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Figure 1: A gallery of mythical creatures including (left to right) the elusive 6-legged Allocamelus, Elephant-Eared Centaur, Al-mi’raj,
Cynocephalus, Minotaur, and the terrifying Cerebunny. Each of these examples was created in just a few minutes using our interactive
drag-and-drop geometry compositing tool.

Abstract

A novel approach to drag-and-drop composition of point-sampled
surfaces is described which allows a complex surface feature to be
interactively selected and dragged to a new target region. We au-
tomatically fill the hole left behind and deform the feature such
that it conforms to the target surface. Both of these operations are
implemented using a new geometric deformation technique which
preserves surface detail in a manner qualitatively similar to recent
variational techniques, but is based on a forward front-propagation
that can be arbitrarily parameterized, providing artists with easily-
manipulable real-time control over how holes are filled and features
deformed. This method is simple to implement, applies to arbi-
trary polygon soups, and can be adapted to significantly improve
the robustness of the Discrete Exponential Map parameterization
algorithm. We demonstrate the utility of our approach in a drag-
and-drop mesh composition tool which can be used to to quickly
assemble complex 3D models from arbitrary input geometry.

1 Introduction

Re-use of existing 3D modeling assets is a challenging problem in
freeform shape design. In the best case, a reasonably similar source
model can be deformed into the target pose or shape. However,
often a suitable model is not available. In that case, we can attempt
to assemble one by combining parts of multiple source models.

Broadly, there are two approaches to the surface composition prob-
lem. Detail transfer techniques convert features to detail represen-
tations which are applied to target surfaces via compatible parame-
terizations [Barghiel et al. 1995; Biermann et al. 2002]. The pasted
feature often deforms significantly as it conforms to the shape of
the target surface, limiting these methods to displacement-like fea-
tures. In contrast, surface fusion methods automatically merge spa-
tially adjacent parts, sometimes with a smooth transition region, but
global shape rigidity is preserved [Funkhouser et al. 2004; Yu et al.
2004; Sharf et al. 2006].

We see detail transfer and surface fusion as addressing problems
at two ends of the shape composition spectrum. However, most
practical tasks fall somewhere in-between: features are often too
complex for detail vectors, but some amount of global conformance

to the target surface is desired. Consideration must also be given to
the modeling interface. In practice, artists insist on detailed control
over modeling tools, so the algorithms applied should be easy to
parameterize. Similarly, the ability to interactively drag a feature
around on the target surface is highly desirable, and in turn may
change how the tool is used. For example, a designer may wish to
simply drag a feature to another part of the same surface. In ’cut-
and-paste’ interfaces, this would leave an unsightly hole. Hence, we
characterize the problem as ’drag-and-drop’, which on a 3D surface
must incorporate the extra step of filling the hole left by the cut.

While a geometry drag-and-drop tool could be assembled from the
wide array of existing algorithms, none support the combination of
requirements thus described. Hence, we describe a new differential
representation of point-sampled geometry (Section 2) which can
be applied to deform open surfaces relative to a boundary curve.
The results are qualitatively similar to recent variational methods,
but based on a discrete front propagation which can be arbitrarily
parameterized. We utilize only point samples, so all our results ap-
ply to arbitrary polygon soups, and the technique is near-trivial to
implement, requiring nothing more complex than Dijkstra’s algo-
rithm and basic 3D geometry. This same general approach is used
to significantly increase the robustness of the Discrete Exponential
Map parameterization algorithm [Schmidt et al. 2006], which is a
key component of our drag-and-drop interface (Section 3). Finally,
building on these algorithms we construct methods to fill holes and
deform features such that they conform to a target surface (Sec-
tion 4). These techniques are demonstrated in an interactive drag-
and-drop surface composition interface.

We emphasize that our deformation, hole filling, and parameteriza-
tion techniques are completely independent of our feature drag-and-
drop application, and can be easily adapted to other problems. In
particular, although we focus on deforming point-sampled surfaces
using their boundary loops, our approach applies to volumetric de-
formation and can utilize virtually any control handle, including
open curves or even other surfaces.

1.1 Related Work

Our primary contributions are in surface composition and deforma-
tion. We also make a contribution in surface parameterization, ap-



plying the principles behind our deformation technique to improve
the Discrete Exponential Map [Schmidt et al. 2006]. For more thor-
ough discussion of surface parameterization, we refer the reader to
recent surveys [Sheffer et al. 2006; Sheffer et al. 2007].

Surface Composition Layered surface hierarchies [Barghiel
et al. 1995; Schmidt and Singh 2008] provide perhaps the ideal
drag-and-drop interface, but do not address the problem for exist-
ing geometry, and so far have been limited to very simple features.
Our techniques are applicable in these frameworks. It is possible
to locally remesh around rigid features sliding across the surface,
avoiding holes altogether, but this assumes a smooth and continu-
ous path from source to destination [Suzuki et al. 2000].

Detail transfer is a common application of multiresolution repre-
sentations and parameterization techniques. To specifically address
the cut-and-paste problem, [Biermann et al. 2002] took a multires-
olution approach, allowing small features to be transferred between
meshes. [Fu et al. 2004] extended this technique to meshes with ar-
bitrary topology, and [Brodersen et al. 2007] describes a volumetric
approach applicable to arbitrary geometry, but both still ultimately
utilize normal-displacement representations.

Similarly, virtually every work on volumetric representations
demonstrates some sort of shape composition. For example, level
set methods can produce smooth blending transitions [Museth et al.
2002]. However, recent works focused on surface fusion have ad-
dressed interface issues like automated alignment transformations
and easy-to-use part selection [Funkhouser et al. 2004; Hassner
et al. 2005; Kraevoy et al. 2007]. While these systems all mini-
mize deformation by finding similar boundaries, [Kanai et al. 1999]
incorporated a global deformation to handle somewhat dissimilar
boundaries. SnapPaste [Sharf et al. 2006] handles highly non-
conforming boundaries, although there is little artistic control and
the deformation applied to the feature is essentially a linear blend.

Laplacian mesh deformation has been applied to both detail transfer
and surface fusion, though the implementations differ so it is un-
clear how one would blend between the two [Sorkine et al. 2004].
Poisson mesh merging [Yu et al. 2004; Huang et al. 2007] pro-
vides a unified approach which can vary from largely preserving
rigid shape to full global deformation, depending on boundary con-
ditions. However, these boundary conditions are defined using a
geometric deformer which has significant limitations, and could be
directly replaced with our improved technique.

Surface Deformation Our drag-and-drop technique involves de-
forming an open surface using the boundary loop as a handle. Many
recent variational surface deformation techniques are applicable to
this problem, but drawbacks exist. In a user survey, [Zimmermann
et al. 2008] found that for the same handle configuration, subjects
disagreed on which of two deformations was expected, indicating
that there is probably no ’best’ energy function for shape defor-
mation. The use of parameterized energy functions has been ex-
plored [Popa et al. 2006]. However, linear variational methods, re-
cently surveyed by [Botsch and Sorkine 2008], achieve interactiv-
ity by pre-computation techniques such as factorizing fixed system
matrices. Tuning a parameterized energy function would generally
require expensive pre-computations to be repeated, limiting inter-
activity. Linearized deformations also have difficulty with the large
translations and rotations that occur in mesh drag-and-drop [Botsch
and Sorkine 2008], while more robust non-linear techniques are too
expensive [Botsch et al. 2007; Lipman et al. 2007].

Most variational techniques also require relatively “clean” mesh
topology, and could not handle the non-manifold polygon soups
that are common in many practical applications. A notable excep-

tion is [Sumner et al. 2007], who bridge the gap between surface
and spatial deformation by constructing a spatial 3D graph from an
arbitrary point set, deforming the graph based on a nonlinear op-
timization, and then generating a spatial deformation by blending
transformations of the graph nodes. In contrast to their multi-step
boundary-value solution, our method directly constructs a detail-
preserving deformation based on an initial-value formulation.

The extensive history of geometric space deformers in computer
graphics has been summarized in recent surveys [Milliron et al.
2002; Gain and Bechmann 2008]. Space deformers based on curve
handles, such as WIRES [Singh and Fiume 1998], have the advan-
tage of being highly interactive and easily parameterized, and have
been adapted in various pasting tools [Yu et al. 2004; Kanai et al.
1999]. The main drawback of these techniques is that they can lead
to significant distortion of surface shape. We adapt the WIRES-
style approach to shape-preserving surface deformation (Section 2).

Figure 2: To drag the mannequin face to a (flattened) bunny, a
region-of-interest is first selected. The boundary loop is embedded
in the plane (1), then a planar mesh is generated (2) and deformed
to smoothly fill the hole (3). The drag is completed by mapping the
boundary loop to the target region via a local parameterization (4),
and then the ROI is deformed relative to the new boundary (5).

1.2 Overview

Our primary goal is to provide techniques that give designers sim-
ple, parametric controls over the two conceptual operations in fea-
ture drag-and-drop: filling the hole left by a drag, and deforming
the feature to fit the target surface before a drop. We demonstrate
the utility of our methods using a simple compositing tool in which
a feature can be cut from a triangle mesh by enclosing it within a
boundary loop, created by sketching sequential curve segments on
the mesh surface. After the resulting hole is filled, the cut feature
can be dragged to a new position on the surface, where it will con-
form to the underlying shape and be seamlessly merged.

Figure 2 provides an illustrative overview of our approach. Given
a feature S, we embed its 3D boundary loop ∂S in the plane and
fill it with a planar mesh, which is then deformed to fill the hole.
Note that this procedure is independent of the interior topology of
S. Likewise, to paste the feature we only require a local parame-
terization of the target region. We transfer ∂S to this local surface
via the parameterizations, and then utilize our technique to deform
the interior based on the 3D deformation of the boundary. Hence,
to ’drag’ the feature across the surface, we simply use the Discrete
Exponential Map parameterization [Schmidt et al. 2006], which is



Figure 3: Point p is represented by a set of displacement vectors
relative to points qi ∈ Ω (a). When Ω is deformed, the new point p̂
is defined by a weighted sum of transformed displacement vectors
(b). A second example (c) compares a closed-form integral solution
(thin green line) with a discrete solution (thick red line), where Ω
(black line) has been sampled 20 times.

defined by a single surface point.

2 Geometric Differential Deformation

Our deformation technique is motivated by the simple intuition that
if a rigid transformation maintains relative positions between points
p and q, then a deformation that is “as rigid as possible” should at-
tempt to do the same. Since some flexibility is desired, the goal is to
maintain rigidity at each point with respect to some region Ω. Many
such deformation techniques take Ω to be a local neighbourhood. In
this section we explore the use of more general domains.

We begin by constructing a representation of p which is invari-
ant to rigid transformations. Given some other point q with ar-
bitrary orthonormal coordinate frame Fq, p can be expressed as
q + Fqv(p,q), where v(p,q) = F -1

q (p -q) is a vector in the
frame Fq (here multiplication by a frame implies a 3D rotation
with the frame vectors as rows). Applying a rigid transformation
M results in a new point q̂ = Mq and frame Fq̂ = MFq, from
which we can compute a new position p̂q:

p̂q = q̂ + Fq̂v(p,q) (1)

We now consider integrating Equation 1 over a spatial region Ω.
Given an arbitrary weighting function w(p,q), we can construct a
differential representation of p:

p̂ =

∫
q∈Ω

w̃(p,q)p̂q dΩ w̃(p,q) =
w(p,q)∫

q∈Ω

w(p,q)dΩ
(2)

Since (p̂ - q̂) = M(p -q), this representation is invariant to rigid
transformation. In the case of non-rigid deformation of Ω, each q
undergoes a unique rigid transformation and “predicts” a different
point p̂q. Equation 2 defines p̂ as the weighted superposition of
these predictions. If w(p,q) is continuous, a smooth deformation
of Ω will result in a smooth spatial deformation as p varies.

If Ω = {qi} is the one-ring neighbourhood of mesh vertex p and
δp =

∑
wi(p -qi) is the Laplacian coordinate, then the Laplacian

deformation framework [Botsch and Sorkine 2008] defines p as

p̂ =
∑

wiq̂i + Tpδp =
∑

wi(q̂i + Tp(p -qi)) (3)

which is simply Equation 2 integrated over a finite domain, with
v(p,q) = p -q and Fq̂i

= Tp, a constant rotation which must
somehow be estimated. Of course, since most qi are unknown, a
variational approach is necessary to solve for all vertices simulta-
neously. To support direct evaluation, Ω must be known a priori.
For example, a Bezier patch is a deformation of a plane, with Ω the
given control points, v = 0, and w the Bernstein polynomials.

Curves are widely recognized as an efficient and intuitive control
handle for deformation [Singh and Fiume 1998]. In terms of Equa-
tion 2, Ω is the curve C and we use the inverse-distance weight:

w(p,q) =
1

d(p,q)k + ε
(4)

where d is either a Euclidean or geodesic distance function. If C is
composed of linear segments, a closed form solution to Equation 2
exists for k = 2, but in general an analytic solution will not be
available, so we must approximate C with a discrete sampling Ω =
{qi}. Equation 2 is then rewritten as

p̂ =
∑
Ω

w(p,qi)∑
Ω

w(p,qi)
(q̂i + Fq̂i

v(p,qi)) (5)

which generalizes the WIRES deformer [Singh and Fiume 1998]
and alternative recent formulations [Kanai et al. 1999; Milliron
et al. 2002; Yu et al. 2004]. Equation 5 can also be cast as a
Monte-Carlo solution to Equation 2, which aids in interpreting the
effects of different sampling and weighting strategies. For exam-
ple, random sampling exhibits the expected reduction in variance,
while regular sampling provides a smooth approximation (Fig-
ure 3). Generally we are concerned with fixed point-sampled ge-
ometry, and and hence must counteract sampling bias by modulat-
ing our weighting scheme. For example, to correct for non-uniform
sampling of C, we scale w(p,qi) by

∑
qj∈N(qi)

|qi -qj |, where
where N(qi) is the connected neighbourhood of qi.

We can apply Equation 5 to deform a sampled surface S = {pi}
based on a 3D deformation of the open boundary curve ∂S. Fig-
ure 4b demonstrates the limitation of this method, namely that
points distant from ∂S undergo significant distortion. This is easily
understood by re-factoring Equation 5 into the sum of a weighted
centroid and an average displacement vector. For points near ∂S,
weight is concentrated near the closest point on the boundary, and
hence the centroid is relatively static. For samples further from
the boundary, however, weight is distributed more evenly over ∂S,
pulling the centroid downwards and causing vertical squashing.

2.1 Upwind-Front Deformation

As is evident in Figure 4, the WIRES-like deformer preserved shape
only in regions near Ω. Hence, to preserve global shape, each point
should be deformed relative to some nearby surface region Ω(p).
Since deformation is driven by the boundary handle, conceptually
our approach is to slice the surface into thin layers propagating
away from the boundary, and deform each layer relative to the last.
If we consider a front propagating along the surface away from the
open boundary, then each timestep defines a layer which can be

Figure 4: Embedding the boundary loop at the base of the bunny
mesh (a) in a cylinder results in shrinkage using boundary-relative
deformation (b). Upwind-front deformation smoothly distributes
edge distortion (mapped to red) away from the boundary (c).



Figure 5: Conceptually, the bunny is sliced into layers defined by a
front propagating across the surface, away from the open base (a).
The layer on the front (green) is defined by the previous upwind
layer (red). In practice the approximate geodesic distance from the
boundary (b) and a weight function (c) are combined to implicitly
define a “smeared-out” front at the green point (d).

deformed relative to some upwind region(Figure 5), supporting a
forward evaluation from the deformed boundary.

As an explicit layer segmentation would be cumbersome on arbi-
trary point-sets, we use our weight function to implicitly represent
the propagating front. The first step is to determine an arrival time
at each vertex on the mesh. Assuming again that S will be deformed
relative to its open boundary ∂S, we define arrival time as geodesic
distance gpi from ∂S to pi, approximated using Dijkstra’s algo-
rithm (Figure 5). Based on the arrival time, we must select a set of
upwind points which approximate the front.

To provide maximum rigidity the upwind region must form a closed
loop around the surface. Given an arrival time radius ru, taken
to be a small multiple (usually 2.1) of the average edge length,
the front at pi is approximated by the upwind band Ω(pi) ={
pj : gpi - ru < gpj < gpi

}
. However, sampling variation results

in a discrete front which changes from vertex to vertex, introducing
noise. To mitigate this we modulate our weighting function, adapt-
ing the “smeared-out” Heaviside functions used in level set front
propagation [Osher and Fedkiw 2003].

Given a function which smoothly falls off from 1 to 0, such as
f(x, r) = max((1 -x2/r2)3, 0), we define the upwind weight:

4g = gpi - gpj rn = min
i6=j
|pi -pj | (6)

warr(pi,pj) = f(4g, ru) (1 - f(4g, rn)) (7)

where the first term falls off away from the front and the second re-
duces the weight on points whose arrival time is nearly the same as
at pi. This second term is necessary because gp may vary slightly
between points which ideally would have the same arrival time, re-
sulting in biased sampling (Figure 6a-d).

The deformation will also be pulled towards regions of higher sam-
ple density, so we modulate the weight with a regularization factor:

w4reg(pi) =
∑

Tk∈N(pi)

Area(Tk) w•reg(pi) = min
pk∈N(pi)

|pk -pi|2 (8)

The one-ring area weight w4reg works well on triangle meshes (Fig-
ure 6e-h), and w•reg produces reasonable results when topology is
unavailable. Hence, our final weighting scheme is

wup(pi,pj) = warr(pi,pj)wreg(pj)w(pi,pj) (9)

Note that pi is now deformed relative to other internal points, but
transformed frames are only provided at boundary samples. Re-

Figure 6: In (a), point 4 is considered upwind to point 5 due to
slight numerical differences common on regular meshes (b), lead-
ing to highly biased deformation (c) that is mitigated by the ramp-
up term in warr (d). Irregular vertex density (e,f) cause similar
problems (g), largely corrected by our regularization weight wreg .

stricting Ω(pi) to samples whose full neighbourhod is upwind al-
lows their local tangent frames to be estimated, however small es-
timation errors tend to accumulate, resulting in catastrophic dis-
tortions. Instead we normalize a blend of upwind-relative frames,
Fp̂ =

∑
qi∈Ω(p) wiFq̂i

F -1
qi
Fp. Qualitatively, logexp matrix

blending [Alexa 2002] was only slightly “stiffer” than a much faster
linear blend, so we use the latter. For the function d(p,q), Eu-
clidean distances tend to result in higher global rigidity, but approx-
imate geodesics computed within the thin upwind band can produce
results that are semantically more appropriate. As neither is obvi-
ously better, in this case we provide the designer with an option.

2.2 Deformation Parameters

Since our method is a direct forward evaluation, the functions
w(p,q) and v(p,q) can be arbitrarily parameterized with proce-
dural or hand-tuned factors (such as painted weights), providing
artists with extensive real-time control. Figure 7 demonstrates how
parameterized deformation can be used to complete modeling tasks.

One useful parameter is a rigidity factor which controls how
strongly the shape of the feature is preserved. There is an inverse
relationship between desired rigidity and the power k in the inverse-
distance weight (Equation 4). A uniform rigidity multiplier pro-
vides a simple control over how the boundary deformation prop-
agates out into the global shape. Varying rigidity based on the
distance to the boundary enhances feature preservation, while an
initialization based on Gaussian curvature allows stretching to be
absorbed by high-curvature regions.

Scaling is supported by adding a multiplier to the offset vectors v,
which can also be varied based on boundary distance, or any other
factor. Finally, we can tune how the shape is pulled towards or
pushed away from the boundary, which roughly translates into ma-
nipulation of the shape volume, by scaling ru, the upwind falloff
radius from Equation 7. Larger ru values mean that weight is dis-
tributed more uniformly over the upwind region, causing pulling
towards the boundary as in Figure 4b (although much less extreme).

Transformation of boundary tangent-normal frames directly affects
the local shape. We include a bias frame FB , and a parameter α
that controls interpolation between the original frame and FB (Fig-
ure 7). A useful extension would be to allow direct manipulation
of some boundary frames, and then interpolate the transformations
along the curve, perhaps via a peeling interface.



Figure 7: The base of a mushroom shape becomes stretched when bent (a), but reducing a rigidity parameter flattens it out (b), and varying
rigidity with curvature preserves the cap as well (c). To create the Cerebunny we need to paste three heads, but the neck is too big (d).
Uniform scaling (e) followed by tuning of a blend between scaling factors based on boundary distance (f) allows us to squeeze on all three.

2.3 Multiresolution and Hierarchical Extensions

While the complexity of our upwind front deformation is less than
O(N2), it significantly higher than linear. Experimentally, the
size of the upwind ring is roughly O(log2 N), so the total cost is
O(N log2 N). Interactivity is greatly enhanced by pre-computing
offset vectors v and constant terms in wup at each point, and
caching normalized weights as they are generated. This requires
O(N log2 N) storage, further limiting scalability. Hence, when
N > 2000, we apply the following multiresolution scheme.

The first step is to generate a smooth, low-resolution base surface
BS by simplifying S. We iterate rounds of edge-collapses and non-
shrinking Laplacian smoothing [Taubin 1995], without any detail-
preserving metric. Then for each p ∈ S the nearest point q ∈ BS
is found, Ω(p) defined as the k nearest connected base samples to
q, and p deformed using Equation 5. Essentially, S is an offset
surface from BS , where the displacement is defined by (approxi-
mately) integrating rotation-invariant offsets over a local region of
BS . Examples are shown in Figure 8.

Figure 8: By averaging multiple base-surface displacement vec-
tors (a), an 11k bunny mesh can be reduced to 1k vertices without
a detail-perserving simplification scheme (b), and the resulting de-
formation (c) is still of high quality. The deformation induced by
bending the base of a simplified tube mesh (d) remains smooth (e)
and visually similar to the full solution (f).

Another limitation of our technique is that the result is influenced
by the shape of the geodesic iso-contours growing inwards from
the boundary. This can be problematic in some cases, such as in
Figure 9, where the shape of the iso-contours causes the protrud-
ing sub-features to pull together. This situation could possibly be
avoided by curvature-dependent front propagation speed. However,
since our technique can handle non-manifold interiors, a more flex-
ible approach is to segment the feature into discrete components
and reconstruct them from the boundary inward.

In addition to reducing dependencies on the outermost bound-
ary shape, this hierarchical approach offers higher internal rigid-
ity, more control to the user, and opportunities for parallelization.
While part determination could be driven by automatic segmenta-
tion algorithms, some user guidance will likely be desirable. We
also note that while hierarchical deformation does have significant
practical benefits, we did not rely on it to create our other results.

Figure 9: The shape of the upwind region is influenced by the
boundary shape. In (a) the iso-contours of the geodesic distance
field are connected part-way up the bumps, causing them to stick
together as the base deforms (b). Segmentation followed by hierar-
chical deformation produces a more intuitive result (c).

3 Upwind-Average Discrete Exponential Map

The Discrete Exponential Map (DEM) uses Dijkstra’s algorithm
to parameterize a sampled surface by propagating a uv-front out-
ward from an initial seed point s [Schmidt et al. 2006]. The uv-
coordinate up of sample p is determined from uq at some upwind
neighbour q, the tangent-normal frame Fq, and the frame at the
seed point Fs:

up = uq + δuv(p,q,Fq,Fs) (10)

where δuv is a geometric projection of the vector (p -q) into the 2D
exponential map at s (we refer the reader to [Schmidt et al. 2006]
for details, as they are not critical to the following discussion).

Various authors [Cipriano and Gleicher 2007; Schmidt and Singh
2008] have pointed out a major limitation of the DEM, namely
that much like the Dijkstra geodesic approximation, any error in-
troduced at up will be propagated downwind (Figure 10). How-
ever, since the DEM sums vectors rather than scalars, up can be
estimated from any nearby upwind point. The result will be slighly
different in each case, so we re-define up as a weighted average of
several estimates:

up =
∑
i

w(p,qi) (uqi + δuv(p,qi,Fqi ,Fs)) (11)

where qi are nearby upwind neighbours to p (Figure 10) and w
is the inverse distance weight (Equation 4). Note that this is sim-
ply Equation 5 in uv-space, and the modified uv-front propagation



is virtually identical to our upwind front deformation. As shown
in Figure 11, upwind averaging greatly enhances DEM robustness,
with a small 5-10% increase in runtime cost.

Figure 10: Although the Discrete Exponential Map estimates a
uv-parameter up from a single upwind sample uq (a), other nearby
points on the uv-front provide equally likely estimates (b) which
can be averaged to enhance DEM robustness (c).

Since the DEM uv-front propagation utilizes tangent-normal
frames, smoothing surface normals results in what is essentially
a parameterization of a smoother surface. Each iteration of nor-
mal diffusion relaxes the parameterization, particularly in regions
of higher curvature. In practice, replacing each normal with a
distance-weighted average of normals in a local neighbourhood
produces good results and can be efficiently evaluated in-line with
the DEM. Combined with upwind averaging, normal smoothing re-
sults in much more stable DEM parameterizations (Figure 11).

Figure 11: For certain seed points (red dot) on a highly irreg-
ular bunny mesh (a), the original DEM fails catastrophically (b).
The upwind-average DEM is more robust (c), and with the addition
of local normal smoothing (d) a low-distortion parameterization
is produced. (e-g) shows the same progression over a surface with
wide variation in curvature, which is also problematic for the DEM.

4 Geometry Editing Operations

As mentioned, feature drag-and-drop involves not only pasting a
feature in a new location, but also filling the hole left behind. Based
on our deformation and parameterization techniques, we describe
simple approaches to implementing these geometric editing oper-
ations. Many high-quality automatic hole-filling algorithms have
been developed, some examples include [Schneider and Kobbelt
2001; Liepa 2003; Bischoff et al. 2005]. The advantage of our
deformation-based approach is that the designer is given interactive
control over how the hole is filled.

Figure 12: A hole can be filled by embedding the boundary loop
in a planar disc (a) and then deforming the disc, but this leads to
undesirable distortion for irregular boundaries (b). Instead we first
create a membrane surface (c) and find a free-boundary parameter-
ization of this mesh (d). Distant points can pull the fill away from
continuity in the transition region (e,f). To better approximate the
target normals, we find an optimal rotation around a fixed axis at
each boundary point (g), resulting in a smooth fill (h).

4.1 Filling Holes

Figure 12 displays the steps of our hole-filling algorithm. We define
a hole as a piecewise-linear boundary loop with normals, and with-
out an initial interior surface. The boundary loop is embedded in
a 2D circle, such that the distances between vertices are preserved.
Additional interior vertices are generated on a regular triangular
grid and meshed using Delaunay triangulation [Shewchuk 1996].
The planar boundary is then mapped to the hole boundary, and the
interior deformed using Equation 5, filling the hole.

Unfortunately, if the 3D boundary is significantly non-circular, the
fill will be generally non-smooth and may contain foldovers (Fig-
ure 12b). Hence, our next step is to find a membrane surface which
spans the hole, map it to the plane via free-boundary conformal pa-
rameterization [Desbrun et al. 2002], and re-apply the deformation.
Ideally, the membrane surface should be as close to both minimal
area and developable as possible, but this would be too expensive to
compute. For most cut operations a minimal mean-curvature mesh
suffices, found either by iterative Laplacian smoothing of the circu-
lar fill mesh, or directly by solving Equation 3 with the Laplacian
vectors of the circular fill mesh set to zero.

Since the optimized planar mesh has a boundary shape very similar
to that of the hole, the fill surface is smooth. However, vertices
on the “far side” of the hole have non-zero weight, producing an
undesirable bulge in the fill surface (Figure 12e). To correct this,
we note that the (estimated) normals on the hole boundary should
be preserved after the fill. This can be accomplished by defining a
rotation Mi for each boundary vertex frame, and then finding the



set of transformations that minimizes total normal deviation:

arg min
Mi

∑
i

|1−N(i,Mi) · ni| (12)

where ni is the target boundary normal at point pi andN is a proce-
dure which applies the transformations Mi to the boundary frames,
reconstructs the relevant interior region, and estimates the output
normal at pi.

This is a rather complex non-linear optimization problem, but we
have found it sufficient to constraintMi to a 1D rotation around the
axis (pi+1 -pi-1). Since N is a complex procedure, we apply nu-
merical gradient descent in two stages. First the rotation angles θi
are tied to a single global angle, resulting in a fast 1D search that re-
moves the largest error. Next we tune the vector θi, which generally
converges after 1-5 line searches, where convergence is determined
by a total angular error improvement of less than 2◦ between steps,
or when a time budget elapses. Although optimization should be
repeated after each parameter change, this reduces interactivity and
can cause some frame incoherence. Instead we optimize once and
then let the artist tune parameters based on the initial smooth fill.

This approach produces smooth, boundary-continuous fill surfaces
that are of a quality similar to much more complex techniques while
also allowing the fill mesh to be interactively re-shaped via defor-
mation parameters (Figure 13). Hence, it is also a useful tool for
“erasing” surface features, geometry repair, and surfacing networks
of arbitrary 3D boundary curve loops.

The main limitation is that, for hole boundaries that deviate signif-
icantly from the plane, the mean-curvature membrane is no longer
a good approximation of a developable membrane. In this case the
2D boundary produced by DNCP [Desbrun et al. 2002] may not
conform to the hole boundary shape, resulting in a lower-quality
fill mesh. In this case, we have found that using a fair interior sur-
face computed using the method of [Schneider and Kobbelt 2001]
gives good results, but is quite expensive. We also note that auto-
matically taking the surrounding surface context into account when
filling holes, as in [Sharf et al. 2004], would be a desirable exten-
sion. Of course, with our interactive tool the author can always
copy-and-paste from the surrounding context.

Figure 13: Given an initial smooth fill surface (a), deformation
parameters can be tuned to create a wide range of alternatives (b-
d). In (e) we set parameters to visually approximate the result (f) of
a nonlinear fairing technique [Schneider and Kobbelt 2001]. The
reflection lines vary on the interior due to subtle shape differences,
but the boundary continuity is visually quite similar.

4.2 Feature Drag-And-Drop

Given the techniques described thus far, feature drag-and-drop is
straightforward. To ’cut’ a feature surface S, we simply segment
it from the base surface based on a fixed boundary loop ∂S, and
fill the hole as above. To transport the feature across the surface we
embed ∂S in a parameterization. To ensure that the original mesh is

recovered if we drop a feature back in the same position, we embed
∂S in a DEM parameterization (Section 3) of the fill region, and
also take the initial boundary frames from this new surface.

The embedded ∂S can be projected onto any 3D surface via a DEM
parameterization of the target region, after which the feature is de-
formed to fit the new local surface using Upwind-front deformation.
Rotating and scaling the parameterization transforms the feature,
although the displacement vectors v must also be scaled. We re-use
the DEM parameter space to cut the necessary hole and stitch the
surfaces together using Delaunay triangulation, although any other
geometry merging algorithm could be used here. This completes
the drop operation and produces a manifold output surface.

As with hole filling, our boundary optimization is usually necessary,
as even with features with a sharp edge the designer may include a
surrounding buffer region which should be smoothly pasted. To im-
prove interactivity while dragging the feature across the surface, we
only perform the first single-angle step of the optimization, defer-
ring per-vertex tuning until the mouse button is released.

We compare our technique with a result computed using Poisson
mesh merging in Figure 14. Note that in this case the ear mesh and
a hole with a compatible boundary loop has been provided. To paste
this or any other arbitary feature mesh in another location, we com-
pute a planar embedding of the boundary using our technique from
the previous section. Our geometric approach also easily handles
non-manifold features, which is not possible with most variational
methods (Figure 14d-f).

Figure 14: We compare our technique (a) with Poisson mesh merg-
ing (b). The base of the ear contains long skinny triangles, making
it difficult to preserve continuity. Our result (c,top) is smoother than
the Poisson technique, which leaves a sharp edge (c,bottom). In (d-
f) we repair non-manifold areas of meshed scan data by swapping
parts with the mannequin.

5 Discussion

We have presented a new approach to shape-preserving surface de-
formation which is based on an initial-value front propagation prob-
lem, in contrast to the boundary-value formulations utilized in vari-
ational and energy-minimizing techniques. The main advantage of
our method is that it allows the designer to control the deformation
of any point-sampled geometry via arbitrarily-complex parameters,
at interactive rates. The popularity of geometric deformation tech-



niques in commercial modeling tools suggests that these are signif-
icant practical benefits.

Figure 15: A Minotaur is created by swapping the head of a human
model for a cow head. Despite extensive deformation (top) of the
original boundary (bottom), including a nearly 90◦ bend outward
to confrom to the chest, interior detail is virtually unchanged.

In particular, our approach allows the designer to manipulate how
distortion is spread over the surface. For example, in Figure 15, the
region near the boundary is deformed extensively but the interior re-
mains virtually unchanged. Energy-minimization solutions gener-
ally prefer to distribute error equally, and in experiments we found
that this property made it difficult to manipulate the feature interior
via boundary deformation. For example, our deformation produces
a normal field over the mesh, which can be used to transform the
Laplacian vectors. We can then solve Equation 3 as a post-process,
to generate a smoother surface. This does work (Figure 16), how-
ever there was often no obvious correspondence between the shape
of our surface and the result of the Laplacian solve, particularly
when manipulating parameters.

Figure 16: Results generated by applying Laplacian deformation
as a post-process, where the Laplacian vectors are transformed us-
ing the normal field generated by our deformation technique. Al-
though distortion (red) is spread very uniformly, changes to the nor-
mal field often had unintuitive effects.

It is interesting that the front-propagation technique we devel-
oped to deform surfaces was directly applicable to another front-
propagation algorithm, the Discrete Exponential Map. The general
approach - averaging predictions over irregular samples in the up-
wind region - may be useful in other front-propagation problems.

Based on these deformation and parameterization algorithms, we
described implementations of the basic predicates of a drag-and-
drop system, namely filling holes, dragging features across the sur-
face, and deforming them such that they conform to the target re-
gion. We have implemented these techniques in a simple tool to
demonstrate their utility. As was our intent, this tool is highly inter-
active, allowing the designer to drag features across the surface and
manipulate parameters at real-time rates.

Figure 1 includes various mythical creatures generated using our
tool, each in just a few minutes, and in Figure 17 we experiment

with the slightly more practical application of manipulating fea-
tures on automotive models. The biggest complication was our
selection technique; our simple tool only cuts on existing edges,
and in some cases the source meshes had inconvenient tessella-
tions. One of the Intelligent scissor techniques described in the
literature [Funkhouser et al. 2004; Sharf et al. 2006] would be a
welcome addition to our drag-and-drop interface.

Figure 17: Features of a scanned car surface (a) are dragged-
and-dropped to create a design variation (b). Since our techniques
can be applied to non-manifold features, we can transfer headlight
cut-outs (c) to the hood of another car (d,e), and then apply some
non-traditional body molding (f).
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