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Abstract

A great variety of tasks, from word sense disambiguation and document retrieval to

assessing the functional similarity of gene products and validating protein-protein interac-

tion networks, depend on the ability to measure the semantic similarity between concepts

organized in ontologies. This report is a comprehensive study of classic and recent compu-

tational methods measuring semantic relatedness. Motivational arguments set the stage

for a survey of the methods, applications and a critical assessment of the methods and of

the various evaluation strategies adopted in the literature. Proposals for future directions

in the areas of measuring semantic similarity and relatedness, as well as suggestions for

improvement, curently under investigation, are offered.
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Glossary

1 Introduction

As various hight-troughput technologies mature and become more cost effective, the major

challenge in bioinformatics is no longer how to generate vast quantities of genomic data, but

rather how to best collect, manage, and analyze the data. I will attempt to explain in this

section how ontologies as “formal, explicit specification[s] of a shared conceptualization”[47],

and associated reasoning techniques, in particular the concept of similarity, apply to the current

biological data analysis methods as well as to the emerging discovery systems. I will then cover

existing techniques for measuring concept similarity as well as evaluation strategies for these

techniques (section2), a side by side comparison (section 3 ). In the last section I will discuss

several issues important to both improving the measurement techniques and assessing the

quality of similarity measures as well as my current research and directions for future research.

The most basic reason bio-ontologies have been receiving an increased amount of attention

is their potential to help solve the semantic mismatch, which is a major impediment that data

analysis strategies must overcome even for very simple research scenarios. It is widely acknowl-

edged that heterogeneity is inherent in biological data, but there is perhaps less awareness of

its extent and pervasiveness.

Heterogeneity occurs not only in the schemas used to store data, but also in the actual data

values themselves. For example, comparisons between microarray data are difficult not only

because of the biological, technical, and analytical diferences between studies but also because

the results may be reported in different gene nomenclatures such as those used by Genbank1,

Entrez Gene2, EMBL Nucleotide Sequence Database3, Unigene4, Affymetrix, etc. The use of

ambiguous terms, is another wide spread and difficult to resolve issue. A prominent example

is the concept of gene. For the Human Genome Database5, a gene is a “DNA fragment that

1Available at: http://www.ncbi.nlm.nih.gov/Genbank/
2Available at: http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
3Available at: http://www.ebi.ac.uk/embl/
4Available at: http://www.ncbi.nlm.nih.gov/sites/entrez?db=unigene
5Available at: http://www.hugo-international.org/
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can be transcribed and translated into a protein” but for Genbank6 a gene is a “DNA region of

biological interest with a name and that carries a genetic trait or phenotype”. Since the second

definition includes nonstructural coding DNA regions like introns, promoters and enhancers,

there is a clear semantic distinction between those two notions of gene but both continue to be

used by different communities. Another commonly used term with multiple meanings is protein

function. Depending on the context, function can refer to a biochemical function, e.g. enzyme

catalysis, a genetic function, e.g. transcription repressor, a physiological function, e.g. signal

transducer, etc.

The fundamental reason that makes resolving semantic heterogeneity so difficult is that the

data sets are developed independently, and therefore varying structures and naming strategies

are used to represent the same or overlapping concepts. In many cases the data systems to be

integrated were developed for very different business and research needs. Hence, even if they

model overlapping domains, they may model them in distinct ways as different agents/actors

have varying conceptualizations of their domain of interest. Semantic standardization would

impose a certain view of a domain, but in many situations this is not feasible because the

domain is changing very fast and/or competing players cannot agree due to costs or diverging

interests or views of the domain.

Although ontologies, as computer readable formulations of concepts and relationships among

them, are hailed as the potential solution to the semantic interoperability problem, there is no

clear consensus on what an ontology really is and depending on the context, an ontology

can refer to, for example, a , a with an informal representation, typically consisting of is-a

relationships, a conceptual model of a domain, including rules to infer new knowledge.

From the many ontology formalisms we adopt here the definition given in the Karsrue

Ontology Model[34]. This framework does not handle constraints and axioms but it is its

simplicity that makes it better suited to bio-ontologies, most of which have very informal

representations.

Definition 1.1 An ontology with datatypes is a structure O := (C, T, R, A, I, V, σR, σA,≤C

6Available at: http://www.ncbi.nlm.nih.gov/Genbank/
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,≤R,≤A, iC , iT , iR, iA) consisting of

• 6 disjoint sets C, T, R, A, I and V called concepts, datatypes, relations, attirbutes,

instances and datavalues

• partial orders concept hierarchy, ≤C on C, and type hierarchy, ≤T on T

• functions relation signature, σR : R → C × C, and attribute signature, σA : A → C × T

• partial orders ≤R on R and ≤A on A

• instantiation functions iC : C → 2I , iT : T → 2V , iR : R → 2I×I , iA : A → 2I×V

In this formalism the hierarchical relations ≤. represent the is-a relations from other formal

and informal definitions.

I illustrate the ontology definition with an example which relates genes and pathways.

Example 1.1 Let Opathway−example be the structure (C, T,R, A, I, V, σR, σA,≤C ,≤R,≤A, iC , iT , iR, iA),

where

• C = { ROOT, PATHWAY, GENE},

• T = {string},

• R = {is involved in, changes expression level},

• V = {“signaling”, “metabolic”},

• I = {Insulin Signaling Pathway, Glycolysis Pathway, INS, GAPDH},

• A = {CATHEGORY},

• ≤C = {(ROOT, PATHWAY), (ROOT, GENE)},

• ≤R = {},

• ≤A = {},
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• iC = {(PATHWAY,{Insulin Signaling Pathway}, (PATHWAY, {Glycolysis Pathway}),
(GENE, {INS}), (GENE, {GAPDH}) },

• iA = {(CATEGORY, (Insulin Signaling Pathway, ”signaling” )}), (CATEGORY, {( Gly-

colysis Pathway, “metabolic”)})},

• iT = {(string, “signaling”, “metabolic”)},

• iR = {(is involved in, {( GAPDH, Glycolysis Pathway )}), (changes expression level ,{(Insulin Signaling Pathway,

INS)})}

Among the many ontologies developed for the biomedical domain, Systematized Nomen-

clature of Medicine - Clinical Terms(SNOMED-CT) and the Gene Ontology(GO)[26] are the

most widely used. Several dozen others are maintained by the Open Biomedical Ontology7 and

many more are being developed independently by various research groups around the world.

SNOMED-CT has more than 370 000 unique concepts, covering most areas of clinical infor-

mation such as diseases and microorganisms, which related through semantic relations such as

is-a, treats, prevents, has ingredient, etc. The concepts are organized into 13 hierarchies united

by a root concept.

The Gene Ontology, developed by the Gene Ontology Consortium, is one of the most widely

used systems for semantic annotation. Although it has been often criticized for inconsistencies

and for not adhering to formal principles[112, 111], it is nevertheless aquiring the status of a

standard ontology across various biological domains. The Gene Ontology is structured into

three domain ontologies (molecular function(MF), biological process(BP) and cellular compo-

nent(CC)) with the terms organized in a directed acyclic graph. The relationships between

terms are of several types: is-a, part-of, regulates, positively-regulates, and negatively-regulates.

According to the GO documentation, a biological process is “a recognized series of events

or molecular functions”, but currently there are no associative relationships in GO indicating

whether a molecular function is involved in a biological process. In May 2008 the Gene Ontology

consortium announced that it will introduce regulates relationships whithin the Molecular Func-

7http://www.obofoundry.org/
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tion ontology and between the MF and BP ontologies at the end of 2008. This decision comes

as a recognition of the necessity to make explicit some relatedness relationships in addition

to similarity (is-a) or compositionality (part-of) relationships. However, although relationships

such as the one between regulation of kinase activity(BP) and kinase activity(MF) will be made

explicit with the introduction of the new links, others, such as between transcription(BP) and

aryl hydrocarbon receptor binding(MF), will not. In addition, other relatedness relationships,

such as localization, for example between nucleus(CC) and DNA binding(MF), or between chro-

mosome(CC) and sister chromatid biocondensation(BP) need to be discovered automatically.

In some cases it is possible to detect by a simple lexical analysis the localization relationships

between CC and MF terms such as Golgi aparatus(CC), Golgi organization and biogenesis(MF),

or between CC and BP terms such as vacuole(CC) and vacuolar protein processing(BP), but

most such relationships, such as between nucleus(CC) and mRNA transcription(BP), are not

immediately evident and more sophisticated techniques are needed.

As amply illustrated by the literature, the importance of the biomedical ontologies, GO

especially, goes beyond simply that of simple annotation vocabularies. They are central to a

multitude of tasks, from predictive functional genomics to information retrieval and mediating

between data sources in data integration engines.

Automatic Annotation of Gene Products

One of the most exciting applications of annotation terms is their use as a predictive instru-

ments for tasks such as assigning functions or localization information to unannotated genes

and proteins identified by genome sequencing and other methods. This is an area that has

received significant attention in the past years, as many organisms have now been completely

sequenced, but establishing the function(s) of various genes is lagging behind. For example, the

Arabidopsis thaliana (thale cress) genome is completely sequenced, but functional annotation

of the genes remains a key challenge as approximately 50% of the 28,000 genes have not been

assigned any function.

Another frequent computational task is the analysis of high-throughput experimental data

in order to identify genes which are differentially expressed between normal and pathological
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tissues. This analysis includes associating the significant genes with descriptors that may help

explain the biological meaning of the experimental results. The process of finding/predicting

the most relevant descriptors can take advantage of the annotations attached to the similar or

related gene products in the medical/bio-chemical literature and/or various public and propri-

etary databases.

Predicting Gene Function

Typically, investigators use computational sequence analysis tools to assign functions to

newly found gene products. To date, the most commonly used techniques are based on phys-

ical association, genetic interaction, sequence relationships, patterns of gene expression and

enrichment analysis. Much of the work in enrichment analysis uses statistical methods[53, 115,

64, 17, 1, 120], primarily based on the frequency of terms associated with a list of genes, without

taking into account the semantic relationships that may exist between the terms. Ignoring this

information, however, may result in failure to identify the similar genes that are annotated with

distinct but semantically similar or related terms.

In semantic similarity approaches the functional similarity between gene products is calcu-

lated by matching the functional domains that they contain, which addresses the main problem

of sequence-based similarity, i.e., when the region of a gene product that is matched by a query

sequence is not related to the function of that gene product.

The functional relationship is usually estimated by comparing the shared annotation of

gene products. The annotation terms most often belong to a controlled vocabulary system,

such as GO and several methods exist to assess the similarity of sets of such terms. However,

simply identifying shared GO annotations may not be adequate for the estimation of semantic

similarity as even if two annotations are different, they can be closely related via their common

ancestors in the taxonomy. On the other hand, the shared terms may be too general to be

used as evidence for the functional association of annotated gene products and the GO graph

structure can be used to improve the sensitivity of semantic measures.

Evaluation of Domain-Domain and Protein-Protein interaction Networks

In addition to enabling the identification of functionally related gene products, similarity
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measures can also be used to predict and validate high-throughput protein interaction data.

The prediction of protein-protein interactions is mainly based on the homology of protein se-

quences, but the experimental coverage of the interactomes for many organisms is still low and

other methods are needed to help validate the posited interactions. In recent years, several

techniques[75, 72, 103] have been proposed, with very promising results, for the ab initio pre-

diction of protein-protein interactions and for assessing the quality of extant predictions. The

initial evaluation studies all corroborated the conclusion that functional similarity based on the

Gene Ontology annotations improve the accuracy of the interaction predictions.

Ontology-based Data Integration

As we approach the post-genomic era, it is estimated that the focus will move from “models-

of-analysis” of the existing data, such as algorithms for functional gene clustering, to “models-

of-process”, which aim at explaining the relationship between genomic data and the biological

pathways underlying physiologic processes. The next logical step, and ultimately the goal of

genomic research, is relating these processes to clinical outcomes and achieving this goal will

rely on methods that perform the semantic integration of various data sources from different

levels of biology.

The development of ontologies is seen as a key to succesful semantic data integration [48],

but having domain ontologies will not solve the data integration problem right away as even

whithin a single domain there are many competing ontologies. For example the C. elegans

development and C. elegans anatomy ontologies from the Open Biomedical Ontology repository

8 and C. elegans cell and anatomy ontology developed for WormBase9 were all developed to

describe concepts related to the worm anatomy, but, with slightly different research goals in

mind.

As most of the existing resources contain annotations from only one ontology, any researcher

interested in performing a cross-species analysis would need a method to combine the annota-

tions contained in all the data sources. As an example, one of the tasks currently receiving a lot

of attention is linking genome sequence information to organism function, which is commonly

8 http://www.obofoundry.org/
9http://www.wormbase.org/
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accomplished by characterizing phenotypes resulting from mutations. The required bridging

between genotype and phenotype information is generally achieved through the integration of

knowledge sources such as EntrezGene(EG) and Onlime Mendelian Inheritance in Man (OMIM)

10. The ontologies used by EG and OMIM, as by most biomedical systems, have been devel-

oped independently, and since they do not adhere to a common vocabulary their integration is

performed manually or by highly customized software [82]. An automatic mapping system will

greatly speed up the integration process, and a significant amount a research is being conducted

in this area. Much of the work is aimed at leveraging the results accumulated in the similar

area of database schema matching, but new techniques are needed for ontology mapping and

integration as this area presents challenges and opportunities not existing in databases.

Both ontologies and schemas (i) provide a vocabulary of terms that describes a domain of

interest and (ii) constrain the meaning of terms used in the vocabulary. However, database

schemas often do not provide explicit semantics for their data as the semantics is, usually,

specified explicitly only at modelling time and it is not a part of a database specification and

therefore not available. Formal ontologies, on the other hand, are logical systems that obey

some formal semantics so that we can interpret ontology definitions as sets of logical axioms.

The mapping strategies also differ in the way they perfom the core operation of assessing the

similarity between the items being matched. In database schema matching the similarity is

evaluated with the help of techniques that “guess” the meaning encoded in the schemas, while

the ontology matching systems (primarily) try to exploit the knowledge explicitly encoded in

the ontologies.

A comprehensive discussion of the differences and commonalities between ontologies database

schemas and other knowledge representation technologies is outside the scope of this paper and

I refer the reader to [123] for a good overview.

The focuss of this review is semantic similarity, an issue central to data processing al-

gorithms such as functional gene clustering and validation of interaction networks as well as

integrative data discovery systems.

10Available at: http://www.ncbi.nlm.nih.gov/sites/entrez?db=omim
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