
SPARQL with Qualitative and Quantitative Preferences
(Extended Report)

Marina Gueroussova Axel Polleres* Sheila A. McIlraith
Department of Computer Science, University of Toronto, Toronto, Canada

* Vienna University of Economics and Business (WU Wien), Vienna, Austria

October 21, 2013

Abstract

The volume and diversity of data that is queriable via SPARQLand its increasing integration motivate
the desire to query SPARQL information sources via the specification of preferred query outcomes. Such
preference-based queries support the ordering of query outcomes with respect to a user’s measure of the
quality of the response. In this report we argue for the incorporation of preference queries into SPARQL.
We propose an extension to the SPARQL query language that supports the specification of qualitative
and quantitative preferences over query outcomes and examine the realization of the resulting preference-
based queries via off-the-shelf SPARQL engines.

1 Introduction

Once the sole purview of IT departments, today’s data is produced, shared, and consumed by a diversity
of stakeholders – corporate and consumer. It is stored in a variety of formats, dynamically integrated, and
queried by a variety of users, many of whom are largely unfamiliar with the content of those sources. As
such, querying today’s data sources using standard query languages is evolving into a manual/iterative search
process, in which repeated queries are devised to hone in on outcomes that meet some criteria. Consider
looking for a car to buy on the web – one might prefer a car with a powerfulengine, but only if it’s a hybrid,
or failing that an electric car if it’s under a certain price, and so on. Such aquery requires not only the
specification of the information to be returned, but also specification of an ordering or preference over what
is returned. With these fundamental changes in the nature of data management and querying comes the need
for query languages and engines that are better suited to the specificationof and search for high-quality
outcomes.

Preferences have been a long studied subject across many fields including economics, philosophy, and
artificial intelligence. Within the database community there is a growing literature onpreferences (e.g.,
(Stefanidis, Koutrika, & Pitoura, 2011)). Indeed, both Chomicki (Chomicki, 2002, 2003, 2011) and in-
dependently, Kießling and colleagues, including Köstler, Endres, and Wenzel (Kießling, 2002; Kießling &
Köstler, 2002; Kießling, Endres, & Wenzel, 2011) have developed foundational theories relating preferences
to database systems and have proposed extensions to SQL that support the specification of quantitative (e.g.,
top-k (Ilyas, Beskales, & Soliman, 2008)) and qualitative (e.g., skyline (Börzs̈onyi, Kossmann, & Stocker,
2001)) SQL queries. Top-k queries use a scoring function to determine an ordering over query results.
In contrast, skyline queries filter a dataset with respect to a set of preference relations, returning a set of
undominated tuples.

1

Our concern in this paper is with SPARQL (Harris & Seaborne, 2013) andwith the provision of a means
of succinctly specifying queries that will enable a user to search for datasources (SPARQL endpoints)
and data content that is tailored to their individual preferences, and in turn for SPARQL query engines to
return ordered outcomes that reflect those preferences. Within the semantic web community, there has been
significant recent work on the computation of top-k queries (e.g., (Montoya, Vidal, Corcho, Ruckhaus, &
Aranda, 2012; Bozzon, Valle, & Magliacane, 2012; Magliacane, Bozzon, & Valle, 2012; Wagner, Tran,
Ladwig, Harth, & Studer, 2012)), but little on how to extend the expressiveness of SPARQL to address a
broad spectrum of qualitative and quantitative preferences. As such,(qualitative) preference-based querying
is often realized by multiple lengthy queries that stipulate different combinationsof hard constraints, or via
“standard tricks1” such as “stacking” OPTIONAL patterns, as illustrated in the following example which
preferably returns the email address of my friends, and the homepage if there is no email.

SELECT ?Contact WHERE { me foaf:knows ?X
OPTIONAL {?X foaf:mbox ?Contact}
OPTIONAL {?X foaf:homepage ?Contact} }

In 2006 Siberski, Pan, and Thaden introduced the notion of qualitative preferences into SPARQL queries
(Siberski, Pan, & Thaden, 2006). In that work they realized their preference queries through the develop-
ment of solution modifiers. Interestingly, their work was done before the semantics of OPTIONAL was
established, and it was our hypothesis that much of what they did in 2006 withsolution modifiers could
be done in native SPARQL 1.0 and SPARQL 1.1 through rewriting. Building onthat work, we propose
an extension of the SPARQL query language, PrefSPARQL that, like Siberski et. al.’s work, builds on the
vetted work on SQL preference queries, extending it here to support the expression of conditional prefer-
ences. In Section 4 we focus on the realization of qualitative preferences, and in particular on skyline and
conditional preferences, showing how they can be rewritten into SPARQL1.1 (and also SPARQL 1.0) and
thus realized by existing SPARQL query engines. The work presented here is only the first step of a larger
endeavour that will see the extension of the presented query grammar with anumber of interesting features,
and the development of optimized query processing techniques that are tailored to the efficient computation
of preference-based SPARQL queries.

2 PrefSPARQL Syntax

In this section we propose a core grammar for PrefSPARQL that addresses a selection of qualitative and
quantitative preferences in support of specifying preferred SPARQL query outcomes. We illustrate our
grammar with respect to skyline and conditional preference queries. Skyline queries for relational databases
have been the subject of significant research (e.g., (Chomicki, 2011; Börzs̈onyi et al., 2001)), and refer to a
set of results that are no worse than any other result across all dimensions of a set of independent boolean or
numerical preferences (Börzs̈onyi et al., 2001). Skyline queries have been studied extensively in database
systems, and explicitly in the SQL context by Chomicki (Chomicki, 2002, 2003,2011), and by Kießling,
Köstler, Endres, and Wenzel as an essential part of theirPreference SQLlanguage and system (Kießling,
2002; Kießling & Köstler, 2002; Kießling et al., 2011).

We build upon an earlier approach to adopt features ofPreference SQLin SPARQL, by Siberski, Pan,
and Thaden (Siberski et al., 2006). In particular, we extend the SPARQL query language in a similar fashion
to the proposal in (Siberski et al., 2006); we also use ‘AND’ to separateindependent dimensions of skyline
queries. The key differences in our proposal are that, firstly, we addpreferences at the level of filters

1e.g.,http://answers.semanticweb.com/questions/20682/preference-patterns-for-sparql-11

2

(production 68 of the SPARQL grammar (Harris & Seaborne, 2013, Section 19)) rather than as solution
modifiers, with the justification that preferences semanticallyfilter the solution set rather than ‘ordering’ or
‘slicing’ it. This approach makes preferences usable inside any patternsin a nested fashion as opposed to just
at the end of queries.2 Secondly, we follow the latest version ofPreference SQL(Kießling et al., 2011) in
replacing ‘CASCADE’ with ‘PRIOR TO’. Furthermore, we support additional atomic preference constructs
such as ‘BETWEEN’, ‘AROUND’, ‘MORE THAN’, ‘LESS THAN’, ‘HIGHEST’, and ‘LOWEST’ ; ‘x
BETWEEN (Low,High)’ differs from writing ‘((x>= Low) && (x<= High))’ in SPARQL in that – in the
absence of a value in the chosen interval – ‘BETWEEN’ will return the closest value toLow(or High, resp.);
AROUND(x), MORE THAN(x), and LESS THAN(x) are analogous to BETWEEN(x,x), BETWEEN(x,∞)
and, BETWEEN(−∞,x) respectively; likewise, we note that‘HIGHEST’ and ‘LOWEST’ can be seen as
syntactic sugar for AROUND(∞) and AROUND(−∞), respectively. In all these functions, one usually
needs to assume a partially ordered domain, and also a distance function (Abs(x− y)). We note that in the
general domain of SPARQL, an ordered domain cannot be assumed, since SPARQL expressions can return
arbitrary RDF terms that are neither partially ordered, cf. (Harris & Seaborne, 2013, 15.1), nor is there a
general distance. The present version of this report focuses on defining the syntax and overall semantics
framework for PrefSPARQL, so we assume RDF terms to be partially ordered and a distance function being
available for now, and leave a detailed treatment of these issues to future work.

Finally, we augment the grammar with conditional (IF-THEN-ELSE) preferences. We note that, given
the availability of conditional preferences, BETWEEN (as well as AROUND, MORE THAN, and LESS
THAN) come for free.3

Filter ::= ’FILTER’ Constraint
| ’PREFERRING’ ’(’ MultidimensionalPref ’)’

MultidimensionalPref ::= PrioritizedPref (’AND’ PrioritizedPref)*
PrioritizedPref ::= ConditionalOrAtomicPref

(’PRIOR TO’ ConditionalOrAtomicPref)*
ConditionalOrAtomicPref ::= ConditionalPref | AtomicPref
ConditionalPref ::= ’IF’ Expression

’THEN’ ConditionalOrAtomicPref
’ELSE’ ConditionalOrAtomicPref

AtomicPref ::= Expression | HighestPref | LowestPref | BetweenPref
| AroundPref | MoreThanPref | LessThanPref

HighestPref ::= ’HIGHEST’ Expression
LowestPref ::= ’LOWEST’ Expression
BetweenPref ::= Expression ’BETWEEN’ ’(’ Expression ’,’ Expression ’)’
AroundPref ::= Expression ’AROUND’ Expression
MoreThanPref ::= Expression ’MORE THAN’ Expression
LessThanPref ::= Expression ’LESS THAN’ Expression

Note that in the grammar of thePreference SQLlanguage (Kießling et al., 2011; Kießling & Köstler,
2002), which we base on, the nonterminal ‘<column>’ is used in the productions for ‘HIGHEST’, ‘ LOWEST’,
‘BETWEEN’, ‘ AROUND’, ‘ MORE THAN’, and ‘LESS THAN’ in the following manner: ”<column> HIGHEST”,
”<column> LOWEST”, ”<column> BETWEEN ...”, ”<column> AROUND...”, ”<column>

2While with the addition of subqueries in SPARQL1.1 this does not add to language expressivity, it still allows one to write
certain preference queries more concisely.

3x BETWEEN(Low,High) can be viewed as syntactic sugar for (IFx >= Low && x <= High THEN 0 ELSE IFx < Low
THEN−Abs(Low−x) ELSE−Abs(High−x)). Note here that we want to prefer the smallest distance to the interval, which is why
we use thenegatedabsolute distance−Abs(·) in this expression.

3

MORE THAN...”, and ”<column> LESS THAN...”. 4 While the use of columns in SQL would
naturally correspond to ‘Var’ in SPARQL, we decided that we can allow arbitrary expressions in place of
columns without adding expressive power: indeed, in SPARQL 1.1 (but not SPARQL 1.0) ‘Var’ can be sub-
stituted for ‘Expression’ in the above BNF without loss of expressivity, since any expression can be assigned
to a variable via additionalBIND ... AS clauses in a SPARQL pattern.

For example, in the SPARQL 1.1 flavour of PrefSPARQL:

PREFERRING IF(bound(?price_inEUR), ?price_inEUR, ?price_inUSD) MORE THAN 100

can instead be written as:

BIND(IF(bound(?price_inEUR), ?price_inEUR, ?price_inUSD) AS ?P)
PREFERRING ?P MORE THAN 100

In SQL, similar assignments of arbitrary expressions to columns are allowed with the keyword‘AS’.
However, sinceBIND ... AS clauses are not available in SPARQL 1.0, we use ‘Expression’ rather
than ‘Var’ in our grammar so as to retain the same expressivity also in the SPARQL1.0 flavour of PrefS-
PARQL.

To further illustrate PrefSPARQL, consider a modification of the example from (Siberski et al., 2006).
The knowledge base contains therapist ratings and their appointment offerings (in Turtle syntax).

@prefix : <http://www.example.org/>.
:mary a :therapist ; :rated :excellent ;

:offers :appointment1, :appointment2 .
:appointment1 :day "Tuesday"; :starts 1500; :ends 1555 .
:appointment2 :day "Sunday"; :starts 1600; :ends 1655 .

For the case of the skyline preference, queryQ1 prefers excellent therapists, appointments around
lunchtime (between 12:00 and 13:00) over those outside lunchtime (written as a BETWEEN preference),
and later appointments over earlier ones provided that both are equal with respect to lunchtime.

SELECT ?A WHERE {
?T :rated ?R; :offers ?A. ?A :starts ?S; :ends ?E .
PREFERRING (?R = excellent AND

(?S BETWEEN(1200,1300) AND ?E BETWEEN(1200,1300)
PRIOR TO HIGHEST ?E)) }

For the case of conditional preferences, in queryQ2 we prefer appointments before 6PM on the week-
ends, and appointments after 6PM on the weekdays.

SELECT ?A WHERE { ?A :day ?D; :starts ?S.
PREFERRING (IF (?D = "Saturday" || ?D = "Sunday")
THEN ?S < 1800 ELSE ?S >= 1800) }

4Note that, having used Siberski et.al.’s (Siberski et al., 2006) grammar as a starting point, we follow them in placing ’Expres-
sion’ after both ’HIGHEST’ and ’LOWEST’, slightly deviating from the Preference SQL grammar, cf.http://ursaminor.
informatik.uni-augsburg.de/trac/wiki/Preference%20SQL%20Syntax.

4

3 PrefSPARQL Semantics

In keeping with prior work on preferences (e.g., (Chomicki, 2002, 2003, 2011; Kießling, 2002; Kießling &
Köstler, 2002; Kießling et al., 2011; Siberski et al., 2006)), we define a preference relation among solutions
inductively on the structure ofPre f as follows.

Definition 1 Let CoAPre f be aConditionalOrAtomicPref, and letΩ = [[P]] be a set of solutions to
a SPARQL pattern P as defined in (Pérez, Arenas, & Gutierrez, 2009a; Polleres & Wallner, 2013) and let
µ ,µ ′ ∈ Ω. We say thatµ is preferred toµ ′ according to preference Pre f , writtenµ >Pre f µ ′, if:

• for Pre f =CoAPre f :5

µ >Pre f µ ′ ≡ simpli f yµ(CoAPre f)> simpli f yµ ′

(CoAPre f)

• for Pre f = Pre f1 AND Pre f2:

µ >Pre f µ ′ ≡ (µ >Pre f1 µ ′∧µ ≮Pre f2 µ ′)∨ (µ >Pre f2 µ ′∧µ ≮Pre f1 µ ′)

• for Pre f = Pre f1 PRIOR TO Pre f2:

µ >Pre f µ ′ ≡ (µ >Pre f1 µ ′)∨ (µ >Pre f2 µ ′∧µ ≮Pre f1 µ ′)

Let E be a SPARQL Expression, then the function simpli f yµ(CoAPre f) expands conditional or atomic
preferences as follows:

• for CoAPre f= E, simpli f yµ(CoAPre f) = µ(E)

• for CoAPre f= IF E THEN CoAPre f1 ELSE CoAPre f2,

simpli f yµ(CoAPre f) =

{

simpli f yµ(CoAPre f1) if EBV(µ(E)) = true
simpli f yµ(CoAPre f2) otherwise

Here EBV stands for the effective boolean value of an expression, as per(Harris & Seaborne, 2013, Section
17.2.2).

As mentioned above in Section 2,BETWEEN,AROUND,MORE THAN,LESS THAN,HIGHEST,LOWEST,
may be viewed as syntactic sugar (which could be captured in an extension of the simpli f yµ(·) function)
accordingly.6

Finally, thePREFERRING keyword expresses the set of results that are no worse than any otherresult

according to a preferencesPre f, wherefore the semantics of PrefSPARQL patterns is defined as

[[P PREFERRING Pre f]] = {µ ∈ [[P]] | ¬∃µ ′ ∈ [[P]] : µ ′ >Pre f µ}

We note thatAND-preferences can generalized to an arbitrary number of AND-ed preferences, as follows:

5as usual, for boolean values we assume thattrue> f alse
6We recall though from Section 2 that we assume an ordered domain as well as the existence of a distance function, i.e. all

theseCoAPre fcan be viewed as a “scoring function” to induce an ordering. As mentioned before, such ordering is not applicable
to all RDF terms or expressions in SPARQL in general, as they are not all comparable. We plan to address this in the future, by
for instance ordering such terms based on the partial order implied by theORDER BY solution modifier in SPARQL (Harris &
Seaborne, 2013, Section 17.2.2), which still though does not prescribe, e.g., an order on RDF blank nodes.

5

• for Pre f = Pre f1 AND . . . AND Pre fn:

µ >Pre f µ ′ ≡ (
∧

i

µ ≮Pre fi µ ′)∧ (
∨

i

µ >Pre fi µ ′)

This models a skyline preference (Chomicki, 2011), that is, for such a multi-dimensionalAND preferences
we obtain exactly the skyline, defined as the set of results that are no worse than any other result across all
dimensions of a set of independent (boolean or numerical) preferences (Börzs̈onyi et al., 2001).

4 Realizing PrefSPARQL Through Query Rewriting

As opposed to a contrary conjecture in (Siberski et al., 2006), we argue that preferences such as the ones
presented in Section 2canbe expressed in SPARQL 1.0 and 1.1 itself by the following high-level translation
schemas, whereP is a SPARQL pattern andPre f is a ‘PREFERRING’ clause as defined in the grammar
above.

SPARQL 1.1:

P PREFERRING Pre f
P FILTER NOT EXISTS {P′ FILTER (tr>(Pre f))}

SPARQL 1.0:

P PREFERRING Pre f
P OPTIONAL {P′ FILTER (tr>(Pre f)) [] ?check []} FILTER (!bound(?check))

Here,P′ is a copy ofP where all variables are renamed with fresh variables (primed versions).

We will denote the variables occurring inP asvars(P); lastly, given aConditionalOrAtomicPref
CoAPre fover variables invars(P), we writeCoAPre f′ to denote the expression obtained from replacing all
variables invars(P) within Expr by their primed versions. The high-level idea here is that we reformulate
PREFERRING clauses asFILTERs, asking for the non-existence of a solution to the patternP′ which domi-
nates the solution ofP according to a preference clausePre f. While non-existence can be expressed straight-
forwardly in SPARQL1.1, we use a common trick of combiningOPTIONAL with !bound(?check)
where?check is a fresh variable that can only be bound inside theOPTIONAL thereby emulating non-
existence in SPARQL1.0. The auxiliary triple pattern{[] ?check []} used here binds any predicate, so
it should always create at least some auxiliary binding in case some dominatingsolution exists.

This simple recipe, along with a translation of the domination relation as aFILTER expression suf-
fices to express the intended semantics of returning only dominating solutions.The translation function
tr>/</=(Pre f), which is applied within this translation recursively, implements the domination order de-
fined in the previous section. Depending on a preference expressionPre f, tr>/</=(Pre f) is defined as
follows:

6

• for Pre f = Pre f1 AND Pre f2:

tr>(Pre f) = (tr>(Pre f1) && ! (tr<(Pre f2))) || (!(tr
<(Pre f1)) && tr>(Pre f2))

• for Pre f = Pre f1 PRIOR TO Pre f2:

tr>(Pre f) = tr>(Pre f1) || (tr
>(Pre f2) && tr=(Pre f1))

• for Pre f =CoAPre fand◦ ∈ {<,>,=}

tr◦(Pre f) = simpli f y(CoAPre f′)◦simpli f y(CoAPre f)

Here, we assume thatsimpli f y(·) is as defined in section 3 above, with the difference that it is no longer
dependent onµ, since (a) expressions are just left ‘as is’, i.e.

• for CoAPre f= E, simpli f y(CoAPre f) = E

and (b) conditional (IF-THEN-ELSE) preferences are – recursively – rewritten to SPARQL1.1. ’IF(·, ·, ·)’
expressions or basic SPARQL1.0 expressions as follows, implementing exactly the intended semantics:7

• for CoAPre f= IF E THENCoAPre f1 ELSECoAPre f2

(SPARQL 1.1) simpli f y(CoAPre f) = IF(E,simpli f y(CoAPre f1),simpli f y(CoAPre f2))

(SPARQL 1.0) simpli f y(CoAPre f)= (E && simpli f y(CoAPre f1)) || (!(E)&& simpli f y(CoAPre f2))

Strictly speaking, we note here that the translation for SPARQL 1.0 only serves as anapproximationfor
IF-THEN-ELSE, since in case whereE evaluates to an error, the expression(E && simpli f y(CoAPre f1))
|| (!(E) && simpli f y(CoAPre f2)) will also evaluate to error, whereas theELSE branch should indeed be
considered. This is due to the 3-valued semantics ofFILTER expressions (cf. (Harris & Seaborne, 2013,
Section 17.2)); it is thus up to the user to take care of appropriate error handling within the SPARQL1.0
setting.

Let us illustrate the translation by means of some examples: for skyline queries, we take a simplified
version ofQ1 from above without BETWEEN,8 where we prefer appointments outside rush hour, i.e., either
starting after 18:00 or ending before 16:00, instead of over lunchtime.

SELECT ?A
WHERE {

?T :rated ?R; :offers ?A. ?A :starts ?S; :ends ?E .
PREFERRING ((?R = excellent) AND

((?S >= 1800) || ?E <= 1600) PRIOR TO
HIGHEST ?S))}

This query translates to the following SPARQL1.1 query:9

7Given that ’IF(·, ·, ·)’ is not available in SPARQL 1.0, different versions of the translation of the conditional (IF-THEN-ELSE)
preference are provided for SPARQL 1.0 and SPARQL 1.1

8As mentioned before, BETWEEN can be translated using conditional preferences.
9We useBIND...AS statements for the sake of clarity, to “collect” subexpressions subject to the TRsimpli f y(·) function. While

we haven’t mentioned this explicitly in our translation this could be consideredan optimization, since it also avoids re-computation
of the same subexpressions at several places of the resultingFILTER. For an expanded translation withoutBIND...AS statements
we refer to the Appendix.

7

1 SELECT ?A WHERE { ?T :rated ?R; :offers ?A. ?A :starts ?S; :ends ?E .
2 BIND ((?R = :excellent) AS ?Pref1)
3 BIND ((?S >= 1800 || ?E <= 1600) AS ?Pref2)
4 BIND (?S AS ?Pref3)
5 FILTER NOT EXISTS {
6 ?T_ :rated ?R_; :offers ?A_. ?A_ :starts ?S_; :ends ?E_ .
7 BIND ((?R_ = :excellent) AS ?Pref1_)
8 BIND ((?S_ >= 1600 || ?E_ <= 1600) AS ?Pref2_)
9 BIND (?S_ AS ?Pref3_)
10 FILTER(
11 ((?Pref1_ > ?Pref1) &&
12 !((?Pref2_ < ?Pref2) || (?Pref3_ < ?Pref3 && ?Pref2 = ?Pref2_)))
13 ||
14 (!(?Pref1_ < ?Pref1) &&
15 ((?Pref2_ > ?Pref2) || (?Pref3_ > ?Pref3 && ?Pref2 = ?Pref2_))))}}

In the copied patternP′ we replace every variable by a ‘copy’ appending ’’ to the variable name. In both
P andP′ we bind every atomic expression inPre f to a new variable (lines 2-4 and 7-9); then we use these
variables to build up a FILTER expression that filters out ‘dominating’ witnesses forP; if no such witness
exists,P survives. Let us explain briefly the rationale behind the translation of preference dominance in
lines 11-15: the two dimensions (AND) of the skyline preference – i.e., that adominating solution is better
in at least one dimension and no worse in the others – are encoded in the two branches in lines 11-12 and
lines 14-15, whereas the nested cascading (PRIOR TO) preference betweenPre f2 andPre f3 is encoded in
the boolean expressions in lines 12 and 15, respectively.

Let us emphasize that the translation would also work without BINDs; the respective expressions could
just be copied, although this would make the translated query more confusing.

As for the SPARQL1.0 version of the same query, note again that in SPARQL1.0 NOT EXISTS is
replaced by the well-known combination ofOPTIONAL andFILTER(!bound) (cf. (Prud’hommeaux &
Seaborne, 2008, Section 11.4.1)) to emulate set difference, plus there are noBINDs:

1 SELECT ?A WHERE { ?T :rated ?R; :offers ?A. ?A :starts ?S; :ends ?E .
2 OPTIONAL {
3 ?T_ :rated ?R_; :offers ?A_. ?A_ :starts ?S_; :ends ?E_ .
4 FILTER(
5 (((?R_ = :excellent) > (?R = :excellent)) &&
6 !(((?S_ >= 1600 || ?E_ <= 1600) < (?S >= 1800 || ?E <= 1600)) ||
7 (?S_ < ?S && (?S >= 1800 || ?E <= 1600) = (?S_ >= 1600 || ?E_ <= 1600))))
8 ||
9 (!((?R_ = :excellent) < (?R = :excellent)) &&
10 (((?S_ >= 1600 || ?E_ <= 1600) > (?S >= 1800 || ?E <= 1600)) ||
11 (?S_ > ?S && (?S >= 1800 || ?E <= 1600) = (?S_ >= 1600 || ?E_ <= 1600)))))}
12 FILTER(!bound(?R_))}

As a further example, the translation of queryQ2 from above shows how conditional preferences can be
encoded in SPARQL1.1 conveniently using theIF(·, ·, ·) function.

1 SELECT ?A WHERE {
2 ?A :day ?D; :starts ?S.
3 BIND (IF((?D = "Saturday" || ?D = "Sunday"), ?S < 1800, ?S >= 1800)
4 AS ?Pref1)
5 FILTER NOT EXISTS { ?A_ :day ?D_; :starts ?S_.
6 BIND (IF((?D_ = "Saturday" || ?D_ = "Sunday"), ?S_ < 1800, ?S_ >= 1800)

8

7 AS ?Pref1_)
8 FILTER (?Pref1_ > ?Pref1)}}

Similarly, applying the alternative translation scheme for SPARQL1.0 onQ2 we obtain the following query:

1 SELECT ?A WHERE {
2 ?A :day ?D; :starts ?S.
3 OPTIONAL {
4 ?A_ :day ?D_; :starts ?S_.
5 FILTER((((?D_ = "Saturday" || ?D_ = "Sunday") && ?S_ < 1800) ||
6 (!(?D_ = "Saturday" || ?D_ = "Sunday") && (?S_ >= 1800)))
7 >
8 (((?D = "Saturday" || ?D = "Sunday") && ?S < 1800) ||
9 (!(?D = "Saturday" || ?D = "Sunday") && (?S >= 1800))))}
10 FILTER (!bound(?S_))}

5 Summary and Discussion

In this report we argued for (re-)considering preferences in SPARQL queries. Given the vast amount of data
being subjected to SPARQL queries, we can conceive many examples where complex preferences would be
needed to find the “needle in the haystack”, with the user specifying preferences not only over query results
but also over the sources (SPARQL endpoints) and provenance of data used to produce those results. Here
we proposed a core grammar for PrefSPARQL, an extension to SPARQL 1.1 that supports the expression
of preferred query results. Our language builds on established work on SQL preferences and on an earlier
effort by Siberski et al. (Siberski et al., 2006), extending it with conditional preferences. We further argued,
contrary to the conjecture of Siberski et al., that these preference queries can be directly expressed in both
SPARQL1.0 and SPARQL1.1 using OPTIONAL queries or novel featuresof SPARQL1.1, such as NOT
EXISTS. We illustrated such a realization with respect to skyline and conditional preference queries. We
acknowledge that, at the time Siberski and colleagues’ work was performed, the semantics of SPARQL1.0
was not yet fully defined and SPARQL1.1 was still far off on the horizon.

Nevertheless, we argue that this topic needs further attention, since preference queries implemented
naively by rewriting in SPARQL might become prohibitively costly. In particular, we emphasize that all
the examples we gave in this paper, even those expressing simple preferences by “stacking OPTIONALs”,
as mentioned in Section 1, or, respectively all our example translations wouldproduce so called non-well-
designed patterns (Pérez, Arenas, & Gutierrez, 2009b; Letelier, Pérez, Pichler, & Skritek, 2012) in SPARQL.
We therefore plan to further investigate relaxations of the well-designedness restriction, which still enable
efficiently evaluable preference queries.

The specification and efficient realization of preference-based SPARQL queries is an important topic
that is worthy of further exploration. As this work is ongoing, considerations for expanding it include the
addition of quantitative preferences in the form of top-k queries, ranking within a skyline, preferences over
endpoints in the context of the SPARQL1.1 Federation extension (Prud’hommeaux & Buil-Aranda, 2013),
SPARQL endpoint discovery (e.g. by preferences over Service descriptions (Williams, 2013)) as well as
interaction of preferences with Entailment Regimes (Glimm & Ogbuji, 2013).

Acknowledgements

We wish to thank Wolf Siberski, Jeff Pan, and Florian Wenzel for their assistance. This work has been
partially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), an

9

Ontario Graduate Scholarship (OGS), and by the Vienna Science and Technology Fund (WWTF) through
project ICT12-015.

References

Börzs̈onyi, S., Kossmann, D., & Stocker, K. (2001). The skyline operator. InProc. of the 17th Int’l Confer-
ence on Data Engineering (ICDE), pp. 421–430.

Bozzon, A., Valle, E. D., & Magliacane, S. (2012). Extending SPARQL algebra to support efficient evalua-
tion of top-k SPARQL queries. In Ceri, S., & Brambilla, M. (Eds.),Search Computing – Broadening
Web Search, pp. 143–156. Springer Lecture Notes in Computer Science.

Chomicki, J. (2002). Querying with intrinsic preferences. InProc. of the 8th Int’l Conference on Extending
Database Technology (EDBT), pp. 34–51.

Chomicki, J. (2003). Preference formulas in relational queries.ACM Trans. on Database Systems (TODS),
28(4), 427–466.

Chomicki, J. (2011). Logical foundations of preference queries.IEEE Data Engineering Bulletin, 34(2),
3–10.

Glimm, B., & Ogbuji, C. (2013). SPARQL 1.1 Entailment Regimes.. W3C Recommendation.

Harris, S., & Seaborne, A. (2013). SPARQL 1.1 Query Language.. W3C Recommendation.

Ilyas, I. F., Beskales, G., & Soliman, M. A. (2008). A survey of top-k query processing techniques in
relational database systems.ACM Computing Surveys, 40(4), 11:1–11:58.

Kießling, W. (2002). Foundations of preferences in database systems.In Proc. of 28th Int’l Conference on
Very Large Data Bases (VLDB), pp. 311–322.

Kießling, W., Endres, M., & Wenzel, F. (2011). The preference SQL system - an overview.IEEE Data
Engineering Bulletin, 34(2), 11–18.

Kießling, W., & Köstler, G. (2002). Preference SQL - design, implementation, experiences. InProc. of 28th
Int’l Conference on Very Large Data Bases (VLDB), pp. 990–1001.

Letelier, A., Ṕerez, J., Pichler, R., & Skritek, S. (2012). Static analysis and optimization ofsemantic web
queries. InProc. of the 31st Symposium on Principles of Database Systems (PODS), pp. 89–100.

Magliacane, S., Bozzon, A., & Valle, E. D. (2012). Efficient execution of top-k SPARQL queries. InProc.
of the 11th Int’l Semantic Web Conference (ISWC), pp. 344–360.

Montoya, G., Vidal, M.-E., Corcho,́O., Ruckhaus, E., & Aranda, C. B. (2012). Benchmarking federated
SPARQL query engines: Are existing testbeds enough?. InProc. of the 11th Int’l Semantic Web
Conference (ISWC), pp. 313–324.

Pérez, J., Arenas, M., & Gutierrez, C. (2009a). Semantics and complexity of SPARQL. ACM Trans. on
Database Systems (TODS), 34(3), Article 16 (45 pages).

Pérez, J., Arenas, M., & Gutierrez, C. (2009b). Semantics and complexity of SPARQL. ACM Trans. on
Database Systems (TODS), 34(3).

Polleres, A., & Wallner, J. (2013). On the relation between sparql1.1 and answer set programming.Journal
of Applied Non-Classical Logics (JANCL), 23(1–2), 159–212. Special issue on Equilibrium Logic
and Answer Set Programming.

10

Prud’hommeaux, E., & Buil-Aranda, C. (2013). SPARQL 1.1 Federated Query.. W3C Recommendation.

Prud’hommeaux, E., & Seaborne, A. (2008). SPARQL Query Language for RDF.. W3C Recommendation.

Siberski, W., Pan, J. Z., & Thaden, U. (2006). Querying the semantic webwith preferences. InInternational
Semantic Web Conference, pp. 612–624.

Stefanidis, K., Koutrika, G., & Pitoura, E. (2011). A survey on representation, composition and application
of preferences in database systems.ACM Trans. on Database Systems (TODS), 36(3), 19.

Wagner, A., Tran, D. T., Ladwig, G., Harth, A., & Studer, R. (2012). Top-k linked data query processing. In
Proceedings of the 9th Extended Semantic Web Conference (ESWC), pp. 56–71.

Williams, G. (2013). SPARQL 1.1 Service Description.. W3C Recommendation.

A Appendix

Returning to the example from Section 4:

SELECT ?A
WHERE {

?T :rated ?R; :offers ?A. ?A :starts ?S; :ends ?E .
PREFERRING ((?R = excellent) AND

((?S >= 1800) || ?E <= 1600) PRIOR TO
HIGHEST ?S))}

Without the use of BIND...AS statements, the above example from Section 4 translates into the following
SPARQL 1.1 query:

1 SELECT ?A WHERE { ?T :rated ?R; :offers ?A. ?A :starts ?S; :ends ?E .
2 FILTER NOT EXISTS {
3 ?T_ :rated ?R_; :offers ?A_. ?A_ :starts ?S_; :ends ?E_ .
4 FILTER(
5 (((?R_ = :excellent) > (?R = :excellent)) &&
6 !(((?S_ >= 1600 || ?E_ <= 1600) < (?S >= 1800 || ?E <= 1600)) ||
7 (?S_ < ?S && (?S >= 1800 || ?E <= 1600) = (?S_ >= 1600 || ?E_ <= 1600))))
8 ||
9 (!((?R_ = :excellent) < (?R = :excellent)) &&
10 (((?S_ >= 1600 || ?E_ <= 1600) > (?S >= 1800 || ?E <= 1600)) ||
11 (?S_ > ?S && (?S >= 1800 || ?E <= 1600) = (?S_ >= 1600 || ?E_ <= 1600)))))}}

11

