly by removing

parInfo. This change is also reported over other active connections to nodes within distance

2δ + 1 of lF rag’s lead node. The partition table updates also imply that no other subsequent

publication will be tagged with parInfo.

4.3 Message Forwarding

Once recovery data transfer completes (for the case of large fragments, after parConfSubsparInfo

is sent), the activating side, N , resends all non-confirmed messages (subscription or publication)

via the active connection if their propagation paths passes through M (M is on a path in the

message’s outPaths). These messages are further forwarded down the network on paths that

previous copies of the messages may have already propagated through. However, since there is

4Also as part of subscription propagation (Section 3).



a chance that old propagations have become illegitimate at some point the retransmitted copies

help establish the legitimacy requirement. In Section 5.5 we elaborate on how retransmissions

transforms illegitimate propagations into legitimate ones. The correctness proves for small and

large fragments are provided in Sections 6 and 7.

5 Legitimate Propagation Paths

Our reliable fault-tolerant algorithms implement a distributed P/S system that provides exactly-

once delivery guarantee. In our approach, messages (i.e., publications or subscriptions) produced

at any source (i.e., publisher or subscriber) may be forwarded along diverse paths towards their

final recipients (i.e., matching subscribers for publication messages, or any broker in the system

for subscription messages). Failures and recoveries trigger retransmission of messages that are

not yet confirmed. This may result in situations in which copies of a single message arrive at a

node along different the propagation paths multiple times. We need to ensure that under such

circumstances, the nodes are able to (i) detect duplicate arrival of multiple copies of the message;

(ii) decide the faith of the duplicate copies.

In this section we first briefly review two simple duplicate detection algorithms and discuss

their drawbacks. We then define the legitimate message propagation property, elaborate on how

it facilitates the task of duplicate detection. Furthermore, we provide a method to check for

legitimacy, and elaborate on an algorithm to enforce this property. Our algorithm is based on

message retransmission and ensures safety at all times. Finally, we describe the likelihood of

failure patterns that violate the legitimate message propagation property.

5.1 Simple Approaches for Duplicate Detection

Retransmission may result is a situation in which multiple copies of a message, say m, arrive at

a node, say N . Based on their arrival order at N , we use superscripts m0,⋯,mi to identify these

copies with an arrival index. The first arrived copy of m has an arrival index of 0 (i.e., m0) and

is referred to as the initial copy. Later copies of m are considered as duplicate copies (at node N



which is implicit in the context) and have arrival indexes greater than 0. Furthermore, we refer

to the arrival index, ci, of the last index before confirming the message as the confirmation index.

Finally, we use the notion of post confirmation duplicate message, m>ci, to refer to a duplicate

mi where i > ci and a pre-confirmation duplicate message, m≤ci, to refer to a duplicate mi where

0 < i ≤ ci.

We now describe two simple approaches based on unique message identifiers, and monotonically

growing sequence numbers to detect duplicate messages. We also provide some of their associated

disadvantages.

i – Unique message identifiers (id): if messages have unique identifiers a receiving node can

detect duplicate arrival of multiple copies of the message by comparing their the id of the

copies. Based on this algorithm:

∀i ≠ 0,mi is a duplicate copy of m0⇔m0.id =mi.id

This approach has the disadvantage of requiring nodes to keep track of all message ids they

have received thus far. If nodes retain the message identifiers forever, then the system is

not stable as the memory required grows unboundedly with arrival of new messages. One

solution can be to use a timeout timer to purge old message ids. However, the exact timeout

value requires assumptions on the upperbound message retransmission delays. This is in

particular tricky, since this delay is dependent not only on link delays but also the downtime

period of links and nodes. The downtime period is usually arbitrary and can hardly be

bounded.

ii – Monotonically increasing sequence numbers: if links are FIFO and nodes process messages

in the same arrival order (from each link) then we can use monotonically increasing sequence

numbers to detect duplicate arrival of the message. For this purpose, every message, say m,

carries the source node’s id, say S, and a source-assigned, monotonically increasing sequence

number. Upon arrival of m0 at any other network node, M , the value of the highest sequence



number received from S, highSeq(S), is updated with the m.seq. All future copies, mi(i ≠ 0)

will be detected as duplicates if their sequence number does not succeed that of highSeq(S).

In other words:

m is an initial copy ⇔ (highSeq(m.source) is not defined )∨(m.seq ≻ highSeq(m.source))

This approach works, since FIFO links and in-order processing of messages at all network

nodes between S and M does not change the order of consecutive messages. Thus, M never

receives m0 before any other message produced later from the same sources.

This approach has the disadvantage of requiring nodes to keep track of the highest sequence

numbers from all message sources, i.e., publishers, and subscribers. In a large long-running

system in which message producers come and go, this implies a potentially large set of

information needs to be kept up to date. Furthermore, this burden has to be taken even

when there are no failures in the system.

We now present a new approach with low overhead that also blends well with our forwarding

algorithms 2. It is based on a combination of both aforementioned duplicate detection schemes

without the disadvantages of either one: message identifiers are not retained forever (also there is

no timeout value) and nodes require no global knowledge of all producers.

5.2 Legitimate Message Propagation

In this section, we first define the legitimate propagations of a message, and then present algo-

rithms that enforce this property in order to facilitate the task of duplicate detection.

Definition 1. A propagation of a message m, prop(m), from source S to any other node, N ,

at distance d from each other is a sequence of zeros and ones of length d+1, ⟨1,⋯,1⟩, where there

is a one at location i, iff, it has visited the ith topology node on the path from S to N , and zero

otherwise. The first element in this sequence corresponds to S and is always one. We say m



skipped a node on its propagation path, iff, there is a zoro at the node’s corresponding location

in prop(m).

We now define legitimate propagations of m that restrict the number of nodes that can be

skipped by the message. We use this restriction to ensure that certain safety requirements are

met. At the same time, this restriction allows for at least failure of δ links or nodes and thus

honors the δ-fault-tolerance requirement.

Definition 2. Propagation of message m is legitimate, iff, all subsequences of length 2δ + 1 of

prop(m) have at least δ + 1 one values.

Intuitively, a message has a legitimate propagation if it visits the majority of nodes along its

propagation path. More precisely (based on the above definition) considering a message propa-

gated over a chain of nodes we require that the message visits at least δ + 1 nodes among any

chain of length 2δ + 1. Note that with the above definition, propagation paths shorter than 2δ + 1

are automatically legitimate.

5.3 Checking for Legitimate Propagations

Checking to see if message m has had a legitimate propagation is straight forward: every

message carries a sequence vector, seqV ect, that includes elements5 in the form of N ∶ seqm
N where

seqm
N is a monotonically increasing sequence number generated and assigned by node N upon

receipt of m for the first time. Considering the outgoing copy of m that N sends to another node

M while skipping nodes N1,⋯,Nk, seqV ect will be appended by N1 ∶ �,⋯,Nk ∶ �,N ∶ seqm
N . The

null values Ni ∶ �(1 ≤ i ≤ k) correspond to the nodes, Ni, between N and M that are skipped due

to node or link failures.

To check for legitimacy, it is adequate to consider the null values in the 2δ + 1 ending elements

on m.seqV ect. These elements also correspond to zeros on prop(m). The propagation of m is

5We discuss the required size of the sequence vector in Section 5.7.



procedure isDuplicate(m)
ret← false

for all Ni ∶ seqNi
∈m.seqV ect(0 ≤ i < 2δ + 1) do

if seqNi
≻ highSeq(Ni) ∨ highSeq(Ni) is undefined then

highSeq(Ni) ← seqNi

else
ret← true

return ret

Figure 5. Duplicate detection of legitimate messages

thus legitimate, iff, the number of these null values does not exceed δ:

prop(m) is legitimate⇔ (number of (Ni ∶ �) ∈m.seqV ect) ≤ δ

This test can be performed on the sender node, N . Also, note that the since m has arrived at

the N legitimately, it may only be the case that the outgoing copy is skipping at least one node,

N1. In Section 5.5, we elaborate on how recovery of links/and nodes triggers (re)transmission of

illegitimate messages ensuring propagation of messages on legitimate paths.

5.4 Duplicate Detection For Legitimate Messages

If propagation of message m is legitimate, nodes can simply use the last 2δ+1 sequence numbers

in m.seqV ect for duplicate detection. Using this information, m is a duplicate copy, iff, any of the

sequence numbers, Ni ∶ seqNi
, in m.seqV ect does not succeed the highest sequence number of the

corresponding node, highSeq(Ni), that N is aware of. Furthermore, all (Ni ∶ seqNi
) on m.seqV ect

are used to update highSeq(Ni) if seqNi
succeeds highSeq(Ni). Algorithm 5, illustrates this

procedure.

In contrast to (Approach 5.1–ii) nodes only need to keep track of the highest sequence numbers

assigned by other peers within within distance 2δ+1. This eliminates the need for global knowledge

of all message sources.

Lemma 1. Algorithm 5 detects duplicate arrival of all legitimate copies of a message.

Proof. Let m0 and mi respectively be an initial and a duplicate copy of message m generated at



S that arrived at node N legitimately. Without loss of generality, consider N to be the closest

node to S that cannot detect duplicate messages m0 and mi. If N is closer to S than 2δ + 1,

then S ∶ seqm
S is present in both m0 and mi. Since m0 arrived at N first then upon arrival of mi,

highSeq(S) is at least as seqm
S . This implies that the test of seqm

S ≻ highSeq(S) = seqm
S fails in

Algorithm 5 and mi will be detected as a duplicate message.

Now consider the case where S and N are farther than 2δ+1 apart. Due to legitimacy property,

both prop(m0) and prop(mi) must have non-null entries corresponding to a single node X (i.e.,

X ∶ seqm0

X , and X ∶ seqmi

X ) in common where X is within distance 2δ + 1 from N . This is true

because prop(m0) and prop(mi) each have at least δ+1 non-null entries. Since the size of seqV ect

is 2δ+1 then at least one node (i.e., X) has non-null entries in both vectors. If seqm0

X and seqmi

X are

identical, then N detects mi as a duplicate message. Otherwise, if seqm0

X and seqm0

X are distinct

then X will be a closer node to S than N that has processed both m0 and mi and has not detected

duplicate copies by wrongly assigning distinct sequence numbers to them (seqm0

X and seqmi

X ). This

is a contradiction and the proof is complete.

5.5 Ensuring Legitimate Propagation Paths

If messages were always legitimately propagated, then Algorithm 1 would suffice to detect dupli-

cate arrival of messages. However, certain patterns of failures may result in message propagation

paths that skip more nodes than is allowed under the legitimacy property. Once this occurs, then

the propagation paths of duplicate copies of a message may not necessarily share any node. Figure

6 illustrates such propagations. In this section, we present a scheme to deal with these situations.

Roughly speaking, nodes stop to propagate messages if they become illegitimate. Such messages

are thus delayed until node or link recoveries trigger retransmission of the message on legitimate

propagation paths. This ensures safety of the algorithms at all times.
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Figure 6. Illegitimate message propagations may only share the source and destination nodes. Dupli-
cate detection on propagation paths longer than 2δ+1 does not have access to the source sequence
number in the message’s seqV ect. On the other hand, legitimate paths intersect at least once ev-
ery 2δ + 1 hops, and enable duplicate detection algorithm to look only at the last 2δ + 1 sequence
numbers in seqV ect.

5.6 Recovery and Retransmission of Messages

Retransmission takes place as part of recovery (upon activation of a link) and after all trans-

mission of the partition and subscription information. All non-confirmed messages, m, are sent

over the newly activated link if there is a recipient in that direction. For publication message this

implies presence of a matching subscriber, and for subscription messages this takes place only if

the subscription has not been received from the same direction.

As illustrated in Figure 7(a), illegitimate messages are not propagated. Both retransmission

at the upper stream nodes (7(b)) or the immediate downstream node (7(c)) can result in new

propagations that are legitimate. Any node receiving a (re-)transmitted message, may or may

not have previously received it. Furthermore, if a previous copy has been received, it may or may

not have been confirmed by that node. Depending on these circumstance, the node handles the

message differently. We summarize these cases below for a retransmitted message m arriving at

a node N and then describe how N distinguishes these cases:

i – Node N has not yet received m: isDuplicate(m) returns false;

ii – Node N has received m but not confirmed it yet: isDuplicate(m) returns true and a copy

of m is in memory;

iii – Node N has received m and also confirmed it: isDuplicate(m) returns true but no copy of



Destination

are not sent
Illegitimate messages

Source

(a) Illegitimate messages are never sent

Destination

triggers retransmission
Recovery at upstream

Source

(b) Recovery in upstream nodes triggers retransmission of messages. Newly arrived
copies are propagated if legitimate

Destination

legitimate propagation
Recovery in downstream enables

Source

(c) Recovery of the downstream node may enable legitimate propagation of the
message

Figure 7. In a network where δ = 2, a message becomes illegitimate if in any chain of 5 nodes it skips
more than 2 nodes

m is in memory.

5.6.1 Subscription vs. Publication Messages

Since we need to ensure that the confirmation of a legitimate subscription message (propagated

in the reverse direction) is also legitimate, a receiving node has to (re-)propagate the subscription

message regardless of whether it has been received or confirmed before. More specifically, a

received subscription message is always propagated unless it becomes illegitimate (which stalls

the propagation of the message until further retransmissions). Furthermore, once the confirmation

is issued a new subscription tuple is appended to the local subscription routing tables only if it

has not been applied before.

In contrast, publications messages are re-propagated only if it has not been confirmed yet.



This is because, confirmation of publication messages need not to be legitimate. For the case

of subscription message however (as described above) retransmission takes place regardless of

whether the message has been confirmed before. This ensures, that confirmation of a subscription

message is also legitimate.

5.7 Length of Sequence Vectors

With sequence vectors of length 2δ + 1, Algorithm 5 is able to detect all duplicate arrivals of

legitimate messages. However, besides legitimate messages, duplicate detection is also necessary

as part of the recovery procedure to discard duplicate subscription entries. Subscription entires

stored in the subscription routing tables store the sequence vector of the original subscription

message. Upon activation of a link between N and M (N is the activating side) these entries are

sent to M in order to be added to its subscription routing table. There is a potential that M has

already added the subscription either by having received its original subscription message or via

recovery by another node. Similar to duplicate detection of messages, the sequence vector is used

for eliminating already existing entries.

As illustrated in Figure 8, nodes engaged in recovery may be up to δ hops apart. Since the

legitimate propagation requirement might have been enforced without considering this gap, the

receiving node, M , needs to know the assigned sequence numbers of 2δ + 1 nodes inward from the

sending node N . This asks for a sequence vector of length (2δ + 1) + δ = 3δ + 1. It is worthy to

note, that the additional sequence numbers corresponding to nodes in range of 2δ + 1 to 3δ + 1

from M need not to be kept in memory at all times. Rather, these sequence numbers are needed

during recovery only.

5.7.1 Likelihood of Violation of the Legitimacy Property

Message propagation may be stalled when legitimacy is violated. This happens in cases where

there is at least δ +1 unavailbility of links or nodes. Thus our δ-fault-tolerance requirement is not

compromised. Moreover, in order to violate the legitimacy property, these failures must be within
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Figure 8. Recovery over active connections (dashed lines). Nodes engaged in recovery are at most
δ+1 hops away. By legitimacy identical sub tuples share an element in their seqV ect of length 3δ+1
(δ = 2).

a 2δ + 1 proximity of each other. We believe that in random node and link failure patterns our

approach will not incur much overhead, unless failures of more than δ links and nodes are frequent.

In that case, the system would have been better configured for a higher level of fault-tolerance by

increasing δ.

6 Small Fragments

In our distributed P/S system, subscribing clients become eligible to enjoy reliable publication

delivery once they receive their subscription confirmation message. This event indicates that

propagation of the subscription has been (fully, or partially) completed in the network and system

brokers are aware of the subscription predicate and a forwarding path for matching publications

towards the subscriber.

If due to fragmentation a small fragment is formed, then nodes on the fragment may not

have received some subscriptions even after the confirmation message has been delivered to the

subscriber. In such cases, a matching publication may be wrongly dropped as a result of this lack

of knowledge about the subscription. In our algorithms we have taken steps to prevent this from

happening. The general idea to deal with such scenarios is interwines subscription propagation
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Figure 9. Sub-pub propagation in presence of small fragments (δ = 2). Dashed lines represent links
that are unavailable.

with the recovery procedure. These two algorithms ensure that any forwarding node has adequate

subscription information that prevents publications loss. We first review the overall behavior of

the algorithms and then prove its correctness in a lemma.

As illustrated in Figure 9(a), unavailability of some nodes or their interconnecting network links

may prevent normal propagation of subscription messages and thus result in formation of a (small

or large) fragment. In this section we focus on small fragments. Figures 9(b) illustrates the case

in which, the first available node beyond the small fragment (node M in the Figures) has an

active connection to the nodes of the fragment, and Figure 9(c) illustrates the case in which M

does not possess such active connection. In the former, some nodes of the fragment will still be



able to receive the subscription and M waits to receive their confirmation message. In such cases,

any received matching publication will be correctly forwarded towards the subcriber. On the

other hand, in the latter case unavailability of the active connection between M and any fragment

nodes, cause these nodes to miss the subscription even after M issues the confirmation message to

N . However, no publication will ever arrive to any fragment nodes, F1,⋯, unless one such active

connection is created (either from M or from some other node outward from M). This initiates the

recovery procedure between the nodes which delivers the missing subscriptions to fragment nodes

(F2 in the Figure 9(d)) before forwarding of any publication. Moreover, the received subscription

is forwarded on the receiver’s active connections (node F1 in the figure). Ultimately, all fragment

nodes on the forwarding path of any matching subscriptions properly processes the subscription

preventing publication loss.

Lemma 2. No node on a small fragment will ever drop a publication that matches a confirmed

subscription.

Proof. Consider a sub-pub-propagation of a subscription s from subscriber S, to any publisher,

P which was affected by a small fragment consisting of nodes F1,⋯, Fl, where l ≤ δ. Let p be a

matching publication that was published after arrival of subscription’s confirmation, c. We show

that p will be delivered to S.

Consider there contrary is true, and that some nodes on the small fragment wrongly drop p or

do not forward p on the path towards S. In either case, the node must be unaware of s, i.e., has

not added its subscription entry to its subscription routing tables. Let Fk be the closest node on

the closest small fragment to P that is unaware of s and receives p. Also, X be the node from

which Fk received p. From the way the algorithms work, it is clear that the link from X to Fk is

active on X’s side.

Let tp be the time X sends p to Fk, ts be the time X added the subscription entry of s to its

subscription routing table, and ta be the last time before tp that the link to Fk was activated.

There are two possibilities:



i – If ts ≤ ta: then at time ta, and during the recovery between X and Fk, subscription entry

associated with s would be forwarded to Fk which would be added to its subscription routing

tables. Furthermore, this takes place before any publication (including p) is sent to Fk.

ii – If ts > ta: then the subscription message of s must have been forwarded to Fk by X accord-

ing to the subscription propagation algorithm (STEP iii) and X must have waited for its

confirmation. By that time Fk would have properly forwarded s and added its subscription

entry to its local subscription routing table.

7 Large Fragments

In contrast to small fragments where no confirmed subscription’s matching publications may

be lost, large fragments may lead to scenarios in which some publications matching partially

confirmed subscriptions are not delivered. Large fragments generally are a result of more than

δ failures, and in our algorithm ensures the following safety property: once the network faulty

conditions are resolved, matching publications will be delivered in-order from some point in time

and no message in any publisher’s publication stream will be dropped afterwards. This point in

time is marked by the completion of a recovery procedure which delivers missing subscriptions to

nodes outward from the fragment lead node.

A major challenge towards this goal is dealing with complications that arise as the recovery

procedure starts and publications from sources outward the large fragment start to flow. Consider

three publications p1, p2, p3 that match a partially propagated subscription s, and assume s′ is

another subscription from a subscriber on the inner side of the large fragment that only matches

p1. Now consider an execution in which p1 and p2 are published but not p3. and s and s′ are

the only subscriptions in the system and the large fragment is still not recovered. Since s′ is fully

propagated, its matching publication p1 will be forwarded but will be queued at the fragment

nodes as there is no connection towards the subscriber. Furthermore, p2 is correctly dropped
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Figure 10. Subscription propagation in presence of large fragments (δ = 2). Dashed lines represent
links that are unavailable. Publisher F3 is on the large fragment.

since nodes beyond the large fragment are not aware of any matching subscription (s is missing

at these nodes, and s′ does not match p2). Now assume that an active connection is created

between nodes on the fragment towards the subscriber. Partially propagated subscription s may

be forwarded outwards on this link, so may be the queued publication p1. This publication is

intended to subscriber s′ but as a result of its overlap with s it is possible that it is delivered to

s as well. Once propagation of s completes, p3 is published and is delivered to s as well.

In the above execution, subscriber s received two publications p1 and p3 while p2 was dropped.

We would like to prevent such scenarios by tagging publication p1 with information that notifies

subscribers with partially propagated subscriptions (e.g., s) about such anomalous scenarios. In

our future work, we consider historic data access mechanisms to retrieve the missing publications.



Nonetheless, the algorithms described in this section are necessary to allow subscribers identify

publications that are delivered as a result of a side effect with some fully propagated subscriptions.

To achieve the aforementioned goal, partition information, parInfo, is included in the partial

confirmation message and sent back to the subscriber s along the propagation path of the sub-

scription. As illustrated in Figure 10(a), this path is legitimate and at least δ + 1 nodes on the

chain N1,⋯,Nl (l ≤ 2δ + 1) towards S will receive the confirmation message and subsequently add

parInfo in their local partition information tables. Furthermore, if publications are sent inward

from fragment nodes and before recovery of the fragment completes, they are tagged with parInfo

by at least one of the nodes on the chain N1,⋯,Nl that are aware of parInfo. This is illustrated

in Figure 10(b) and will allow partially confirmed subscribers with the same parInfo to detect

the above situation. Finally, the recovery of the large fragment will complete at some point and

future publications will be tagged with parInfo which effectively cancels out the parInfo tags

(Figure 10(c)).

Lemma 3. A subscriber with a partially confirmed subscription tagged with a partition info,

parInfo, will receive publications from publishers outward from parInfo.lF rag that are tagged

with parInfo, or parInfo. Furthermore, once a matching publication with parInfo is received,

all future publications are also tagged with parInfo.

Proof. Let S and P be any subscriber and publisher which are separated by a large fragment,

lF rag, with nodes F1,⋯, Ff where f ≤ δ + 1. Furthermore, let N1,⋯,Nl (l ≤ 2δ + 1) be the chain

of nodes from the fragment’s lead node N towards S, and assume s (issued by S) is partially

confirmed and is tagged by parInfo of the large fragment, lF rag. Finally, assume p and p′

are publications issued (in order) from P that matches s and arrive at S after receipt of its

confirmation. We split the proof into two parts:

Part I. p is tagged by either parInfo or parInfo. Consider the contrary is true and that p is

neither tagged by parInfo nor parInfo. Since p comes from P located beyond the large fragment,

it must have passed through some nodes on the chain N1,⋯,Nl. If l < 2δ + 1 then S = Nl which



will tag p itself. On the other hand, if l = 2δ + 1, then at least δ + 1 of these nodes have previously

forwarded confirmation of s which was tagged by parInfo and have subsequently added this

information to their local partition information tables. Since p is not tagged by parInfo then

it must have been forwarded by neither of these nodes. This is not possible since due to the

legitimacy property, p cannot skip more than δ nodes on the chain N1,⋯,N1.

Part II. If p is tagged by parInfo, then p′ is also tagged with parInfo. p can only be tagged with

parInfo by any of F1,⋯, Ff . Furthermore, since it has arrived at S, it is clear that it has visited

at least δ + 1 nodes on the N1,⋯,Nl. If l < 2δ + 1, then S = Nl and it will replace parInfo with

parInfo locally. Thus, tagging any subsequent publication from Fi (including p′) by parInfo.

On the other hand, if l = 2δ + 1, then p has been forwarded by at least δ + 1 nodes on N1,⋯,Nl

which have subsequently replaced parInfo with parInfo. In any legitimate propagation, p′ will

also be forwarded by at least one of these nodes which tags it with parInfo.

This concludes the proof.

8 Improving Publications Propagation

In this section, we present an important optimization in order to reduce the number of network

messages. In our reliable forwarding algorithm, for every message (publication, or subscription)

that a node forwards, it expects to receive a confirmation. For the case of publication messages,

confirmations only serves to indicate that the upstream node can safely discard its own copy as all

downstream matching subscribers have successfully received the publication. In our new scheme,

nodes periodically exchange aggregated acknowledgments in order to achieve the same purpose.

Since publications are typically the dominant traffic in the system (i.e., orders of magnitude larger

than subscriptions) this approach significantly reduces the network traffic.

At each node, acknowledgment messages are exchanged periodically over all connections and

contain information with regard to the depth of δ+1 of the network (downstream from the sending
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Figure 11. Content of sample dack messages (δ = 2).

node). We thus refer to these messages as depth-ack (dack). A dack message contains two sets

of information: (i) arrivalSeqSet; and (ii) discardedSeqSet. An entry in each set is of the form:

⟨A,B ∶ seq⟩, where seq is the largest sequence number that node A received or discarded from B.

The sender of a dack message includes entries for all A and B that are within δ + 1 hops from

each other (Figure 11).

Now consider any publication p that was processed and assigned seq
p

N by node N . Furthermore,

let outPathsp be the set of paths from N to the computed recipient set of p.6 Receiving a dack

message, node N purges its own copy of p once for all paths in outPathsp either of the following

hold:

(i) All nodes on that path have reported arrival sequence numbers from N that succeed seq
p
N ;

or

(ii) At least one node on that path has reported discarded sequence numbers from N that succeed

seq
p
N .

Figure 12(a) illustrates this mechanism on a single path between Pub and Sub nodes. It is

easy to see that once the condition (i) holds either the publication has been delivered to the

matching subscriber (if it is within distance δ + 1 from N), or at least δ + 1 other nodes towards

the subscriber have received the publication. Thus, a copy will survive failure of up to δ of these

nodes. In both cases, it is safe for N to purge p locally. On the other hand, if a node on this path

fails to communicate its dack information, then N relies on the second condition to decide when

6The length of these paths is at most δ + 1.
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to discard p. The intuition is that nodes farther from N can see farther in the network and if the

publication makes its way to the subscriber, they will eventually discard their own local copy of

p. As illustrated in Figure 12(b) (Step 6) this subsequently signals N to purge p as well.

It is interesting to make note of a locality effect brought about using the dack mechanism. In

case of unavailability or failure of a subscriber (or any broker), the matching publications will

queue up only on a chain of δ+1 preceding nodes (on the path to the publisher) without affecting

other nodes globally. Once failure conditions are resolved, the subscriber receives the outstanding

publications reliably.

9 Implementation

In this section, we briefly elaborate on our implementation of the δ-fault-tolerant P/S system.

Figure 13 illustrates the internal architecture of our brokers.7 The core of the system is the

connection manager which maintains the node’s abstract connection objects each reflecting the

state of one connection to another node. The connection manager consults with the topology

7Except for the subscription manager, our clients also have similar components.
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Figure 13. Internal architecture of a broker.

manager to retrieve topology paths to other nodes, and interacts with the failure detector to

be notified of unavailability of a remote node via its corresponding connection. Furthermore,

each connection object possesses a handler to a TCP connection in the transport layer, and its

associated output buffers. At any point, the state of a connection object may be one of active,

inactive, replacing, and beingReplaced. A connection to remote node X is active if it is not

failed and there is no other available connection to a closer node on the path to X. Otherwise,

the connection is inactive. Upon detection of the failure of an active connection, its state changes

to beingReplaced and the connection manager proceeds to create new replacing connections to

X’s farther neighbors. The beingReplacing connections correspond to nodes on a fragment.

Publication and subscription messages are placed on a FIFO queue in the message queue man-

ager component. Active connection objects have pointers that move along this queue and check

out messages if they correspond to a node on the outPath of the message. The check out process

also updates the seqV ect of the outgoing message to reflect any nodes that are bypassed (using

� values). The remote node’s identifier is also added to a checkedOut set associated with the

message. Once a confirmation arrives, its sender’s identifier is removed from the checkedOut set.

If the set becomes empty, and all active connections have tried to check out the message the

message is discarded, and the subscription routing table is updated (for subscription messages

only). A confirmation is also placed at the end of the message queue to be checked out by the
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Figure 14. Load on nodes after and before failure of their peers (δ = 3).

connection to the sender of the original message.

If the dack mechanism is enabled, the nodes periodically send dack messages. A dack message

is processed by updating a topology cache that contains sets of reported arrived and discarded

sequence numbers from each node in the topology map. Based on this information new dack

messages are generated and sent to other nodes. Nodes also use this cache to maintain safe

sequence thresholds, safeSeq, for each node in their topology map. The safeSeq of a node, X,

is the minimum of the reported arrived and discarded locally generated sequence numbers from

nodes on the topology path to X (Section 8). A cleaner thread at nodes periodically purges

publication messages from the message queue if the safe sequence threshold of all nodes in their

recipient set succeeds the message’s locally assigned sequence number. Subscription messages on

the other hand use the normal confirmation mechanism.

10 Evaluation

In this section, we present the results of real world and large scale experimental evaluations

related to various aspects of our system. The topology network is configured with δ = 3 and is

composed of 86 nodes deployed on a computing cluster with 21 quad-core machines. We dedicated

an individual CPU to each node in order to get accurate timing measurements. The measurements

correspond to three core nodes in the network with an average node degree of 11 and are carried

out under the following four categories.



10.1 Load on Nodes

This experiment investigates the impact of bypassing unavailable neighbors on a node’s load.

The metrics that we measured are input and output message rates, and the CPU utilization.

Figure 14 illustrates the results. Nodes 1, 2, and 3 form a chain in the core of the network and at

time 150s and 275 nodes 1 and 2 fail respectively. In the time interval 150−275 node 2 reconnects

the network and bypasses node 1 by connecting to its neighbors. This is reflected in the graphs

by a short drop, followed by sharp CPU and traffic spikes for node 2. Node 2 has also experienced

a less tangible but similar trend. At time 275 node 2 fails too and node 3 reconnects the network

shortly after, by bypassing both node 1 and 2. The spikes in the graphs is similar to the first

failure but higher and more lasting.

It is interesting to note that after the network is stabilized, the input traffic rates come back to

their levels before the failure (Figure 14(a)). This is due to the fact that in our approach regardless

of the network fault conditions, a node receives a message only if there is a subscriber in its lower

subtree. However, the output traffic increases (Figure 14(b)) as more copies need to be sent out.

This is also reflected by a slight increase in the node’s CPU utilization (Figure 14(c)). This is

significant since non-faulty nodes do not experience a large increase in their load after failure of

their neighbors.

10.2 Publication Delivery Delay

In this section, we present the impact of bypassing nodes on the publication delivery delay as

perceived by the subscribing clients of the system. We used a publishing source to carry out the

measurements. Figure 15 illustrates the results under three executions in which the publication

messages bypass one, two, and three adjacent nodes. At time 50 failures take place and at time

150 nodes start to recover all at once. The higher spikes correspond to publications that were

delayed more. The difference between the spikes also closely match the failure detector timeout.

Furthermore, it is clear that simultaneous recovery of multiple nodes has an almost constant
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and recover simultaneously at time 150s (δ = 3).

impact on publications.

10.3 Impact of Using dack Messages

Substituting confirmation messages with the dack mechanism is an important optimization

technique that reduces the message traffic associated with publication flows. In this experiment,

we measure node’s input message traffic and CPU utilization, both when confirmation messages

are used and when the dack mechanism is enabled. Figure 16 illustrates the results in an execution

where we continuously increase the publication rate. It is clear that the use of dack messages

greatly improves both the network traffic and CPU utilization under various load conditions.

10.4 Time to Recover

Potential factors that play a role in nodes recovery delay are the amount of time to transfer

subscription routing entries, rate of publication traffic, failure detector timeout, availability of

neighbors, and their state. We carried out measurements under various conditions, in which

nodes (individually or concurrently) start the recovery procedure. We considered subscription

state transfer of all 2600 subscriptions in the system in order to single out the impact of other

factors.
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Figure 17(a) illustrates the time to recover for multiple adjacent recovering nodes under 5

different publication traffic rates. We considered publication rates that do not overwhelm the

nodes. It is interesting to see that the time to recover in all cases are almost the same. This implies

that if recovering nodes are able to connect to their neighbors (even those that are recovering)

they can quickly retrieve the recovery data.

On the other hand, if the recovering node has to retry by connecting to a farther neighbor,

the recovery is delayed. This extra time closely corresponds to the failure detector timeout value.

Under low and high time out values, Figure 17(b) compares the recovery time of a node that has

to connect to only its immediate neighbors (red box), nodes one hop away (dashed green), and

nodes two hops away (dashed blue).



11 Related Work

Related work falls into the following two categories, reliable group multicast, and reliable P/S

systems. We discuss them in turn below. The problem of reliable publication delivery is to some

extent relevant to the traditional reliable group multicast problems. However, in practical P/S

systems with a high publication rate, it is costly to ensure properties such as virtual synchrony

[10], or total ordering of publication delivery. This is mainly due to the fact that each publication

is delivered based on individual subscriber’s interest, and maintenance of a shared group view for

this level of dynamism among a large number of clients is infeasible. Thus, we believe that per-

source in-order delivery, as required by our reliability specification, provides a reasonable balance

between application requirements and scalability of the implemented system.

Resilient Overlay Network (RON) [8] is an architecture that improves the resiliency of dis-

tributed network applications to Internet path outages. For this purpose, a RON network is

deployed consisting of nodes at disparate locations throughout the Internet. Nodes monitor each

other, and forward messages via alternative routes if some paths become unavailable. This prob-

lem is relevant to ours since reachability is a key part of our approach. However, we address the

problem within the context of the content-based P/S systems which is considerably distinct from

IP routing.

We now review some of the most important related work in the P/S literature. The Gryphon

distributed P/S system [9] introduces the concept of virtual brokers to tolerate failures. Each

virtual broker is a set of physical machines which act as identical replicas. In [14], we compared

with their approach and showed that upon failures, our system achieves better load stability.

Additionally, our topology can be deployed transparently without the need for replica assignment.

Snoeren et al. [18] propose an approach to build a δ-fault tolerant P/S system, by constructing

δ + 1 disjoint forwarding paths between subscribers and publishers, and forwarding publications

concurrently on all redundant paths. Thus, in presence of δ failures, at least one forwarding path

remains unaffected. However, this approach incurs high bandwidth consumption. In contrast,



when there are no failures our approach sends publications along a single shortest path towards

each subscriber. Furthermore, messages are only re-sent when a failure is initially detected (and

not afterwards).

In Hermes [16] the routing information at P/S brokers is soft state. This is designed to cope

with failures by having clients periodically renew subscriptions. In general, this approach does

not necessarily prevent publications loss. XNET [11] proposes two schemes, crash/recover and

crash/failover, to deal with broker failures. However, these approaches are unable to handle mul-

tiple simultaneous failures. Cugola et al. [13] also present an algorithm to improve the efficiency

of reconfiguration in highly dynamic P/S networks. However, the proposed reconfiguration path

approach only strives to minimize the publication loss during a reconfiguration process, rather

than preventing it. Epidemic (gossip) algorithms have been applied to P/S systems [12], in an

attempt to improve the reliability of highly dynamic systems. However, these approaches do not

provide strict publication delivery guarantees.

12 Conclusions

In this paper, we extended our δ-fault-tolerant distributed publish/subscribe approach [14] in

order to tolerate network partitions, support node recovery, and improve network’s message traffic.

We believe, that our approach is suitable for large and reasonably stable environments such as

that of an enterprise or a data center [1], where reliable publication delivery is desired in spite

of failures. As future work, we would like to exploit our scheme to allow for multi-path load

balancing, and support some of P/S optimization techniques such as subscription covering. We

are also investigating to adapt our scheme to tolerate byzantine failures, e.g., malicious attacks

or software bugs that may lead to arbitrary node behavior.



13 Broker vs. Client Functionalities

In our approach we have enabled system clients (publishers and subscribers) to connect to

brokers other than the one that they initially joined to. In fact in our approach, upon failure or

unavailability of a client’s immediate broker the disconnected client may create connections to the

failed node’s farther neighbors which may include both brokers and other clients.

We support this design by the following argument: consider a 2-fault-tolerant system in which

the publish/subscribe system is to be available in the face of two failures. If we restrict a subscriber

to connect to only one broker (likewise, only one broker can connect to the subscriber) then upon

failure of that broker the subscriber may suffer from interruptions in its incoming publication

flows.
On the other hand, in our design the publication delivery can only be interrupted upon failure

of at least three brokers or failure of the client itself. Creation of these connections are temporary,
and last for as long as a closer broker recovers. Meanwhile, the publications flow over various
paths and the client’s publication delivery service is not interrupted.
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