
Copernicus: Face-to-Face Web-based Sharing and
Collaboration

Jing Su, David Dearman,
Dritan Xhabija

Dept. of Computer Science
University of Toronto

Ashvin Goel
Dept. of Electrical and
Computer Engineering
University of Toronto

Eyal de Lara
Dept. of Computer Science

University of Toronto

ABSTRACT
Mobile devices are increasingly being used to access web
applications. Unfortunately, the usage model for web
applications today is still desktop-centric, in which users
work in isolation. As a result, using mobile devices to
find or share data, or collaborate while in a social setting
is cumbersome at best, and often frustrating.

Instead, we envision a new usage model in which web
applications supplement and enhance face-to-face social
interactions. This model forms the basis of Copernicus, a
system that simplifies the sharing of web content between
individuals that come within proximity of each other.
Copernicus introduces a collaboration model in which users
in proximity are represented as first class objects in the
system, which encapsulate the users’ web applications
and content. Copernicus allows building applications that
can take advantage of user objects to enable sharing and
collaboration with nearby users.

1. INTRODUCTION
People are increasingly making their personal content
available on the Internet by hosting it on a variety of web
applications. Extremely popular web applications include
FlickR for photos, Google Calendar for scheduling, and
Imeem for sharing music. This has resulted in a situation
where users have two modes of interaction: traditional face-
to-face interaction in the real world, and computer-based
asynchronous interaction on the web (e.g., commenting
on a friend’s photographs). Our aim is to enable people
to socialize simultaneously in both modes by providing
seamless access to the user’s web content during face-to-face
interaction.

Consider the current situation. Say Bob is a supplier who is
visiting a group of people at a prospective client company.
Bob has a portfolio of web hosted content, including
documents, videos, CAD files, and other media, that he

University of Toronto Technical Report CSRG-603

wishes to share with his clients. Some of this content is
sensitive, hosted on Bob’s company’s website, and requires
authenticated access. Yet other less sensitive promotional
content is hosted on third-party web applications, such as
a media streaming service, where for example, a “list of
friends” allows accessing content. Providing access to these
relevant materials is not a simple matter of emailing links
and attachments; logins and usernames must be determined
or created, access permissions granted, and directions for
where and how to access this content provided. This
complex set of operations are cumbersome and disruptive
during a face-to-face meeting, especially if this is the first
introduction between Bob and many of the clients. To
mitigate this problem, Bob may bring in mass-storage media
with the content pre-loaded. However, now the onus is on
the clients to load the media and ensure they have the proper
software to view it. This approach is still problematic if the
clients primarily use smartphones.

Continuing the previous example, suppose that Bob decides
to setup a follow-up meeting with the clients. Though
this collaborative task is conceptually simple, it involves
users focusing on their calendars on their mobile devices,
followed by several rounds of verbal interaction in which
people suggest their free times and others who respond with
their busy times, and then all users updating their calendars.
These examples illustrate that while sharing content and
collaborating in social settings is desirable, it is cumbersome
and rarely done. Instead, these tasks are done later, and may
involve multiple rounds of emails for coordination.

In this paper, we present Copernicus, a mobile system that
lets people socialize at both the physical level and on the web
by providing a bridge between the two worlds. Copernicus
introduces a collaboration model in which users in proximity
are represented as first class objects in the system. These
user objects encapsulate the users’ web applications and
content. This abstraction provides users with an intuitive
model for finding and sharing content and collaborating
with nearby users. The result is a computing experience in
which digital content is seamlessly made available to users
interacting in the real world, instead of forcing users to focus
on their mobile devices and retreat away from the social
interaction in order to navigate the web.

Revisiting our example, Bob uses his Copernicus-enabled
mobile device to access the web content that is to be shared.



He then selects a Copernicus specific “share” option from
the menu, and is presented with a pop-up of thumbnails of
the people around him. Bob selects the clients, and confirms
the sharing operation. The clients find a dynamically
generated directory containing the files that Bob has shared
on their own favorite documents web site (e.g., an internal
web site or Google documents). Note that Bob does not
require the clients’ email addresses, and the clients do
not have to login to Bob’s web sites to access the shared
documents. In fact, they may not even be aware of where
the files are actually hosted. Similarly, the participants set
up the next meeting time by opening their calendar on their
mobile devices and sharing all their free times with others
in the room. Then, Bob sees a highlighted entry two weeks
from now in his calendar, indicating that everyone is free
on that date and time. Bob selects that entry, books the time,
and the clients’ calendars are all updated with that entry. Bob
shakes hands and looks forward to the next meeting.

Copernicus makes two main contributions that enable these
collaborative interactions. First, it provides support for user
objects that represent users in proximity. Copernicus detects
individuals in the proximity of a user by mapping low-
level device identifiers such as Bluetooth MAC addresses
of mobile devices to real individuals, and then mapping
individuals to their web applications, login ids and their
content. The user objects thus encapsulate a user’s
applications and content. This approach allows building new
web applications that can take advantage of these objects
for seamless sharing and collaboration. Second, Copernicus
provides an adaptation service that retrofits existing web
applications to enable sharing and collaboration with nearby
users. This service takes advantage of the programmable
interfaces available in modern web applications.

We have built and evaluated a prototype of the Copernicus
system using smartphones. Our prototype includes support
for several applications (calendar, email, photo and file
sharing) from different web providers, thus showing the
generality and wide applicability of our approach.

2. APPROACH
Copernicus simplifies web-based sharing and collaboration
during face-to-face social interactions by providing support
for user objects that represent users in proximity. User
objects have a human friendly representation, as shown by
the list of faceshots in Figure 1(b).

Alice can share some of her content by simply selecting her
content, clicking on the share button as shown in Figure 1(a)
and choosing the faceshot of the receiving peer. Conversely,
Bob can easily find content that has been shared with him,
as shown by the links in Figure 1(c). Bob can also filter
content by peer by using a faceshot selection interface.
Under the covers, Copernicus takes care of the intricacies
of identifying users in proximity, sourcing content from the
origin web applications, enforcing access control, converting
between data types supported by different web applications
(e.g., Picasa and Facebook), and presenting the shared
content in an intuitive manner.

The rest of this section describes the two main ideas, user
objects and an adaptation service, that Copernicus uses
to support face-to-face web sharing. We then describe
the range of sharing capabilities and applications enabled
by Copernicus. Finally, we address security and privacy
concerns.

2.1 User Objects
User objects represent users in proximity and they encapsu-
late a user’s web applications and web content. Copernicus
provides this abstraction by using three mechanisms that are
discussed below.

Identify users in proximity
Copernicus needs to detect individuals in the proximity
of the user. It can leverage different techniques, such
as a GPS-based location service, to inquire about users
within a specific geographical area. Our existing prototype
leverages short range radio (e.g., WiFi, Bluetooth) to
detect the MAC addresses of other mobile devices in close
proximity. Short-range wireless radios are available on
most smartphones today and they provide good accuracy
for determining physical proximity. Next, Copernicus maps
the low-level hardware identifiers to user objects. This
mapping is provided by users when they initially register
with the system. The eagerness with which Copernicus
updates the user’s proximity depends on user preferences
and applications, as discussed later. Copernicus can also
keep a log of users that have come within proximity of the
user for later use (e.g., to simplify sharing with someone we
met earlier in the day).

Determine the user’s web applications
Copernicus is aware of each users’ web applications. This
mapping is also provided to Copernicus by users when they
register with Copernicus, and it allows linking a user object
with a user’s applications.

Enable access to web content
The last aspect of a user object is enabling access to the
user’s web content. Copernicus aims to provide seamless
access to web content, across different web applications
and with different user memberships. Meeting this goal
places two requirements: access control and content
interoperability.

Copernicus accesses user content using delegated creden-
tials, a widely available feature of Web2.0 applications for
enabling third-party access. Copernicus is provided with
these credentials (unique tokens) when users register their
web application. Copernicus can then make requests to
access the application content on behalf of the user. Requests
are signed with public/private key certificates and the web
application checks the IP address of the request to ensure
that it originates from Copernicus. We discuss the security
concerns with credential delegation later in this section.

When users share content, Copernicus attempts to use the
native access control settings of a web application whenever
possible. However, these settings may be insufficient



(a) Share menu option (b) Peer selection (c) Finding content

1: Sharing and finding content. Alice initiates content sharing by using the share menu option or by using an embedded link
tagged with the content. A peer can be selected easily by clicking on a faceshot (or by typing in a cellular number). Bob can
find shared content by clicking the different links, each of which implements a different filter.

due to user privacy settings, insufficient granularity in the
application’s access control mechanism, or lack of common
service membership between users (e.g., the peers do not
use the same web application). In this case, Copernicus
securely proxies content using the delegated credentials of
the content owner, thus enabling access control at the user
object granularity. For example, Alice can share a specific
document with Bob, even though Bob does not have an
account with the service used by Alice.

Seamless content access also requires content interoper-
ability between different web sites. Copernicus provides
a framework and API for translating content into a per-
application class intermediate formats. It is important to
clarify that Copernicus is not a content repository. Instead,
its API enables content to be linked and shared across web
applications.

2.2 Proximity-aware Adaptation Service
The user object abstraction described above allows building
new web applications that provide seamless sharing of web
content and collaboration during face-to-face interactions.
However, we would also like to retrofit existing web
applications to achieve the same goals. Our solution is to
provide a service that utilizes the APIs provided by modern
web applications to adapt these applications.

For example, the Copernicus adaptation service allows
filtering, searching and sorting of web content. As the
amount of user-generated and shared web content increases,
these operations become burdensome in a mobile setting,
even though they may be as simple as marking a piece of
content to be shared, or vice versa, finding a piece of marked
content.

The adaptation service adapts the organization and layout
of content based on the user’s current and past proximity
context. We apply this approach to both the user’s own
content as well as shared content. In the introductory
example, when Bob opens his calendar to arrange a follow-

up meeting with his clients, the adaptation service inserts
temporary “free” entries that match the intersection of
available times of all participants.

The adaptation service provides two interfaces. It can serve
as a web portal that provides access to the adapted content.
This Copernicus portal presents a series of links containing
the adapted content from both the user as well as others.
For example, when Alice visits the portal, there is a link
that shows the content she has shared with the peers in her
proximity, a link that shows the content of other people in
nearby proximity, and a link that shows the content that has
been shared with or received by Alice. These links provide
Alice with a convenient and fast way to find and see the
content that Bob has shared with her. For example, Alice can
access Bob’s shared photos and videos hosted on Facebook
and YouTube, without even knowing the web applications
that Bob uses.

The Copernicus adaptation service provides a second, more
intuitive interface by directly adapting the web application.
In this case, users directly interact with their application
rather than visiting the Copernicus portal. This approach
has the added advantage that it leverages the efforts of
web application providers in creating custom clients and
interfaces for mobile devices. For example, say Bob has
taken several photos at a conference and shared them with
Alice. When Alice visits her Picasaweb, she finds a
virtual album inserted by the Copernicus adaptation service
containing thumbnails of the shared photos. Opening the
thumbnail photo provides Alice with a link to the full-
quality photo, with permission settings automatically set up
by Copernicus. Figure 4(b) provides a screen-shot of how
Bob’s photos on Facebook can be seen by Alice, despite
Alice not having a Facebook account.

2.3 Sharing Policies
Copernicus enables a range of sharing models, based on
the person sharing the content (sender) and the user which
whom the content is shared (receiver). Applications and



tasks may require explicit interaction from both the sender
and receiver, or just sender or receiver, or be completely
automated without requiring any user interaction.

Copernicus provides an intuitive point of contact for
initiating the sharing of content. However, we note that
users are able to share content with others who are not in
their physical proximity, for example people they have met
previously. Whether shares persist is application specific;
some applications may enforce share permissions to be
proximity-based, while others may allow shares to persist
until revoked by users.

2.3.1 Explicit sender/receiver interaction
In this model, the sender explicitly marks the content to
share and the individuals with whom to share (e.g., by
clicking on their picture on her mobile device). Similarly,
the receiver explicitly chooses who to receive content from.
Many applications fit into this model: sharing of documents,
photos, or music, and scheduling meetings.

To help filter friends from strangers when sharing content
in a crowded space, Copernicus can utilize relationships
available in social networking applications. In our example,
suppose Bob wanted to share some of the photos he took
with Alice. When he initiates the sharing operation,
Copernicus presents a list of individuals with whom he can
share content. Eve, a stranger, is nearby but does not show
up on the list because she is not in Bob’s social network.

Though this explicit model requires user interaction, it is
less taxing for the user than existing approaches. Instead
of working with device identifiers and machine names, users
are able to interact much more naturally by specifying their
peers as people instead of arbitrary IDs.

2.3.2 Implicit sender or receiver
An example of an application that provides a mixed mode
of operation, where user interaction is required from only
the sender or receiver, is a business card exchange web
application. Unlike existing business card formats such as
vCards, which are restricted in content and format for size
purposes, a business card application on Copernicus can
easily exchange arbitrarily large and rich portfolios since the
sharing is performed by well-provisioned servers. The client
devices (in this case smart-phones) do no work.

Imagine a pink-slip party, where individuals who have
recently lost their jobs can network and commiserate,
and recruiters can look for potential employee candidates.
In this setting, a user looking for work can set his
portfolio to be available automatically to anyone interested.
Conversely, a recruiter may wish to be more selective
with which portfolios to accept. In this usage mode,
the sender is offering content without requiring user
interaction. However, the receiver chooses to selectively
and interactively accept content. At the same time, potential
employers may also be proactively recruiting well-qualified
candidates, offering them portfolios highlighting the benefits
of working at their company. The candidates happily accept

all such solicitations from potential employers. In this usage
mode, the sender selectively decides who to send content to,
but receivers automatically accept the shared content without
user interaction.

2.3.3 Implicit sender and receiver
On the opposite end of the spectrum is a usage model where
the application implicitly shares and accepts content on
behalf of users. There are many possible applications which
may opt for such a usage model. For example imagine an
application that enables Alice to take a tour of a city, without
taking any photos of her own, and then later be able to build
a photo-album from the public photos of the people she took
the tour with or even random strangers who happened to be
in proximity.

2.4 Security and Privacy
Copernicus simplifies sharing by providing a list of peers
with human-identifiable attributes (such as real name and
profile photo), and mapping their online identities, accounts,
and web applications. This new usage model raises security
and privacy concerns as well as the risk of receiving
unwanted content such as spam.

The current Copernicus system relies on periodic Bluetooth
inquiries for detecting user proximity, which raises spoofing
and tracking risks. First, while most consumer products
with Bluetooth radios are hard-wired with a Bluetooth MAC
address, a malicious party may attempt to build custom
hardware that transmits fake Bluetooth address responses,
allowing impersonation. Such an attack would have limited
effectiveness in Copernicus, since it does not allow the
attacker to gain access to the content of the impersonated
identity. For example, suppose Alice wants to share with
Bob, but Eve impersonates Bob’s Bluetooth address. Alice
would be tricked into thinking that Bob is nearby. However,
since Copernicus sets access permissions on the originating
web application, Eve can only gain access to the content
by compromising Bob or Alice’s accounts on the web
applications.

Second, Copernicus does not expose users to user tracking
risks above the current status quo for identifying mobile
devices. Existing methods have explored techniques for
overcoming this social presence problem [6], which we leave
for future work. In addition, users can disable Bluetooth by
default, and enable it explicitly when they want to share. To
mitigate the risk of Bluetooth inquiry response tracking, our
prototype provides a method for direct peer specification via
a cellular phone number. This enables the recipient to remain
completely invisible, while being able to receive sharing
requests. We describe the use of SMS, as well as other
possible techniques for establishing proximity without the
use of active Bluetooth inquiries, in the architecture section.

Malicious users may attempt to spam other users in their
proximity by sharing unwanted data with them. Copernicus
enables users to restrict their visibility to individuals with
whom they have previous sharing relationships or are
marked as acquaintances on a social networking application.



2: The Copernicus Service

In addition, Copernicus provides users with filtering and
rejection options analogous to email spam filtering.

The use of delegated credentials is common amongst web
applications, and can take many forms, ranging from “home-
brew” delegated credentials to delegation through single-
sign-on services. In all cases, Copernicus does not store
passwords. Access to the delegation token does not grant
an attacker access to the user’s web application data, since
web application requests must be signed from a specific
IP address associated with the token. An attacker must
compromise the Copernicus portal, or steal its private key
and spoof its IP address to gain access to the user’s data.
Thus, Copernicus’s security profile is similar to other web
applications using credential delegation, and Copernicus
does not expose additional vulnerabilities. In particular,
users who wish to unregister from Copernicus can revoke
the delegated credential from their web applications.

3. ARCHITECTURE
Figure 2 shows the main components of the Copernicus
service: the Copernicus client running on the users’ mobile
devices, the Copernicus service, and various third-party web
applications, such as Facebook and Picasaweb. The example
illustrates how Alice can access photos that Bob has shared
with her. These photos are available to Alice, without her
needing to know that Bob uses Facebook, the albums in
which his photos are stored, or requiring membership to
Facebook to gain access.

3.1 Copernicus Mobile Client
The Copernicus mobile client consists of a web browser
plugin that adds a share menu to the browser and scans the

local radio environment to help identify users in proximity.
The current implementation scans for nearby Bluetooth
addresses and collects cellular and WiFi radio fingerprints.
The device sends the results to the Copernicus service via a
secured connection through an infrastructure-based Internet
link, e.g., WiFi or 3G. This client is necessary because
acquiring this information requires device-specific code.

3.1.1 Sharing
Copernicus provides three methods for initiating a sharing
request. When supported by the application, users can
select a share link embedded within the application content.
Alternatively, users can install the Copernicus browser
plugin and click on the share menu item it adds to the
browser menu (Figure 1(a)). Finally, as a last resort, users
can select a share link from Copernicus’s web portal.

Once Copernicus has determined that sharing is allowed,
the user’s browser is redirected to a peer selection page
hosted by Copernicus, shown in Figure 1(b). Here, the user
is presented with a list of individuals with whom to share
content. There is also an input field for the user to manually
enter a cellular number, in case the peer is not a registered
Copernicus user. Once a peer has been selected, Copernicus
sets up the appropriate access permission settings and
redirects the user back to the originating web application.

3.1.2 Bootstrapping and notification
Copernicus utilizes SMS notification for two functions:
explicit user identification and bootstrapping of new users.
We chose to use SMS because it is a well supported
feature on cellular devices and is operated by trusted
carriers. Furthermore, exchanging cellular phone numbers is
a socially accepted practice amongst acquainted individuals.

For a user wishing to remain “invisible” as well as users
who are not registered with Copernicus, a peer wishing to
initiate sharing can do so by entering the user’s cellular
number in the recipient selection page described in the
previous section. Copernicus then creates a new anonymous
user account, establishes the sharing permissions for that
account, and creates a unique URL hosted by Copernicus
with which to access the shared content. This URL is
then sent to the recipient’s cellular number via SMS. The
recipient is then able to access the shared content via the
URL. The recipient user can merge this anonymous account
into their own Copernicus account at a later time via the
Copernicus portal. Similarly, a new user can register on
Copernicus and integrate this anonymous account.

3.2 Copernicus Server
Figure 3 shows the architecture of the Copernicus server.
The adaptation service implements application-specific
policies and interfaces with the Copernicus API. This API
covers a range of popular user applications, such as calendar
and photo sharing, and specifies common operations and
data types for these applications. Copernicus includes
driver modules that interface directly with specific web
applications, and implement the code to connect with
the Copernicus API. For example, there is a Facebook



Google

Calendar

Yahoo

Calendar

IMAPPicasa

credential

& access

Facebook

Copernicus API

Webapp & Data Driver Instances

device
to

people
mapping table

people
to

webapp
mapping table{

{

calendar
policy

email
policy

photo sharing
policy

file sharing
policy

email

class
photos

class
social

class
calendar

class

adaptation service

3: The Copernicus architecture

Photo driver and a Google Picasaweb driver, which both
implement the Copernicus photo API. The Copernicus
APIs define more than just data access functions. They
also define operations for reorganizing content, managing
dynamically created content, and useful hotlinks for
initiating content sharing operations. How these operations
are manifested depend on the specific web application driver
implementation. In addition, the Copernicus server also
contains a name mapping module that maps individual users
to their devices and their online identities, a proximity
detector, and a credential lending and access control module.
The name mapping module exposes individuals as user
objects via the Copernicus API.

3.2.1 Adaptation Service
The adaptation service implements application policies
as Copernicus-native programs. These programs specify
domain specific algorithms for how content should be
filtered, sorted, organized, merged, and shared. Copernicus
supports two primary modes for how these content
management decisions are applied: a now mode, and a past
mode. The now mode applies policies based on the user’s
current proximity context, as determined by the proximity
detection module. The past mode enables the user to apply
policies based on accumulated previous proximity context.
For example, suppose Alice forgets to schedule a follow-
up meeting with Bob. Alice can effectively “turn back the
clock” to her meeting with Bob, and see the adapted policies
as if Bob were in proximity.

3.2.2 Web application classes and drivers
The web application interfacing subsystem has two main
components: a library of application domain classes and
intermediary data formats, and web application-specific
drivers which implement these interfaces.

Copernicus uses drivers to cope with the application-

specific nature of the APIs exported by the different
web applications. Drivers must implement one or more
application class interfaces, which basically encompass four
core functions: pull content, push content, manage access
control policies, and insert user interface extensions. Due
to the diversity of features and capabilities across web
applications, drivers are free to determine how the content
organized by Copernicus is to be applied. For example,
to add dynamically created calendar entries, the Google
Calendar plugin may create supplementary calendars for the
entries, which can then be overlaid atop the user’s primary
calendar. A plugin for Yahoo! Calendar, which does not
support secondary calendars, would add the new entries
directly into the user’s primary calendar.

To minimize the transfer of content between the web
applications and Copernicus, a driver can implement an
optional interface for allowing filter expressions to be
pushed to the web application. This enables significant
filtering and selection operations to be evaluated locally
on the web application’s system. Many web applications
support some form of search or query interface, which can
filter across different content types (e.g. FBQL [7]) or tag
and location attributes (e.g. FlickR search [8]).

To support operating on data formats from many different
web applications, Copernicus’s application class interfaces
define an intermediary format for every supported data
type. Copernicus specifies intermediary formats for images,
calendars, emails, social networking relationships, and
meta-data such as geo-tags and radio signatures. This
common set of formats enable the filtering system to work
on content independent of their originating or or destination
web applications.

3.2.3 Name mapping
Copernicus must solve two important questions: who is
the individual that owns a given mobile device, and where
are that individual’s online identities and resources? To
provide these two mappings, Copernicus’s name mapping
module assigns each individual a unique user account with
which devices and online identities are associated. Human
and socially identifiable attributes such as a name or profile
photo can be directly specified by the user to Copernicus,
or the information can be extracted from the user’s other
services such as Facebook. Copernicus’s name mapping
module assumes that devices, device identifiers, and online
identities are owned by a single person, though a person may
own many devices and many online identities.

3.2.4 Proximity detection
The proximity detection module detects nearby peers by
processing the radio environment updates submitted by the
Copernicus mobile client. The proximity module appends
the received updates to a ring buffer, and supports multiple
proximity detection modules, by allowing each of them
to scan over the update buffer and raise notifications for
proximity changes or updates. The proximity module then
determines how to weigh the notifications from various
modules, depending on the user’s preferences. The



Copernicus architecture supports proximity modules based
on a variety of sensors, such as GPS readings, WiFi and
cellular fingerprints [2, 5, 21], and Bluetooth scanning.
The framework can also accommodate approaches, such as
Amigo [22], which detect proximity based on similarities in
the radio signal fluctuations perceived by nearby devices.

3.2.5 Credential lending and access control
Copernicus uses credential delegation, a widely available
feature on Web2.0 applications, to allow third parties to
make requests on behalf of a user. This credential lending
module is used for three purposes: to sort and filter content
on behalf of the user, to retrieve content for purposes of
sharing between users, and whenever possible, setting access
permissions for content hosted on webapps.

The access control module in Copernicus determines which
of the filtered content can be accessed by the receiver.
By default, Copernicus extracts and utilizes the settings
from the user’s webapps. This provides the user with an
already familiar access model. The exception is when users
explicitly share content with specific receivers. This fine-
grained explicit sharing over-rides the default rules.

In many cases web applications are unable to grant this
fine-grained explicit sharing request due to two possible
limitations: insufficient access control granularity, and the
lack of mutual membership on the web application between
sharer and receiver. Copernicus’s access control module
tackles both of these problems by serving as a secure content
proxy. When providing access, receivers and the receiver’s
web application are given uniquely generated URLs hosted
by Copernicus. Every time these unique URLs are accessed,
the access control module first checks the identity and
permissions of the accessing device. If permission is
granted, Copernicus securely retrieves the shared content,
and proxies access to the receiver.

4. IMPLEMENTATION
The prototype Copernicus system is implemented using
the Apache Tomcat Java Servlet framework. For user
devices, we implemented support for the Windows Mobile 5
smartphone platform. In addition, an initial implementation
for the Apple iPhone platform is partially complete as of this
writing. In the remainder of this section we provide a brief
description of the implementation details of the prototype
applications. We show the generality and wide applicability
of Copernicus by implementing applications from different
domains and web providers.

Calendar
The calendar application aims to simplify the task of finding
common free times for establishing future meetings. This
task can become especially time consuming as the number of
participants increases and the complexities of schedule times
and conflicts result in burdensome communication overhead.

We implement support for the Google Calendar service.
The calendar application adaptation policy produces the
set of intersecting free times. This set is given back to

the plugin which pushes this result back into the users’
Google Calendar (see Figure 4a). This implementation
creates a temporary calendar which can be overlayed on top
of the user’s primary calendar. To mark these entries as
Copernicus-generated, the description fields for the entries
are tagged with a hash check-sum generated from the event
details. This enables Copernicus to find and update these
entries later when the user’s social proximity changes. The
description fields also contain links to common actions, such
as reserve a meeting at this time slot. This is accomplished
using a link to a uniquely-generated URL on Copernicus
which triggers the action.

Photo Sharing
The photo sharing application aims to enable users to find
and share photographs of interest between people in a social
group. The Copernicus photo application automatically
constructs virtual photo albums for sorting a user’s own
content, as well as displaying content shared to the user by
others. This feature works across different web applications,
enabling users to find both their own content as well as
shared content from their preferred service without having
to figure out where the peer’s content is stored or how
to access it. As the user’s physical proximity changes,
Copernicus automatically manages these virtual albums,
adding or removing photos. An example of this can be
seen in Figure 4(b), where Bob has shared a photo from
his Facebook album with Alice. Alice can see and access
the photo from her Picasaweb application, without needing
Facebook membership.

Copernicus provides photo sharing functions through Pica-
saweb using the Google APIs, and Facebook photo albums
using the Facebook API. The current photo application has
two policies: one which selects the set of photos Bob took
when Alice was in close proximity, and one which selects
explicitly shared photos. These filter results are instantiated
as virtual albums populated with thumbnails of the selected
items, all managed by Copernicus. Appended to each
thumbnail is an identifying hash-tag and full-image link,
hosted by Copernicus which enables Alice to see the full
sized original.

Email
The email application aims to make it simpler for users
to quickly and easily find relevant related correspondence
between the user and their peers in proximity. Existing
solutions for finding email include manual sorting into
folders or tags, using textual search, or sorting by date or
sender. All three of these methods are less than smooth
in a mobile environment. Typing a search term may be
convenient on a desktop, but is clumsy on a mobile device.
Finally, sorting by sender is often too coarse-grained. For
example, people can belong to different project groups, all
with their own threads of correspondence. Sorting only
by a specific sender does not properly distinguish between
different project threads, implicit in the list of included
recipients.

The Copernicus email application creates a virtual folder



(a) Calendar (b) Photo (c) Email

4: Copernicus applications. The Calendar applications shows the union of busy times. The Photo and Email applications show
a dynamically “Proximity” folder or gallery with pictures shared by people in proximity or emails from people in proximity.

sorted with email correspondence from the included
participants in proximity, as illustrated in Figure 4c. Unlike
simple sort-by-sender, Copernicus email can sort by all-
senders-in-proximity, which is much more fine-grained and
selective. As the user’s physical context changes, the
messages in the folder are dynamically updated.

Despite the widespread popularity of web-mail applications,
there exists no Web2.0 APIs for manipulating and managing
email. However, a basic set of adaptations can be performed
using the IMAP protocol, which is almost universally
supported by email services. In our implementation we use
Google Mail service as our IMAP email back-end, though
nothing in the IMAP plugin implementation’s design is
specific to Google Mail.

5. EVALUATION
In this section we evaluate the performance of our
Copernicus prototype. The mobile device used is a JAQ3
Windows Mobile, manufactured by HTC, which is an EDGE
capable GSM phone with WiFi, color touch-screen, and
hardware QWERTY keyboard. The Copernicus server is a
quad-core Xeon 3.6 GHz with 4 gigabytes of RAM, running
Apache Tomcat.

For each applications introduced in the previous section, we
profile the interaction requirements to achieve common tasks
using Copernicus, and compare with alternative existing
models for sharing content. Tasks are performed at least
three times, showing the averages of the interaction counts
and time-to-completion. All tests are performed by users
with strong familiarity and proficiency with the applications
and devices. The objective is to determine how an
experienced user would utilize the system, since even novice
users eventually become experienced.

Calendar
We evaluate the time and number of interactions required
to schedule a meeting time which is mutually agreeable to
two individuals that are in proximity. Both calendars are
pre-loaded with busy schedules such that 3 PM a week
from today is the first available free time. Participants are

tasked with finding and scheduling this follow-up meeting.
Each participant is first given time to acquaint themselves
with the schedule given to them. Timing and counting of
interactions begin at today’s calendar date, and end when
both participants have agreed on a meeting time.

The first row of Table 1 shows the time and effort it took for
the users to arrange a meeting without Copernicus’ support.
This scenario requires users to look up their own calendars,
and verbally communicate their free-time options. The
second row of the table, labelled Oracle Calendar shows the
time and effort required to set up the meeting in an idealized
scenario where both users knew a priori exactly when they
have a mutually free slot. The difference between these
two rows shows the basic social human communication
overhead to negotiate and find this time. Finally, the last
row of the table shows results for Copernicus, which helps
users by highlighting common free times. By having the
right content adapted into the user’s application, Copernicus
enables participants to finish this task 70% faster than with
the native application, and matches the performance of the
idealized case.

A further benefit of Copernicus over current systems is
that Copernicus maintains this simplified usage model even
as the number of meeting participants increases. As the
number of participants go up, so do the complexities of time
constraints, and the odds of immediately knowing a definite
common free time will be significantly reduced. Copernicus,
in contrast, scales well to support larger social interactions.

Email
In this experiment, we examine a use case where Alice
checks her email in order to reference a message Bob sent
to her earlier. The purpose of this experiment is to show
the potential for how automated sorting and filtering can be
applied to a user’s own content, and that such adaptations
can be effectively applied using IMAP. All experiments use
the GMail web interface.

To set up this experiment, we assume that Alice receives
an average of 25 non-spam emails per day. The particular



correspondence from Bob she is looking for took place three
days ago, with the subject line containing “Fact Check”.
When Alice and Bob are in close proximity, Copernicus
automatically sorts and creates a “Proximity” folder sorted
with correspondence with those who are currently nearby.
For each of the trials, timings start with the email client open
at the top of the inbox, and end when the desired message is
selected.

Copernicus significantly outperforms native GMail requir-
ing up to 78% fewer click and taking up to 65% less time
to complete the task. We attribute native GMail’s poorer
performance to two reason. First, to filter emails by sender
name or subject line using native GMail, the user has to type
a search term. Second, the web interface only shows 25 mail
messages per page, requiring extra navigation time to scroll
to the bottom and find the “next page” link, and extra page
load times to transition to the next page of messages.

Photo Sharing
We compare Copernicus to two usage models for sharing
photos: sending a link to the content, and sending the content
itself. In order to compare the sharing usage models, user
interaction measurements begin when the sender’s device
has the desired photo loaded and ready. For Internet-
related methods, this means the photo is loaded on the
sender’s browser, hosted by Picasaweb. For file transfer
based methods, this means the photo loaded in the sender
device’s native photo viewer. Measurements stop when the
receiving device has received and loaded the photo. Two
sizes of photographs are tested: 36 kilobytes, typical of a
low-end camera-phone; and 358 kilobytes, typical of a well-
compressed medium-range camera-phone.

The first sharing model we explore involves sending a URL
link of the photo of interest to the intended recipient, via
email and SMS. Most popular email and SMS clients today
are able to detect and hyperlink URLs in the text. The sharer
addresses the link to “bobuoft” as the recipient address
(the address book automatically fills in the remainder
@gmail.com suffix). For SMS, the sharer enters the
receiver’s 10 digit cellular phone number. In the email
experiment, the receiver must manually force a new mail
check, instead of waiting for the usual 10 minute periodic
mailbox check. A limitation of this sharing model is the
complexity of the permission granting process if the sharer’s
photo is not at a publicly accessible URL. For this test, the
photo to be shared is set as publicly accessible. The link rows
of Table 1 summarize the sender and receiver interactions as
well as end-to-end time for sharing the photo. Because only
a link is sent, there is little difference between file sizes of
the content.

The second sharing model involves transferring the actual
photo file to the recipient device. We compare three methods
of sending content: via email attachment, Bluetooth OBEX
file transfer (BT), and MMS. We assume the sharer has
a copy of the photo cached on her mobile device. The
attachment rows of Table 1 summarize the result of
this experiment. Unlike the link sharing model above,

Calendar clicks time (s)
Regular Calendar 10 49.7
Oracle Calendar 7 13.5
Copernicus 7 13.1
Email clicks time (s)
GMail (linear scan) 18 33.6
GMail (sender search) 14 27.5
GMail (subject search) 16 18.7
Copernicus 4 11.7
Photo interactions

sender receiver time (s)
link (email) 15 6 66.2
link (SMS) 15 1 48.8
attachment (large,email) 10 6 96.8
attachment (small,email) 10 6 79.3
attachment (large,BT) 3 3 58.4
attachment (small,BT) 3 3 37.1
attachment (large,MMS) † - - -
attachment (small,MMS) 14 3 48.8
Copernicus 3 4 15.0

1: Results for Calendar, Email, and Photo. Large photo is
358k, small is 36k. †failed due to carrier’s 250k limit.

file sizes matter in these trials since binary file content
must be transferred from one device to another. In the
email attachment trials, there is a notable increase in the
completion time compared to the email link sending trials,
which is caused by the uploading and downloading of the
image attachment. The difference in interactions required
on the sender is simply due to differences in menu clicks
on the device to initiate the email composition. For the
Bluetooth trials, a large amount of user time is spent waiting
for Bluetooth device discovery, followed by the transfer
time, which can be slow on some devices. We note that
photos larger than 250K in size could not be sent via MMS
due to carrier-imposed size restrictions.

Copernicus significantly outperforms the alternative ap-
proaches requiring up to 65% fewer interactions and taking
between 60% and 85% less time to complete the task.

6. RELATED WORKS
Previous research efforts have observed that mobile devices
can provide potentially useful context based on absolute
geographic location as well as other nearby devices or
markers. This context can be tagged to content produced by
mobile devices [15,20]. This tagging can be used to provide
other higher-level services, such as image recognition.
Mobile Media Metadata [18] provided a framework in which
photographs taken using the mobile phone are tagged with
signatures detected by the device, and sent to a server which
performs image recognition to further tag and group the
photograph. The processed result is given back to the device
for user acceptance and or correction. This work focuses on
utilizing context information to facilitate effective sharing
and collaboration over content and services accesible from
mobile devices.

Device context has also been used to tailor the display of web
content on mobile devices, which by their portable nature
have constrained display surfaces and input modalities. This



has led to efforts in automatically adapting the content
served by Internet services for mobile devices [3, 4, 13].
Many efforts have also attempted to improve the user
interface on mobile devices, to better suit navigation, search,
and selection of content returned from online services [1,11].
Chameleon [13], for example, utilizes viewer adaptation
history in order to customize the presentation of images.
CMo [4] utilizes machine learning on a proxy server to
further digest and break down the content from a web page
in order to serve it more succinctly and clearly. These
works have mainly focused on manipulating the layout or
focus of objects in the web browser or utilizing a specialized
application to provide the user interface. Copernicus
extends beyond these works by adapting web application
functionality, not just content.

The use of context for adapting systems to mobile users
is not a new concept. Copernicus utilizes Bluetooth
device proximity because it is a tractable problem due to
the pervasive availability of Bluetooth support on mobile
devices. Copernicus’s approach for adapting content has
the potential for much greater impact now, due to the wide-
spread use of large webapps and web services for hosting
user content. Previous works have mostly been restricted to
adapting content from disparate and disjoint machines and
devices.

Tags found from other nearby mobile devices can be used
to infer the social proximity of individuals correlated with
the sensed devices and the location context [19]. Our
work extends these efforts by utilizing the local proximity
context of mobile devices to enhance the usage and interface
experience of Internet web-based applications and services.
Some results [16] have suggested that the assumed frequent
closeness of users and their devices may not be as high
when taking into account the whole day. We conjecture that
for times when users are mobile to be in social settings,
the closeness of devices to users will often hold true.
Furthermore, our system does not completely depend on
device proximity to achieve sharing and collaboration, since
identity can also be specified using a 10 digit cellular
number, even in the absence of one of the devices.

Many research efforts have explored the utility and use of
social presence [6] for initiating the sharing of content,
selecting the subset of applicable content, and determining
the access rights and lifetimes of the share [10, 12, 17, 23].
The Cobalt [23] presented a system in which devices can
automatically grant or revoke access rights based proximity.
Push!Photo [17] presented a similar application of photo
sharing based on social presence for content tagging and
sharing. While this work shares a common motivating
application with these other works, a significant distinction
is that this work does not transfer content peer-to-peer
between devices. The objective of this work is to enable
proximity context filtering and searching for Internet based
services in general. While the use of social presence [12]
and collaborative filtering [9] has been previously suggested
for improving services such as email, we believe this work
contributes a novel study of an implementation for enabling

context aware searching and filtering for Internet services.

7. CONCLUSIONS
In this paper we have presented Copernicus, a novel
mobile system that enables sharing of web content and
collaboration when users interact socially in the physical
world. The key idea is that Copernicus allows adapting
web applications so that they are aware of nearby users.
We have built a prototype implementation of Copernicus.
Our implementation supports a diverse range of applications
hosted by different service providers, including photo and
file sharing, calendar sharing, and email sorting, showing
the applicability of our approach. Our evaluation shows that
Copernicus reduces interaction times for finding, sharing,
and accessing web content.

As future work, we envision using the Copernicus frame-
work to build proximity-based applications that are currently
not possible. For example, a calendar application can
provide journal-like features, annotating the user’s calendar
with people the user met throughout their workday, or
collecting business cards for new contacts. Similarly, email
applications can provide filtering based on recently met
users, or the information in their business cards, even if these
applications are hosted by different providers.

For security, privacy, or legal reasons, various web
applications may wish to run their own Copernicus-like
service. A non-centralized design can mitigate the damage
a user suffers if a particular service were compromised.
We envision extending the use of delegation credentials
to enable interoperability between Copernicus-like services.
A cooperative API standard, similar to the OpenSocial
effort [14], would enable accessing and searching data
across trusted services.

8. REFERENCES
1. Y. Arase, T. Hara, T. Uemukai, and S. Nishio. Opa

browser: a web browser for cellular phone users. In
UIST ’07: Proceedings of the 20th annual ACM
symposium on User interface software and technology,
pages 71–80, New York, NY, USA, 2007. ACM.

2. P. Bahl and V. N. Padmanabhan. Radar: an in-building
rf-based user location and tracking system. volume 2,
pages 775–784 vol.2, 2000.

3. N. Bila, T. Ronda, I. Mohomed, K. N. Truong, and
E. de Lara. Pagetailor: reusable end-user customization
for the mobile web. In MobiSys ’07: Proceedings of the
5th international conference on Mobile systems,
applications and services, pages 16–29, New York, NY,
USA, 2007. ACM.

4. Y. Borodin, J. Mahmud, and I. Ramakrishnan. Context
browsing with mobiles - when less is more. In MobiSys
’07: Proceedings of the 5th international conference on
Mobile systems, applications and services, pages 3–15,
New York, NY, USA, 2007. ACM.

5. M. Y. Chen, T. Sohn, D. Chmelev, D. Haehnel,
J. Hightower, J. Hughes, A. LaMarca, F. Potter,



I. Smith, and A. Varshavsky. Practical
metropolitan-scale positioning for gsm phones. In
Proceedings of the Eighth International Conference on
Ubiquitous Computing (Ubicomp 2006), Lecture Notes
in Computer Science, pages 225–242. Springer-Verlag,
September 2006.

6. L. P. Cox, A. Dalton, and V. Marupadi. Smokescreen:
flexible privacy controls for presence-sharing. In
MobiSys ’07: Proceedings of the 5th international
conference on Mobile systems, applications and
services, pages 233–245, New York, NY, USA, 2007.
ACM.

7. http:
//wiki.developers.facebook.com/index.php/FQL.

8. http://www.flickr.com/services/api/flickr.photos.
search.html.

9. D. Goldberg, D. Nichols, B. M. Oki, and D. Terry.
Using collaborative filtering to weave an information
tapestry. Commun. ACM, 35(12):61–70, 1992.

10. A. Karlson, G. Smith, B. Meyers, G. Robertson, and
M. Czerwinski. Courier: A collaborative phone-based
file exchange system. Technical Report
MSR-TR-2008-05, Microsoft Research, 2008.

11. A. K. Karlson, G. G. Robertson, D. C. Robbins, M. P.
Czerwinski, and G. R. Smith. Fathumb: a facet-based
interface for mobile search. In CHI ’06: Proceedings of
the SIGCHI conference on Human Factors in
computing systems, pages 711–720, New York, NY,
USA, 2006. ACM.

12. J. Krumm and K. Hinckley. The nearme wireless
proximity server. In UbiComp 2004: Proceedings of
the 6th International Conference on Ubiquitous
Computing, pages 283–300, 2004.

13. I. Mohomed, J. C. Cai, S. Chavoshi, and E. de Lara.
Context-aware interactive content adaptation. In
MobiSys ’06: Proceedings of the 4th international
conference on Mobile systems, applications and
services, pages 42–55, New York, NY, USA, 2006.
ACM.

14. http://code.google.com/apis/opensocial/.

15. S. N. Patel and G. D. Abowd. The contextcam:
Automated point of capture video annotation. In
UbiComp 2004: Proceedings of the 6th International
Conference on Ubiquitous Computing, pages 301–318,
2004.

16. S. N. Patel, J. A. Kientz, G. R. Hayes, S. Bhat, and
G. D. Abowd. Farther than you may think: An
empirical investigation of the proximity of users to
their mobile phones. In UbiComp 2006: Proceedings of
the 8th International Conference on Ubiquitous
Computing, pages 123–140, 2006.

17. M. Rost, M. Jacobsson, and L. E. Holmquist.
Push!photo: Informal photo sharing in ad-hoc
networks. In UbiComp 2006: Proceedings of the 8th
International Conference on Ubiquitous Computing,
2006.

18. R. Sarvas, E. Herrarte, A. Wilhelm, and M. Davis.
Metadata creation system for mobile images. In
MobiSys ’04: Proceedings of the 2nd international
conference on Mobile systems, applications, and
services, pages 36–48, New York, NY, USA, 2004.
ACM.

19. T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen,
T. Choudhury, I. E. Smith, S. Consolvo, J. Hightower,
W. G. Griswold, and E. de Lara. Mobility detection
using everyday gsm traces. In UbiComp 2006:
Proceedings of the 8th International Conference on
Ubiquitous Computing, pages 212–224, 2006.

20. K. N. Truong and G. D. Abowd. Inca: A software
infrastructure to facilitate the construction and
evolution of ubiquitous capture & access applications.
In Pervasive 2004: Proceedings of the 2nd
International Conference on Pervasive Computing,
pages 140–157, 2004.

21. A. Varshavsky, E. de Lara, A. LaMarca, J. Hightower,
and V. Otsason. Gsm indoor localization. Pervasive and
Mobile Computing Journal, 3(6):698–720, 2007.

22. A. Varshavsky, A. Scannell, A. LaMarca, and
E. de Lara. Amigo: Proximity-based authentication of
mobile devices. In UbiComp 2007: Proceedings of the
9th International Conference on Ubiquitous
Computing, pages 253–270, 2007.

23. K. Veeraraghavan, A. Myrick, and J. Flinn. Cobalt:
separating content distribution from authorization in
distributed file systems. In FAST’07: Proceedings of
the 5th conference on USENIX Conference on File and
Storage Technologies, pages 29–29, Berkeley, CA,
USA, 2007. USENIX Association.


