
Requirements Trade-offs Analysis by Pairwise
Comparison of Alternatives and Automated

Even Swaps

Golnaz Elahi1 and Eric Yu2

1 Department of Computer Science, University of Toronto, Canada, M5S 1A4
gelahi@cs.toronto.edu

2 Faculty of Information, University of Toronto, Canada, M5S 3G6
yu@ischool.utoronto.ca

Abstract. Information systems analysts may need to make trade-offs
among Non-Functional Requirements (NFRs) in order to decide on al-
ternative design solutions or technologies to pursue. Quantitative cost-
benefit analysis is not often feasible, because accurate quantitative val-
ues are often hard to obtain and biased, and decisions made using these
numbers are thus unreliable. We propose a decision analysis method
that assists making trade-off in the absence of numerical data. In this
method, stakeholders compare the consequences of alternatives on de-
cision criteria. The method uses a heuristic algorithm to examine all
possible satisfaction levels of goals with respect to the relative rankings
of alternatives. We adopt the Even Swaps decision analysis method [9] to
determine the best solution. We enhance the Even Swaps method with
rules for automatically suggesting swaps to decision analysts. The algo-
rithms are implemented in a prototype tool and evaluated in an industrial
case study.

1 Introduction

Information systems developers and managers need to make some key decisions
such as which technologies, architectural pattern, design solutions, or products
to use [6]. Each option results in different satisfaction levels of Non-Functional
Requirements (NFRs). Such decisions involve making critical trade-offs among
NFRs, because usually the satisfaction of one requirement, by adoption of a solu-
tion, can aid or detract from the satisfaction of other requirements and obstruct
some functionality [23]. In the ideal case, if the (financial and non-financial)
costs, benefits, risks, and utility of each alternative solution were known and
one could accurately estimate how well each solution satisfies the requirements,
alternative solutions could be objectively compared.

Quantitative cost-benefit analysis enables applying mathematical operations
on numerical trade-off factors to select the optimum solution. These mathemati-
cal operations are seen as important tools to support objective decision analysis;
therefore, many of the requirements decision methods [6, 12, 17, 14] rely exten-
sively on the availability, accuracy, and meaningfulness of numerical estimations

2 Golnaz Elahi1 and Eric Yu2

of risks, costs, benefits, and the satisfaction level of requirements. A fundamental
assumption made by these methods is that either software analysts and stake-
holders are able to measure how well NFRs are satisfied or they have the cog-
nitive abilities and empirical knowledge required to estimate the requirements
satisfaction level for alternative solutions.

In practice, however, formal and rigorous methods to effectively estimate the
satisfaction level of various NFRs do not exist, because while some NFRs can
be refined into measurable variables, many NFRs have a fuzzy or soft nature,
which makes them hard, if not impossible, to measure. Stakeholders are usually
biased about some solutions, and quantitative values elicited from stakeholders
are often subjective and unreliable for decision making. Furthermore, time and
budget limitations preclude elaborate methods for obtaining quantitative data
at early stages of the development. Hence, faced with the typical absence of
reliable quantitative data, objective trade-off decision analysis methods using
qualitative values are needed.

We propose a trade-off analysis method to enable a systematic decision anal-
ysis in the absence of numerical data. In this method, stakeholders are asked
to compare consequences of alternative solutions instead of estimating satisfac-
tion levels of NFRs quantitatively. Unlike the way that AHP [22] works, in this
method, comparisons of alternatives are not transformed to a numerical rep-
resentation of utility or preferences. Instead, it considers all valid satisfaction
levels that the goals could possibly have, with respect to the relative rankings
of the alternatives. We do not know which of these possible satisfaction levels of
goals is the actual consequences of the alternative, so the method determines the
optimum alternative for each of these possible goal satisfaction levels (by using
a MCDA method called Even Swaps [9]). If an alternative is the best solution
for all or a majority of these possibilities, it is probably the overall optimum
solution. If this condition does not hold, the final decision is made by consulting
with domain experts to elicit the missing essential data.

Even Swaps is a recently introduced decision analysis method that makes
trade-offs by asking decision stakeholders to give up on one NFR for better
satisfaction level of another NFR. The main advantage of this method is avoiding
challenges of estimating or measuring the satisfaction level of all NFRs. By
using the Even Swaps method, the preferences of NFRs are implicitly extracted
with respect to the level of sacrifice and compensation that stakeholders make.
In the MCDA community, a tool and a set of guidelines for suggesting swaps
to decision stakeholders are developed [18, 19]. Mustajoki and Hamalainen [19]
develop a tool called Smart Swaps, which suggests next swaps to the user based
on preference programming. In this paper, we propose a set of factors (and rules),
such as considering the reusability of swaps and cognitively-easy to make, in
order to suggest swaps to decision analysts. In addition, our tool is tailored for
analyzing enumerations of the goals satisfaction levels.

Title Suppressed Due to Excessive Length 3

2 Motivating Scenario

We motivate our work with a scenario at the Ministry of Transportation, Ontario
(MTO), Canada. MTO managers need to decide whether to keep an old existing
traffic management system (which we refer to as A1) or deploy a new web-service
based Intelligent Transportation System (ITS) (called ONE-ITS and referred to
as A2). In the traffic monitoring systems, operators control and manage the
traffic by constantly monitoring traffic videos. The centers cannot share these
video feeds or grant access to other departments to modify the camera settings.
The ONE-ITS provides and distributes the data necessary to carry out traffic
management operations and amalgamates all of the information sources into one
platform.

Figure 1 shows a goal model for the Variable Message Sign (VMS) manage-
ment sub-system. The VMS sub-system needs to Update the messages easily,
which requires Easy to learn VMS management and Simple VMS manipulation

toolkit. The alternative systems (A1, the new ONE-ITS system and A2, the cur-
rent system) contribute to the requirements of the VMS system differently. For
example, The ONE-ITS system Display the VMS devices on an electronic map,
which “helps” satisfy Easy to learn VMS management and Simple VMS manipulation

toolkit. However, ONE-ITS system Enables operations over a web portal which
“hurts” the Secure modification of messages.

Fig. 1. The goal model of VMS sub-system. The modeling notation is described in [5].

The new system facilitates sharing and distributing traffic data, but MTO
managers are concerned about unknown security threats against the web-service
access to the traffic data. MTO managers have to deal with other trade-offs, such
as usability, performance, implementation and maintenance costs. Quantitatively
measuring the security level, usability, and maintainability of the existing system
is challenging (if not impossible); measuring those qualities for the ONE-ITS
system, which only exists as a system requirements specification, is not feasible.
In order to make a final decision, the MTO managers were to rely on estimations
of those measures for the ONE-ITS; In the rest of this paper, we will use our
method to propose a solution to the MTO manager.

4 Golnaz Elahi1 and Eric Yu2

3 Background and Current Challenges

Multi-Criteria Decision Analysis (MCDA) is an umbrella term that groups a
collection of formal approaches that take into account multiple criteria and help
decision makers explore decisions when intuitive gut-feeling decision making is
not satisfactory [3]. For example, in the Multi Attribute Utility Theory (MAUT)
(Keeney and Raiffa [15]) the criteria preference and values are conjointly used
to calculate the total utility value for each alternative. Preference (utility) elici-
tation requires an appropriate sequence of queries and interactions with the de-
cisions stakeholders to obtain enough information about individual preferences.
AHP [22] is a theory of relative measurement of intangible criteria to derive
a numerical scale of priorities (preferences, importance weights) from pairwise
comparisons of elements. Yen and Tiao [24] also use pairwise comparisons of
criteria, but drive the priorities by Marginal Rate of Substitution [15]. The Even
Swaps [9] method avoids eliciting explicit numerical priorities, and yet incor-
porates the stakeholders’ preferences in determining the optimum solution by
querying value trade-offs between stakeholders’ goals.

Requirements trade-off analysis is the systematic examination of advantages
and disadvantages of requirements as well as the design choices for a system to
achieve the right balance among several competing goals [1]. Architecture Trade-
off Analysis Method (ATAM) [2] is used to evaluate whether an architecture
decision satisfies particular quality goals. However, ATAM is a labor-intensive
analysis method which relies on the subjective opinion of the domain experts.

Feather et al. [6] propose a quantitative model for strategic decision analysis
and trade-off analysis considering quality requirements, by the “coarse quan-
tification” of relevant risk factors and their interactions. In [24], fuzzy logic
values are used to represent and reason about the satisfaction degree of impre-
cise (quality) requirements. In [13], attribute values, such as contribution values
and preference matrices, are added to goal graphs to choose and adopt a goal
from the alternatives and to recognize the conflicts among the goals. Letier and
Lamsweerde [16] argue that due to the lack of accuracy and measurability of
goal formulations and lack of impact propagation rules through goal models,
domain-specific quality variables are needed to reason on partial goal satisfac-
tion. In [16], goals are specified in a precise probabilistic way, and the impacts
of alternative decisions on the degree of goal satisfaction are analyzed.

These requirements trade-off analysis methods [6, 11, 24, 13, 16] rely on avail-
ability, accuracy, and meaningfulness of solutions’ utility, or availability of pre-
cise probabilities and quantitative measures for goal-related quality variables
[16]. Measuring the quality of each alternative solution, when the solution is still
in form a requirements specification and not a running system, is not possible.
Thus, in early RE phases, estimations are made; however, these quantitative
estimates elicited from stakeholders about their preferences and solutions are
imprecise, uncertain, or ill-defined, and there is the risk of relying on the results
of the decision analysis despite the high levels of estimation involved [7, 20].

For these reasons, various goal-oriented early RE approaches [4, 10] focus on
qualitative goal satisfaction evaluation and assessment. These techniques typi-

Title Suppressed Due to Excessive Length 5

cally rely on structural refinement of AND-OR goal graphs to make fine-grained
distinctions among alternatives, while making a minimal differentiation among
degrees of goal satisfaction (and contributions of alternatives). Goal model eval-
uation techniques such as the ones in [4, 10, 8] enable analyzing requirements
satisfaction in the absence of numerical data by using qualitative goal evalua-
tion labels such as pratially and sufficiently satisfied (denied). However, most
often, the final results of goal model evaluation with different alternatives are
indifferent, and indicate that top quality goals are partially satisfied (denied),
which does not sufficiently differentiate the alternative solutions.

4 Overview

This section overviews the basics of the proposed decision analysis method: we
explain why comparing the consequences of alternatives on the decision criteria
either provides sufficient information or narrows down the required information
for making a decision over alternative solutions. This section also discusses some
preliminaries and definitions, and reviews the basics of the Even Swap decision
analysis method.

4.1 Making Choices by Pairwise Comparison of Alternatives

“When we deal with intangible factors, which by definition have no scales
of measurement, we can compare them in pairs. Making comparisons is a talent
we all have.” Tomas L. Saaty [21]

Comparing intangible factors has been an alternative approach to measure-
ments or estimations in Multi-Criteria Decision Analysis (MCDA) methods such
as Analytic Hierarchy Process (AHP) [22]. The foundation of methods such as
AHP is based on the intuitiveness of comparing instead of direct estimation or
measurement. In the proposed method in this paper, decision stakeholders are
asked to compare consequences of a pair of alternatives on the decision criteria.
To illustrate how relative rankings of alternatives on decision criteria helps select
a solution, let us assume two alternatives, A and B and two hypothetical deci-
sion criteria: price and quality. If price of A is better than B, we write A > B
on price. In general, the possible relative rankings of A and B are limited to:

1- One of A or B has a better price and quality (e.g. A > B on price and quality)

2- One of A or B has a better price and the other one has a better quality (e.g.

A > B on price and B > A on quality)

Deciding over A and B in the first situation is straightforward. In the second
situation, a trade-off between price and quality needs to be made. For exam-
ple, when A > B on price and B > A on quality, if price is more important
than quality for the stakeholders, then A should be selected. However, when
the number of criteria grows, making such decisions is not as straightforward as
this example. Besides, the relative ranking relations of alternatives can become
complicated when stakeholders are able to describe the magnitude of difference
that consequences of alternatives have. For example, suppose the price of A is
“highly” better than B while the quality of B is only “slightly” better than A.

6 Golnaz Elahi1 and Eric Yu2

In this condition, probably A is preferred to B even if quality is the priority of
stakeholders, because the quality of A and B are not much different, while the
price of A is highly better.

Empirical psychological evidence, on which AHP is also based, shows that
humans can easily distinguish high/medium/low, and then subdivide again into
high/medium/low within each interval, which in total results in 9 different lev-
els for distinguishing the decision elements. If comparisons of alternatives are
described using such 9 categories, analyzing the rankings of alternatives in con-
junction with priorities over criteria becomes even more complex. To provide a
systematic way to deal with these complications, we propose a heuristic search-
based algorithm which enumerates and explores the possible satisfaction level
of criteria with respect to the relative rankings of alternatives. In the following
section, we establish a set of definitions and notations to explain the method.

4.2 Preliminaries

The Scale for Comparing. Nine levels for distinguishing the decision criteria is
cognitively the maximum level of comparisons that humans can easily compare.
For efficiency purposes, we use a less granular scale for comparing the alter-
natives consequences: 0, Low,Medium Low, Medium, Medium High, High.
The difference between two successive intervals is equal to Low. The maximum
difference of the relative orderings of two alternatives is High. High (−High)
represents the maximum satisfied (denied) level of satisfaction. We will use the
abbreviations 0, L,ML, M, MH, and H respectively.
Comparing Alternatives. Stakeholders are asked to specify which alternative
in the pair better satisfies (or denies) each criterion or stakeholders goals. Deci-
sion stakeholders are also asked to estimate the difference in the consequences
of alternatives toward the satisfaction of each goal, using the scale introduced
above. For example, if the price of alternative A is highly better than B’s, we
write A

B =High and if B > A on quality, and the difference of A and B’s quality
is Medium, we write B

A =Medium.
The Concept of Placement Case: To deal with complex relative ranking
relations and the lack of numerical data about how well the decision criteria
and stakeholders’ goals are satisfied by each alternative solution, we enumerate
possible satisfaction level of goals according to the rankings. To illustrate how the
possible satisfaction levels are enumerated, consider the example of alternatives
A and B with respect to price and quality. Assume A

B = Medium High on price
and B

A = High on quality. Thus, price of A and B is either
1) Sat(price, A)3= H and Sat(price, B) = L Or

2) Sat(price, A) = MH and Sat(price, B) = 0
A
B = MH on price, which means Sat(price,A)−Sat(price,B) = MH; thus,

if Sat(price,A)= H, then Sat(price,B) =H - MH = L. On the other hand, since
B
A = High on quality, Sat(quality, B) =H and Sat(quality, A) =0, and there is
no other possible satisfaction level for quality.
3 Sat(g, A) denotes the satisfaction level of goal g by alternative A.

Title Suppressed Due to Excessive Length 7

We call one possible satisfaction level of goals for a pair of alternatives a
“placement case”. It is called a placement case, because it is one possible case
of placing the satisfaction level of goals for the alternatives on the scale of sat-
isfaction levels.

For example, two possible placement cases of A and B on the criteria are P1

and P2. Each placement case is the satisfaction levels of price and quality by A
and B:

- P1(A) = {H, 0} and P1(B) = {L, H} on {price, quality}
- P2(A) = {MH, 0} and P2(B) = {0, H} on {price, quality}

Using Placement Cases in Decision Analysis. Each placement case is a
guess about the absolute consequences of alternatives, derived from relative
rankings of alternatives and the magnitude of their difference. We do not know
which of the enumerated placement cases is the actual consequences of alter-
natives. However, finding the actual consequences of alternatives among all the
possibilities may not affect the final decision, if an alternative is the preferred
one in all of the placement cases. For example, in the above example of A and B,
A is the better solution for both P1 and P2, so A is the better solution anyways.
Even if a solution is preferred for a majority of the placement cases (not all), it is
probably the best alternative. We will discuss the detailed algorithm and steps of
the method for analyzing the enumerations and deciding over the alternatives in
Section 5. The bottom line in this process is identifying the preferred alternative
for each placement case. For this purpose, we adopt the Even Swaps [9] decision
analysis method. The basics of the Even Swaps method are explained in what
follows.

4.3 Basics of the Even Swaps Method
In an even swap, the decision analyst, collaborating with the stakeholders, changes
the consequences of an alternative on one goal, and compensates this change
with a preferentially equal change in the satisfaction level of another goal. For
instance, in P1, consequences of A on price and quality are {H, 0}, and conse-
quences of B = {L, H}. Imagine the stakeholders’ priority is the price. In an
even swap, stakeholders agree that if the quality of A is improved from 0 to H,
this improvement would be evened out by paying a higher price, so the price
satisfaction level of B is decreased from H to MH. Note that such a swap shows
how much stakeholders are willing to sacrifice the good price for quality, and the
alternatives are not actually improved. In this example, the stakeholders have
not agreed to sacrifice the good price for quality; even though the quality of A
is dramatically increased, the price is only changed from H to MH.

The swap creates a new virtual alternative B′ with revised consequences.
The virtual alternative is as preferred as the initial one, and it can be used
as a surrogate. The irrelevant goals, i.e., goals on which the consequences of
alternatives are indifferent, are removed from the decision process. For example,
after the swap, A and B′ are indifferent with respect to quality (the quality
level of both is High), so the quality criterion can be removed from the process
of deciding between A and B in P1. The underlying purpose of the swaps is
to either make goals irrelevant, in the sense that both alternatives have equal

8 Golnaz Elahi1 and Eric Yu2

consequences on this goal, or create a dominant alternative, in the sense that
the other alternative is at least as good as this alternative on every attribute. A
swap is defined as follows:

Definition 1. Assume two alternatives Ai and Aj and two goals gx and gy,
where Sat(gx, Ai) = ix, Sat(gy, Ai) = iy, Sat(gx, Aj) = jx, and Sat(gy, Aj) =
jy. (For brevity, we will use Sat(g, A) to denote the satisfaction level of goal g by
alternative A). A swap changes ix to i′x (ix → i′x) and compensates this change
by modifying iy to i′y (iy → i′y). We write the swap as:

(gx, gy, ix → i′x ⇐⇒ iy → i′y)

5 The Heuristic Method For Requirements Trade-Offs
Analysis

In this section, we present the heuristic decision analysis method that enumerates
all placement cases based on the comparisons of alternatives, and determines
the overall best solution. The method consists of 4 main steps in a loop: 1)
comparing a pair of alternatives 2) enumerating the placement cases 3) deciding
on the preferred solution for each placement case 4) determining the overall best
alternative in the pair.

In the first step of a cycle, the algorithm takes a pair of alternatives, and
given the stakeholders’ goals and criteria of comparison, the analyst interacts
with stakeholders, asking them to compare consequences of alternatives on each
goal. In the second step, the placement cases for the pair of alternatives are
enumerated according to their relative ranking. In the third step, the algorithm
applies the Even Swaps method to decide which alternative in the pair is a
better solution for each placement case. This solution is called the dominant
one. In the fourth step, the overall best alternative is decided according to the
results of the analysis for the placement cases. The overall better alternative is
kept in the list of alternative solutions, and the dominated solution is dropped
from the list of alternatives. The dominant solution is compared with the next
alternative solution in each cycle of the algorithm. The cycles continue until only
one alternative remains, which is proposed as the best available design option.
In the following sections, we describe the steps of the algorithm in more details
and illustrate them by analyzing the scenario at MTO.

5.1 Step 1: Comparing the Alternatives Consequences

A solution either has a positive or negative impact on the satisfaction of a goal.
When eliciting and comparing the consequences of two alternatives such as Ai

and Aj on a goal g, three main pieces of information are collected: the contribu-
tion type: negative or positive, which alternative better satisfies g, and the value
of Ai

Aj
(orAj

Ai
).

For example, Figure 2 shows the comparisons of two hypothetical alternative
solutions, A1 and A2, on three example goals: Usability (g1), Performance (g2),
and Maintainability (g3). The model shows that both alternatives have a negative
impact on Performance, but A1 has a Medium High stronger impact on this
goal than A2. This comparison does not indicate whether A1’s Performance is

Title Suppressed Due to Excessive Length 9

−High or −Low, but we know that whatever negative value that A1 contribute
to Performance, A2 contributes Medium High levels less than that.

Fig. 2. Comparisons of two alternative systems at MTO.

5.2 Step 2: Enumerating the Placement Cases

In the second step, the placement cases are enumerated by generating possible
satisfaction levels of every goal and combining them to unique placement cases.
Goals satisfaction levels depend on the type of alternatives’ contributions on
the goals (positive or negative) and the difference between the consequences of
alternatives. Consider a pair of alternatives Ai and Aj that contribute to a set
of goals G = {g1, g2, ...gm}, a placement case P , where P (Ai) = {i1, i2, ...im}
and P (Aj) = {j1, j2, ...jm}. Possible satisfaction level of a goal like gx by Ai and
Aj is enumerated as follows: (for 1 ≤ x ≤ m, dx = |ix − jx|):
If Sat(gx, Aj) > Sat(gx, Ai) then:

1- If Aj and Ai’s contributions are both positive:

dx ≤ jx ≤ H and ix = H − jx

2- If Aj and Ai’s contributions are both negative:

−H ≤ jx ≤ −dx and ix = −H − jx

3- If Aj ’s contribution on gx is positive and Ai’s contributions is negative:

0 ≤ jx ≤ dx and ix = jx − dx

If Sat(gx, Ai) > Sat(gx, Aj), in the above statements, ix shall be switched with
jx. Note that although the scale of −High to High has 11 different intervals,
there are at most 5 different satisfaction levels for any given goal: in conditions
1 and 2, where Aj

Ai
= Low, gx can have 5 different satisfaction levels at the

positive (negative) side of the scale. In the third condition, where Aj

Ai
= High,

gx can have 5 possible satisfaction levels, in which, one alternative is placed at
the negative side of the scale and the other is at the positive side.

For example, Figure 3 shows that, on the scale of −High to High, there are
only two possible different sets of values that can be assigned to A1 and A2’s
Performance. Either the A1’s Performance is −High (and the A2’s Performance
is −Low), or A1’s Performance is −Medium High (and A2’s Performance is 0).

At the same time, there are two possible satisfaction levels for Maintainabil-
ity of these two alternatives. A1 has a negative impact on Maintainability and
A2 has a positive impact on Maintainability, while the difference of these two
contributions is Low. Therefore, A1’s Maintainability is either −Low or 0 and
accordingly, A2’ Maintainability is 0 or Low. Since Usability of A1 and A2 has

10 Golnaz Elahi1 and Eric Yu2

Fig. 3. Possible placement cases for A1 and A2 in the MTO scenario

a High difference, there is only possible Usability level for the alternatives: A1’s
Usability is 0 and A2’s Usability is High.

By combining 2 possible satisfaction levels for Performance and Maintain-
ability and the only possible level of Usability, A1 and A2 could result in 4
different goals satisfaction statuses. The right-hand side of Figure 3 shows these
4 possible placement cases, P1, P2, P3, and P4 for A1 and A2. Each case includes
one possible way to place the contributions of A1 and A2 on the scale, according
to the difference between the consequences of alternatives on the the goals.

5.3 Step 3: Determining the Dominant Alternative for Placement
Cases

Once all possible placement cases are generated, the algorithm finds the dom-
inant alternative for each placement case. An absolute dominant alternative
better satisfies all goals. More formally, absolute dominance is defined as:

Definition 2. An alternative Ai is called absolute dominant for a placement
case P , if ∀(ix ∈ P (Ai)∧ jx ∈ P (A2)), ix ≥ jx. In that case, Aj is dominated by
Ai, and we write Ai > Aj .

In none of placement cases in Figure 3, neither of A1 and A2 are absolute
dominant. This is a typical situation because each alternative better satisfies
some of the goals. We use the Even Swaps [9] method to determine the domi-
nant alternative, i.e., the overall better alternative, when neither of them is the
absolute dominant. This method has been discussed in Section 2.3. For example,
in the placement case 1 in Figure 3, we ask stakeholders “if Performance of A1

is decreased from 0 to -MH”, how much improvment they expect on Usability.
This swap is written as (g2, g1, 0→ −MH ⇔ 0→?). Assume stakeholders state
that they expect that Usability of A1 to be increased from the level of 0 to “M”.
Consequences of A1 (now A′1) are modified to {M,−MH,−L}, and compared
to the consequences of A2 on the goals ({H,−MH, 0}), A2 is obviously a better
choice.

Title Suppressed Due to Excessive Length 11

When the problem scales and several NFRs and alternative solutions need
to be considered, determining the best swap among numerous possibilities is
hard for human decision makers [19]. In the proposed method, the Even Swaps
decision method is invoked for every placement case; thus expert and non-expert
users may need to make numerous swaps in a tedious and long process. In Section
4, we propose an algorithm for finding the right swaps in each step of the Even
Swap process. The algorithm intends to minimize the number of swap queries,
reuse previous swaps, and at the same time, finds swap queries that are easy to
answer for stakeholders.

5.4 Step 4: Determining the Overall Better Alternative in the Pair
Once all possible placement cases are generated, the method determines the
dominant alternative for each placement case by using the Even Swaps method
[9]. Then the heuristic method decides which alternative is overall a better solu-
tion out of the pair of alternatives. If an alternative is decided as the dominant
one all of the possible placement cases, the algorithm suggests that solution as
the definite optimum solution in the pair of alternatives.

In a pair of alternatives, such as Ai and Aj , typically, Ai is dominant for a
number of cases, let us assume w1 number of placement cases and Aj is dominant
for w2 placement cases. If w2 is sufficiently small, those w2 cases are probably
exceptional placement cases for which Ai is not dominant. For example, assume
Ai is better than Aj except for few cases where Sat(g,Ai) <Medium on a goal
like g. Such cases are exceptional patterns of placement cases.

The algorithm provides the pattern of the exceptional cases to domain ex-
perts for a final evaluation and judgment. If the domain expert judges that Ai’s
contributions does match those w2 exceptional cases, Ai is the overall dominant
solution in the pair. For example, consider the patterns of placement cases where
Sat(g, Ai) <Medium. If the domain expert believes that Sat(g, Ai) is Medium
or higher than Medium (not matched with the exceptional cases), then Ai is
definitely the better solution in the pair of Ai and Aj . On the other hand, if the
domain expert believes that the absolute value of Sat(g, Ai) is actually lower
than Medium, all w1 cases, where Sat(g,Ai) >Medium, are invalid placement
cases that do not match the reality. The actual consequence of Ai and Aj is one
of the placement cases among those w2 cases, and Aj is the better solution.

If domain experts are not able to evaluate the patterns, the proposed method
cannot determine the overall best alternative in the pair due to the lack of infor-
mation. In this situation, any numerical method would not be able to determine
the best solution either. When neither w1 nor w2 are small enough and for nearly
half of the placement cases, Ai is dominant and for the other half of placement
cases Aj is dominant, one possible conclusion is that the usefulness of the al-
ternatives are too similar that the proposed algorithm cannot differentiate the
alternatives.

6 Automatically Suggesting Swaps

The maximum number of possible satisfaction levels for each goal is 5; thus,
having m goals as the decision criteria, the Even Swaps process may be invoked

12 Golnaz Elahi1 and Eric Yu2

5m times. Since the swapping process involves user queries, 5m number of Even
Swaps user queries quickly become a labor-intensive and tedious process. The
number of swap enquiries can be reduced by reusing swaps from the previous
placement cases for other cases. In addition, if purposefully suggested, swaps
can help “create” an absolute dominant alternative with the fewest enquiries.
We develop a set of rules for automatically suggesting useful swaps; for exam-
ple, suggesting swaps that lead to an absolute dominance situation, finding the
most reusable swaps, swapping the minimally satisfied goals with the maximum
satisfied goals, and reusing the existing determined dominance situations.

6.1 Creating a Dominance Situation

In the placement case P1 in Figure 3, where P1(A1) = {0, 0,−L} and P1(A2) =
{H,−MH, 0}, by swapping g2 and g1 and removing g2, A2 may become the
absolute dominant alternative. On the other hand, swapping g1 and g3 is not
useful for creating a dominance situation, because before swapping them, at least
one swap is needed to reach a dominance situation for P1, and by swapping g1

and g3 and removing one of them from the list of goals, we still need to make
another swap (with g2) to reach an absolute dominance. In order to reach an
absolute dominance we need to swap two goals that are in trade-offs, where one
alternative is dominant for satisfying the first goals and the other alternative
is stronger for satisfying the second goal. A swap that resolves such a trade-off
situation helps create an absolute dominant alternative.

Rule 1, create a dominance situation: Given a set of goals G =
{g1, g2, ...gm}, if consequences of Ai = {i1, i2, ...im} and consequences of Aj =
{j1, j2, ...jm}, and w1 = number of goals where ix > jx and w2 = number of goals
were jx > ix (for 1 ≤ x ≤ m), then w1 × w2 swaps exist that could potentially
reduce the number of steps of the Even Swaps process to make an alternative
dominant.

6.2 Suggesting the Most Reusable Swap

When a swap query is asked from stakeholders, it can be reused for another
identical case, without further consultation with human stakeholders (if the sat-
isfaction level of goals are the same). For example, the swap (g2, g1, 0→ −MH ⇔
0→?) (from the placement case P1 in Figure 3) is reusable in the placement case
P2 because Sat(g1, A1), Sat(g2, A1), and Sat(g1, A2) are equal in both placement
cases (illustrated in Figure 4). On the other hand, swapping g3 and g2 in P1 as
(g3, g2,−L → 0 ⇔ 0 →?) is not reusable in P2, because Sat(g3, A1) in P1 and
P2 are not equal (−L 6= 0).

Rule 2, pick the most reusable swap: Given a set of tuples of goals, as
swap candidates, this rule states that the most reusable tuple should be selected
for the next swap. The notion of reusable swap is formally defined as follows:

Definition 4. A swap like (gx, gy, ix → i′x ⇔ iy → i′y) is reusable in a
placement case P , where Sat(gx, Ai) = Ix, Sat(gy, Ai) = Iy, Sat(gx, Aj) = Jx,
and Sat(gy, Aj) = Jy, if ix = Ix, i′x = Jx, and iy = Iy.

Title Suppressed Due to Excessive Length 13

Fig. 4. An example of reusable swap

6.3 Suggesting Easy Swaps

Hammond et al. [9] suggest making the easiest swaps first, e.g., money and costs
are easy goals. What would make a swap easy for the stakeholders? For example,
stakeholders may easily agree to increase the satisfaction level of a goal that is
not sufficiently satisfied and compensate it with decreasing the satisfaction level
of a goal that is highly satisfied, intending to reach a balance among software
requirements.

Rule 3, swap goals with minimum satisfaction level and goals with
the maximum satisfaction level: This rule states that among the candidate
tuples like (gx, gy), two goals such as gi and gj should be swapped where gi

has the minimum satisfaction level among all gx, and gj has the maximum
satisfaction level among all gy.

For example, in Figure 5 (a), (gx, g1) and (gx, g4), x = 2, 3, 5, 6, are candidate
tuples to create an absolute dominance situation. Among those 8 tuples, rule 3
suggests selecting tuples like (gx, g4), because between g1 and g4, A1 consequence
on g4 is the maximum. Among g2, g3, g5, and g6, the minimum satisfaction level
provided by A1 is on g3 and g6. Thus, by applying rule 3, two tuples, (g3, g4)
and (g6, g4), are selected the next swap.

Fig. 5. Examples of the swap suggestion rules

6.4 Reusing Dominance Situations

Once an alternative is decided as the dominant one, this knowledge might be
reusable for deciding between other pairs of alternatives without the need to
the Even Swaps process. For example, in the placement case P in Figure 5 (b)
(P (A1) = {H, 0, L}, P (A2) = {M, MH,MH}), let us assume A1 is decided as
the dominant alternative. We can conclude that A1 is the dominant alternative
in the placement case P̂ as well, because since A1 in P ′ is definitely stronger
than A1 in P , and A2 in P̂ is definitely weaker than A2 in P .

14 Golnaz Elahi1 and Eric Yu2

Rule 4, reuse the dominance situation: Assume two placement cases
like P and P̂ such as P (Ai) = {i1, i2, ..., im} an P (Aj) = {j1, j2, ...jm}, P̂ (Ai) =
{î1, î2, .. ˆim} and P̂ (Aj) = {ĵ1, ĵ2, ...ĵm}. If Ai is preferred to Aj for the case P ,
then Ai is preferred to Aj for the case P̂ too, iff:

- ∀ix ∈ P (Ai) and îx ∈ P̂ (Ai) îx ≥ ix, and
- ∀jx ∈ P (Aj) and ĵx ∈ P̂ (Aj) ĵx ≤ jx

6.5 The Automatic Even Swaps Suggestion Algorithm

Given a set of goals, G = {g1, g2, ...gm} and two alternatives Ai and Aj , the Even
Swaps method for determining the optimum solution between Ai and Aj consists
of 6 main steps. In the algorithm, Sat(gx, Ai) = ix and Sat(gx, Aj) = jx, the
algorithm stores the swaps in a Knowledge Base (KB), and tuples of candidate
goals for the next swap are stored in temporary array lists called L, L′, L′′.
While NOT(Ai is dominant OR Aj is dominant)

Step 1: Remove irrelevant goalss
For all gx in G:

If ix = jx Then remove gx, ix, jx from G, P (Ai), P (Aj)

Step 2: Reuse swaps
For all swap In Swaps KB

If swap is reusable to P Then
Apply swap to P
Repeat Step 1:

Remove irrelevant goalss after swapping

Step 3: Apply Rule 1, create a dominance situation
For x = 1 To m

If ix > iy AND jx > jy Then T .add((gx, gy))

Step 4: Apply rule 2, find the most reusable swap
For all (gx, gy) in T

T ′.add(the most reusable (gx, gy))
If NOT exist a reusable (gx, gy) in T Then T ′ = T

Step 5: Apply rule 3, find min and max satisfaction levels
For all (gx, gy) in T ′

If ix is Min AND iy is Max Then
T ′′.add((gx, gy))

Step 5: Ask the swap from stakeholders
(gx, gy) = random tuple in T ′′

in swap (gx, gy, ix → i′x ⇔ iy → i′y) Ask i′y value

in P (Ai) iy = i′y , ix = i′x
SwapsKB.add(gx, gy, ix → i′x ⇔ iy → i′y)

End While

If Ai is dominant OR Aj is dominant

Step 6: Apply rule 4, reuse the alternative dominance
For all Placement Cases Px

If Ai, Aj dominance in P is reusable in Px Then
Apply the dominance to Px

To illustrate the algorithm, let us trace the steps the analysis of P1 and P2 in
Figure 3. In the first cycle of the algorithm, there is no irrelevant goal in P1(A1)
and P1(A2). The swaps KB is empty, so the algorithm needs to suggest a swap
to the stakeholders. In step 3, (g2, g1) and (g2, g3), two candidate goal tuples for
creating a dominance are generated. In step 4, the algorithm determines that
(g2, g1) is the most reusable swap, and in step 5, the swap (g2, g1, 0→ −MH ⇔
0 →?) is asked from the stakeholders. The swap is stored in the swaps KB,
and as a result of increasing g1 to H and reducing g2 to −MH, both g2 and

Title Suppressed Due to Excessive Length 15

g1 become irrelevant goals. By removing g2 and g1, the final decision for P1 is
made: A2 > A1. However, the decision about the dominance of A2 is not reusable
for the other three placement cases. When analyzing the placement case P2, the
swap previously made for P1 can be reused without the need for enquirying the
stakeholders, and so A2 is recognized as the dominant solution for P2 as well. The
chain of swap suggestions and decisions contrinues untill all placement cases are
examined. In all four placement cases, A2 > A1, thus, overall, A2 is the better
solution.

6.6 Discussion

Given m goals and n alternative solutions, m× n knowledge-intensive and cog-
nitively hard queries need to be asked from stakeholders to elicit the absolute
satisfaction level of each goal by every alternative. By applying the proposed
method in this work, decision stakeholders need to answer m × (n − 1) com-
parison queries which require less cognitive abilities. The number of placement
cases enumerated based on these comparison grows in the order of 5m. When the
problem scales, the algorithm may ask numerous swap queries and may return
several exceptional patterns of satisfaction level to human experts for the final
judgment. However, in reality, stakeholders are only enquiried about the few ex-
ceptional patterns of placement cases (not all 5m of them). The number of swap
queries from stakeholdersare are dramatically reduced by reusing the previously
asked swaps and reusing the dominance situations (rules 2 and 4).

A major limitation of this method is the possibility of having an alternative
that is dominant for half of the placement cases; in such a condition, stakehold-
ers are required to examine numerous exceptional cases (the other half of the
placement cases), which might be impossible or more time-consuming than find-
ing the absolute satisfaction level of all goals. Another threat to validity of the
method is using the interval scale of −High to High for comparing the alter-
natives and expecting that stakeholders are able to differentiate the strength of
contributions in this interval scale. The way that stakeholders understand the
intervals of comparisons may differ from the way in fact we use them in the
algorithm.

Although the suggested heuristic algorithm may not always provide a defini-
tive answer, it enables objective trade-off decision making even though detailed
numerical data is not available. The heuristic algorithm may ultimately rely on
the human judgment, for which experts are asked to judge whether the contribu-
tion values match the exceptional patterns. Nevertheless, the proposed method
reduces the required input data about the absolute satisfaction levels of goals.

7 Case Study and Comparison with AHP

We applied the proposed method to decide about the trade-offs of switching to
the ONE-ITS system from the existing traffic monitoring system at MTO. The
MTO expert who collaborated in this study described the goals of his department
for employing traffic monitoring systems. In a separate interview session that

16 Golnaz Elahi1 and Eric Yu2

took one hour long, the MTO expert compared the alternative systems with
respect to a number of goals. Figure 6 shows how the alternative solutions affect
the goals of the VMS application.

7.1 Applying the Heuristic Method to the ONE-ITS Decision Case

The heuristic method generated 540 different placement cases for the compar-
isons give in Figure 6. The automated Even Swaps were used to decide on the
dominant alternative system for each of the 540 cases. The algorithm asked 8
swap queries from the requirements analyst4. For example, the automated swap
suggestion algorithm decided that swapping G3 and G6 is reusable and useful and
accordingly stakeholders were enquired the swap: (G3, G6, MH → 0⇔ L→ x).
The user believes that G6 is much more important than G3, hence, reduc-
ing G3 by 4 levels was swapped with increasing G6 by 3 levels, from L to
MH (x = MH). When the user was enquired about another swap such as
(G1, G4, 0 → H ⇔ H → x), since the user believes that G1 and G4 are the
most and the least preferred goals, increasing G1 by 5 levels was swapped with
reducing G4 by 10 levels from High to −High (x = −H).

The algorithm determines ONE-ITS as the dominant solution for all 540
possible placement cases, and therefore, without further human judgement, the
ONT-ITS (A1) is suggested to the MTO expert as the optimum solution. The
MTO expert stated that ONE-ITS is the better solution in their opinion as well,
which provides a support for the correctness of the decision suggested by our
method.

Fig. 6. Comparison of alternative solutions for the VMS sub-system

7.2 Applying AHP to the ONE-ITS Decision Case

AHP is the most similar existing work to our contribution, hence, we analyze the
MTO scenario using AHP. In AHP, the scale of priorities is derived from pair-wise
4 Due to project constraints, the MTO expert did make the swaps, and a requirements

analyst in the project ranked the preferences and made the swaps.

Title Suppressed Due to Excessive Length 17

comparison of goals preferences. Paired comparisons are made with judgments
using numerical values taken from the AHP absolute fundamental scale of 1-9,
where 1 indicates that two elements are of equal value and 9 indicates favoring
one element over another with the highest order of affirmation.

In order to make the proposed method comparable with the AHP, we elicited
the user’s preferences from swaps. The goals preference rankings are as G1 >
G7 > G2 > G6 > G5 and G5 = G4 = G3. The pair-wise comparison of prefer-
ences over these 7 goals in Figure 6 was done based on the assumptions made
about the ranking of their preferences. Figure 7 gives two different paired com-
parisons of goals made by the same user. The last column in the matrices shows
the final importance weight calculated by the Eigen value of the matrices. By
using the importance weights of goals in the matrix (a) in Figure 7 and calcult-
ing the final utility of A1 and A2, A1 (the ONE-ITS) is proposed as the overall
optimum solution.

The pairwise comparisons of goals preferences are slightly modified in Fig-
ure 7 (b). By using the importance weights of goals in matrix (b), A2 (the ex-
isting system) is determined as the overall optimum solution. This contradiction
(also in contrast with the results of our method) shows that the final decision
suggested by the AHP is highly sensitive to the ordinal pairwise comparisons. Be-
sides, by specifying that the preference of G1 to G3 is 7 in the AHP ordinal scale
(Matrix (b)), the final importance weight for G1 is calculated 7 times greater
than G3’s weight. This means a qualitative description of the comparison in an
ordinal scale is transformed to its proportional numerical representation, while
it may not reflect the actual intents behind those qualitative comparisons made
by the human user; for instance, G1’s importance weight may not necessarily be
7 times greater than G3’s, and by converting the human users description of the
comparisons to AHP ordinal scale the comparisons are exaggerated.

Fig. 7. Pair-wise comparison of goals preferences using AHP, changes to the ordinal
comparisons of AHP are highlighted.

8 Conclusions and Future Work

This work proposes a notation for expressing requirements trade-offs by a sim-
ple goal model. We proposed a heuristic decision making algorithm which uses
comparison of alternatives’ contributions as the basis of trade-off analysis. The
stakeholders preferences are incorporated into the decision analysis by using the
Even Swaps method enhanced with automated swap suggestions. Although the

18 Golnaz Elahi1 and Eric Yu2

suggested heuristic algorithm may not always find the optimum solution, it en-
ables objective trade-off decision making even though detailed numerical data
are not available. The heuristic algorithm may ultimately rely on human judg-
ment, for which experts are asked to judge whether the contributions strengths
match the exceptional patterns. The number of possible placement cases can be
reduced by adding numerical measures of contributions to the model, whenever
such data is available, specially for factors such as cost and time. This may re-
duce the number of cases (patterns) that we need to provide to stakeholders and
experts for the final judgment.

In future work, we try to reduce the number of placement cases by adding
thresholds for critical requirements, so stakeholders would be able to express a
threshold of acceptance for critical goals. Further case studies and application
of the method in action research and experiments is needed for evaluating the
utility and usability of the method and the tool. In an ongoing study, in order
to further compare the proposed method with AHP, we are applying the our
method to the case studies presented in the existing contributions that use AHP
for requirements trade-off analysis [12, 17].

Acknowledgment

Financial support from the Natural Sciences and Engineering Research Council of

Canada is gratefully acknowledged. The authors thank Roger Browne at Ministry of

Transportation, Ontario (MTO) for valuable inputs into the case study. Authors thank

Jocelyn Simmonds for her insightful comments on this work.

References

1. I. F. Alexander. Initial industrial experience of misuse cases in trade-off analysis.
In In Proc. of RE’02, pages 61–70. IEEE Computer Society, 2002.

2. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Second
Edition, Addison Wesley, 2003.

3. V. Belton and T. J. Stewart. Multiple Criteria Decision Analysis: An Integrated
Approach. Springer, 2001.

4. L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements
in Software Engineering. Kluwer Academic, 1999.

5. G. Elahi and E. Yu. Requirements trade-offs analysis in the absence of quantitative
measures: A heuristic method. SAC’11, 2011.

6. M. S. Feather, S. L. Cornford, K. A. Hicks, J. D. Kiper, and T. Menzies. A broad,
quantitative model for making early requirements decisions. IEEE Software, 25:49–
56, 2008.

7. J. Figueira, S. Greco, and M. Ehrgott. Multiple Criteria Decision Analysis: State
of the Art Surveys. Springer Verlag, 2005.

8. P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented requirements analysis
and reasoning in the tropos methodology. Eng. Appl. Artif. Intell., 18(2):159–171,
2005.

9. J. S. Hammond, R. L. Keeney, and H. Raiffa. Smart choices : a practical guide to
making better life decisions. Broadway Books, 2002.

Title Suppressed Due to Excessive Length 19

10. J. Horkoff and E. Yu. A Qualitative, Interactive Evaluation Procedure for Goal-
and Agent-Oriented Models. In CAiSE Forum. CEUR Workshop Proceedings,
2009.

11. S. H. Houmb, J. Jrjens, G. Georg, and R. France. An integrated security verifica-
tion and security solution trade-off analysis. In Integrating Security and Software
Engineering, 2006.

12. H. P. In, D. Olson, and T. Rodgers. Multi-criteria preference analysis for systematic
requirements negotiation. In COMPSAC ’02, pages 887–892, 2002.

13. H. Kaiya, H. Horai, and M. Saeki. AGORA: Attributed goal-oriented requirements
analysis method. In RE’02, 0:13, 2002.

14. J. Karlsson and K. Ryan. A cost-value approach for prioritizing requirements.
IEEE Softw., 14(5):67–74, 1997.

15. R. L. Keeney and H. Raiffa. Decisions with multiple objectives : preferences and
value tradeoffs. Wiley, 1976.

16. E. Letier and A. van Lamsweerde. Reasoning about partial goal satisfaction for
requirements and design engineering. In SIGSOFT ’04/FSE-12, pages 53–62, 2004.

17. W. Ma, L. Liu, H. Xie, H. Zhang, and J. Yin. Preference model driven services
selection. In Proc. of CAiSE’09, pages 216–230, 2009.

18. J. Mustajoki and R. P. Hämäläinen. A preference programming approach to make
the even swaps method even easier. Decision Analysis, 2(2):110–123, 2005.

19. J. Mustajoki and R. P. Hämäläinen. Smart-swaps - a decision support system for
multicriteria decision analysis with the even swaps method. Decis. Support Syst.,
44(1):313–325, 2007.

20. J. Noppen, P. van den Broek, and M. Aksit. Dealing with imprecise quality factors
in software design. SIGSOFT Softw. Eng. Notes, 30(4):1–6, 2005.

21. T. Saaty. The analytic hierarchy and analytic network processes for the measure-
ment of intangible criteria and for decision-making. In Multiple Criteria Decision
Analysis: State of the Art Surveys, pages 345–408. Springer Verlag, 2005.

22. T. L. Saaty. The Analytic Hierarchy Process: Planning, Priority Setting, Resource
Allocation. Mcgraw-Hill, 1980.

23. A. van Lamsweerde and E. Letier. Handling obstacles in goal-oriented requirements
engineering. IEEE Trans. Softw. Eng., 26(10):978–1005, 2000.

24. J. Yen and W. A. Tiao. A systematic tradeoff analysis for conflicting imprecise
requirements. In RE ’97, page 87, 1997.

