SPARQL with Qualitative and Quantitative Preferences
(Extended Report)

Marina Gueroussova Axel Polleres* Sheila A. Mcllraith
Department of Computer Science, University of Toronto, itmpCanada
* Vienna University of Economics and Business (WU Wien), ViapnAustria

October 21, 2013

Abstract

The volume and diversity of data that is queriable via SPARQ(L its increasing integration motivate
the desire to query SPARQL information sources via the $ipation of preferred query outcomes. Such
preference-based queries support the ordering of quecpimds with respect to a user’'s measure of the
quality of the response. In this report we argue for the ipooation of preference queries into SPARQL.
We propose an extension to the SPARQL query language thpbaspthe specification of qualitative
and quantitative preferences over query outcomes and agahe realization of the resulting preference-
based queries via off-the-shelf SPARQL engines.

1 Introduction

Once the sole purview of IT departments, today’s data is producecedshand consumed by a diversity
of stakeholders — corporate and consumer. It is stored in a varietyroffe, dynamically integrated, and
queried by a variety of users, many of whom are largely unfamiliar with tiiecd of those sources. As
such, querying today’s data sources using standard query largjgsay®lving into a manual/iterative search
process, in which repeated queries are devised to hone in on outcornesetitasome criteria. Consider
looking for a car to buy on the web — one might prefer a car with a powerfgine, but only if it's a hybrid,
or failing that an electric car if it's under a certain price, and so on. Sugheay requires not only the
specification of the information to be returned, but also specification ofdariag or preference over what
is returned. With these fundamental changes in the nature of data managechguerying comes the need
for query languages and engines that are better suited to the specifichiod search for high-quality
outcomes.

Preferences have been a long studied subject across many fieldsrigadednomics, philosophy, and
artificial intelligence. Within the database community there is a growing literatungrefierences (e.qg.,
(Stefanidis, Koutrika, & Pitoura, 2011)). Indeed, both Chomicki (Ch&mi2z002, 2003, 2011) and in-
dependently, Kiel3ling and colleagues, includingsKer, Endres, and Wenzel (Kiel3ling, 2002; Kiel3ling &
Kostler, 2002; Kiel3ling, Endres, & Wenzel, 2011) have developeddational theories relating preferences
to database systems and have proposed extensions to SQL that supppédification of quantitative (e.qg.,
top-k (llyas, Beskales, & Soliman, 2008)) and qualitative (e.g., skylirie®nyi, Kossmann, & Stocker,
2001)) SQL queries. Top-k queries use a scoring function to determirerdsering over query results.
In contrast, skyline queries filter a dataset with respect to a set ofrprefe relations, returning a set of
undominated tuples.

Our concern in this paper is with SPARQL (Harris & Seaborne, 2013atickthe provision of a means
of succinctly specifying queries that will enable a user to search for staieces (SPARQL endpoints)
and data content that is tailored to their individual preferences, andnrfadaiSPARQL query engines to
return ordered outcomes that reflect those preferences. Within thesemab community, there has been
significant recent work on the computation of top-k queries (e.g., (Mentdidal, Corcho, Ruckhaus, &
Aranda, 2012; Bozzon, Valle, & Magliacane, 2012; Magliacane, Boz& Valle, 2012; Wagner, Tran,
Ladwig, Harth, & Studer, 2012)), but little on how to extend the expressgs of SPARQL to address a
broad spectrum of qualitative and quantitative preferences. As Guddljtative) preference-based querying
is often realized by multiple lengthy queries that stipulate different combinadioingrd constraints, or via
“standard trick§” such as “stacking” OPTIONAL patterns, as illustrated in the following exi@myhich
preferably returns the email address of my friends, and the homepagedfitno email.

SELECT ?Contact WHERE { ne foaf: knows ?X
OPTI ONAL {?X foaf: nmbox ?Contact}
OPTI ONAL {?X foaf: honepage ?Contact} }

In 2006 Siberski, Pan, and Thaden introduced the notion of qualitatgfengnces into SPARQL queries
(Siberski, Pan, & Thaden, 2006). In that work they realized theiregpegice queries through the develop-
ment of solution modifiers. Interestingly, their work was done before theaséics of OPTIONAL was
established, and it was our hypothesis that much of what they did in 2006suelittion modifiers could
be done in native SPARQL 1.0 and SPARQL 1.1 through rewriting. Buildinghahwork, we propose
an extension of the SPARQL query language, PrefSPARQL that, likesEibet: al.'s work, builds on the
vetted work on SQL preference queries, extending it here to supmexression of conditional prefer-
ences. In Section 4 we focus on the realization of qualitative prefesenoe in particular on skyline and
conditional preferences, showing how they can be rewritten into SPARQ(and also SPARQL 1.0) and
thus realized by existing SPARQL query engines. The work presentedshenly the first step of a larger
endeavour that will see the extension of the presented query grammarmithizer of interesting features,
and the development of optimized query processing technigues that areddddhe efficient computation
of preference-based SPARQL queries.

2 PrefSPARQL Syntax

In this section we propose a core grammar for PrefSPARQL that a@dresselection of qualitative and
guantitative preferences in support of specifying preferred SRABRGery outcomes. We illustrate our
grammar with respect to skyline and conditional preference queriein8kyieries for relational databases
have been the subject of significant research (e.g., (Chomicki, 2@itzgBiyi et al., 2001)), and refer to a
set of results that are no worse than any other result across all dimsmdia set of independent boolean or
numerical preferences @znyi et al., 2001). Skyline queries have been studied extensively ibakga
systems, and explicitly in the SQL context by Chomicki (Chomicki, 2002, 2@031), and by Kief3ling,
Kostler, Endres, and Wenzel as an essential part of Breference SQllanguage and system (Kief3ling,
2002; Kiel3ling & Kostler, 2002; Kiel3ling et al., 2011).

We build upon an earlier approach to adopt featureBreference SQIn SPARQL, by Siberski, Pan,
and Thaden (Siberski et al., 2006). In particular, we extend the SRPAREry language in a similar fashion
to the proposal in (Siberski et al., 2006); we also use ‘AND’ to sepandpendent dimensions of skyline
queries. The key differences in our proposal are that, firstly, wepadfirences at the level of filters

1e.g.,ht tp://answers. semanti cweb. con questi ons/ 20682/ preference- patterns-for-sparql-11

(production 68 of the SPARQL grammar (Harris & Seaborne, 2013, Sei&89) rather than as solution
modifiers, with the justification that preferences semantiddtlr the solution set rather than ‘ordering’ or
‘slicing’ it. This approach makes preferences usable inside any paitesimeested fashion as opposed to just
at the end of queries.Secondly, we follow the latest version Bfeference SQIKieRling et al., 2011) in
replacing ‘CASCADE’ with ‘PRIOR TO'. Furthermore, we support additibatomic preference constructs
such as ‘BETWEEN’, ‘AROUND’, ‘MORE THAN’, ‘LESS THAN’, ‘HIGHEST’, and ‘LOWEST’ ; X
BETWEEN (Low,High)’ differs from writing ‘((x >= Low) && (x <= High))’in SPARQL in that — in the
absence of a value in the chosen interval — ‘BETWEEN’ will return thesdbgalue td.ow (or High, resp.);
AROUND(x), MORE THAN(x), and LESS THANX) are analogous to BETWEEK (), BETWEEN, co)
and, BETWEEN{o0,X) respectively; likewise, we note thatHIGHEST' and ‘LOWEST’ can lees as
syntactic sugar for AROUNDR¢) and AROUND{ o), respectively. In all these functions, one usually
needs to assume a partially ordered domain, and also a distance fudigox-y)). We note that in the
general domain of SPARQL, an ordered domain cannot be assumesl S&AGRQL expressions can return
arbitrary RDF terms that are neither partially ordered, cf. (Harris & Seay 2013, 15.1), nor is there a
general distance. The present version of this report focusesfomingdethe syntax and overall semantics
framework for PrefSPARQL, so we assume RDF terms to be partially af@ere a distance function being
available for now, and leave a detailed treatment of these issues to futtke wo

Finally, we augment the grammar with conditional (IF-THEN-ELSE) prefees. We note that, given
the availability of conditional preferences, BETWEEN (as well as AROUNIDRE THAN, and LESS
THAN) come for free?

Filter ::="FILTER Constraint
| " PREFERRING ' (' Miltidinmensional Pref ')’
Mul ti di mensional Pref ::= PrioritizedPref ("AND PrioritizedPref)x
PrioritizedPref ::= Conditional O At om cPref
(" PRIOR TO Conditional Or At om cPref) =

Conditional OrAtonicPref ::= Conditional Pref | Atom cPref
Conditional Pref ::="1F Expression

"THEN Condi ti onal O At oni cPr ef

"ELSE’ Condi tional Or At omi cPr ef
Expression | HighestPref | LowestPref | BetweenPref
| AroundPref | MoreThanPref | LessThanPref
"H GHEST' Expression

At om cPr ef

Hi ghest Pref

Lowest Pr ef = ' LONEST' Expression

Bet weenPr ef = Expression 'BETWEEN ' (' Expression ',’ Expression ')’
Ar oundPr ef = Expression ' AROUND Expression

Mor eThanPr ef Expressi on ' MORE THAN Expression

LessThanPr ef Expression ' LESS THAN Expression

Note that in the grammar of thereference SQlanguage (Kiel3ling et al., 2011; Kiel3ling &dstler,
2002), which we base on, the nonterminat‘ol utm>’is used in the productions foHl GHEST’, ' LOAEST’,
‘BETVEEN, ‘ AROUND, MORE THAN, and ‘LESS THAN in the following manner: <col um> HI GHEST",
"<col um> LOWEST”, " <col utm> BETWEEN . ..", "<col unmm> AROUND. .. ", "<col um>

2While with the addition of subqueries in SPARQL1.1 this does not add to |lgegempressivity, it still allows one to write
certain preference queries more concisely.

3x BETWEEN(ow,High) can be viewed as syntactic sugar for {E= Low && x <= High THEN 0 ELSE IFx < Low
THEN —AbgLow—x) ELSE—AbgHigh—Xx)). Note here that we want to prefer the smallest distance to the intervah vghichy
we use thenegatedabsolute distance Abg-) in this expression.

MORE THAN. . .”, and "<col um> LESS THAN...”. 4 While the use of columns in SQL would
naturally correspond to ‘Var' in SPARQL, we decided that we can alldviti@ry expressions in place of
columns without adding expressive power: indeed, in SPARQL 1.1 @@8RARQL 1.0) ‘Var’ can be sub-
stituted for ‘Expression’ in the above BNF without loss of expressivitgeany expression can be assigned
to a variable via additiond®l ND ... ASclausesin a SPARQL pattern.

For example, in the SPARQL 1.1 flavour of PrefSPARQL:

PREFERRI NG | F(bound(?pri ce_i nEUR), ?price_i nEUR, ?price_i nUSD) MORE THAN 100
can instead be written as:

BI ND(| F(bound(?price_i nEUR), ?price_inEUR, ?price_inUSD) AS ?P)
PREFERRI NG ?P MORE THAN 100

In SQL, similar assignments of arbitrary expressions to columns are allowledhe keyword AS' .

However, sincéBl ND ... ASclauses are not available in SPARQL 1.0, we USedr essi on’ rather
than ‘Var ' in our grammar so as to retain the same expressivity also in the SPARQL 100 flaf/PrefS-
PARQL.

To further illustrate PrefSPARQL, consider a modification of the exampla {i®iberski et al., 2006).
The knowledge base contains therapist ratings and their appointmemgdfén Turtle syntax).

@refix : <http://ww. exanpl e. org/ >.
mary a :therapist ; :rated :excellent ;

coffers :appointnmentl, :appointnent2 .
cappointnment1l :day "Tuesday"; :starts 1500; :ends 1555 .
;appoi ntnent2 :day "Sunday"; :starts 1600; :ends 1655 .

For the case of the skyline preference, qu€ly prefers excellent therapists, appointments around
lunchtime (between 12:00 and 13:00) over those outside lunchtime (written BS'&BEN preference),
and later appointments over earlier ones provided that both are equagsgjitbat to lunchtime.

SELECT ?A WHERE {
?T :rated ?R;, :offers ?A. ?A :starts ?S; :ends ?E .
PREFERRI NG (?R = excell ent AND
(?S BETWEEN(1200, 1300) AND ?E BETWEEN(1200, 1300)
PRI OR TO H GHEST ?E)) }

For the case of conditional preferences, in qugywe prefer appointments before 6PM on the week-
ends, and appointments after 6PM on the weekdays.

SELECT ?A WHERE { ?A :day ?D;, :starts ?S.
PREFERRING (I F (?D = "Saturday" || ?D = "Sunday")
THEN ?S < 1800 ELSE ?S >= 1800) }

“Note that, having used Siberski et.al.’s (Siberski et al., 2006) g@masa starting point, we follow them in placing 'Expres-
sion’ after both '"HIGHEST’ and 'LOWEST’, slightly deviating from the Peeence SQL grammar, cfit t p: / / ur sami nor .
i nformati k. uni - augsburg. de/ trac/w ki / Preference¥20SQL%20Synt ax.

3 PrefSPARQL Semantics

In keeping with prior work on preferences (e.g., (Chomicki, 2002, 2@021; Kiel3ling, 2002; Kiel3ling &
Kostler, 2002; Kiel3ling et al., 2011; Siberski et al., 2006)), we definefepnce relation among solutions
inductively on the structure d¥ref as follows.

Definition 1 Let CoAPref be &ondi ti onal Or At om cPr ef , and letQ = [[P]] be a set of solutions to
a SPARQL pattern P as defined in ez, Arenas, & Gutierrez, 2009a; Polleres & Wallner, 2013) and let
u, 1’ € Q. We say thats is preferred tou’ according to preference Pre f, writtgn >Pef 1/, if:

e for Pref = CoAPref?
p >Pet ' = simplify* (CoAPref) > simplify" (CoAPref)
o for Pref = Pref; ANDPref;:
u>P = (PR A £) (SR A £)
o for Pref = Pref; PRI ORTOPref:

Pref u/ = (U >Pref1 u/) V. (U >Pref2 u//\u 7<Pref1 Il/)

>
Let E be a SPARQL Expression, then the function simpli@gAPref) expands conditional or atomic
preferences as follows:
e for CoAPref=E, simplify(CoAPref) = u(E)
e for CoAPref=1F E THEN CoAPrefi ELSE CoAPre},

simplify(CoAPref) if EBV(U(E)) =true

simplify’(CoAPref) = {sim plify*(CoAPref) otherwise

Here EBV stands for the effective boolean value of an expression, 8daeis & Seaborne, 2013, Section
17.2.2).

As mentioned above in SectionBETWEEN, AROUND, MORE THAN, LESS THAN, Hl GHEST, LONEST,
may be viewed as syntactic sugar (which could be captured in an exterigtemsamplify(-) function)
accordingly?

Finally, the PREFERRI NG keyword expresses the set of results that are no worse than anyresir

according to a preferenc®se f, wherefore the semantics of PrefSPARQL patterns is defined as

([P PREFERRI NG Pref]] = {u € [[P]] | -3u’ € [[P]] : ¢’ >P"®" u}

We note thalAND-preferences can generalized to an arbitrary number of AND-eédnemefes, as follows:

Sas usual, for boolean values we assumettheg > false

e recall though from Section 2 that we assume an ordered domainllagswbe existence of a distance function, i.e. all
theseCoAPre fcan be viewed as a “scoring function” to induce an ordering. As merdibeére, such ordering is not applicable
to all RDF terms or expressions in SPARQL in general, as they are natrapp@rable. We plan to address this in the future, by
for instance ordering such terms based on the partial order implied bRDER BY solution modifier in SPARQL (Harris &
Seaborne, 2013, Section 17.2.2), which still though does not jiveserg., an order on RDF blank nodes.

e for Pref =Prefi AND ... ANDPref,:
p PRt = (Ap 2pres 1) A\ 1 >preq 1)
[i

This models a skyline preference (Chomicki, 2011), that is, for such a dinignsionalAND preferences
we obtain exactly the skyline, defined as the set of results that are ne Wans any other result across all
dimensions of a set of independent (boolean or numerical) prefer¢BoezOnyi et al., 2001).

4 Realizing PrefSPARQL Through Query Rewriting

As opposed to a contrary conjecture in (Siberski et al., 2006), weedlt preferences such as the ones
presented in Section@nbe expressed in SPARQL 1.0 and 1.1 itself by the following high-level traosla
schemas, wherB is a SPARQL pattern anBref is a ‘PREFERRI NG clause as defined in the grammar
above.

SPARQL 1.1:

P PREFERRI NG Pref
P FILTER NOT EXI STS {P' FILTER (tr>(Pref))}

SPARQL 1.0:

P PREFERRI NG Pref
P OPTIONAL {P" FILTER (tr>(Pref))[] ?check []} FILTER ('bound(?check))

Here,P’ is a copy ofP where all variables are renamed with fresh variables (primed versions).

We will denote the variables occurringfasvargP); lastly, given &Condi t i onal Or At omi cPr ef
CoAPrefover variables ivarsP), we writeCoAPre f to denote the expression obtained from replacing all
variables invars(P) within Expr by their primed versions. The high-level idea here is that we reformulate
PREFERRI NGclauses aBl LTERs, asking for the non-existence of a solution to the paf@éwmwhich domi-
nates the solution d® according to a preference clau®e f. While non-existence can be expressed straight-
forwardly in SPARQL1.1, we use a common trick of combini@gTl ONAL with ! bound(?check)
where?check is a fresh variable that can only be bound inside @1 ONAL thereby emulating non-
existence in SPARQL1.0. The auxiliary triple pattéfr] ?check [] } used here binds any predicate, so
it should always create at least some auxiliary binding in case some domigalifipn exists.

This simple recipe, along with a translation of the domination relation BSLaTER expression suf-
fices to express the intended semantics of returning only dominating solufldrestranslation function
tr>/</:(Pref), which is applied within this translation recursively, implements the dominatiorr clele
fined in the previous section. Depending on a preference expreBsidntr>/</=(Pref) is defined as
follows:

e for Pref = Pref; ANDPref,:

tr=(Pref) = (tr= (Pref)) && ! (tr=(Pref,))) || (!(tr=(Pref))) && tr~(Pref,))

e for Pref = Pref; PRI ORTOPref:

tr=(Pref) =tr~ (Prefy) || (tr” (Pref;) && tr=(Prefy))

e for Pref = CoAPrefando € {<,>,=}

tr°(Pref) = simplify(CoAPref) o simplify(CoAPre)

Here, we assume thatmplify(-) is as defined in section 3 above, with the difference that it is no longer
dependent o, since (a) expressions are just left ‘as is’, i.e.

e for CoAPref=E, simplify(CoAPref) =E

and (b) conditionall(F-THEN-EL SE) preferences are — recursively — rewritten to SPARQLI.E(*,-,-)’
expressions or basic SPARQL1.0 expressions as follows, implementiotiyetke intended semantics:

e for CoAPref=1FE THENCoAPref ELSE CoAPre$
(SPARQL 1.1) simplify(CoAPref) =1 F(E,simplify(CoAPref),simplify(CoAPre$))
(SPARQL 1.0) simplify(CoAPref) = (E && simplify(CoAPretf)) || ({(E) && simplify(CoAPre$))

Strictly speaking, we note here that the translation for SPARQL 1.0 onhese&xy arapproximationfor
| F-THEN-ELSE, since in case wher evaluates to an error, the expressi@&& simplify(CoAPref))
|| (/(E) && simplify(CoAPre)) will also evaluate to error, whereas tBe SE branch should indeed be
considered. This is due to the 3-valued semantidsl&fTER expressions (cf. (Harris & Seaborne, 2013,
Section 17.2)); it is thus up to the user to take care of appropriate emaltihg within the SPARQL1.0
setting.

Let us illustrate the translation by means of some examples: for skyline quegdaske a simplified
version ofQlL from above without BETWEEN where we prefer appointments outside rush hour, i.e., either
starting after 18:00 or ending before 16:00, instead of over lunchtime.

SELECT ?A
WHERE {
?T :rated ?R;, :offers ?A. ?A :starts ?S; :ends ?E .
PREFERRI NG ((?R = excellent) AND
((?S >= 1800) || ?E <= 1600) PRIOR TO
H GHEST 7S))}

This query translates to the following SPARQL1.1 query:

"Given that | F(-,-,-) "is notavailable in SPARQL 1.0, different versions of the translation etinditional [F-THEN-EL SE)
preference are provided for SPARQL 1.0 and SPARQL 1.1

8As mentioned before, BETWEEN can be translated using conditionanerefes.

SWe useBI ND...AS statements for the sake of clarity, to “collect” subexpressions subjeat fBRisimplify(-) function. While
we haven’'t mentioned this explicitly in our translation this could be considemegptimization, since it also avoids re-computation
of the same subexpressions at several places of the resHItiInGER. For an expanded translation withdltND...AS statements
we refer to the Appendix.

1 SELECT ?A WHERE { ?T :rated ?R, :offers ?A. ?A :starts ?S; :ends ?E .

2 BIND ((?R = :excellent) AS ?Prefl)

3 BIND ((?S >= 1800 || ?E <= 1600) AS ?Pref2)

4 BIND (?S AS ?Pref3)

5 FILTER NOT EXI STS {

6 ?T_:rated ?R_; :offers ?A . ?A :starts ?S_; :ends ?E_.

7 BIND ((?R_ = :excellent) AS ?Prefl)

8 BIND ((?S_ >= 1600 || ?E_ <= 1600) AS ?Pref2_)

9 BIND (?S_ AS ?Pref3_)

10 FI LTER(

11 ((?Prefl_ > ?Prefl) &&

12 P((?Pref2_ < ?Pref2) || (?Pref3_ < ?Pref3 && ?Pref2 = ?Pref2_)))
13 |

14 ('(?Prefl_ < ?Prefl) &&

15 ((?Pref2_ > ?Pref2) || (?Pref3_ > ?Pref3 && ?Pref2 = ?Pref2_))))}}

In the copied patter® we replace every variable by a ‘copy’ appendingté the variable name. In both
P andP’ we bind every atomic expressionref to a new variable (lines 2-4 and 7-9); then we use these
variables to build up a FILTER expression that filters out ‘dominating’ wigeedorP; if no such witness
exists,P survives. Let us explain briefly the rationale behind the translation dégmece dominance in
lines 11-15: the two dimensions (AND) of the skyline preference — i.e., that@nating solution is better
in at least one dimension and no worse in the others — are encoded in theatvahds in lines 11-12 and
lines 14-15, whereas the nested cascading (PRIOR TO) preferetweednPre f2 andPre f3 is encoded in
the boolean expressions in lines 12 and 15, respectively.

Let us emphasize that the translation would also work without BINDs; tlpeotise expressions could

just be copied, although this would make the translated query more confusing

As for the SPARQLL1.0 version of the same query, note again that in SPARQNOT EXI STS is
replaced by the well-known combination OPTI ONAL andFI LTER(! bound) (cf. (Prud’hommeaux &
Seaborne, 2008, Section 11.4.1)) to emulate set difference, plus teereBl NDs:

1 SELECT ?A WHERE { ?T :rated ?R :offers ?A. ?A :starts ?S; :ends ?E .

2 OPTI ONAL {

3 ?T_:rated ?R_; :offers ?A . ?A :starts ?S_; :ends ?E_.

4 FI LTER(

5 (((?R_ = :excellent) > (?R = :excellent)) &&

6 P(((?S_ >= 1600 || ?E_ <= 1600) < (?S >= 1800 || ?E <= 1600)) ||

7 (?S_ < ?S && (?S >= 1800 || ?E <= 1600) = (?S_ >= 1600 || ?E_ <= 1600))))
8 |l

9 ('"((?R_ = :excellent) < (?R = :excellent)) &&

10 (((?S_ >= 1600 || ?E_ <= 1600) > (?S >= 1800 || ?E <= 1600)) ||

11 (?S_ > ?S && (?S >= 1800 || ?E <= 1600) = (?S_ >= 1600 || ?E_ <= 1600)))))}

12 FILTER(!bound(?R))}

As a further example, the translation of qu€l/ from above shows how conditional preferences can be
encoded in SPARQL1.1 conveniently using tHe -,-,-) function.

1 SELECT ?A VWHERE {

2 ?A :day ?D;, :starts 7?S.

3 BIND (IF((?D = "Saturday" || ?D = "Sunday"), ?S < 1800, ?S >= 1800)

4 AS ?Prefl)

5 FILTER NOT EXISTS { ?A_ :day ?D_; :starts ?S_.

6 BIND (IF((?D_ = "Saturday" || ?D_ = "Sunday"), ?S_ < 1800, ?S_>= 1800)

8

7 AS ?Prefl)
8 FILTER (?Prefl > ?Prefl)}}

Similarly, applying the alternative translation scheme for SPARQL1.Qdbwe obtain the following query:

1 SELECT ?A WHERE ({
2 ?A :day ?D; :starts ?S.

3 OPTI ONAL {

4 ?A :day ?D_; :starts ?S_.

5 FILTER((((?D_ = "Saturday" || ?D_ = "Sunday") && ?S < 1800) ||
6 ('(?D_ = "Saturday" || ?D_ = "Sunday") && (?S_ >= 1800)))

7 >

8 (((?D = "Saturday" || ?D = "Sunday") && ?S < 1800) ||

9 ('(?D = "Saturday" || ?D = "Sunday") && (?S >= 1800))))}

10 FILTER (!'bound(?S)))}

5 Summary and Discussion

In this report we argued for (re-)considering preferences in SPARuUeries. Given the vast amount of data
being subjected to SPARQL queries, we can conceive many examples edmeplex preferences would be
needed to find the “needle in the haystack”, with the user specifyingrprefes not only over query results
but also over the sources (SPARQL endpoints) and provenancézofisied to produce those results. Here
we proposed a core grammar for PrefSPARQL, an extension to SPARQthdt supports the expression
of preferred query results. Our language builds on established wo8Qd. preferences and on an earlier
effort by Siberski et al. (Siberski et al., 2006), extending it with dbodal preferences. We further argued,
contrary to the conjecture of Siberski et al., that these preferenceeguwan be directly expressed in both
SPARQL1.0 and SPARQL1.1 using OPTIONAL queries or novel featafe8PARQL1.1, such as NOT
EXISTS. We illustrated such a realization with respect to skyline and conditimeference queries. We
acknowledge that, at the time Siberski and colleagues’ work was perdotine semantics of SPARQL1.0
was not yet fully defined and SPARQLL1.1 was still far off on the horizon.

Nevertheless, we argue that this topic needs further attention, sinaremeé queries implemented
naively by rewriting in SPARQL might become prohibitively costly. In particulae emphasize that all
the examples we gave in this paper, even those expressing simple prefebsri'stacking OPTIONALS”,
as mentioned in Section 1, or, respectively all our example translations woaddce so called non-well-
designed patterns @Pez, Arenas, & Gutierrez, 2009b; LeteliegrBz, Pichler, & Skritek, 2012) in SPARQL.
We therefore plan to further investigate relaxations of the well-desigissdestriction, which still enable
efficiently evaluable preference queries.

The specification and efficient realization of preference-based §RAdRIeries is an important topic
that is worthy of further exploration. As this work is ongoing, consideretifor expanding it include the
addition of quantitative preferences in the form of top-k queries, rgnkithin a skyline, preferences over
endpoints in the context of the SPARQL1.1 Federation extension (Prudfeaux & Buil-Aranda, 2013),
SPARQL endpoint discovery (e.g. by preferences over Servicerigéens (Williams, 2013)) as well as
interaction of preferences with Entailment Regimes (Glimm & Ogbuiji, 2013).

Acknowledgements

We wish to thank Wolf Siberski, Jeff Pan, and Florian Wenzel for theiisessce. This work has been
partially supported by the Natural Sciences and Engineering ReseargfciCof Canada (NSERC), an

9

Ontario Graduate Scholarship (OGS), and by the Vienna Science ahddlegy Fund (WWTF) through
project ICT12-015.

References

Borzgnyi, S., Kossmann, D., & Stocker, K. (2001). The skyline operatoPrat. of the 17th Int'l Confer-
ence on Data Engineering (ICDE)p. 421-430.

Bozzon, A., Valle, E. D., & Magliacane, S. (2012). Extending SPARQIehtg to support efficient evalua-
tion of top-k SPARQL queries. In Ceri, S., & Brambilla, M. (EdsSgarch Computing — Broadening
Web Searchpp. 143-156. Springer Lecture Notes in Computer Science.

Chomicki, J. (2002). Querying with intrinsic preferencesPhoc. of the 8th Int'l Conference on Extending
Database Technology (EDBTpp. 34-51.

Chomicki, J. (2003). Preference formulas in relational que#€dM Trans. on Database Systems (TODS)
28(4), 427-466.

Chomicki, J. (2011). Logical foundations of preference querl&&E Data Engineering Bulletir34(2),
3-10.

Glimm, B., & Ogbuiji, C. (2013). SPARQL 1.1 Entailment Regimes.. W3C Recommemdatio
Harris, S., & Seaborne, A. (2013). SPARQL 1.1 Query Language C\WR8commendation.

llyas, I. F., Beskales, G., & Soliman, M. A. (2008). A survey of top-keguprocessing technigues in
relational database systenfsCM Computing Surveyd0(4), 11:1-11:58.

KieR3ling, W. (2002). Foundations of preferences in database systarRsoc. of 28th Int’l Conference on
Very Large Data Bases (VLDB)p. 311-322.

Kiel3ling, W., Endres, M., & Wenzel, F. (2011). The preference SQitesy - an overview.|[EEE Data
Engineering Bulletin34(2), 11-18.

Kiel3ling, W., & Kostler, G. (2002). Preference SQL - design, implementation, expesielmieroc. of 28th
Int'l Conference on Very Large Data Bases (VLDBp. 990-1001.

Letelier, A., Ferez, J., Pichler, R., & Skritek, S. (2012). Static analysis and optimizatiserafintic web
gueries. InProc. of the 31st Symposium on Principles of Database Systems (P@D8P-100.

Magliacane, S., Bozzon, A., & Valle, E. D. (2012). Efficient executibtop-k SPARQL queries. IProc.
of the 11th Int'l Semantic Web Conference (ISWip) 344—360.

Montoya, G., Vidal, M.-E., Corcha)., Ruckhaus, E., & Aranda, C. B. (2012). Benchmarking federated
SPARQL query engines: Are existing testbeds enough?Prdc. of the 11th Int'l Semantic Web
Conference (ISWCpp. 313-324.

Pérez, J., Arenas, M., & Gutierrez, C. (2009a). Semantics and complex8PARQL. ACM Trans. on
Database Systems (TODSY(3), Article 16 (45 pages).

Perez, J., Arenas, M., & Gutierrez, C. (2009b). Semantics and complekBPARQL. ACM Trans. on
Database Systems (TODSX(3).

Polleres, A., & Wallner, J. (2013). On the relation between spargll.1aswer set programmingournal
of Applied Non-Classical Logics (JANGCL)3(1-2), 159-212. Special issue on Equilibrium Logic
and Answer Set Programming.

10

Prud’hommeaux, E., & Buil-Aranda, C. (2013). SPARQL 1.1 Federateer®). W3C Recommendation.
Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL Query Langi@agRDF.. W3C Recommendation.

Siberski, W., Pan, J. Z., & Thaden, U. (2006). Querying the semanticvitblpreferences. Iinternational
Semantic Web Conferengap. 612-624.

Stefanidis, K., Koutrika, G., & Pitoura, E. (2011). A survey on repnéson, composition and application
of preferences in database syste®€M Trans. on Database Systems (TO38}3), 19.

Wagner, A., Tran, D. T., Ladwig, G., Harth, A., & Studer, R. (2012)p-kdlinked data query processing. In
Proceedings of the 9th Extended Semantic Web Conference (EBjVE%—71.

Williams, G. (2013). SPARQL 1.1 Service Description.. W3C Recommendation.

A Appendix
Returning to the example from Section 4:

SELECT ?A
VWHERE {
?T :rated ?R;, :offers ?A. ?A :starts ?S; :ends ?E .
PREFERRI NG ((?R = excellent) AND
((?S >= 1800) || ?E <= 1600) PRIOR TO
H GHEST 7S))}

Without the use of BIND...AS statements, the above example from Section {ateemnmto the following
SPARQL 1.1 query:

1 SELECT ?A WHERE { ?T :rated ?R, :offers ?A. ?A :starts ?S; :ends ?E .

2 FI LTER NOT EXI STS {

3 ?T_ :rated ?R_; :offers ?A_. ?A :starts ?S_; :ends ?E_ .

4 FI LTER(

5 (((?R_ = :excellent) > (?R = :excellent)) &&

6 P(((?S_ >= 1600 || ?E_ <= 1600) < (?S >= 1800 || ?E <= 1600)) ||

7 (?S_ < ?S & (7S >= 1800 || ?E <= 1600) = (?S_ >= 1600 || ?E_ <= 1600))))
8 'l

9 ('"((?R_ = :excellent) < (?R = :excellent)) &&

10 ((?S_ >= 1600 || ?E_ <= 1600) > (?S >= 1800 || ?E <= 1600)) ||

11 (?S_ > ?S & (7S >= 1800 || ?E <= 1600) = (?S_ >= 1600 || ?E_ <= 1600)))))}}

11

