
Techne

Ivan J. Jureta
FNRS & Information Management

University of Namur
ijureta@fundp.ac.be

Alex Borgida
Department of Computer Science

Rutgers University
borgida@cs.rutgers.edu

Neil A. Ernst, John Mylopoulos
Department of Computer Science

University of Toronto
jm,nernst@cs.toronto.edu

Abstract—Techne is a new requirements modeling language
(RML) based on the CORE ontology for requirements [1].
We motivate the need for another RML, introduce Techne
through examples and review its formalization. The language
supports modeling and analysis during the very early stages
of requirements engineering, when the requirements problem
for the system-to-be is being structured and its alternative
potential solutions explored and compared in terms of how
desirable they are to stakeholders, by accounting for both
the relative preference of requirements and the optional or
mandatory status of requirements. Its formal semantics is both
paraconsistent and non-monotonic.

Keywords-Requirements models, goal-oriented domain as-
sumptions, domain modeling

I. INTRODUCTION

Three intertwined questions remain among the very central
ones in requirements engineering (RE) for at least three
decades now (e.g., [2]): (1) What information should be
elicited from the stakeholders of the system-to-be? (2) What
models should be used to represent the elicited information?
(3) What kinds of reasoning should be performed over the
models of requirements? Seminal answers took the form of
requirements modeling languages (RMLs), which typically
included (1) an ontology of requirements to state what
information to elicit and that is relevant to describe the
properties and behaviors of the system-to-be and its operating
environment, (2) modeling primitives corresponding to the
concepts and relations of the ontology, the instances of which
together form models to capture the elicited information, and
(3) variously automated methods applied over the models in
order to answer questions of methodological interest, such
as whether a model is consistent, or if the properties and
behaviors it attributes to the system allow the latter to satisfy
its designated purpose. RMLs such as SADT [3], RML [4],
KAOS [5] and i* [6] often served as the starting point for
further research on various issues of interest in RE, shaping
thereby the field.

The answers that each RML provides to the three key
questions reflect its respective fundamental assumptions about
the very problem that RE aims to resolve within the broader
process of systems engineering, of when that problem is
resolved, and of how it can and should be resolved. SADT
illustrates the views of the 1970s and 1980s, that requirements

ought to be described as functions that the system-to-be
should deliver once it is operational within its environment.
As the importance of automated systems to the work and
coordination of people increased — and interest shifted from
software and hardware alone, to sociotechnical systems —
it was recognized that RE must account for the variously
precise and (in)consistent expectations of the stakeholders of
the system-to-be, including its future users, owners, and so
on, moving thereby RE away from its historical origins in
formal specification methods and knowledge representation.
An understanding of the functions of the system-to-be could
only be sought after the beliefs, desires, and intentions of
the stakeholders had been grasped to the feasible extent. The
concept of system’s or stakeholder’s goal — as a means
to capture desires — became central, as was made clear
in KAOS. i* went one step further with its focus for how
various intentional agents/stakeholders are interdependent on
each other and the system-to-be for the realization of their
individual and joint goals.

The move from functions to goals reflects the change of
the core ontology of RE and with it of the definition of
the requirements problem. New RMLs were consequently
designed, in which the modeling primitives and reasoning
methods follow and benefit from the fundamental changes.

The core ontology for requirements and the requirements
problem [7] — which are implicit in state-of-the-art RMLs
such as KAOS and i* — are limited in several respects
that are critical for the successful performance of RE for
contemporary systems [1]. In particular, it is not clear how
alternative solutions to the requirements problem can be
compared, e.g., what criteria (should) serve for comparison,
and how these criteria are represented in requirements models.
Notions of preference over requirements, and of optional and
mandatory requirements are absent.

The engineering of contemporary systems requires us to
address these shortcomings. A first step was a new core
ontology for requirements [1], which recognizes that in addi-
tion to goals and tasks different stakeholders have different
preferences over same requirements, that they are interested
in choosing among alternative solutions, that potentially
many alternative solutions exist (as in the case of service-
and/or agent-oriented systems, in which different services
or agents may compete to provide same functions), and that

requirements are not fixed, but change with new information
from the stakeholders or the operating environment.

1) Contributions: We introduce Techne, an RML designed
as a response to the challenges cited above. It is designed
to assist the engineer in knowledge representation and
decision making during the very early stages of requirements
engineering, when the requirements problem for the system-
to-be is being structured and its alternative potential solutions
explored and compared in terms of how desirable they are
to the stakeholders, by accounting for both the relative
preference of requirements and the optional or mandatory
status of requirements. A Techne requirements model cap-
tures instances of the concepts from the core ontology
for requirements, allowing the representation of (i) goals,
quality constraints, softgoals, domain assumptions, tasks, and
(ii) relations of inference, conflict, and preference between
them, along with (iii) relations to distinguish mandatory
and optional requirements. Techne has formal semantics; the
semantic domain is made up of structures called potential
solutions of the requirements problem, which are consistent
sets of requirements. Potential solutions are found via non-
monotonic and paraconsistent reasoning. It is nonmonotonic
to accommodate the straightforward observation that the
requirements problem and its solutions can change over time,
and that conclusions drawn about these from a requirements
model may not remain standing when new requirements
(goals, preferences, tasks, etc.) are introduced. Reasoning is
paraconsistent for an inconsistent requirements model should
not allow us to conclude the satisfaction of all requirements
therein.
Organization. A nontechnical introduction to requirements
models and reasoning in Techne is first given via realistic
examples of manageable size (§II). Syntax and semantics of
the models are then presented and discussed (§III). The paper
closes with a discussion of related work (§IV), a summary
of conclusions, implications, and pointers for future research
(§V).

II. OVERVIEW OF TECHNE

The purpose of Techne is to support the representation
and reasoning about instances of requirements problems and
alternative solutions thereof. It is an RML with the three
standard parts: (1) It classifies the information elicited in
RE as instances of the concepts from the core ontology
for requirements [1]. (2) It represents and relates these
instances for a particular system-to-be in a model called the
requirements network (r-net), stating thereby the requirements
problem for the system of interest. (3) It identifies alternative
solutions and the criteria for their comparison both within a
given r-net, assisting thus the subsequent choice of a solution.
This section presents the intuitive ideas formalized with this
RML, first in a very rough form (§II-A), then add detail
(§II-B–II-C), before the subsequent section discusses the
formalization (§III).

A. Intuitions

To see where and how Techne fits within the RE of a
system-to-be, we need to consider what happens at the very
outset of RE and go on from there. The very first step is
the elicitation of requirements, the purpose of which is to
acquire information about the beliefs, desires, intentions, and
preferences of the system’s stakeholders. Elicitation requires
a double effort, one being to obtain requirements from — by
interacting with — the stakeholders, the representation of
these requirements being the other. The methodological aspect
of how best to go about the discussions with the stakeholders
is beyond the scope of Techne. Given an initial verbal,
textual or otherwise account of requirements, Techne handles
their classification, relation and representation, before and
including reasoning thereon.

1) Classification: Techne follows the core ontology for
requirements to perform the classification. Depending on
their content, stakeholders’ desires become goals (e.g.,
“Deliver music to clients via an online audio player”),
quality constraints (e.g., “The bitrate of music delivered
via the online audio player should be at least 128kb/s”),
or softgoals (e.g., “Buffering before music starts in the
audio player should be short”). Their intentions become
tasks that will be accomplished either by the system-to-
be, in cooperation with it, or will remain the stakeholders’
responsibility. Their beliefs become domain assumptions,
descriptions of conditions within which themselves and the
system-to-be will be performing tasks in order to achieve
the goals, quality constraints, and satisfy as best as feasible
the softgoals.

2) Relation: Techne relates domain assumptions, goals,
quality constraints, softgoals, and tasks via five relations.
Initial requirements usually require refinement, as they tend
to lack the detail necessary for, e.g., the identification of
tasks the execution of which would satisfy goals (e.g.,
the goal “Deliver music to clients via an online audio
player” may be refined onto two goals: “Music plays in
a player integrated in the web page” and “Player has all
standard functionalities for the listening of music”, whereby
the latter goal could be further refined to indicate which
functionalities these are). The refinement of a goal by other
goals has been a salient feature of KAOS, while other
RMLs had their own proxies (e.g., task decomposition in
i*) of the refinement relation. The intuitive meaning of these
relations is that if the set of more precise requirements is
satisfied, then the less precise requirements are assumed
satisfied. Techne considers that, say, goal refinement and
task decomposition ask basically the same question: What
more precise requirements should be satisfied in order to
assume that the less precise — refined, decomposed —
requirement is satisfied as well? Instead of relating less
precise to more precise requirements by a refinement or
decomposition relation, Techne generalizes these via the

inference relation which represents the application of modus
ponens. One premise to the modus ponens application is
the set {p1, . . . , pn} of more precise requirements. The
other premise is the implication

∧n
i=1 pi → q from the

conjunction of the more precise requirements to the less
precise requirement, q. The conclusion is the less precise
requirement q. Any inference relation captures our decision
to conclude that q is satisfied if both {p1, . . . , pn} and∧n
i=1 pi → q are, and any inference relation has this form:

from {p1, . . . , pn} and
∧n
i=1 pi → q, conclude q.

Techne remains in line with the purpose of the variants
of the refinement relation, while it drops constraints on
what instances can be refined by what other instances: some
of members of {p1, . . . , pn, q} can be goals, others quality
constraints, or tasks, or otherwise.1

Not all goals, quality constraints, tasks, or others are
equally desirable (e.g., perhaps “The bitrate of music deliv-
ered via the online audio player should be at least 256kb/s”
is strictly preferred to “The bitrate of music delivered via the
online audio player should be at least 128kb/s”), nor can they
all be satisfied together (e.g., “The bitrate of music delivered
via the online audio player should be at least 256kb/s” and
“Buffering before music starts in the audio player should be
short”). Relative desirability is expressed via the preference
relation in Techne. The conflict relation is defined over all
members of a minimally inconsistent set of requirements. The
final two relations are unary: the is-mandatory relation on a
requirement indicates that the system-to-be must satisfy that
requirement, while the is-optional relation on a requirement
states that, if there were two systems, different only in that
one satisfies the optional requirement and the other does not,
then the former one would be strictly preferred to the second.

3) Representation: Every atomic requirement, e.g., a goal
“Deliver music to clients via an online audio player”, has two
parts: the atomic proposition “Deliver music to clients via an
online audio player” and the indication that it is a goal (i.e., an
instance of the goal concept from the core ontology). The first
part of an atomic requirement in Techne is represented via
an atomic proposition, which itself defines a node in an r-net,
while the second part is a label, assigned to the node in the r-
net. Nodes for domain assumptions, goals, quality constraints,
softgoals, and tasks are called S-nodes. The other kind of
nodes, R-nodes represent relations between S-nodes. R-nodes
are not propositions. Each of the five relations in Techne
has a corresponding label, which is placed on the relevant
R-node. Labeled R-nodes and S-nodes are connected via
unlabeled and primitive (undefined) edges. An edge obtains
its informal meaning based on which relation (i.e., R-node)
it targets or originates in. E.g., if an edge originates in a
goal and ends in a node for the inference relation, then the
edge says that the goal is an input to the application of

1E.g., in Techne, a goal or can be refined by other goals, tasks, and/or
quality constraints. This is a departure from the standard definition of the
refinement relation in RE (cf., [8]).

modus ponens. We commit to the propositional Horn clauses
subset of propositional logic, hereafter PHL, which is why
the inference relation captures only the application of modus
ponens (and not of some other inference rule of propositional
logic). It is important to keep in mind that Techne, in contrast
to state-of-the-art RMLs does not include a visual syntax,
which defines the graphical primitives used to draw r-nets.
Instead, Techne has two syntaxes: a graph syntax, which is
simply the representation of r-nets as labeled graphs, and
a corresponding symbolic syntax, which allows us to write
r-nets as sets of well-formed formulas (wffs) of Techne.

4) Reasoning: By representing the elicited requirements,
the r-net for a system-to-be states the requirements problem
for the system in question. The r-net is a statement of
the requirements problem in the sense that requirements as
elicited are hardly precise and detailed enough, or consistent
to be taken as an end-result of RE. Firstly, they need to be
refined, tasks need to be found that will satisfy the goals
and not violate domain assumptions, softgoals need to be
approximated by quality constraints and preferences, and so
on. Secondly, elicitation is iterative, that is, requirements
can change and new ones may be introduced modifying
thereby the statement of the problem obtained after the initial
elicitation. Thirdly, once the r-net includes conflicts, the r-net
— however precise and detailed — is itself not the solution
of the given requirements problem: the presence of conflicts
means that there are alternative potential solutions to be
found inside the r-net.

There are different kinds of solution concepts in Techne.
Any conflict-free (i.e., logically consistent) part of an r-net
is a potential solution, which is also an admissible solution
if and only if it includes all mandatory requirements, and it
is furthermore a solution iff it also includes at least some
preferred and/or optional requirements. The preference and
is-optional relations serve for the comparison of solutions.
Once some solutions are found in an r-net, a comparison table
is constructed to synthesize which solutions satisfy which
optional requirements and which preferred requirements. The
scope of Techne within the overall RE process stops once the
comparison table is constructed. Remark that, since every
consistent part of an r-net is a potential solution, it is possible
to have potential solutions that are from the methodological
standpoint (i.e., pertaining to how Techne is used) trivial or
undesirable (e.g., an r-net equal to a single goal has that goal
as its potential solution). This issue is avoided by placing
additional constraints on solution concepts, and since these
constraints should come from the methodology that directs
the use of Techne and not Techne itself, we discuss very few
of them (c.f., §III-C).

There are two salient features to the reasoning in Techne:
it is nonmonotonic and paraconsistent. Nonmonotonicity
comes from the simple observation that elicitation is iterative,
so that requirements can be revised and new ones added.
The new ones need not be consistent with those already

available: if reasoning were monotonic, solutions would
not need to be revised as new requirements are added, but
since new requirements may conflict with available ones,
requirements in an r-net grow nonmonotonically. Solutions
thus need to be recomputed as new requirements become
available, which reflects the intuitive idea that initially elicited
requirements are hardly ever definite, or complete. They are
open to revision, so that nonmonotonic reasoning is more
appropriate than its alternative. Paraconsistent reasoning is
a necessity for an RML, as the other option is to admit
the ex falso quodlibet principle: conclude anything from
an inconsistency and thereby conclude any solution from
an inconsistent r-net. When an r-net includes inconsistent
requirements, paraconsistent reasoning guarantees that we
will not conclude any solution from that r-net.

B. Modeling

We now exemplify and add details to the preceding
discussion of the intuitive ideas that Techne implements.

1) Requirements Problem: Given domain assumptions,
goals, quality constraints, softgoals, tasks, some of which
are optional mandatory, and/or preferred over others, find
tasks and domain assumptions which satisfy mandatory goals,
quality constraints, and ideally also satisfy at least some of
the preferred and/or optional goals and quality constraints.

2) R-Net: An r-net captures the information intervening in
the requirements problem via nodes and edges in a potentially
disconnected and/or cyclical and labelled graph, which
represents domain assumptions, goals, quality constraints,
softgoals, tasks, and relations between them. A solution of
the requirements problem captured in an r-net is itself a
subgraph of that r-net which satisfies specific conditions.

Any r-net has two kinds of nodes: sentence/proposition (S)
nodes and relation (R) nodes. Any S-node is either an atomic
proposition or a well-formed Horn formula (wff), labeled to
indicate which concept it instantiates from the core ontology.
Let p, q, r be symbols for atomic propositions and φ, ψ, γ
for wffs, indexed or primed as needed. Any wff is either
a conjunction of propositions implying another proposition
(i.e., p1 ∧ p2 ∧ . . . ∧ pn → p) or implying an inconsistency
(i.e., p1 ∧ p2 ∧ . . . ∧ pn → ⊥). Following the core ontology,
if an S-node refers to a condition that is believed to hold
about the system-to-be and/or its relevant environment, then
this S-node is an instance of the domain assumption concept
and is labeled k. Desired conditions that should be satisfied
are captured via instances of the goal (g), quality constraint
(q), and softgoal (s) concepts. Goals describe a verifiable
functional condition (e.g., “g(p1): Display text ads in the
audio player” in Example II.1). Quality constraints restrict
the values of non-binary measurable characteristics of the
system-to-be (e.g., “q(p3): Maintain the player free to all
users”). While a quality constraint restricts the values of
qualities defined over well-defined quality spaces, a softgoal
will do so over qualities with ill-defined quality spaces (e.g.,

“s(r): Sound is satisfactory”). Finally, tasks, i.e., instances of
the task concept (t), capture the intentions to satisfy goals,
quality constraints, and softgoals in some known manner
(e.g., “t(r′): Deliver textual ads to the audio player via a
partner service”).

An R-node refers to any of the following: (i) a preference
relation between two S-nodes, (ii) a conflict relation between
at least two S-nodes, (iii) an inference relation between at
least two S-nodes, (iv) a unary is-optional relation over a
single S-node, or (v) a unary is-mandatory relation over a
single S-node. R-nodes differ from S-nodes in that an R-node
is neither a proposition nor a sentence of propositional logic.
S-nodes that participate in the relations are connected to
respective R-nodes via the edges of the r-net. Any edge in
an r-net remains unlabeled. How does then an r-net capture,
say, the refinement relation? In Example II.1, the goal g(p)
is AND-refined onto two other goals g(p1) and g(p2), and
the quality constraint q(p3). Following what we said earlier
on the inference relation (cf., §II-A), if the set of the more
precise requirements, i.e., {g(p1), g(p2),q(p3)}, and g(p1)∧
g(p2) ∧ q(p3) → g(p) are given, then we have a proof for
g(p). The r-net in Example II.1 states the proof of g(p) from
g(p1), g(p2), and q(p3) via the application of modus ponens
to the conjunction of the more precise requirements and the
Horn clause (i.e., g(p1) ∧ g(p2) ∧ q(p3)→ g(p)). An r-net
captures via I-nodes the patterns of inference that led the
engineer and the stakeholders to relate the instances of the
various concepts.
Example II.1. Suppose that the aim is to build a system that would
deliver music on-demand: a user visits a website, chooses songs
from a database, and can play them in the audio player on the
website. Let the goal g(p) be the goal, where “p: Generate revenue
from the audio player”. Let that goal be refined by the three goals
(i) “g(p1): Display text ads in the audio player”, (ii) “g(p2): Target
text ads according to users’ profiles”, and (iii) the quality constraint
“q(p3): Maintain the player free to all users”. In order to derive
p from the propositions in the three goals, we have g(p1), g(p2),
and q(p3), and we assume that g(p1) ∧ g(p2) ∧ q(p3) → g(p).
From {g(p1), g(p2), q(p3)} and g(p1) ∧ g(p2) ∧ q(p3) → g(p),
we conclude g(p), where ∧ and → are, respectively, the standard
conjunction and implication connectives. Since we assume the
implication, we say that it is a domain assumption: i.e., k(φ1) ≡
k(g(p1) ∧ g(p2) ∧ q(p3)→ g(p)), which without labels from the
r-net is saying that φ1 ≡ p1 ∧ p2 ∧ p3 → p. The r-net capturing
this AND-refinement is shown in Figure 1(a).

The visual syntax of r-nets is not the topic of this paper: the
graphs in Figure 1 are shown in the graph syntax of Techne. A
visual syntax may be defined on top of the symbolic or graph
syntax in Techne (cf., §III) to introduce graphical primitives and
other features that may facilitate the construction of r-nets.�

As Example II.1 illustrates, an r-net captures a refinement
by representing the proof in PHL of the refined requirement
from the requirements that refine it. An r-net allows a goal to
be refined by, e.g., both goals and quality constraints (as in
Example II.1). Constraints, such as what concept instances
can or cannot refine some concept instance (e.g., goals cannot
refine a task) take the form of syntactic constraints in Techne

g(p2) // I

��

q(p3)oo

g(p1)

;;wwwww
g(p) k(φ1)

ccHHHHH

(a) R-net from Example II.1.

g(p1)

$$III
III

g(p2)

��

k(φ2)

��
k(φ1) // I // g(p) Ioo g(q)oo

q(p3)

::uuuuuu
// C k(ψ1)oo k(φ3) // I

OO

P

ddIIIIII
g(q3)

44jjjjjjjjjjjjjoo

ddIIIIII
g(q2)

::uuuuuu
g(q1)

OO

(b) R-net from Example II.2.

Figure 1. R-nets described in Examples II.1–II.2.

on the labels of S-nodes connected to an R-node. Since
such concerns depend strongly on the methodology that uses
Techne, few constraints are built-in (cf., §III).

Two or more S-nodes are in conflict if they cannot all
appear together in a solution; a conflict R-node is labeled
C. Example II.2 has the C-node C so that no solution can
have g(q3), q(p3), and k(g(q3) ∧ q(p3) → ⊥). A conflict
node signals that if there are solutions in the r-net, then there
will be alternative solutions. It follows that these alternative
solutions will need to be compared. Facing a conflict node,
a preference relation can be introduced between subsets of
the nodes in conflict, to indicate which of these S-nodes
are strictly more desirable to have in a solution than others.
Two sets of S-nodes participate in a preference relation if
solutions containing one of the two sets are strictly more
desirable than solutions containing the other set. A preference
R-node is labeled P. In Example II.2, the preference R-node
P (together with the edges entering and leaving it) that g(q3)
is strictly preferred to q(p3).
Example II.2. (Contd. Example II.1) Suppose that “g(q): Charge
subscription to users”, and that it is AND-refined onto the conjunction
of “g(q1): Music database is restricted to subscribers”, “g(q2): Users
can subscribe”, and “g(q3): Music player is available to subscribers
only”. This requires the domain assumptions k(φ2) ≡ k(g(q) →
g(p)) and k(φ3) ≡ k(g(q1)∧g(q2)∧g(q3)→ g(q)). We also have
k(ψ1) ≡ k(g(q3) ∧ q(p3)→ ⊥), as we cannot both maintain the
player free to all users (q(p3)) and make it available to subscribers
only (g(q3)), so that these three cannot appear together in a solution:
there is a conflict C between q(p3) and g(q3), when k(ψ1). As
there is a conflict, stakeholders will need to state which of the
conflicting S-nodes they strictly prefer to the other: we will assume
that it is preferred to make the music player available to subscribers
only instead of making it available to all users, i.e., that g(q3) is
strictly preferred to q(p3). If we update the r-net from Example
II.1 with this information, we obtain the r-net in Figure 1(b).

The r-net in Figure 1(b) includes two AND-refinements of q(p).
The conflict C indicates that these are two alternative refinements,
as they cannot appear together in a solution. The r-net thus has
two solutions, and the preference P says that the solution having
g(q3) is strictly preferred to the other that has q(p3), if P is the
only criterion for the comparison of the solutions. �

q(p3) // I // q(p4) // O

k(φ4)

OO

(a) R-net from Example II.4.

q(p4) //

}}{{{
{{

��

I

��

k(φ5)oo

k(ψ2) // C P

��

s(p5) // O

q(p6) //

aaDDDDD
I

OO

k(φ6)oo
(b) R-net from Example II.5.

Figure 2. R-nets described in Examples II.4–II.5.

When an r-net has conflicts and preferences, its evaluation
will yield alternative solutions to the requirements problem.
Since different sets of preferences will be satisfied in
different solutions, the solutions can be compared, with
each preference serving as one, among potentially many,
comparison criteria.
Example II.3. (Contd. Example II.2) It is easy to see that there are
two solutions in the r-net in Figure 1(b), one per AND-refinement. Let
solution A be the one in which revenue is made via advertisements,
and the solution B one in which subscriptions produce revenue.
The solution B satisfies the preference P because it includes g(q3),
so that B is a more desirable solution than A. �

Solutions are compared according to the mandatory and
optional S-nodes they include, and not only according to
the preference relations. Any S-node in an r-net is either (i)
mandatory, when every solution must include it, (ii) optional,
when it would be desirable to have that node in a solution,
but not all solutions must have it, or (iii) neither mandatory
nor optional. To make an S-node mandatory, we add the
is-mandatory R-node labeled M to the r-net, and connect the
S-node to M. If the S-node is optional, we relate it to the
is-optional R-node labeled O. If an S-node is related neither
to an is-mandatory, nor is-optional node, then it is assumed
neither mandatory nor optional.
Example II.4. (Contd. Example II.2) If every solution must satisfy
the goal g(p), the we can add the node M to the r-net in Example
II.2, and add an edge from g(p) to M, indicating thereby that the
goal is mandatory.

To illustrate the use of the is-optional relation, suppose that
allowing access to the media player to all users (q(p3)) will allow
new users to listen to music in an average of three clicks through
the audio service (q(p4)) (because they do not need to register or
provide their billing details). Let q(p4) be optional. We consequently
add the quality constraint q(p4) to the r-net, along with the domain
assumption k(φ4) ≡ k(q(p3)→ q(p4)), and the inference relation
i4 to conclude q(p4) from q(p3) and k(φ4). We thus added the
graph in Figure 2(a) to the r-net in Example II.2.

Figure 2(a) indicates that q(p4) is optional, being connected to
the is-optional relation node O. If we consider the entire r-net (one
in Figure 1(b) updated for the graph in Figure 2(a)), we can see
that it is no longer obvious which refinement is preferred: if the
solution contains g(q3), then it will not contain q(p4), but will
have the preferred g(q3); if the solution contains q(p3), then it will

have q(p4), but not the preferred g(q3). �

Softgoals refer to nonfunctional requirements, and must
be approximated in a solution to the requirements problem.
To approximate a softgoal, we seek non-softgoal S-nodes
from which we can derive the softgoal.
Example II.5. (Contd. Example II.4) Suppose that we introduce the
optional softgoal “s(p5): It is easy for new users to access audio
content” into the r-net from Example II.4. There are no universal
criteria that tell us what “easy” precisely means in the context of this
system-to-be. There are consequently different ways to approximate
s(p5). One of them consists of saying that the average number of
clicks to access audio content (computed over some number of
sessions and for a given focus group) is easier the fewer such clicks
are needed to new users. We can consequently introduce at least
two quality constraints, one being q(p3) from Example II.4 and
another “q(p6): An average of ten clicks are needed to a new user
to get to audio content”, and a preference relation P to indicate
that the approximation via q(p4) is strictly preferred to the one via
q(p6). Loosely speaking, the preference tells us that the softgoal
will be “more satisfied” if a solution approximates it via q(p4) then
via q(p6). The information just given is introduced as the subgraph
from Figure 2(b) to the r-net in Figure 1(b).

The subgraph in Figure 2(b) shows that we also need domain
assumptions k(φ5) ≡ k(q(p4)→ s(p5)) and k(φ6) ≡ k(q(p6)→
s(p5)), one for each application of modus ponens, i.e., I and I, and
finally, the conflict C to indicate that k(ψ2) ≡ k(q(p4) ∧ q(p6)→
⊥), and hence the approximation via q(p4) is alternative to the one
via q(p6). �

C. Reasoning

The purpose of automated reasoning facilities in Techne
is to answer two questions: given an r-net, (i) What are the
solutions in it? and (ii) What are the preferences and optional
S-nodes that each solution contains? Example II.6 informally
presents how these answers are sought in a case in which
computations can be done manually.

To find solutions and compare them, i.e., to answer the
two questions, we transform the r-net R into an attitude-
free r-net R̄ by removing all preference, is-optional, and
is-mandatory nodes, and all edges connected to these nodes.
We then look for subgraphs of R̄, which are conflict-free,
i.e., include no conflict nodes. We call such r-nets potential
solutions. Among the many potential solutions, we look
for the largest ones, those which, roughly speaking contain
as many requirements as possible while remaining conflict-
free. Such potential solutions are called preferred potential
solutions. Given one or more preferred potential solutions,
we need to establish whether each of them includes all
nodes marked as mandatory — if so, then it is called an
admissible solution for the given r-net. Given admissible
solutions, we compare them by building a comparison table,
which indicates for each admissible solution the optional and
preferred nodes that it includes. The compared admissible
solutions are simply called the solutions of the r-net.
Example II.6. (Contd. Example II.5) If we remove all preference,
is-optional, and is-mandatory nodes, and all edges connected to
these nodes from the r-net that we have at the end of Example II.5,
we obtain the attitude-free r-net in Figure 3(a).

g(p1)

$$JJJ
JJJ

g(p2)

��

k(φ2)

��
k(φ1) // I // g(p) Ioo g(q)oo

q(p3)

::tttttt
//

��

C k(ψ1)oo k(φ3) // I

OO

I

$$JJJ
JJJ

k(φ4)oo g(q3)

44jjjjjjjjjjjjj

ddJJJJJJ
g(q2)

::uuuuuu
g(q1)

OO

q(p4) //

zzttt
ttt

I

��

k(φ5)oo

C s(p5)

k(ψ2)

OO

q(p6) //

ddJJJJJJ
I

OO

k(φ6)oo
(a) Attitude-free r-net from Example II.6.

k(φ5)

��

k(φ4)

��

g(p1)

$$JJJ
JJJ

g(p2)

��
I

��

I

��

k(φ1) // I // g(p)

s(p5) q(p4)

ddIIIIII
q(p3)

::tttttt

ddIIIIII

k(φ2) k(φ3) k(φ6) k(ψ2) k(ψ1)

(b) Potential solution A from Example II.6.

s(p5) k(φ2)

��
q(p6) // I

OO

g(p) Ioo g(q)oo

k(φ6)

OO

k(φ3) // I

OO

g(q3)

44jjjjjjjjjjjjj
g(q2)

::tttttt
g(q1)

OO

k(φ1) k(φ4) k(φ5) k(ψ1) k(ψ2)

(c) Potential solution B from Example II.6.

Figure 3. R-nets mentioned in Example II.6.

A potential solution must be conflict-free. Figure 3(b) is an r-net
representation of the potential solution SA, and Figure 3(c) is an
r-net representation of the potential solution SB . We chose SA and
SB because they are the only preferred potential solutions of the
r-net, they are also admissible solutions, and finally, both of them
are also solutions for the r-net of interest. Note that all domain
assumptions that are also Horn clauses appear in both preferred
potential solutions (i.e., k(φ1), k(φ2), k(φ3), etc.). We explain later
(cf., §III-B) the reason for this, as well as why we say that Figures
3(b)–3(c) are r-net representations of solutions.

We can establish that the two solutions SA and SB have the
following mandatory, optional, and preferred nodes:
• SA has q(p4), which O makes an optional node and P makes

a preferred node; SA has s(p5) which O makes an optional
node; finally, SA has g(p) which M makes a mandatory node.

• SB has g(q3) which P makes a preferred node; SB also has
s(p5) which O makes an optional node; finally, SB has g(p)
which M makes a mandatory node.

The r-net obtained at the end of Example II.5 had P and P as

preference R-nodes, M for its only is-mandatory R-node, and O and
O for its only is-optional R-nodes. The question is: how do we
compare SA and SB? See Example II.7. �

Given at least two solutions of an r-net, the comparison
of solutions starts off with the very simple step, in which a
comparison table is constructed. Each column in the table is
one either P or O node. Each solution occupies a row; if the
R-node in the column is in the solution, this is indicated in
the table.
Example II.7. (Contd. Example II.6) The comparison table for the
solutions SA and SB is shown below.

Solution: P : g(q3) P : q(p4) O : q(p4) O : s(p5)

SA no yes yes yes
SB yes no no yes

The table simply summarizes which of the preferences and is-
optional nodes are included in which of the solutions. �

The comparison table summarizes which solutions include
which of the preferred nodes, and which of the optional
nodes. The table itself does not lead us to choose one of the
solutions to the requirements problem. The remaining task
is to apply a decision criterion over the comparison table,
in order to rank solutions. Decision criteria are beyond the
scope of Techne — Techne stops after the comparison table
is built.

III. FORMALIZATION

Techne is defined over propositional Horn logic (PHL):
atomic propositions, clauses with no positive atom (conflicts)
and ones with one positive atom (definite rules). Techne
cannot be reduced to PHL alone, for at least three reasons.
Firstly, both the propositions and the wffs of PHL are labeled
in Techne to indicate if the proposition/wff instantiates a
domain assumption, a goal, a quality constraint, a softgoal,
or a task. Secondly, PHL has no proxies for preference,
is-optional, and is-mandatory relations, which are used to
compare the alternative solutions (i.e., alternative consistent
sets of Techne wffs) to the requirements problem that
an r-net states. Thirdly, Techne has a nonmonotonic and
paraconsistent consequence relation |v which is defined from
the proofs in PHL that satisfy some specific constraints. These
remarks are clarified in the rest of this section.

A. Graph and Symbolic Syntaxes
We have two interchangeable syntaxes for Techne. The

graph syntax writes r-nets as graphs, and serves primarily
to facilitate the discussion of the examples. The symbolic
syntax writes r-nets as sets of Techne wffs (twffs). The two
syntaxes are constructed on top of the syntactic elements of
PHL, by mapping these to labels. Labeled PHL propositions
and wffs are common to both syntaxes, leading us to present
this shared part first below and use it to define S- and R-
nodes of r-nets, and then discuss in turn the graph syntax,
the symbolic syntax, and the rules for switching between
them.

1) S-Nodes (Shared Syntactic Elements).: Let p, q, r be
symbols that refer each to an atomic proposition, whereby an
(atomic) proposition is the shareable content of an intentional
state, such as a belief, desire, or an intention, i.e., what is,
respectively, believed, desired, or intended. We index or
prime the symbols for propositions as needed. Symbol ⊥
reads “inconsistency”.

An PHL wff is a Horn clause, and either a definite Horn
clause (of the form

∧n
i=1 pi → q) or a compound negation

(
∧n
i=1 pi → ⊥). The following BNF grammar defines wffs

in PHL, for n ≥ 1:

wff ::=

n∧
i=1

pi → q |
n∧
i=1

pi → ⊥

While propositions and wffs of PHL do reflect the relations
between the elements/agents of the system-to-be and of its
operating environment, i.e., the conditions in which these
may stand, they alone are of limited interest, for they abstract
from the pragmatic component: neither the propositions nor
the wffs say whether the relations they describe are desired,
believed, or otherwise. That pragmatic component is essential
in RE because it distinguishes between a proposition/wff
instantiating a goal or a domain assumption, or otherwise,
and thereby influencing the kinds of analyses/transformations
applicable to it. The core ontology chooses the pragmatics for
propositions/wffs based on the intentional state inferred from
the way in which the proposition/wff was communicated,
and defines corresponding concepts of domain assumption,
functional goal, quality constraint, softgoal, and task [1].

Every PHL proposition and wff becomes a member of the
set S of S-nodes of an r-net after it is labeled to indicate
which concept it instantiates. Labeling rules fully define the
labeling function for S-nodes.

Definition III.1. Labeling Function for S-nodes (LS). Let
LS : S −→ LS , where LS = {k, g, q, s, t}.
• LS(p) = k (resp. LS(φ) = k) iff p (resp. φ) instantiates

a domain assumption;
• LS(p) = g iff p instantiates a functional goal;
• LS(p) = q iff p instantiates a quality constraint;
• LS(p) = s iff p instantiates a softgoal; and
• LS(p) = t iff p instantiates a task.

Remark III.2. We abbreviate (p,LS(p) = x) by x(p), where
x ∈ LS , and (φ,LS(φ) = k) by k(φ).

Domain assumptions have a special role in Techne: when
an S-node is a labeled PHL wff, we assume that this labeled
wff is as a whole an instance of a domain assumption. This
corresponds to the intuition that when we say, e.g., g(p) ∧
g(q)→ g(r) that we believe that the conjunction of g(p) and
g(q) implies g(r), so that g(p)∧ g(q)→ g(r) is an instance
of the domain assumption concept.

Any S-node, denoted sn, is generated via the BNF grammar
in Equations 1–3 obtained by labeling PHL propositions and
wffs with LS .

pl ::= k(p) | g(p) | q(p) | s(p) | t(p) (1)

φ ::=

n∧
i=1

pli → pl |
n∧
i=1

pli → ⊥ (2)

sn ::= pl | k(φ) (3)

Rules 1–3 guarantee that an S-node is either a labeled
proposition or a Horn domain assumption. The latter, k(φ)
is a Horn domain assumption as it is either a definite Horn
clause (when φ =

∧n
i=1 pli → pl) or a compound negation

(when φ =
∧n
i=1 pli → ⊥), as in Example II.2.

2) R-Nodes (Shared Syntactic Elements): R-nodes capture
relations between requirements referred to by S-nodes. The
set R of R-nodes in an r-net is partitioned as follows: (i)
RI is the set of inference nodes, (ii) RC the set of conflict
nodes, (iii) RP the set of preference nodes, (iv) RO the set
of is-optional nodes, and (v) RM the set of is-mandatory
nodes. Members of the partitions are labeled by the labeling
function LR : R −→ LR.

Definition III.3. Inference Relation. For every Sj ⊆ S such
that Sj = {pli | 1 ≤ i ≤ n} ∪ {k (

∧n
i=1 pli → pl)} ∪ {pl}

and n ≥ 1, there is an inference relation in the r-net between
members of {pli | 1 ≤ i ≤ n} ∪ {k (

∧n
i=1 pli → pl)} and pl,

symbolized by an R-node rnj ∈ R labeled LR(rnj) = I.

An inference node refers to the application of the modus
ponens (MP) inference rule to a nonempty set of its input
S-nodes, called premises in order to derive another output
S-node, called the conclusion. The inference node is present
in an r-net whenever the premises are present, as MP applies
to derive the conclusion S-node.

Definition III.4. Conflict Relation. For every Sj ⊆ S such
that Sj = {pli | 1 ≤ i ≤ n} ∪ {k (

∧n
i=1 pli → ⊥)} and

n ≥ 2, there is a conflict relation in the r-net between
members of Sj , symbolized by an R-node rnj ∈ R labeled
LR(rnj) = C.

A conflict relation stands between elements of a minimally
inconsistent set of S-nodes. The conflict relation indicates that
⊥ was concluded from the application of MP, in which the
premise is the set {pli | 1 ≤ i ≤ n} ∪ {k (

∧n
i=1 pli → ⊥)}.

While the inference and conflict relations are defined as
applications of inference rules to S-nodes, the preference,
is-mandatory, and is-optional relations have no corresponding
notion in PHL.

Definition III.5. Preference Relation. For every two
nonempty sets Si, Sj ⊆ S there is a preference relation
in the r-net between these two sets stating that Si is strictly
preferred to Sj , symbolized by the R-node rnk ∈ R labeled
LR(rnk) = P, iff:

1) Si ∩ Sj = ∅, and
2) whenever two solutions S1 and S2 for the given r-net

differ only in that S1 has all members of Si but none

of Sj while S2 has all members of Sj but none of
Si, the solution S1 is strictly more desirable to the
solution S2.

Definition III.6. Is-Mandatory Relation. There is a unary
is-mandatory relation on an S-node pl ∈ S in the r-net,
symbolized by the R-node rnj ∈ R labeled LR(rnj) = M iff
pl must appear in every potential solution of the requirements
problem defined by that r-net.

Definition III.7. Is-Optional Relation. There is a unary is-
optional relation on an S-node pl ∈ S in the r-net, symbolized
by the R-node rnj ∈ R labeled LR(rnj) = O iff whenever
two solutions S1 and S2 differ only in that S1 has pl and S2

does not have pl, then S1 is strictly more desirable to S2.

Remark III.8. yi abbreviates (rni ∈ R,LR(rni) = y), where
y ∈ LR, since the rn symbol stays for any y and any i.

An r-net, denoted R is simply a structure that has both
S-nodes and R-nodes, as they have been defined above.

Definition III.9. R-Net (R). An r-net is the tuple R =
(S,R), where S is the set of S-nodes and R is the set of
R-nodes over members of S.

3) Graph Syntax: An r-net R is in graph syntax a directed,
labeled, and potentially disconnected and/or cyclical graph
G(R) = (N,E, ι), where N = S ∪ R is the set of nodes,
E ⊆ N × N are directed edges, and ι : E −→ N × N is
the incidence function that maps every edge to its origin
and destination node. Every S-node and R-node is a node
of G(R) while the edges serve to connect the relata of an
R-node to that R-node.

Remark III.10. As a convention, we say that an R-node rn has
a nonempty set of inputs, denoted in(rn) and a potentially
empty set of outputs, out(rn), where: (a) in(rn) = {sn |
(sn, rn) ∈ E} is the set of all S-nodes that are connected
to rn via edges that target rn in the given r-net, and (b)
out(rn) = {sn | (rn, sn) ∈ E} is the set of all S-nodes that
are connected to rn via edges that originate in rn.

To ensure that a G(R) is syntactically valid, its incidence
function ι must connect its nodes so that exactly the following
constraints are satisfied:

1) for every I ∈ R relating the members of {pli | 1 ≤
i ≤ n} ∪ {k (

∧n
i=1 pli → pl)} to pl: in(I) = {pli |

1 ≤ i ≤ n} ∪ {k (
∧n
i=1 pli → pl)} and out(I) = pl;

2) for every C ∈ R relating the members of {pli | 1 ≤
i ≤ n} ∪ {k (

∧n
i=1 pli → ⊥)}: in(C) = {pli | 1 ≤ i ≤

n} ∪ {k (
∧n
i=1 pli → ⊥)} and out(C = ∅;

3) for every P ∈ R relating S1 ⊆ S to S2 ⊆ S: in(p) =
S1 and out(p) = S2;

4) for every M ∈ R relating pl to itself: in(M) = pl and
out(M) = ∅;

5) for every O ∈ R relating pl to itself: in(O) = pl and
out(O) = ∅.

We assume that any G(R) r-net mentioned in this paper
is syntactically valid.

4) Symbolic Syntax: R-nets or fragments thereof can be
written via the symbolic syntax of Techne, the wffs of
which are simply inline rewritings of nodes and/or edges,
in which the connective � stands for an edge in the r-net.
In symbolic syntax an r-net is a set of Techne wffs (twffs),
R = {twff1, . . . , twffm}, m ≥ 1. Twffs are generated via the
following BNF grammar, where sn is an S-node (cf., Equation
3) and rn is an R-node:

iwff ::= (pl1, . . . , pln, k(

n∧
i=1

pli → pl))� I(rn)

| I(rn)� pl (4)

cwff ::= (nl1, . . . , nln, k(

n∧
i=1

pli → ⊥))� C(rn) (5)

pwff ::= (pl1, . . . , pln)� P(rn)

| P(rn)� (pl1, . . . , pln) (6)
mwff ::= pl� M(rn) (7)
owff ::= pl� O(rn) (8)
twff ::= sn | pl1, . . . , pln | iwff | cwff | pwff

| mwff | owff (9)

Equations 1–9 define the symbolic syntax of r-nets in
Techne. It is not difficult to see that an r-net defined as a set
of tffws is a syntactically valid r-net. Remark that iwff, cwff,
pwff, mwff, and owff are due to, respectively, Definitions
III.3, III.4, III.5, III.6, and III.7.
Example III.11. Figure 1(a) in symbolic syntax is: R =
{g(p1), g(p2), q(p3), k(φ1),I, g(p), (g(p1), g(p2), q(p3), k(φ1))�
I,I� g(p)}. �

5) Conversion between the Graph and Symbolic Syntax:
Equations 10–15 define correspondences between the graph
and symbolic syntaxes, for an r-net R the graph of which
has the set S of S-nodes, set R of R-nodes, and set E of
edges. Elements of symbolic syntax are on left-hand side of
“≡”, those of graph syntax are on the right in each of the
Equations 10–15.

sn ∈ S ≡ sn ∈ S (10)
rn ∈ R ≡ rn ∈ R (11)

(sn� rn) ∈ R ≡ (sn, rn) ∈ E, sn ∈ S, rn ∈ R (12)

(rn� sn) ∈ R ≡ (rn, sn) ∈ E, sn ∈ S, rn ∈ R (13)
((sn1, . . . , snn)� rn) ∈ R ≡

∀i, 1 ≤ i ≤ n, (sni, rn) ∈ E, sni ∈ S, rn ∈ R (14)
(rn� (sn1, . . . , snn)) ∈ R ≡

∀i, 1 ≤ i ≤ n, (rn, sni) ∈ E, sni ∈ S, rn ∈ R (15)

Remark III.12. The symbolic syntax lets us write an r-net as
a set of twwfs, so that we can write R2 ⊂ R1 to say that
R2 was obtained by removing nodes and/or edges from R1,
or in terms of graph syntax, that R2 is a subgraph of R1.

g(p1)

$$III
III

g(p2)

��

k(φ2)

��
k(φ1) // I // g(p) Ioo g(q)oo

q(p3)

::uuuuuu
// C k(ψ1)oo k(φ3) // I

OO

g(q3)

44jjjjjjjjjjjjj

ddIIIIII
g(q2)

::uuuuuu
g(q1)

OO

Figure 4. An attitude-free r-net, R̄.

B. Microsolutions

An r-net in its whole states the requirements problem for a
given system-to-be, and includes all potential solutions to that
problem. Microsolutions are the building blocks of potential
solutions, which in turn serve to define the semantics of
r-nets and the solution concepts in Techne. Microsolutions
are sought in a subgraph of R, called the attitude-free r-net
R̄ which lacks preferences, is-optional, and is-mandatory
nodes from the original R.

Definition III.13. Attitude-Free R-Net. The attitude-free r-
net R̄ of R is obtained from R by removing all preference,
is-mandatory, and is-optional relations from R.

Remark III.14. It is obvious that R̄ ⊆ R and that every r-net
has a unique attitude-free variant. Also, G(R̄) is obtained
from G(R) by eliminating all P-, M-, and O-nodes and edges
entering or leaving these nodes in G(R).

Example III.15. Figure 4 shows the attitude-free r-net R̄ obtained
by removing preference, is-mandatory, and is-optional relations
from the r-net R in Figure 1(b). �

An inference node that concludes an pl is a step in a
proof for that pl in R. When the premises to an I-node are
themselves conclusions of other I-nodes, we can identify
proofs for an pl in R. A proof for pl is a subgraph of R,
which we call a microsolution for pl. The reason we wish
to identify microsolutions is that we combine them to build
potential solutions. In order to identify microsolutions in an
r-net, we first need the consequence relation τ̀ .

Definition III.16. Consequence Relation τ̀ . Given R̄ =
(S̄, R̄), S̄′ ⊆ S̄, and x ∈ {pl,⊥}:

1) S̄′ τ̀ pl if pl ∈ S̄′, or
2) S̄′ τ̀ x if ∀1 ≤ i ≤ n, S̄′ τ̀ pli and k(

∧n
i=1 pli →

x) ∈ S̄′.

Proposition III.17. τ̀ is paraconsistent.

Proof: (By contradiction.) τ̀ is paraconsistent iff ∀pli 6= plj 6=
plk, {pli, plj , k(pli ∧ plj → ⊥)} 6 τ̀ plk. Suppose that τ̀ is not
paraconsistent, so that ∀pli 6= plj 6= plk, {pli, plj , k(pli ∧ plj →
⊥)} τ̀ plk. {pli, plj , k(pli ∧ plj → ⊥)} τ̀ plk contradicts the first
condition in Definition III.16, as plk 6∈ {pli, plj , k(pli∧plj → ⊥)}.
It also contradicts the second condition in Definition III.16 as there
is no Horn clause with plk as its positive literal in {pli, plj , k(pli ∧
plj → ⊥)}.

Proposition III.17 confirms that we cannot conclude
anything from a contradiction in Techne. Also note that our
τ̀ is sound w.r.t. standard entailment in propositional logic,

but is incomplete in two ways: it only considers deducing
positive atoms, and no ordinary proofs based on arguing by
contradiction go thru, thus being paraconsistent.

We will be building potential solutions out of microso-
lutions, fragments of R̄ defined via τ̀ . In the definition of
microsolution, we use the set H , in which we place all Horn
domain assumptions, each of which is either of the form
k(
∧n
i=1 pli → pl) or k(

∧n
i=1 pli → ⊥). We require that H

is consistent, which leads us to introduce correct r-nets.

Definition III.18. Correct Attitude-free R-Net. An R̄ is
correct iff H 6 τ̀ ⊥, where H = {k(φ) | k(φ) ∈ R̄}.

We assume that all attitude-free r-nets mentioned in this
paper are correct. It is obvious that if R̄ is correct, then so
is R since H is identical in R̄ and R.

Remark III.19. We denote Source(R) the set of all source
nodes in R: Source(R) = {sn | sn ∈ S, in(sn) = ∅}.

Definition III.20. Microsolution. An S̄′ is a microsolution
for pl ∈ S̄ in R̄, denoted 〈S̄′, pl〉R̄, iff:

1) S̄′ τ̀ pl,
2) S̄′ ⊆ Source(R̄),
3) S̄′ 6 τ̀ ⊥,
4) H ⊂ S̄′, where H = {k(φ) | k(φ) ∈ R̄},
5) S̄′ is minimal, i.e., 6 ∃S̄′′ ⊂ S̄′ such that S̄′′ τ̀ pl and

H ⊂ S̄′′.

The first condition in Definition III.20 requires that there
is a derivation of pl from S̄′. The second condition requires
that all members of S̄′ are source S-nodes in the R̄. The
third condition requires that S̄′ is consistent. H in the fourth
condition is the set of all Horn domain assumptions in R̄, and
is used to indicate that every microsolution must include all
Horn domain assumptions. The fourth condition is necessary
because we build potential solutions from microsolutions,
by putting together microsolutions which are consistent: if
the fourth condition is missing, it would be possible to
build potential solutions simply by eliminating Horn domain
assumptions which indicate conflict, i.e., those of the form
k(
∧n
i=1 pli → ⊥), which would be erroneous since the

resulting potential solutions would simply ignore conflicts
(i.e., as if there were no conflicts in R̄, or equivalently as
if R̄ was consistent in the first place). The fifth condition
indicates that S̄′ is minimal, containing on top of H only
those S-nodes which are necessary and sufficient for the
derivation of the conclusion of the microsolution.

Remark III.21. When it is clear from the text that 〈S̄′, sn〉R̄
is a microsolution in R̄, we omit the subscript and write
〈S̄′, sn〉.
Example III.22. The following are all microsolutions found in R̄
that is shown in Figure 4:

• For R̄, H = {k(φ1), k(φ2), k(φ3), k(ψ1)}, so that
〈H ∪ {g(p1)}, g(p1)〉, 〈H ∪ {g(p2)}, g(p2)〉, 〈H ∪
{q(p3)}, q(p3)〉, 〈H∪{g(q1)}, g(q1)〉, 〈H∪{g(q2)}, g(q2)〉,
〈H ∪ {g(q3)}, g(q3)〉. Note that all conclusions and premises
of these micrsolutions are source nodes in R̄ and all S-nodes
in these microsolutions are thus in Source(R̄).

• 〈H ∪ {g(p1), g(p2), q(p3)}, g(p)〉. This microsolution is one
of the two refinements of g(p) in R̄.

• 〈H ∪ {g(q1), g(q2), g(q3)}, g(p)〉. This microsolution is the
second refinement of g(p) in R̄.

• 〈H ∪ {g(q1), g(q2), g(q3)}, g(q)〉. This microsolution is part
of the other refinement of g(p).

Remark that no microsolution concludes any of the members of H ,
as Definition III.20 states that the conclusion of a microsolution can
only be a pl and Equations 1–3 distinguish pl from Horn domain
assumptions. �

There can be different microsolutions for the same pl, and
that this depends on the presence/absence of different MP
applications (i.e., I-nodes) which conclude pl in an R̄. Stated
otherwise, if there are several proofs for pl in R̄, then there
are several microsolutions for pl in R̄. A microsolution for
an pl is the smallest subgraph of an R̄ that contains only
requirements which are in favor of pl. A microsolution for
pl does not contain all requirements that are in favor of pl,
since there can be more than one microsolution for pl in R̄.

C. Semantics

The semantic domain of an r-net is made up of structures
called solutions. There are several kinds of solutions, the
simplest among which is the potential solution. Any potential
solution is simply a conflict-free set of microsolutions,
i.e., a set of microsolutions in which the premises of all
microsolutions in it are consistent.

Definition III.23. Potential Solution. A set S of microso-
lutions from R̄ is called a potential solution for R̄ iff
S = {〈S̄i, pli〉 |

⋃n
i=1 S̄i 6 τ̀ ⊥}.

Example III.24. The following are all potential solutions of the R̄
in Figure 4:
• Recall that for R̄, H = {k(φ1), k(φ2), k(φ3), k(ψ1)}

so that each of these singletons is a potential solu-
tion: 〈H ∪ {g(p1)}, g(p1)〉, 〈H ∪ {g(p2)}, g(p2)〉, 〈H ∪
{q(p3)}, q(p3)〉, 〈H∪{g(q1)}, g(q1)〉, 〈H∪{g(q2)}, g(q2)〉,
〈H ∪ {g(q3)}, g(q3)〉.

• Let S be a set of microsolutions such that (i) S is a set of
singleton microsolutions and (ii) {〈H∪{q(p3)}, q(p3)〉, 〈H∪
{g(q3)}, g(q3)〉} 6⊂ S. Every S is a potential solution.

• Let S1 = {〈H∪{g(p1)}, g(p1)〉, 〈H∪{g(p2)}, g(p2)〉, 〈H∪
{q(p3)}, q(p3)〉, 〈H ∪ {g(p1), g(p2), q(p3)}, g(p)〉}, so that
S1 is a potential solution and every member of ℘S1 is a
potential solution as well, where ℘S1 is a powerset of S1.

• Let S2 = {〈H ∪{g(q1)}, g(q1)〉, 〈H ∪{g(q2)}, g(q2)〉, 〈H ∪
{g(q3)}, g(q3)〉, 〈H ∪ {g(q1), g(q2), g(q3)}, g(q)〉, 〈H ∪
{g(q1), g(q2), g(q3)}, g(p)〉}, so that S2 is a potential
solution and every member of ℘S2 is a potential solution as
well.

Remark that any set of microsolutions that has both 〈H ∪
{q(p3)}, q(p3)〉 and 〈H ∪ {g(q3)}, g(q3)〉 cannot be a potential
solution because H ∪ {q(p3), g(q3)} τ̀ ⊥. �

Given an R̄, every member pl of Source(R̄) gives a
microsolution 〈pl, pl〉, so that every nonempty R̄ has at least
one potential solution. Not all potential solutions are equally
interesting: we want to find the largest potential solutions
in an R̄. To do that, we can start with a potential solution
S and add microsolutions to it. The question is, given S,
which microsolution can we add to S while still keeping it a
potential solution? We can add microsolutions to a potential
solutions as long as doing so does not result in inconsistency.
We consequently have a preferred potential solution as a
potential solution that is maximal w.r.t. set inclusion.

Definition III.25. Preferred Potential Solution. If S is a
potential solution of R̄, then S is also a preferred potential
solution for R̄ iff there is no other potential solution S ′ of
R̄ such that S ⊂ S ′.
Example III.26. The R̄ in Figure 4 has two preferred potential
solutions:
• S1 = {〈H ∪ {g(p1)}, g(p1)〉, 〈H ∪ {g(p2)}, g(p2)〉, 〈H ∪
{q(p3)}, q(p3)〉, 〈H ∪ {g(p1), g(p2), q(p3)}, g(p)〉}.

• S2 = {〈H ∪ {g(q1)}, g(q1)〉, 〈H ∪ {g(q2)}, g(q2)〉, 〈H ∪
{g(q3)}, g(q3)〉, 〈H ∪ {g(q1), g(q2), g(q3)}, g(q)〉, 〈H ∪
{g(q1), g(q2), g(q3)}, g(p)〉}.

Remark that each preferred potential solution has all the elements
of the respective refinements of g(p), which were discussed in
Examples II.1 and II.2

As Example III.26 illustrates, an R̄ can have one or more
preferred potential solutions. The question now is which of
the preferred potential solutions gives an admissible solution.
To find the answer, we check which (if any) of the preferred
potential solutions contain all mandatory S-nodes. Recall
that we obtained R̄ from R, so that answering this question
requires that we take into account the is-mandatory relations
from R.

Definition III.27. Admissible Solution. A set S of microso-
lutions from R̄ is an admissible solution for R iff:

1) S is a preferred potential solution of R̄;
2) ∀pli ∈ R such that ∃mj ∈ R, pli = in(mj), there

is a microsolution 〈·, pli〉 in S, i.e., there is for every
mandatory S-node pli from R a microsolution for that
mandatory S-node pli in S.

Example III.28. Suppose that g(p) is the only mandatory S-node in
the r-net shown in Figure 4, then there are two admissible solutions
for that r-net:
• S1 = {〈H ∪ {g(p1)}, g(p1)〉, 〈H ∪ {g(p2)}, g(p2)〉, 〈H ∪
{q(p3)}, q(p3)〉, 〈H ∪ {g(p1), g(p2), q(p3)}, g(p)〉}.

• S2 = {〈H ∪ {g(q1)}, g(q1)〉, 〈H ∪ {g(q2)}, g(q2)〉, 〈H ∪
{g(q3)}, g(q3)〉, 〈H ∪ {g(q1), g(q2), g(q3)}, g(q)〉, 〈H ∪
{g(q1), g(q2), g(q3)}, g(p)〉}.

The above are also the only two preferred potential solutions for
the r-net in Figure 4.

Suppose that both g(p) and g(q) are mandatory in the r-net in
Figure 4. In that case, the r-net has only one admissible solution,
which is S2 above. �

A solution of R is defined as an admissible solution that

has microsolutions for at least some optional and/or preferred
S-nodes in R.

Definition III.29. Solution. A set S of microsolutions from
R̄ is an admissible solution for R iff:

1) S is an admissible solution for R;
2) at least one of the conditions below holds:

a) for an pli ∈ R such that ∃oj ∈ R, pli = in(oj),
there is a microsolution 〈·, pli〉 in S , i.e., there is
for an optional S-node pli fromR a microsolution
for that optional S-node pli in S;

b) for m ≥ 1 and some S-nodes {pl1, . . . , plm} ⊂ R
such that ∃pj ∈ R, {pl1, . . . , plm} = in(pj),
there is in S a microsolution 〈·, pli〉 for every 1 ≤
i ≤ m, i.e., for preferred S-nodes {pl1, . . . , plm}
from R there are microsolutions for each of these
preferred nodes in S.

Example III.30. Suppose that in the r-net in Figure 1(b), g(p) is
the only mandatory S-node, so that both S1 and S2 from Example
III.28 are admissible solutions for that r-net. We see in Figure 1(b)
that there are no optional S-nodes and that g(q3) is preferred to
q(p3), so that S2 is a solution (as it has a microsolution for g(q3))
for that r-net and S1 is not a solution for the same r-net.

Following the discussions above, we can define the
nonmonotonic |v consequence relation.

Definition III.31. Consequence Relation |v. Given an R̄,
an S-node pl in R̄ is a |v-consequence of a set X of S-nodes
of R̄, denoted X |v pl iff there is a microsolution 〈X ′, pl〉
s.t. X ′ ⊆ X .

The set of admissible solutions does not grow mono-
tonically as an r-net increases, which reflects the intuition
that requirements given early on in the process are fre-
quently revised, so that no requirement is ever definite
and stable, but tentative and open to revision. E.g., let R̄
have Source(R̄) = {pl1,k(pl1 → pl2)} so that there is a
microsolution for pl2. Further, let R̄′ have Source(R̄′) =
{pl1,k(pl1 → pl2),k(pl1 ∧ pl2 → ⊥)}. While R̄ had a
microsolution for pl2, R̄′ which has all requirements from R̄
along with other requirements does not have a microsolution
for pl2. If the set of admissible solutions were to grow
monotonically, then the admissible solutions we found in
R̄ would remain among the admissible solutions of R̄′. We
arguably adopt a more realistic stance in Techne, according
to which conflict S-nodes may be added to R̄, so that there
is no guarantee that the admissible solutions from R̄ would
remain the admissible solutions of R̄′.

According to the core ontology for requirements [1], the
requirements problem is this: Given domain assumptions,
goals, quality constraints, softgoals, tasks, and preferences —
some of which are optional or mandatory — in, respectively
K, G, Q, S, T, and P, find parts K∗,T∗,G∗,Q∗,P∗ of these
structures, such that: K∗,T∗ |v G∗,Q∗,P∗, where |v is a non-
monotonic consequence relation, whereby the softgoals (S)

are missing beacuse they are all assumed to be approximated.
How does Techne rewrite the requirements problem? In
Techne, an attitude-free r-net R̄ has domain assumptions (i.e.,
a set K of domain assumption S-nodes), tasks (T), goals (G),
quality constraints (Q), and softgoals (S), so that we have the
information required by the problem formulation. We also
have preferences, is-optional, and is-mandatory relations, but
we leave them outside R̄ and in the corresponding R. Once
we identify solutions in Techne, we have not yet solved the
requirements problem. We need to take two remaining steps.
The first one is as follows: among all solutions we identified,
consider only those in which every source node is either a
domain assumption (i.e., in K) or a task (i.e., in T). This
condition intuitively means that we are taking only solutions
in which the source S-nodes do not need to be refined or
operationalized (i.e., if a goal is a source node, we need
to operationalize it, by identifying tasks the execution of
which satisfies the goal). The second, and final step is to
compare these solutions in the comparison table, and apply a
decision rule in order to rank them based on preferences and
is-optional relations. It follows that in Techne, a solution to
the requirements problem is a Techne solution in which every
source node is either a domain assumption or a task. Finally,
it is emphasized in the definition of the requirements problem
that |v is a non-monotonic consequence relation, which
Techne reflects by having the set of admissible solutions
grow non-monotonically.

D. Dialectical Semantics

Remark III.32. For some given arbitrary set of microsolutions
S = {〈S̄1, pl1〉, . . . , 〈S̄n, pln〉}, we call Base(S) =

⋃n
i=1 S̄i

the base of S. Base(S) can be inconsistent. �
The semantic domain of an r-net is made up of solutions,

all variants of which are a specialization of the potential
solution concept. According to Definition III.23, a set of
microsolutions S = {〈S̄i, pli〉 | 1 ≤ i ≤ n} is a potential
solution iff its base is consistent, i.e., iff Base(S) 6 τ̀ ⊥.
Since every set of microsolutions with a consistent base is a
potential solution, we were interested in preferred potential
solutions: Definition III.25 says that every potential solution
maximal w.r.t. ⊆ is a preferred potential solution. Recall that
the admissible solution and solution concepts are basically
preferred potential solutions which satisfy some additional
properties pertaining to preference, is-mandatory, and is-
optional relations. Since the admissible solution and solution
concepts are defined on top of the potential solution and
preferred potential solution concepts, our discussion below
will remain interested in attitude-free r-nets, in which we are
dealing with potential solutions and their preferred variants
only.

The intuitive idea elaborated in the rest of this section
is that there is another solution concept in Techne, called
robust potential solution, where “robust” has its usual sense:
something is robust if it can withstand stresses, pressures, or

changes in procedure or circumstance. Roughly speaking, a
potential solution will be robust if it includes information
that “defends” that potential solution against information
which is outside of it and disputes the information in the
potential solution. The disputing information may include,
e.g., domain assumptions about exceptions in which some
goals in the potential solution will fail to be satisfied, or tasks
which are not in the potential solution, but which can be
performed in the environment of the system-to-be, and which,
if they are executed, will block some task in the potential
solution to be executed. If a potential solution defends itself,
it protects itself from the disputing information outside of it,
and we can thus say that that potential solution is robust.

We turn to examples first before formalizing robustness.
Example III.33 introduces the idea of robustness via a generic
example which has the benefit of being very simple and yet
highlight the principal intuitions. Example III.34 illustrates
these intuitions in a slightly more complex case, in which
we discuss the robustness of the r-net in Example II.1 (cf.,
Figure 1(a)).
Example III.33. Suppose that we have an R̄ which only has a
single S-node, x(p). We will keep this a generic example, so that
we do not care which proposition p refers to, and it is unimportant
what concept p instantiates (it can be a goal, a task, a softgoal, etc.
— i.e., x ∈ LS). Since R̄ has only x(p):
• R̄ has no Horn domain assumptions, i.e., H = ∅;
• R̄ has a single microsolution, 〈x(p), x(p)〉;
• R̄ has only one potential solution S = {〈x(p), x(p)〉};
• R̄ has only one preferred potential solution, S.
S is a robust potential solution of R̄, clearly, not only because it

is the only potential solution of R̄ but also because there is nothing
in R̄ that is in conflict with S.

We now add the following two S-nodes to R̄:
• y(q), where q refers to some proposition, and y ∈ LS (y can,

but need not be same as x);
• k(φ) ≡ k(x(p) ∧ y(q)→ ⊥), which is a domain assumption

stating that x(p) and y(q) are in conflict.
By adding these two S-nodes to R̄, we obtained R̄′. In terms

of graph syntax, G(R̄′) is as shown below:

x(p) // C y(q)oo

We can say the following about R̄′:
• R̄′ has one Horn domain assumption, i.e., H ′ = {k(φ)};
• R̄′ has two microsolutions: 〈H ′ ∪ {x(p)}, x(p)〉 and 〈H ′ ∪
{y(q)}, y(q)〉;

• R̄′ has two potential solutions: Sp = {〈H ′ ∪ {x(p)}, x(p)〉}
and Sq = {〈H ′ ∪ {y(q)}, y(q)〉};

• Sp and Sq are the only two preferred potential solutions of
R̄′.

It is important to observe above that the only difference between
S and Sp is that the microsolution 〈x(p), x(p)〉 in S “became” the
microsolution 〈H ′ ∪ {x(p)}, x(p)〉 only by adding H ′ to it.

Intuitively, we had the potential solution S above, and then
“found out” (came upon, discovered) y(q) and that y(q) and x(p)
cannot hold together, as k(φ) tells us. We thus end up in R̄′ with
two preferred potential solutions. Now, we could say that x(p) is
preferred to y(q). Preference of x(p) over y(q) would have us
choose Sp over Sq , yet that would be an uncomfortable choice,

since it is one that ignores the presence of the information (i.e., y(q)
and k(φ)) that disputes the chosen option Sq . If we do choose Sp,
we have chosen a (preferred) potential solution which is not robust.
To choose instead a robust option we can keep the preference of
x(p) over y(q) and make robust the potential solution that has x(p)
by adding information that disputes the disputing information; we
can do that by adding the following two S-nodes to R̄′:
• z(r), where r refers to some proposition, and z ∈ LS (z can,

but need not be same as any of x or z);
• k(ψ) ≡ k(y(q) ∧ z(r)→ ⊥), which is a domain assumption

stating that y(q) and z(r) are in conflict.
By adding these two S-nodes to R̄′, we obtain R̄′′. In terms of

graph syntax, G(R̄′′) is as shown below:

x(p) // C y(q)oo // C z(r)oo

We can say the following about R̄′′:
• R̄′′ has two Horn domain assumptions, i.e., H ′′ =
{k(φ), k(ψ)};

• R̄′′ has three microsolutions:
– 〈H ′′ ∪ {x(p)}, x(p)〉,
– 〈H ′′ ∪ {y(q)}, y(q)〉,
– 〈H ′′ ∪ {z(r)}, z(r)〉,

• R̄′′ has four two potential solutions:
– Sp = {〈H ′′ ∪ {x(p)}, x(p)〉},
– Sq = {〈H ′′ ∪ {y(q)}, y(q)〉},
– Sr = {〈H ′′ ∪ {z(r)}, z(r)〉},
– Spr = Sp ∪ Sr .

• Sq and Spr are the only two preferred potential solutions of
R̄′′.

Spr is reinforced, and robust in the sense that we have added
information to R̄′ that ends up being consistent with x(p) and
inconsistent with y(q). We say that Spr is robust w.r.t. y(q). �
Example III.34. Figure 1(a) shows the r-net presented in Example
II.1. Observe that that r-net R has no preference, is-optional, and
is-mandatory relations, so that R = R̄. Moverover, it is easy to
see that:
• H = {k(φ1)};
• there are four microsolutions in R̄: S =
{〈H ∪ {g(p1)}, g(p1)〉, 〈H ∪ {g(p2)}, g(p2)〉, 〈H ∪
{q(p3)}, q(p3)〉, 〈H ∪ {g(p1), g(p2), q(p3)}, g(p)〉};

• every member of ℘S is a potential solution.
Suppose that we have the following two domain assumptions:
• “k(r): For comparable music delivery systems, bandwidth

cost grows faster then advertising revenue.”,
• “k(ψ3) ≡ k(k(r) ∧ q(p3) ∧ g(p) → ⊥): It is impossible to

generate revenue from the audio player (g(p)) and maintain the
player free to all users (q(q3)) while for comparable systems
bandwidth cost grows faster then advertising revenue (k(r))”.

What happened above is that we added new information k(r)
and k(ψ3) to R̄, obtaining thereby another attitude-free r-net R̄′,
in which there is a conflict between g(p), q(q3), and k(r). Given
R̄′, it is not difficult to establish that:
• H ′ = {k(φ1), k(ψ3)};
• microsolutions in R̄ are: S ′ = {〈H ′∪{g(p1)}, g(p1)〉, 〈H ′∪
{g(p2)}, g(p2)〉, 〈H ′ ∪ {q(p3)}, q(p3)〉, 〈H ′ ∪
{g(p1), g(p2), q(p3)}, g(p)〉}, 〈H ′ ∪ {k(r)}, k(r)〉;

• all members of ℘S ′ which do not include g(p), q(q3), and
k(r) together are potential solutions of R̄′;

• ℘S ⊂ ℘S ′ so that all potential solutions of R̄ are also
potential solutions of R̄′ — stated otherwise, the set of

potential solutions grows monotonically (we will discuss this
observation in more detail later).

It is critical to understand what happened when we moved from
R̄ to R̄′. Firstly, observe that we obtained R̄′ by adding information
to R̄; we removed nothing from R̄. Secondly, recall that R̄ showed
an AND-refinement of g(p), and since it had no conflicts, it showed
a preferred potential solution for g(p): S is that preferred potential
solution. Thirdly, S is also a preferred potential solution of R̄′
because we obtained R̄′ by adding only information which generates
a conflict with parts of S . Now, what that new information does is
that it disputes S , in that the only thing this new information says
is that it is impossible to generate revenue from the audio player
(g(p)) and maintain the player free to all users (q(q3)) while for
comparable systems bandwidth cost grows faster then advertising
revenue (k(r)).

What happened when we moved from R̄ to R̄′ is that we added
to R̄ information which disputes the preferred potential solution S
which we found in R̄. Now, it is clear that S is a preferred potential
solution of R̄′ as well, but the interesting question is would we be
satisfied with S given R̄′? We could, of course, since S indeed is a
preferred potential solution of R̄′, but doing so goes against a very
basic observation, namely, that if we are content with S given R̄′,
we are ignoring that there is information that disputes S. Stated
otherwise, S is not robust.

To obtain a robust preferred potential solution, say, S ′′, we need
to make sure that S ′′ “defends itself” from the disputing information.
We do this by strengthening S, and one way we can strengthen it
is by adding the following information to R̄′, which results in R̄′′:
• “g(r1): Reduce bandwidth costs.”
• “g(r2): Sign partnership agreements with bandwidth owners.”
• “k(ψ5) ≡ k(g(r2) → g(r1)): Partnerships with bandwidth

owners reduce bandwidth costs.”
• “k(ψ4) ≡ k(g(r1) ∧ k(r) → ⊥): It is impossible for

bandwidth cost to grow faster then advertising revenue when
bandwidth cost is reduced.”

If we add the four S-nodes above to R̄′, we obtain R̄′′, in which:
• H ′′ = {k(φ1), k(ψ3), k(ψ4), k(ψ5)};
• S ′′ = {〈H ′′∪{g(p1)}, g(p1)〉, 〈H ′′∪{g(p2)}, g(p2)〉, 〈H ′′∪
{q(p3)}, q(p3)〉, 〈H ′′∪{g(p1), g(p2), q(p3)}, g(p)〉}, 〈H ′′∪
{k(r)}, k(r)〉, 〈H ′′∪{g(r2)}, g(r2)〉, 〈H ′′∪{g(r2)}, g(r1)〉.

S is a potential solution of R̄′′, but is not a preferred potential
solution of it, since we added some information that does not
conflict with S , namely g(r1), g(r2) and k(ψ5). Instead, a preferred
potential solution is: Sx = S ′′\{〈H ′′∪{k(r)}, k(r)〉}. What makes
Sx interesting is that it now includes the initial AND-refinement
of g(p) and also the goal to reduce bandwith costs g(r1) via
partnership agreements g(r2), which goes against k(r) via k(ψ4).

We started thus from a potential solution, learned that under
some conditions (k(r)) it is not robust, and made it robust by
requiring that an additional goal be satisfied (g(r2)). We went from
a potential solution S that was not robust to one that is, Sx. �

Once we can compare potential solutions of a given R̄ in
terms of robustness, we are no longer interested in preferred
potential solutions of R̄, but in those which we can make or
which are robust. Moreover, not all potential solutions are
equally robust, and just how robust a potential solution is
will depend on which disputing information it can defend
itself from.

The question of interest at this point is: How to find robust
potential solutions in some given R̄? Roughly speaking,
the idea is to define a relation between consistent sets of

potential solutions, called the attack relation, and then look
at how potential solutions defend itself from attacks of
other potential solution, whereby how robust a potential
solution is will depend on “how well” it defends itself.
We proceed to explain in detail and formalize this idea
in several steps below. Firstly (§III-D1), we introduce the
attack relation between consistent sets of potential solutions
(and in some special cases, between individual potential
solutions, or between individual microsolutions). We then
show that consistent sets of potential solutions together with
the attack relation between them can be understood as an
abstract argumentation framework, so that any R̄ can be
redefined as an abstract argumentation framework (§III-D2).
This link to abstract argumentation frameworks leads us to
define what a robust potential solution is, and explain how
to build one from a potential solution (§III-D3). We finally
show that dialectical reasoning plays a fundamental role in
the modeling or requirements by relating robust potential
solutions to Dung’s extensions of abstract argumentation
frameworks [9] (§III-D4).

1) Attack Relation: Potential solutions attack each other
when the union of their bases is inconsistent. It follows
that the attack relation is not a primitive, but reflects the
presence of inconsistency. This begs the question of why
we need the attack relation at all, since we already have the
conflict relation. Convenience in the presentation of results
below is a secondary motivation, the principal one being
that the notion of attack plays a central role in abstract
argumentation, so that having an attack relation lets us
establish more straighfrowardly the link between r-nets and
abstract argumentation frameworks.

Definition III.35. Attack Relation. Two consistent sets of
potential solutions, X = {S1, . . . ,Sn |

⋃n
i=1 Base(Si) 6 τ̀

⊥} and Y = {Sn+1, . . . ,Sn+m |
⋃n+m
i=n+1 Base(Si) 6 τ̀ ⊥}

attack each other, denoted X A−→ Y , iff
⋃n+m
i=1 Base(Si) τ̀

⊥, for n ≥ 1 and m ≥ 1.

Remark III.36. Suppose that {S1, . . . ,Sn |
⋃n
i=1 Base(Si) 6 τ̀

⊥} and {Sn+1, . . . ,Sn+m |
⋃n+m
i=n+1 Base(Si) 6 τ̀ ⊥} attack

each other. We can say that potential solutions attack each
other, or that microsolutions attack each other in the following
cases:
• if n = m = 1, then we have two potential solutions S1

and S2 which attack each other, S1
A−→ S2 and :

– also S2
A−→ S1, i.e., attack is symmetric;

– at least some of the microsolutions in S1 are not
acceptable w.r.t. S2, and vice-versa, i.e., at least
some members of S2 are not acceptable w.r.t. S1;

– S1 ∪ S1 is not a potential solution.
• if n = m = 1 and |S1| = |S2| = 1, then two

microsolutions (one in each of S1 and S2) attack each
other, i.e., 〈S̄1, pl1〉

A−→ 〈S̄2, pl2〉.
The remarks above illustrate that attack is a relation

that holds between different structures that are internally
consistent — i.e., between microsolutions, potential solutions,
or consistent sets of potential solutions — but produce
inconsistency when put together. �
Remark III.37. The attack relation between two potential
solutions, e.g., SA

A−→ SB is specialized as follows:
• An attack is called a many-to-many attack of SA on
SB iff ∃S ′A ⊆ SA, S ′B ⊆ SB such that Base(S ′A) ∪
Base(S ′B) τ̀ ⊥ and |S ′A| > 1 and |S ′B | > 1.

• An attack is called a one-to-many attack of SA on
SB iff ∃S ′A ⊆ SA, S ′B ⊆ SB such that Base(S ′A) ∪
Base(S ′B) τ̀ ⊥ and |S ′A| = 1 and |S ′B | > 1.

• An attack is called a many-to-one attack of SA on
SB iff ∃S ′A ⊆ SA, S ′B ⊆ SB such that Base(S ′A) ∪
Base(S ′B) τ̀ ⊥ and |S ′A| > 1 and |S ′B | = 1.

• An attack is called a one-to-one attack of SA on SB
iff ∃S ′A ⊆ SA, S ′B ⊆ SB such that Base(S ′A) ∪
Base(S ′B) τ̀ ⊥ and |S ′A| = 1 and |S ′B | = 1.

The one-to-one and many-to-one attack relations can be
further specialized by looking into the microsolutions that
participate in the attack:
• An (one-to-one or many-to-one) attack of SA on SB =
{〈S̄j , plj〉} is also a rebutal iff Base(S ′A) ∪ {plj} τ̀ ⊥.

• An (one-to-one or many-to-one) attack of SA on SB =
{〈S̄j , plj〉} is also an undercut iff Base(S ′A)∪{plj} 6 τ̀ ⊥
and Base(S ′A) ∪ S̄j τ̀ ⊥. �

Example III.38. Several simple examples of attack relations are
given below:
• Many-to-one rebutal: Suppose that we have three microsolu-

tions 〈H∪{pl1}, pl1〉, 〈H∪{pl2}, pl2〉, and 〈H∪{pl3}, pl3〉,
and that H = {k(pl1 ∧ pl2 ∧ pl3 → ⊥)}. The three
microsolutions cannot appear together in a potential solution,
but any pair or single one of them can. E.g., S = {〈H ∪
{pl1}, pl1〉, 〈H∪{pl2}, pl2〉} attacks 〈H∪{pl3}, pl3〉, because
H ∪ {pl1, pl2} ∪ {pl3} τ̀ ⊥, i.e., there is a many-to-one
rebutal on 〈H ∪ {pl3}, pl3〉 from S by 〈H ∪ {pl1}, pl1〉 and
〈H ∪ {pl2}, pl2〉.

• Many-to-one undercut: Suppose that we have three microsolu-
tions 〈H∪{pl1}, pl1〉, 〈H∪{pl2}, pl2〉, and 〈H∪{pl3}, pl4〉,
and that H = {k(pl1 ∧ pl2 ∧ pl3 → ⊥), k(pl3 → pl4)}. The
three microsolutions cannot appear together in a potential solu-
tion, but any pair or single one of them can. There is a many-
to-one undercut attack on 〈H∪{pl3}, pl4〉 by 〈H∪{pl1}, pl1〉
and 〈H ∪ {pl2}, pl2〉, because H ∪ {pl1, pl2} ∪ {pl3} τ̀ ⊥
and pl3 6= pl4.

• One-to-one rebutal: In Figure 1(b), 〈H ∪ {g(q3)}, g(q3)〉
attacks 〈H ∪ {q(p3)}, q(p3)〉 and the attack is a rebutal
because k(g(q3) ∧ q(p3) → ⊥) = k(ψ1) is in the r-net
shown in that figure, i.e., k(ψ1) ∈ H .

• One-to-one undercut: In Figure 1(b), 〈H∪{g(q3)}, g(q3)〉 un-
dercuts 〈H ∪ {g(q1), g(q2), g(q3)}, g(q)〉, because k(g(q3)∧
q(p3)→ ⊥) = k(ψ1) is in the r-net shown in that figure, i.e.,
k(ψ1) ∈ H and g(q3) 6= g(q). �

We said above that A−→ is not primitive, and Proposition
III.39 justifies that claim by showing that two consistent
sets of potential solutions will attack each other if and
only if parts of the potential solutions in the two sets

have microsolutions such that the union of their bases is
inconsistent. Stated otherwise, attack between some internally
consistent structures (be they microsolutions, or sets of
microsolutions, i.e., potential solutions, or sets of potential
solutions) simply reflects the presence of conflict between
S-nodes in these structures.

Proposition III.39. There is an attack relation between
two potential solutions SA and SB of R̄, such that S̄A ∈
Base(SA) and S̄B ∈ Base(SB) if and only if there is a
conflict between S̄A and S̄B in an R̄.

Proof: (Trivial.) There is a conflict between S̄A and S̄B in an
R̄ iff H ∪ S̄A ∪ S̄B τ̀ ⊥. Since H is in every potential solution
of R̄, it follows that if S̄A ∈ Base(SA) and S̄B ∈ Base(SB), then
Base(SA) ∪ Base(SB) τ̀ ⊥, i.e., SA and SB attack each other.

Proposition III.39 concerns only cases in which the two
sets of potential solutions that attack each other are singletons.
This case is chosen to keep notation simple, and because
it is obvious how to extend Proposition III.39 to the case
in which the two sets of potential solutions that attack each
other are not singletons.

2) Techne Argumentation Framework: Having defined the
attack relation between consistent sets of potential solutions,
we now turn to the fundamental role of argumentation in
the definition and identification of robust potential solutions.
This role becomes apparent by defining what we will call
Techne argumentation framework.

Definition III.40. Techne Argumentation Framework.
(Arg, A−→) is a Techne argumentation framework, where:
• Arg = {A1, . . . ,An};
• ∀1 ≤ k ≤ n, Ak = {S1, . . . ,Sn |

⋃n
i=1 Base(Si) 6 τ̀

⊥};
• every Si in every Ak is a potential solution;
•

A−→⊆ Arg× Arg.

Remark III.41. As a convention, we call Arg the set of
arguments, and every member Ak of that set is called an
argument. Every argument is a consistent set of potential
solutions. A−→ is the attack relation between arguments.
Remark that every structure made up of microsolutions that
are together not inconsistent is an argument: an argument can
be a single microsolution, a conflict-free set of microsolutions
(i.e., a potential solution), or a consistent set of potential
solutions. �

A TAF = (Arg, A−→) corresponds to an abstract argumen-
tation framework AF(TAF) = (AR, attacks) as follows:

1) AR = Arg, and
2) A−→≡ attacks.
To be sure that this correspondence is meaningful, we

must show that there is equivalence between members of the
semantic domain of the the Techne argumentation framwork
and the corresponding abstract argumentation framework. We
will show this later (§III-D4) in relation to Dung’s abstract
argumentation.

What remains to be done here in relation to TAFs is
to substantiate the claim made earlier, that any R̄ can be
redefined as an abstract argumentation framework. Obviously,
such redefinition is only interesting as long as nothing gets
lost in the process.

Recall that R̄ is a set of S-nodes and R-nodes, and that it
lacks all preference, is-optional, and is-mandatory relations.
The R-nodes in R̄ are consequently either I-nodes that
capture steps in proofs (i.e., inference steps), and C-nodes
which indicate which sets of S-nodes are inconsistent. All
S-nodes S̄ of R̄ are partitioned onto source and derived
S-nodes: Source(R̄) are all S-nodes which, in terms of graph
syntax, have no incoming edges in R̄, or in terms of symbolic
syntax, they are asserted nodes, those for which no proofs
are given. An S-node pl is derived iff Source(R̄) τ̀ pl. Since
we do not prove Horn domain assumptions, H ⊆ Source(R̄),
and hence, S̄ \ Source(R̄) is the set of derived S-nodes.

The definition of the microsolution concept (cf., Definition
III.20) tells us that in 〈S̄i, pli〉, S̄i ⊆ Source(R̄). It follows
that every microsolution of R̄ is a proof from some subset of
the source S-nodes of R̄. We know that every potential
solution of R̄ is made up of microsolutions of R̄ (cf.,
Definition III.23), so that every potential solution is made up
of proofs from Source(R̄). It is consequently clear that once
we know Source(R̄), we can build the Techne argumentation
framework for that R̄ — no other information is needed. We
synthesize this in Proposition III.42.

Proposition III.42. (1) There is for every R̄ a unique
corresponding Techne argumentation framework TAF(R̄),
and (2) for every Techne argumentation framework, there is
a unique corresponding R̄.

Proof: (Trivial, from definitions.)

1) Given an R̄, we know Source(R̄). Let M = {〈S̄i, pli〉 |
S̄i ⊆ Source(R̄)}, i.e., M is the set of all microsolutions in
R̄. Obviously, every potential solution Sj of R̄ is a subset of
or equal to M , i.e., ∀j, Sj ⊆M . It follows that Arg ⊆ ℘M ,
and hence there is for every R̄ a unique corresponding Techne
argumentation framework TAF(R̄) = (Arg, A−→).

2) Given a Techne argumentation framework TAF(R̄) =

(Arg, A−→), we know that every member of Arg is a set
of potential solutions, and thus, a set of microsolutions.
Let {〈S̄1, pl1〉, . . . , 〈S̄n, pln〉} be the set of microsolutions
appearing in potential solutions, and thus in Arg. It follows
that we can define an R̄ by defining Source(R̄) =

⋃n
i=1 S̄i.

It follows that for every Techne argumentation framework,
there is a unique corresponding R̄.

3) Robust Potential Solutions: The semantic domain of
an R̄ is made up of potential solutions, themselves sets of
consistent microsolutions. Some of the potential solutions
are subsets of others. Stated otherwise, the semantic domain
of an R̄ is the structre (PS(R̄),⊆), where PS(R̄) is the set
of all potential solutions of R̄, i.e.:

PS(R̄) = {Si | 1 ≤ i ≤ n,
∀i, j, 〈S̄j , plj〉 ∈ Si, S̄j ⊆ Source(R̄)}

and ⊆ is a binary relation over PS(R̄) that is reflexive,
antisymmetric, and transitive (i.e., a partial order). We used
(cf., Definition III.25) to define a preferred potential solution
as any potential solution that is not a strict subset of another
in PS(R̄), i.e., Si is a preferred potential solution iff 6 ∃Sj ∈
PS(R̄) such that Si ⊂ Sj .

Neither the potential solution nor the preferred potential
solution concepts have much to do with robustness. This is
because the only requirement that a set of microsolutions
must satisfy in order to be called a potential solution is
that it is not inconsistent. In Examples III.33–III.34 we had
(preferred) potential solutions which were not robust: e.g.,
Sp in Example III.33 and S in Example III.34.

To introduce the notion of robustness, we define a robust
potential solution as follows.

Definition III.43. Robust Potential Solution. A set of
arguments is a robust potential solution, S iff S defends
every one of its members.

Definition III.44. Defense. Given TAF(R̄) = (Arg, A−→), a
set of arguments S ⊆ Arg defends A ∈ Arg iff ∀A′ ∈ Arg
such that A′ A−→ A, then ∃A′′ ∈ S and A′′ A−→ A′.

Example III.45. In Example III.33, let A = {Sp}, A′ = {Sq} and
A′′ = {Sr}, so that A′ A−→ A and also A′′ A−→ A′. It follows that
S = {Spr} is a robust potential solution, because it defends its
members from attacking arguments.

Proposition III.46. Every robust potential solution S of R̄
is a potential solution, i.e., S ∈ PS(R̄).

Proof: (Obvious.) A robust potential solution S is a set of
arguments that defends every one of its members, so that no
argument in S attacks another argument in S. S is thus a set
of arguments that is not inconsistent, and hence a set of potential
solutions that are not inconsistent. A set of potential solutions that
is not inconsistent is itself a potential solution.

Proposition III.46 states that some potential solutions are
in fact robust potential solutions, i.e., that robust potential
solutions are a subset of all potential solutions, as a robust
potential solution is not inconsistent (hence, every robust
potential solution is a potential solution) and it satisfies an
additional property, namely, that it defends its members from
attacking arguments. It follows that some S is a preferred
robust potential solution iff there is in PS(R̄) no other robust
potential solution S′ such that S ⊂ S′.

Once we have defined robust potential solutions, we are
evidently interested in building them (e.g., from potential
solutions), and in moving from only a robust potential
solution to a preferred robust potential solution. Both of
these tasks proceed in a way that is analogous to that
applied to move from a potential solution to a preferred

potential solution. We saw earlier (cf., §III-C) we can add a
microsolution to a potential solution S iff S together with
the microsolution are not inconsistent. Rather than making
A being acceptable w.r.t. a S if S ∪ {A} is not inconsistent,
we say that A is accetable w.r.t. S iff S defends A from the
arguments that attack A.

Definition III.47. Acceptable Argument. An argument A is
acceptable w.r.t. a robust potential solution S iff S defends
A from every argument that attacks A.

Following Definition III.47, if we are given a robust
potential solution S, we can verify whether it it is also
a preferred robust potential solution by checking if there are
arguments outside S that are acceptable w.r.t. S. If there are
no such arguments, then S is a preferred robust potential
solution; otherwise, we can add these arguments to S to
obtain a preferred potential solution.

4) Fundamental Role of Abstract Argumentation in Techne:
We introduced up to this point a semantic domain for attitude-
free r-nets, and defined a number of solution concepts, the
instances of which are members of the semantic domain.
Potential solution is the basic one, the specializations of
which are the preferred potential solution and robust potential
solution concepts. We finally gave conditions for an instance
of the robust potential solution concept to be also an instance
of the concept of preferred robust potential solution. Because
finding robust potential solutions requires us to check whether
a potential solution defends its members from outside attacks,
we say that semantics are dialectical.

We said earlier that a Techne argumentation framework
TAF(R̄) for an R̄ corresponds to an abstract argumentation
framework AF(TAF(R̄)). The conversion from the former
to the latter is meaningful if and only if members of their
semantic domains are equivalent. To show that the conversion
is meaningful is to show that an TAF is a special case
of Dung’s abstract argumentation framework AF, and thus,
intuitively, that the search for robust potential solutions is
a dialectical process, in which arguments are confronted to
determine which of them should be accepted, and which
rejected.

Dung’s abstract argumentation framework [9] is a structure
of the form AF = (AR, attacks), where AR is a set of
primitive (undefined) structures called arguments, and attacks
is a binary relation between arguments. The semantic domain
of AF is made up of extensions, which are conflict-free sets
of arguments, i.e., sets of arguments which do not attack
each other. The central notion is that of acceptability of an
argument, whereby A ∈ AR is acceptable w.r.t. a set X of
arguments iff for each argument B ∈ AR: if B attacks A
then B is attacked by S. A conflict-free set X of arguments
is admissible iff it each argument in X is acceptable w.r.t.
X . It is enough to know this in order to offer the following
proposition.

Proposition III.48. There is for every Techne argumenta-
tion framework TAF(R̄) a corresponding Dung’s abstract
argumentation framework AF(TAF(R̄)) such that every
robust potential solution of R̄ is an admissible extension of
AF(TAF(R̄)).

Proof: (Trivial, from definitions.) A robust potential solution
of R̄ is a set of arguments that defends every one of its members
(cf., Definition III.43). An admissible extension of an abstract
argumentation framework is a conflict-free set of arguments in
which every argument is acceptable w.r.t. to that set. As a robust
potential solution defends all of its arguments, it is a conflict-free
set of arguments and every argument in it is acceptable w.r.t. to that
robust potential solution. There is consequently for every robust
potential solution of R̄ an admissible extension of AF(TAF(R̄)).

IV. RELATED WORK

Surveys of RE research — from van Lamsweerde [10]
and Robinson et al. [11] in particular — confirm Zave and
Jackson’s [7] prior observation that the field had already in
the 1980s left behind simplistic approaches to understanding
what a system-to-be would do in favor of novel and varied
terminology, methods, languages, tools, and issues considered
to be critical. One constant is the observation that RMLs
play a central role in both research and practice of RE. It
does not require much knowledge of the field to see that
many research efforts that fall within Zave’s classification
[12] relate in one way or another to one or more RMLs;
e.g., elicitation of information from stakeholders, validation,
specification, checks for incompleteness and inconsistency,
all suppose that some model of requirements is available.

Despite the important position that RMLs play in RE, there
are no widely-accepted and precise standards that a formalism
must satisfy in order to be called an RML. The evolution
of RMLs seems to be one of testing of and converging on
similar ideas (e.g., we find refinement in one way or another
in most, if not all RMLs), rather then the design of formalisms
following clear desiderata. We will highlight some of these
key ideas in the rest of this section and position Techne in
relation to them.

A. Specification Languages as RMLs

Highly developed languages for the specification of the
properties of a system-to-be — i.e., formal methods such as Z,
VDM, Larch, temporal logic, CSP, transition axioms, among
others (e.g., [13], [14]) — have been available alongside
most RMLs, and they have been used to perform some of the
tasks of RMLs. However, it was recognized and now seems
to be common knowledge, that there is a “need to distinguish
between specification languages, [...] and modeling languages,
which aspire to offer facilities for the description of settings,
or more precisely, humans’ knowledge/beliefs about these
worlds [i.e., environment of the system-to-be]. This is a
philosophical and psychological point which has profound
implications for requirements language designers and users

alike, as well as the requirements discourse.” [15] If one
sees — as in this paper — an RML as made of three parts,
then specification languages seem inconvenient despite their
sophistication, for they fail to include principles for the
organization of their artifacts in a way that facilitates the
definition of the requirements problem, its understanding
by, clarification for, and negotiation between the systems’
stakeholders. That organization is an aim of the ontology
which in an RML states what kinds of information the
engineer is dealing with. The ontology serves as a filter
through which to distinguish the roles that pragmatically
different kinds of information have with regards to the
properties of the environment and of the system-to-be. The
second part of the RML, the models that RMLs produce
facilitate the communication between the stakeholders and
engineers. Finally, the reasoning that can be performed over
these models answers relevant questions on the presence
of inconsistencies and of the solutions to the requirements
problem.

Though requirements can ultimately be rewritten as states
and transitions via specification languages when resources
allow, this changes in no way the prima facie evidence that
stakeholders do not provide information in such a form that
system’s states and transitions can immediately be recognized.
RMLs have the difficult task to bridge the messy informal first
steps in information systems engineering and those in which
rigorous application of formal methods, and thus specification
languages becomes feasible.

B. Original RML

That there is more to writing requirements than func-
tional specification was recognized in the original RML [4]
(hereafter ORML), “a notation for requirements modeling
which combines object-orientation and organization, with
an assertional sublanguage used to specify constraints and
deductive rules” [15]. Formal semantics is given to ORML
via a mapping from its descriptions to assertions in first
order logic (hereafter FOL). One thereby obtains facilities
for the structuring and organization of FOL theories. The
ontology in ORML distinguishes between entities, activities,
and assertions. The ontology was judged limited [15] and
responses to limitations went in two directions. RMLs such as
KAOS and i* took the direction in which the ontology remains
fixed (i.e., one cannot add or remove concepts when applying
the RML) but include more concepts, designed to cover
concerns such as the desires of the system’s stakeholders
(see below). The other direction was adopted in Telos [16]
and consists of leaving the ontology undefined, while having
in the language the facilities needed to define the ontology.
The second approach is more expressive, but its abstraction
makes it difficult to provide methodological guidance which
can be given when a fixed set of concepts is known and
manipulated every time the language is used.

C. KAOS

“The overall approach taken in KAOS has three compo-
nents: (i) a conceptual model for acquiring and structuring
requirements models, with an associated acquisition language,
(ii) a set of strategies for elaborating requirements models
in this framework, and (iii) an automated assistant to
provide guidance in the acquisition process according to such
strategies.” [5] The conceptual model specifies the ontology
in KAOS, which includes a number of concepts (object, oper-
ation, agent, goal, obstacle, requisite/requirement/assumption,
scenario) and relations (specialization, refinement, conflict,
operationalization, concern, and so on) [5], [17], [18]. A
KAOS model of requirements instantiates the concepts, relates
these instances, declares instances’ properties which are
relevant to the elaboration/transformation of the model, and
allows the engineer to formally define the instance as a theory
of linear temporal FOL. In light of ORML and specification
languages, KAOS can be understood as a framework (i.e., a
combination of an RML and of a methodology for the use of
that RML) which is defined on top of linear temporal FOL that
serves as a specification language in KAOS. ORML and KAOS
are thus similar, as both aim to facilitate the organization of
logical theories via the classification of theories as instances
of predefined concepts, and the definition of concept instances
as logical theories.

D. I-Star (i*), Tropos, and Formal Tropos

i* [19], [6] is an RML that distinguishes itself strongly
from those mentioned above both in its design and its focus.
In terms of design, i* is not defined on top of a specification
language. The focus of i* is on the interdependencies of
actors within a socio-technical system, their individual and
joint goals, tasks, and available or necessary resources, the
roles they occupy. A model of requirements made with i*
aims to be a snapshot of the intentional states of actors, along
with what roles they adopt, and how they depend on each
other for the satisfaction of individual and joint goals, the
performance of tasks, and use of resources. The system-to-
be or its components are actors alongside individuals and
groups. In contrast to both ORML and KAOS, the engineer
cannot formally verify the satisfaction of requirements (i.e.,
check if a system’s properties satisfy goals [10]) via an
i* requirements model; the closest the engineer can do
is validate them instead via informal discussion with the
stakeholders. It is perhaps this departure from specification
languages as foundations for RMLs that led to considerable
work on i*. It is a lightweight RML, the non-formal character
of which makes it easy to learn and use, a critical feature
given that requirements must be validated by stakeholders
who cannot be expected to manipulate artifacts produced
with specification languages.

Tropos [20], a methodology for information systems
engineering uses i* as its RML at the very first steps of the RE
process, when it is impractical to start writing formal theories

in a variant of FOL or another formalism. Once i* models
of the system-to-be within its organizational environment
are available, Tropos explains how to proceed towards data
and behavior models of the system-to-be. Formal Tropos
[21] continued the tradition of giving formal semantics to
RMLs by mapping instances of i* concepts and relations
between them (i.e., i* requirements models) to theories of
linear temporal FOL. An important contribution of Formal
Tropos was to “demonstrate that formal analysis techniques
are useful during early development phases. The novelty of
the approach lies in extending model checking techniques —
which rely mostly on design-inspired specification languages
— so that they can be used for early requirements modeling
and analysis.” [21]

E. Techne

Techne is an RML designed for use in the very early steps
of the RE process, when the requirements problem for the
system-to-be is still unclear. The purpose of Techne is to
help the structuring of the requirements problem and prelim-
inary identification of alternative solutions along with their
comparative evaluation. This early use makes it necessary
to stay with simple means of knowledge representation, and
straightforward rules of inference, which led us to adopt
propositional logic instead of a predicate logic, and to adopt
resolution as the only rule of inference.

Techne is consequently quite different from ORML, KAOS,
and Formal Tropos. ORML obtains formal semantics via
the mapping of its models/descriptions to FOL. In KAOS
requirements models, formal definitions of concept instances
have formal semantics via their writing in linear temporal
FOL, and some relations, such as refinement do have formal
definitions. In Formal Tropos, instances of i* concepts
are — similarly to KAOS — defined in linear temporal
FOL. ORML and KAOS are object-oriented, featuring the
specialization relation. Techne is not object-oriented and
does not incorporate the specialization relation. Atoms in
Techne are propositions, and given the purpose of Techne,
these propositions are likely to be written as sentences of
natural language.

Techne and i* differ in several respects. i* has no notion
of conflict, preference or mandatory/optional requirements,
no formal semantics, and thus has no precise notion of
what a solution to the requirements problem is. Alternative
decompositions of a goal are compared in terms of their
contributions to softgoals. Techne keeps softgoals, but due to
the vagueness of softgoal instances [22], [1] we require that
they are approximated, i.e., “refined” by other non-softgoals,
among which preference relations can be added to indicate
which satisfy the softgoal in more desirable ways than others.
Techne has no concepts pertaining to actors and roles.

Giorgini et al. [23] recognized the need to formalize
goal models so as to automatically evaluate the (degree
of) satisfaction of goals. Their goal models are AND/OR

graphs, in which nodes are goals, and a number of relations
is provided to indicate if the interaction is positive or negative
(i.e., how the satisaction of a goal influences the satisfaction
of the other goal related to it), as well as to specify the
strength of the interaction. Techne uses preferences to indicate
in the relative degrees of satisfaction (cf., Example II.5), while
quantiative estimates of satisfaction levels cannot be used.
Goal models from Giorgini et al. do not incorporate the notion
of conflict as inconsistency, they do not include concepts
other than goals, cannot distinguish optional from mandatory
requirements, and have no notion of robust solutions.

V. CONCLUSIONS

Techne is an RML designed to assist knowledge repre-
sentation and decision making during the very early stages
of RE, when the requirements problem is being structured
and its alternative potential solutions explored. The language
has formal semantics, with paraconsistent and nonmonotonic
reasoning. Requirements problem and its solutions obtain
mathematically formal definitions in Techne. A variety of
concepts can be instantiated to capture requirements in
Techne r-nets.

Techne does not integrate specialized facilities for knowl-
edge representation, such as specialization, nor does it feature
social concepts, such as actors or roles. Techne complements
existing RMLs which do include such notions. Techne assists
the decision-making towards a solution to the requirements
problem, which, once available as a set of requirements can be
subjected to analyses that i* supports, such as the distribution
of responsibility and the analysis of dependencies in the
realization of that solution. Subsequent steps may involve
KAOS, for the definition of requirements concepts as theories
of linear temporal FOL, allowing thus assisted detailed
refinement and verification towards the operationalization of
the solution via data and behavior models appropriate at later
steps of information systems engineering.

Ongoing work on Techne focuses on the definition and
testing of efficient reasoning methods for the search of
solutions in r-nets, as well as on tool support for modeling
and reasoning.

REFERENCES

[1] I. J. Jureta, J. Mylopoulos, and S. Faulkner, “Revisiting the
core ontology and problem in requirements engineering,” in
16th IEEE Int. Requirements Engineering Conf., 2008.

[2] S. J. Greenspan, J. Mylopoulos, and A. Borgida, “Capturing
more world knowledge in the requirements specification,” in
ICSE, 1982.

[3] D. A. Marca and C. L. McGowan, SADT: structured analysis
and design technique. McGraw-Hill, Inc., 1987.

[4] S. J. Greenspan, A. Borgida, and J. Mylopoulos, “A require-
ments modeling language and its logic,” Inf. Syst., vol. 11,
no. 1, pp. 9–23, 1986.

[5] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-
directed requirements acquisition,” Sci. Comput. Program.,
vol. 20, no. 1-2, pp. 3–50, 1993.

[6] E. Yu, “Towards modeling and reasoning support for early
requirements engineering,” in Proceedings of the IEEE Inter-
national Symposium on Requirements Engineering, 1997.

[7] P. Zave and M. Jackson, “Four dark corners of requirements
engineering,” ACM T. Softw. Eng. Methodol., vol. 6, no. 1, pp.
1–30, 1997.

[8] R. Darimont and A. van Lamsweerde, “Formal refinement
patterns for goal-driven requirements elaboration,” in SIGSOFT
FSE, 1996.

[9] P. M. Dung, “On the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic programming
and n-person games,” Artif. Intell., vol. 77, no. 2, pp. 321–358,
1995.

[10] A. van Lamsweerde, “Goal-oriented requirements engineering:
A guided tour,” in 5th IEEE International Symposium on
Requirements Engineering (RE), 2001, p. 249.

[11] W. N. Robinson, S. D. Pawlowski, and V. Volkov, “Require-
ments interaction management,” ACM Comput. Surv., vol. 35,
no. 2, pp. 132–190, 2003.

[12] P. Zave, “Classification of research efforts in requirements
engineering,” ACM Comput. Surv., vol. 29, no. 4, pp. 315–321,
1997.

[13] J. M. Wing, “A specifier’s introduction to formal methods,”
IEEE Computer, vol. 23, no. 9, pp. 8–24, 1990.

[14] E. M. Clarke and J. M. Wing, “Formal methods: state of the
art and future directions,” ACM Comput. Surv., vol. 28, no. 4,
pp. 626–643, 1996.

[15] S. Greenspan, J. Mylopoulos, and A. Borgida, “On formal
requirements modeling languages: Rml revisited,” in ICSE ’94:
Proceedings of the 16th international conference on Software
engineering. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1994, pp. 135–147.

[16] J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakis,
“Telos: representing knowledge about information systems,”
ACM Trans. Inf. Syst., vol. 8, no. 4, pp. 325–362, 1990.

[17] A. van Lamsweerde, R. Darimont, and E. Letier, “Managing
conflicts in goal-driven requirements engineering,” IEEE Trans.
Software Eng., vol. 24, no. 11, pp. 908–926, 1998.

[18] A. van Lamsweerde and E. Letier, “Handling obstacles in
goal-oriented requirements engineering,” IEEE Trans. Software
Eng., vol. 26, no. 10, pp. 978–1005, 2000.

[19] E. S. K. Yu and J. Mylopoulos, “Understanding ”why” in
software process modelling, analysis, and design,” in ICSE,
1994, pp. 159–168.

[20] J. Castro, M. Kolp, and J. Mylopoulos, “Towards requirements-
driven information systems engineering: the tropos project,”
Inf. Syst., vol. 27, no. 6, pp. 365–389, 2002.

[21] A. Fuxman, L. Liu, J. Mylopoulos, M. Roveri, and P. Traverso,
“Specifying and analyzing early requirements in tropos,” Requir.
Eng., vol. 9, no. 2, pp. 132–150, 2004.

[22] I. J. Jureta, S. Faulkner, and P.-Y. Schobbens, “A more
expressive softgoal conceptualization for quality requirements
analysis,” in Proceedings of the 25th International Conference
on Conceptual Modelling (ER’06), 2006.

[23] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani,
“Formal reasoning techniques for goal models,” J. Data
Semantics, vol. 1, pp. 1–20, 2003.

