
University of Toronto, Department of Computer Science, Technical Report No.
CSRG-620

An Evaluation of Clustering Algorithms for Duplicate Detection

Bilal Hussain · Oktie Hassanzadeh · Fei Chiang · Hyun Chul Lee · Renée J. Miller

October 9, 2013

Preamble This project was an offshoot of a PVLDB
2009 paper by Oktie Hassanzadeh, Fei Chiang, Hyun
Chul Lee and Renée J. Miller [40]. Our idea was to
delve deeper into the accuracy of clustering algorithms
that have been used for duplicate detection. To do that,
we had Bilal Hussain experiment with the algoirthms
studied in our original paper (and one or two others) and
evaluate them using a larger set of accuracy measures,
including those presented by Menestrina et al. [57] in
work that followed our initial study [40]. This technical
report documents some of the results. The paper itself is
a rather jumbled (mostly copied) version of the original
PVLDB 2009 paper and we recommend that readers
refer to that paper [40], rather than trying to follow the
rather awkward, unproofed description in this project
report. The experimental section in this technical re-
port is new and produced with the source code from:
https://github.com/hussaibi/libclustER.
Readers should be warned that we have not been able to
replicate the results, so they should take these findings
as very preliminary and unverified. This project report
can be referenced using the citation: [45].
Abstract: Duplicate detection, also referred to as entity
resolution or record linkage, is a major challenge in inte-

B. Hussain · R.J. Miller
Department of Computer Science, University of Toronto
E-mail: hussaibi@cs.toronto.edu, miller@cs.toronto.edu

O. Hassanzadeh
IBM T.J. Watson Research Center
E-mail: hassanzadeh@us.ibm.com

F. Chiang
Department of Computing and Software, McMaster University
E-mail: fchiang@mcmaster.ca

H. C. Lee
Content Understanding & Personalization, LinkedIn
E-mail: culee@linkedin.com

gration and cleaning of large databases. In this paper, we
focus on a class of duplicate detection algorithms that rely
on clustering a similarity graph. Each node in the similarity
graph represents a record and the weight of an edge con-
necting two nodes reflects the amount of similarity between
the corresponding records. The similarity graph can be
efficiently constructed using state-of-the-art similarity join
techniques. For duplicate detection, a clustering algorithm
over the similarity graph is used to produce sets of records
that are likely to represent the same entity. In this paper,
we present a framework for evaluating the effectiveness of
clustering algorithms for duplicate detection. We present
the results of our extensive evaluation of a wide range of
clustering algorithms. Our evaluation is based on a range of
existing and novel quality measures, and reveals a diverse
set of behaviors in terms of both accuracy and scalability.
Our results show the superiority of a number of clustering
algorithms that have not been used in the past for duplicate
detection.

1 Introduction

The presence of duplicate records is a major concern for
data quality in large databases. Duplication detection, also
known as entity resolution or record linkage, is used to iden-
tify records that potentially refer to the same entity. An ex-
ample of a duplicate detection task would be linking pub-
lications to author names based on bibliographic records.
Multiple formats, character accents, and typos can mak-
ing cataloging publications by author names difficult. As
such, multiple occurrences of author names referring to the
same author would need to be linked, based on some no-
tion of similarity, to properly attribute publications to their
respective authors. There are studies and surveys compar-
ing the similarity measures used within these techniques

2 U. Toronto, DCS, Technical Report No. CSRG-620

[19, 39, 42, 28]. However, to the best of our knowledge
there are no comprehensive empirical studies that evalu-
ate the quality of the grouping or clustering employed by
these techniques. This is the case, despite the large number
and variety of clustering techniques that have been proposed
for duplicate detection within the information retrieval, data
management, theory, and machine learning communities.
These clustering algorithms are quite diverse in terms of
their properties and their scalability. This diversity provides
motivation for a study comparing the effectiveness of the
different clustering approaches for the duplicate detection
task.

In this paper, we present an evaluation of clustering algo-
rithms for duplicate detection in the context of the Stringer
system1 [41] that provides an empirical framework for un-
derstanding what barriers remain towards the goal of truly
scalable and general purpose duplication detection algo-
rithms. As shown in Figure 1, Stringer takes as input a
set of records and a threshold value. It then finds all pairs
of records where their similarity score is above a given
threshold value, using a self-similarity join. Regarding our
earlier example of cataloging publications by authors, the
similarity-join would be produced when all author names
are compared to one another and a similarity measure is
calculated over each pair. The result can be regarded as a
weighted graph of records, allowing the application of graph
clustering algorithms to group highly similar records. We
limit the scope of this paper by considering only clustering
algorithms that are referred to as unconstrained [71]. These
clustering algorithms do not assume as input, the number of
entities or other domain-specific parameters. This character-
istic conforms to the problem of duplicate detection where
the number of entities is not known in advance. In this pa-
per, we use Stringer to understand which clustering algo-
rithms can be used in concert with scalable similarity join al-
gorithms to produce duplicate detection algorithms that are
robust with respect to the threshold used for the similarity
join, and various data characteristics including the amount
and distribution of duplicates.

Past work has focused on duplicate detection assum-
ing complete record comparison information, on using tech-
niques to support declarative semantics, and improving the
runtime performance of the duplicate detection task [10].
In contrast, we focus on evaluating performance accuracy
(correctness of duplicates detected) when using incomplete
record comparison information, on scalable similarity join
techniques.

1.1 Contributions

Our contributions include the following.

1 http://dblab.cs.toronto.edu/project/stringer/

Fig. 1 Duplicate detection framework

– We present a novel classification of graph clustering al-
gorithms and show how they can be used, in conjunc-
tion with scalable similarity join algorithms, for dupli-
cate detection. We include highly scalable algorithms
together with some more mathematically sophisticated
and newer clustering algorithms that have generated a lot
of buzz in the data management community, but have not
been evaluated for duplicate detection. We also include
algorithms from information retrieval as well as graph-
theoretic algorithms. The majority of the algorithms pre-
sented in this paper were not previously used for dupli-
cate detection. Additionally, we abstract multiple clus-
tering algorithms into a broader subfamily of graph clus-
tering algorithms, which we refer to as Cut-Based Clus-
tering Algorithms.

– We present a comprehensive evaluation studying the be-
havior of graph clustering algorithms for the task of du-
plicate detection. Our evaluation is based on a diverse
collection of quality measures and on various datasets
with many different characteristics. Specifically, we
broaden the quality measures to include the K-measure
and the Variation of Information.

– We propose and evaluate variants of graph clustering al-
gorithms to improve performance and to analyze inher-
ent nondeterministic behavior in their implementations.
These variants are based on a concept derived from so-
cial network analysis called centrality measure. We
propose using centrality measures to approximate exist-
ing graph clustering algorithms. To our knowledge, this
is the first such evaluation incorporating centrality mea-
sures for the purpose of duplicate detection.

– We present an extensive number of performance met-
rics in our evaluation, and provide an intuition of how
they should be interpreted. This allows us to perform an
extensive performance and behavior comparison across
the different graph clustering algorithms. Specifically,
we look at quality evaluation measures for resolving en-
tities and clustering (in general) which lie outside the
traditional scope of information retrieval.

Clustering for Duplicate Detection 3

– We present the results of our comparison study using
a suite of clustering algorithms for duplicate detection
over string data. Our results highlight the relationship
between the data characteristics, the similarity threshold,
and performance accuracy.

This paper is organized as follows. In the next section,
we present a brief discussion of related work on duplicate
detection and clustering. In Section 3, we describe the clus-
tering algorithms used in our evaluation. In Section 4, we
discuss the methodology of our extensive experiments and
the characteristics of our datasets. Section 5 presents the set
of accuracy measures used in our experiments. Finally, in
Section 6 we discuss our experimental results, and conclude
in Section 7.

2 Related work

In the context of duplicate detection, several highly scalable
similarity join algorithms have been proposed in the past
[4, 9, 18, 54, 61]. Several techniques have been proposed to
perform effective clustering for duplicate detection. Among
these include collective duplicate detection which apply co-
occurrence information between two sets of entities (of dif-
ferent types), and probabilistic inference over general net-
works of different entities, also known as probabilistic re-
lational learning [11, 12, 27]. In our paper, our goal is to
evaluate clustering algorithms that use the simplest form of
input, that is, the output of a similarity join that includes a
set of thresholded similarity scores between pairs of enti-
ties. The pairs of entities represent comparison information
between entities. We referred to the thresholded similarity
join in section 1 as incomplete record comparison informa-
tion. Hence, in considering the integration of bibliographic
databases, our techniques can match tables on publication
titles, person names, or any set of attributes about the pub-
lications, but will not take advantage information external
to the similarity join, such as a social network relationship
between the authors. Even when additional information is
available, it may not be shared or may be represented differ-
ently. We believe that this study, with its strict focus on gen-
eral purpose techniques, will provide results that can be used
to inform empirical studies of more specialized models. The
transitivity of the similarity join is then used for detecting
duplicated. However, the transitivity can be approximated
by using clustering techniques.

A wealth of clustering algorithms have been proposed,
including several books [47, 53, 73], surveys [24, 31, 38,
48, 72], and theses [3, 50, 62, 65, 69]. As noted above,
our goal is to use clustering algorithms that do not require
a priori parameter settings (that adjust for cluster proper-
ties, data characteristics, or the number of clusters). If such
parameters are strictly required, then we include such clus-

tering algorithms in our study if their parameter value(s)
remain stable across runtime execution. For example, we
consider three algorithms, Markov Clustering (MCL) [65],
Affinity-Propagation Clustering (AP) [36], and Cut Cluster-
ing (CUT) [32], which all require some parameter input.
MCL contains a parameter that influences cluster size, how-
ever, the optimal value remains rather stable across applica-
tions [71]. . AP contains parameters that influence runtime
and exemplar preferences, that can be tuned locally with ag-
gregate functions or globally via a single value. In our ex-
periments, we evaluate the effects of exemplar preference
on AP. Finally, CUT contains a single parameter, which as
our experiments show, directly influences the quality of the
clustering.

In the classification of clustering algorithms, shown in
Figure 2, most of the algorithms we consider fall in the par-
titional class. That is, we are not interested in algorithms
that are supervised or only produce hierarchical clusters.
We only consider those algorithms that are unconstrained
[71]. Clustering algorithms like the X-means algorithm
[58], which is an extension of K-means, as well as some ex-
tensions of popular Spectral clustering algorithms [59, 68]
do not require the number of clusters. These algorithms au-
tomatically discover the optimal number of clusters usually
through some heuristics. We would not consider such algo-
rithms as unconstrained per se since the number of clus-
ters is the intrinsic part of the original algorithms that these
are built upon and the optimal number of clusters is discov-
ered during post-processing as opposed to during clustering.
Moreover, the main application of these algorithms is in pat-
tern recognition and computer vision, with different charac-
teristics that make them unsuitable for our framework. Par-
ticularly, the size of the clusters is usually large in these
applications whereas for duplicate detection in real world
data, there are many small (and even singleton) clusters in
the data. This makes some other (unconstrained) clustering
algorithms for finding subgraphs [30, 37] inapplicable.

Although some of the algorithms considered in this pa-
per have been evaluated previously on synthetic, randomly
generated graphs [15, 65], in document clustering [71],
and in computational biology [16], our work is the first to
perform an extensive comparative study across all these
techniques based on several robust quality measures.

3 Algorithms

We now shift focus to specifying in detail the clustering al-
gorithms considered for grouping duplicates in the Stringer
system. In the classification of clustering algorithms in Fig-
ure 2 most of our algorithms fall in the partitional class. That
is, we are not interested in algorithms that are supervised
or only produce hierarchical clusters. All these algorithms

4 U. Toronto, DCS, Technical Report No. CSRG-620

Fig. 2 A classification of clustering algorithms [47].

share the same goal of creating clusters that maximize the
intra-cluster weights, and minimize the inter-cluster edge
weights. Satisfying this objective is known to be computa-
tionally intractable. Thus many approximate solutions either
based on heuristics or theoretical justifications have been
proposed.

In this section, we describe the clustering algorithms
included in our framework. Unconstrained clustering al-
gorithms aim to create clusters containing similar records
C = {c1, . . . , ck} where the value of k is unknown [71].
The clustering may be exclusive (disjoint), meaning the base
relation is partitioned and there is no record belonging to
more than one cluster. Alternatively, non-exclusive clus-
tering permit records to belong to more than one cluster, al-
though it is desirable for this overlap to be small. The Star,
Ricochet (OCR, CR), and Articulation Point clustering algo-
rithms may produce overlapping clusters. For the majority
of algorithms covered in this section, the input base rela-
tion is represented as a graph, G = (V,E,w), instead of a
similarity join. In this representation verticies (V) represent
records, edges (E) represent a comparison of records, and
the similarity between compared records is represented as a
weight on the respective edge (w : E 7→ R). The graph only
considers edges with weight above a threshold (θ), meaning
the algorithms are given incomplete record comparison in-
formation. For the Affinity Propagation and Markov Cluster-
ing algorithms, the input relation is represented as an adja-
cency matrix. These are the only alternative representations
used in this paper.

3.1 Single-pass Algorithms

In single-pass algorithms, intermediate results are not ma-
terialized into memory for further processing. All the algo-
rithms can be efficiently implemented by a single scan of the
list of similar pairs returned by the similarity join (although
some require the list to be sorted by similarityscore). Note
that the construction of the similarity join is not considered
a part of the single-pass algorithms. Figure 3 illustrates the
result of applying these algorithms to a sample similarity
graph [41].

3.1.1 Partitioning (Transitive Closure)

Partitioning based algorithms have been applied in early
duplicate detection work [29, 44]. The algorithm performs
clustering by first assigning each node to its own cluster.
The output of the similarity join showing the list of similar
entity pairs is scanned once. If two entities are similar, but
their nodes are not in the same cluster, then their clusters
are merged [44, 26]. Figure 3(a) shows a sample clustering,
whereby many records that are not similar, may be grouped
into the same cluster.

3.1.2 CENTER

The Center clustering algorithm (CENTER) [43] was orig-
inally proposed for retrieval of web documents. CENTER
performs clustering by partitioning the similarity graph into
clusters that have a center, and all records in each cluster
are similar to their respective center. The algorithm requires
the list of similar pairs to be sorted by decreasing order of
similarity scores. The algorithm then performs clustering by
a single scan of the sorted list. As the sorted list is traversed,
one node is arbitrarily labeled as a center and the other non-
center. These labels remain fixed for all subsequent node
considerations. This process is similar to using disjoint-
sets to compute a transitive-closure. Figure 3(b) illustrates
how this algorithm clusters a sample graph of records. In
this figure, node u1 is in the first pair in the sorted list of
similar records and node u2 appears in a pair right after all
the nodes similar to u1 are visited, and node u3 appears after
all the nodes similar to u2 are scanned. As the figure shows,
this algorithm could result in more clusters than Partition-
ing since it assigns to a cluster only those records that are
similar to the center of the cluster.

3.1.3 Merge Center

The Merge-Center algorithm (MC) is a simple extension of
the CENTER algorithm [41]. MC performs similar to CEN-
TER, but merges two clusters ci and cj whenever a record
similar to the center node of cj is in the cluster ci, i.e., a
record that is similar to the center of cluster cj is similar
to the center of ci. This is done by scanning the list of the
similar records once, but keeping track of the records that
are already in a cluster. Again, the first time a node u ap-
pears in a pair, it is assigned as the center of the cluster. All
the subsequent nodes v that appear in a pair (u, v), and are
not assigned to any cluster, are assigned to the cluster of u.
Whenever a pair (u, v′) is encountered such that v′ is already
in another cluster, the cluster of u is merged with the clus-
ter of v′. Figure 3(c) shows the resulting clusters, assuming
that the nodes u1, u2 and u3 are the first three nodes in the
sorted list of similar records that are assigned as the center

Clustering for Duplicate Detection 5

(a) Partitioning (b) CENTER (c) MC

Fig. 3 Illustration of single-pass clustering algorithms

Algorithm 1 CENTER algorithm
Require: An undirected weighted graph, G = (V,E,w)
S = sort (E,w (E))
center = ∅ {is a set}
noncenter = ∅ {is a set}
cluster = ∅ {a map from vertices to vertex sets}
for (u, v) in S do

if u 6= v then
if u /∈ center and u /∈ noncenter and v /∈ center and v /∈
noncenter then
center.add(u) {Status assigned arbitrarily. u did not have
to become a center.}
noncenter.add(v)
cluster [u] .add({u, v})

else if (u ∈ center and v ∈ center) or (u ∈ noncenter and
v ∈ noncenter) then

ignore
else if v ∈ center and u /∈ noncenter then
noncenter.add(u) {So u was unlabeled}
cluster [v] .add({u})

else if u ∈ center and v /∈ noncenter then
noncenter.add(v) {So v was unlabeled}
cluster [u] .add({v})

else
ignore

end if
end if

end for
return cluster [center] ∪
{{v} | v ∈ V, v /∈ center ∧ v /∈ noncenter} {collect clusters
and singletons}

of a cluster. As Figure 3(c) shows, MC creates fewer clusters
than the CENTER algorithm, but more than the Partitioning
algorithm.

3.2 Cut-based Algorithms

We introduce the notion of Cut-based clustering algorithms
which utilize cuts to generate clusters. A cut partitions a sim-
ilarity graph’s vertices into two mutually exclusive sets. The
Star and Cut clustering algorithms follow this intuition by
using first-order neighborhoods (defined in Section 3.2.3)
and minimum cuts (defined in Section 3.2.1), respectively.
The sequential variants of the Ricochet family of clustering

Algorithm 2 MC algorithm
Require: An undirected weighted graph, G = (V,E,w)
S = sort (E,w (E))
center = ∅ {is a set}
noncenter = ∅ {is a set}
cluster = ∅ {a disjoint-set data structure for building clusters}
for (u, v) in S do

if u 6= v then
if u /∈ center and u /∈ noncenter and v /∈ center and v /∈
noncenter then
center.add(u) {Labels given arbitrarily.}
noncenter.add(v)
cluster.MakeSet(u)
cluster.MakeSet(v)
cluster.Union(u, v) {assume first vertex, u, becomes rep-
resentative of union}

else if u ∈ center and v ∈ center then
cluster.Union(u, v)

else if (u ∈ noncenter and v ∈ noncenter) then
ignore

else if v ∈ noncenter and u ∈ center then
cluster.Union(u, cluster.F ind(v)) {union of u , and v ’s
representative (a center)}

else if u ∈ noncenter and v ∈ center then
cluster.Union(v, cluster.F ind(u)) {union of u , and v ’s
representative (a center)}

else if v ∈ center then
noncenter.add(u) {So first time seeing u}
cluster.MakeSet(u)
cluster.Union(v, u)

else if u ∈ center then
noncenter.add(v) {So first time seeing v}
cluster.MakeSet(v)
cluster.Union(u, v)

else
ignore

end if
end if

end for
return clusters.AllSets()

algorithms traverse all vertices, and apply a Kernighan-Lin
(KL) [49] heuristic to partition the graph. This is done by
swapping the vertices between partitions to minimize the
inter-cluster edge weights. All the algorithms in this sec-
tion provide a solution to the cut function used in Algorithm
3. Note that cuts can be calculated in a variety of ways, de-

6 U. Toronto, DCS, Technical Report No. CSRG-620

pending on the the optimization and objective functions used
to determine the cut. Additionally, the ordering used to tra-
verse the vertices changes the cuts used to form clusters.

Algorithm 3 A General Cut-Based Clustering algorithm
Require: An undirected weighted graph, G = (V,E,w)
S = asList(V){S is a list of vertices.}
clusters = ∅{a map from vertices to vertex sets}
marked = ∅
verextRef = ∅{used to grab at clusters}
repeat
s = pop (S)
if s /∈ marked then

if overlapping clusters are allowed then
someCut = cut (s,G, . . .) {cut returns the partition con-
taining s after performing the cut. . . . are place holder for
additional arguments that may be used to compute cut}
if duplicate clusters or subsets of clusters are not allowed
then
G = removeV ertex (s,G)

end if
else
someCut = cut (s,G, . . .)
someCut = someCut−marked
S = S − someCut

end if
marked = marked ∪ someCut
vertexRef = vertRef ∪ s
clusters [s] .add (someCut)

end if{This is where the sequential Ricochet algorithms would
apply the KL-heuristic. Overlapping clusters are transformed into
proper partitions with the heuristic.}

until (marked = V) ∨ (S = ∅)
return clusters[vertexRef]

3.2.1 Cut Clustering

Given a directed graph G = (V,E) with edge capacities
c(u, v) ∈ Z+ , and two vertices s, t, the s−tmaximum flow
problem is to find a maximum flow path from the source
s to the sink t that respects the capacity constraints.2 Intu-
itively, if the edges are roads, the max flow problem deter-
mines the maximum flow rate of cars between two points.
The max flow-min cut theorem proven by Ford and Fulker-
son [33] states that finding the maximum flow of a network
is equivalent to finding the minimum cut that separates s

and t. Specifically, this involves finding a non-trivial biparti-
tion of the vertices , where s and t are in different partitions,
such that the cut weight (the sum of edge weights crossing
between the bipartition) is minimal. There are many appli-
cations of this theorem to areas such as network reliability
theory, routing, transportation planning, and cluster analy-
sis.

We implemented and evaluated the Cut Clustering al-
gorithm based on minimum cuts proposed by Flake, Tar-

2 Undirected graphs are modeled with bi-directional edges.

Algorithm 4 cut function for Cut Algorithm
Require: An undirected weighted graph, G = (V,E,w)
Require: source ∈ V
Require: Default edge weight α
E1 = {(u, sink) | ∀u ∈ V } {where sink is a temporary vertex}
w (E1) = α

E1 = E ∪ E1

V1 = V ∪ {sink}
G1 = (V1, E1)
(S, T) = minimumCut (G1, source, sink)
{(S, T) is a partition of vertices, where source ∈ S, sink ∈ T and
S ∩ T = ∅}
return S

jan, and Tsioutsiouliklis [32]. The goal is to find clusters
with small inter-cluster cuts so that the intra-cluster weights
are maximized giving strong connections within the clusters.
The algorithm is based on inserting an artificial sink t into
G and finding the minimum cut between each vertex u ∈ U
(the source) and t. Removing the edges in the minimum cut
yields two sets of clusters. Vertices participating in a clus-
ter are not considered as a source in subsequent evaluations.
Multiple iterations of finding minimum cuts yields a mini-
mum cut tree, and after removing the sink t, the resulting
connected components are the clusters of G. The steps for
Cut Clustering are demonstrated by Algorithm 4. The Cut
Clustering algorithm contains a parameter α that defines the
weight for edges connected to the sink t. We select a suitable
α value for our experiments as described further in Section
4.3. Algorithm 4 defines the cut function for Cut clustering,
showing its relationship with Algorithm 3.

3.2.2 Articulation Point Clustering

An articulation point is a vertex whose removal (together
with its incident edges) makes the graph disconnected. A
graph is biconnected if it contains no articulation points. A
biconnected component of a graph is a maximal biconnected
graph. Finding biconnected components of a graph is a well-
studied problem that can be performed in linear time [20].
The ‘removal’3 of all articulation points separates the graph
into biconnected components. This algorithm is based on a
scalable technique for finding articulation points and bicon-
nected components in a graph. Given a graph G, the algo-
rithm identifies all articulation points in G and returns all
vertices in each biconnected component as a cluster. Note
that overlapping clusters are produced. Figure 4 shows an
example. A depth-first search traversal is used to find all ar-
ticulation points and biconnected components in G. We re-
fer the reader to Bansal et al. for details of a scalable and
memory efficient implementation of the algorithm and its

3 Descriptive terminology. The articulation points are not actually
removed. These vertices serve as links between the biconnected com-
ponents and participate in each incident biconnected component vertex
set.

Clustering for Duplicate Detection 7

Fig. 4 (a) Articulation points are shaded, (b) Biconnected components.

pseudo-code [7]. We provide the pseudo-code for the cut
function associating Articulation Point Clustering with Cut-
based Clustering in Algorithm 5. Algorithm 5 defines the
cut function solution for articulation point clustering, show-
ing how it fits with the cut based clustering given by Algo-
rithm 3.

Algorithm 5 cut function for Articulation Point Algorithm
Require: An undirected weighted graph, G = (V,E,w)
Require: source ∈ V
dfstree = searchdepthfirst(G, source)
Identify all articulation points in dfstree
remove descendants of all articulation points from dfstree

S = vertices(dfstree){The implied cut is (S, V − S) }
return S

3.2.3 Star Clustering Algorithm

This algorithm is motivated by the fact that high-quality
clusters can be obtained from a weighted similarity graph
by: (1) removing edges with weight less than a threshold
θ, and (2) finding a minimum clique cover with maximal
cliques on the resulting graph. This approach ensures that
all the nodes in one cluster have the desired degree of sim-
ilarity. Furthermore, minimal clique covers with maximal
cliques allow vertices to belong to several clusters, which
is a desirable feature in many applications (including ours).
Unfortunately this approach is computationally intractable.
It is shown that the clique cover problem is NP-complete
and does not even admit polynomial-time approximation al-
gorithms [64]. The Star clustering algorithm [5] is proposed
as a way to cover the graph by dense star-shaped subgraphs
instead. Aslam et al. [5] prove several interesting accuracy
and efficiency properties, and evaluate the algorithm for doc-
ument clustering in information retrieval. The cut function
solution associating the Star clustering algorithm and the
cut-based algorithm is provided in Algorithm 6. The first-
order neighborhood of a vertex in a graph,NV (G, v), can be
defined as the set of vertices incident to the queried vertex,
v. The degree of a vertex referrers to the number of edges or
vertices incident to the queried vertex, |NV (G, v)|.

Algorithm 6 cut function for Star algorithm
Require: An undirected weighted graph, G = (V,E,w).
Require: A vertex v ∈ V
S = NV (G, v) ∪ {v} {The implied cut is (S, V − S) }
return S

Ensure: The returned value is a set of vertices.

3.2.4 The Ricochet Family of Algorithms

Wijaya and Bressan propose a family of unconstrained algo-
rithms called ‘Ricochet’ due to their strategy resembling the
rippling of stones thrown in a pond [71]. These algorithms
perform clustering by alternating between two phases. In the
first phase, the seeds of the clusters are specified, which is
similar to selecting star centers in the Star algorithm. In the
second phase, vertices are assigned to clusters associated
with seeds. This phase is similar to the re-assignment phase
in the K-means algorithm. Wijaya and Bressan propose four
versions of the algorithm. In two of the algorithms, seeds
are chosen sequentially one by one, while in the two other
algorithms seeds are chosen concurrently. The sequential al-
gorithms produce disjoint clusters, whereas concurrent al-
gorithms may produce overlapping clusters. In all four algo-
rithms, a weight is associated with each vertex . We briefly
describe the four algorithms below and refer the reader to
Wijaya and Bressan for the complete algorithm pseudo-
code. The re-assignment phase, where vertices are swapped
between partitions, is equivalent to using the Kernighan-Lin
(KL) [49] heuristic. Note that only The sequential Ricochet
algorithms lend themselves to the Cut-based clustering al-
gorithm.

Sequential Rippling (SR) performs clustering by first
sorting the nodes in descending order of their weight (aver-
age weight of their adjacent edges). New seeds are chosen
one by one from this sorted list. When a new seed is added,
vertices are re-assigned to a new cluster if they are closer to
the new seed than they were to their original seed. If there
are no re-assignments, then no new cluster is created. If a
cluster is reduced to a singleton, it is reassigned to its nearest
cluster. The algorithm stops when all nodes are considered.

Clusters are formed by cutting the first-order neigh-
borhood of the seed (same as in Algorithm 6). These
clusters overlap before re-assignments are applied. The
re-assignments phase swaps records, effectively removing
overlaps. The re-assignments phase is an application of the
KL-heuristic.

Balanced Sequential Rippling (BSR) is similar to the
sequential rippling when selecting the first seed, and has
a similar second phase. However its first phase differs
whereby it chooses the next seed to maximize the ratio of
its weight to the sum of its similarity to the seeds of exist-
ing clusters. This strategy is employed to select a node with

8 U. Toronto, DCS, Technical Report No. CSRG-620

a high weight that is far enough from the other seeds. BSR
conforms to Cut-based clustering.

Concurrent Rippling (CR) initially marks every vertex
as a seed. In each iteration, the algorithm picks for each seed
the edge with highest weight. If the edge connects the seed
to a vertex that is not a centroid, the vertex is assigned to the
same cluster as the seed, and the seed is assigned centroid
status. If the vertex is a centroid, it is assigned to the cluster
of the other seed only if its weight is smaller than the weight
of the seed. The heavier of the two wins centroid status. This
iteration (propagation of ripple) is performed equally across
all seeds. This requires sorting the edges in descending order
of their weights, finding the minimum value of the weight of
the edges picked in each iteration of the algorithm, and pro-
cessing all the edges that have a weight above the minimum
weight value. CR does not conform to Cut-based clustering.

Ordered Concurrent Rippling (OCR) performs clus-
tering similar to concurrent rippling but removes the require-
ment that the rippling propagates at equal speeds (i.e. pro-
cessing all the edges that have a weight above the minimum
weight value). Therefore this algorithm is relatively more
efficient and also could possibly create higher quality clus-
ters by favoring heavy seeds. OCR does not conform to Cut-
based clustering.

3.3 Correlation Clustering

Suppose we have a graph G on n nodes, where each edge
(u, v) is labeled either + or − depending on whether u and
v have been deemed to be similar or different. Correlation
clustering, originally proposed by Bansal et al. [6], refers to
the problem of producing a partition (a clustering) of G that
agrees as much as possible with the edge labels. More pre-
cisely, correlation clustering solves a maximization problem
where the goal is to find a partition that maximizes the num-
ber of + edges within clusters and the number of − edges
between clusters. Similarly, correlation clustering can also
be formulated as a minimization problem where the goal is
to minimize the number of − edges inside clusters and the
number of + edges between clusters.

Correlation clustering is a NP-hard problem [6]. Thus,
several attempts have been made to approximate both the
maximization and minimization formulations [6, 17, 25, 63].
Most of them are different ways of approximating its linear
programming formulation. For the maximation formulation,
Bansal et al. give a polynomial time approximation scheme.
For the minimization formulation, Bansal et al. give a con-
stant factor approximation. They also present a result which
states that any constant factor approximation for the min-
imization problem in {+,−}-graphs can be extended as a
constant factor approximation in general weighted graphs.
For the original purpose of our application, we had imple-
mented and evaluated the algorithm Cautius [6]. Using a no-

tion of “δ-goodness”, the algorithm Cautius expands a clus-
ter associated with an arbitrary node by adding its neighbors
that are δ-good into the cluster while removing its neighbors
that are δ-bad from the given cluster.

In later work, Ailon et al. proposed a better approxima-
tion scheme for the minimization formulation of correlation
clustering [2]. The proposed algorithm CC-Pivot is equiv-
alent to the partition variant of STAR algorithm, where the
algorithms is applied only to + edges. Unlike STAR, CC-
Pivot uses a randomized vertex ordering, as opposed to an
ordering based on vertex degree. Note that CC-Pivot con-
forms to Cut-based clustering (see Algorithm 3). Therefore,
we study the CC-Pivot algorithm in our paper.

3.4 Probabilistic Clustering

The probability-based algorithms are clustering algorithms
we categorize as either using a graphical-model for learning
(such as factor-graphs) or by treating the graph as the setup
for simulating stochastic processes.

3.4.1 Markov Clustering (MCL)

The Markov Cluster Algorithm (MCL), proposed by Stijn
van Dongen [65], is an algorithm based on simulation of
(stochastic) flow in graphs. MCL clusters the graph by per-
forming random walks on a graph using a combination of
simple algebraic operations on its associated stochastic ma-
trix. Similar to other algorithms considered in our paper, it
does not require any priori knowledge about an underlying
cluster structure. The algorithm is based on a simple intu-
ition that a region with many edges inside forms a cluster
and therefore the amount of flow within a cluster is strong.
On the other hand, there exist a few edges between such pro-
duced regions (clusters) and therefore the amount of flow
between such regions (clusters) is weak. Random walks (or
flow) within the whole graph are used to strengthen flow
where it is already strong (e.g. inside a cluster), and weaken
it where it is weak (e.g. between clusters). By continuing
with such random walks an underlying cluster structure will
eventually become visible. Therefore, such random walks
end when we find regions (clusters) with strong internal flow
that are separated by boundaries with hardly any flow.

expansion(M) =M ×M (1)

inflation(M = [mi,j]n,n, r) =

 mr
i,j

n∑
i=1

mr
i,j

n,n

(2)

The flow simulation in the MCL algorithm is as an alternate
application of two simple algebraic operations on stochastic
matrix associated with the given graph. The first algebraic

Clustering for Duplicate Detection 9

operation is called expansion, which coincides with normal
matrix multiplication of a random walk matrix. Expansion
models the spreading out of flow as it becomes more homo-
geneous. The second algebraic operation is called inflation,
which is a Hadamard power followed by a diagonal scaling
of another random walk matrix. Inflation models the con-
traction of flow, becoming thicker in regions of higher cur-
rent and thinner in regions of lower current. The sequential
application of expansion and inflation causes flow to spread
out within natural clusters and evaporate in between differ-
ent clusters. By varying the inflation parameter of the algo-
rithm, clusterings on different scales of granularity can be
found. Therefore, the number of clusters cannot and need
not be specified in advance, allowing the algorithm to be
adapted to different contexts. Algorithm 7 provides further
details.

Algorithm 7 MCL Algorithm (without any numerical ap-
proximations)
Require: An undirected weighted graph, G = (V,E,w)
Require: A real value, r > 1, controlling the rate of inflation (granu-

larity of resultant clusterings)
M1 = graphToAdjacencyMatrix(G)
M1 = inflation (Mt

1, 1)
t{Normalize rows to treat as stochastic

matrix.}
repeat
M2 = expansion(M1)
M1 = inflation(M2, r)

until M2 and M1 no longer change based on some notion of con-
vergence (i.e. M1 −M2 = 0)
output = matrixToGraph(M1)
output = transitiveClosure(output)
return output

3.4.2 Affinity-Propagation Clustering

The Affinity-Propagation (AP) [36] clustering algorithm
uses factor-graph inference and belief propagation to form
clusters. The update rules used in belief propagation allow
AP to scale for distributed applications. Additionally, AP
uses a different system of operations for probability updates,
avoiding the usage of matrix products. Theoretically, AP is
easy to scale and parallelize. We consider AP for string du-
plicate detection because it has been considered previously
for sentence clustering, and previously compared and related
conceptually [67] to Markov Clustering within a bioinfor-
matics context [16].

AP takes a similarity-matrix as input along with some
additional parameters. These additional parameters specify
convergence conditions, vertex preferences, and algorithm
termination. AP iterates through two consecutive phases
(similar to MCL). The first phase updates a vertex’s respon-
sibility to another vertex. Responsibility calculates how well

a vertex can represent another. The representative vertex
is known as an exemplar. The second phase updates a ver-
tex’s availability to an exemplar. Availability calculates how
appropriate it is for a vertex to be represented by another
vertex. Convergence is decided based on the combina-
tion of availabilities and responsibilities. Non-zero values
of the combination indicate exemplars. All non-exemplars
are assigned to exemplars based on maximum similarity (in
a manner similar to CENTER, but with centroid and non-
centroid status pre-assigned).

Algorithm 8 Calculating/Updating Responsibilities
Require: A matrix, S = [si,j]n,n , of similarities
Require: A matrix, A = [ai,j]n,n , of availabilities
Require: A row entry, i
Require: A column entry, k

return si,k −max
z 6=k

(ai,z + si,z ,−∞)

Algorithm 9 Calculating/Updating Availabilities
Require: A matrix, S = [si,j]n,n , of similarities
Require: A matrix, R = [ri,j]n,n , of responsibilities
Require: A row entry, i
Require: A column entry, k

if i = k then
return

∑
z 6=k

r(z, k)

else

return min

(∑
z 6=i

r(z, k), 0

)
end if

Exemplar Preferences. The vertex preferences in AP
act as a prior belief of how likely exemplar status will be set
for a vertex. The preferences are expected to be in the same
units as the similarities in the input matrix. Preferences are
inserted into the similarity-graph as self-looping edges. We
consider four variants of preference in this paper. The first is
referred to as uniform preference (uAP), where every vertex
is given the same constant as a preference value.

The second variant we referred to as neighborhood-
mean preference (µAP). Here the preferences are set as the
mean weight for a vertex’s neighborhood of edges, NE(v ∈
V,G). This is the only variant which sets preferences for ev-
ery vertex. The preferences change according to the θ setting
used for Stringer’s similarity-join. Completely disconnected
vertices are given the maximum possible similarity-measure
as a preference.

µAP (v ∈ V) =

(∑
e∈NE(v,G)

sim(e)

|NE(v,G)|

)
(3)

The last variants awe call sparse-median (mAP), and sparse-
minimum (θAP). Sparse-minimum sets the preference of ev-

10 U. Toronto, DCS, Technical Report No. CSRG-620

ery vertex to the θ threshold, the minimum edge-weight
among all non-zero edge-weights. Sparse-medium sets the
preference of every vertex to the median edge-weight among
all non-zero edge-weights. For large θ values, both methods
should produce similar preferences.

Algorithm 10 Affinity Propagation
Require: A similarity graph, G = (V,E,w = sim)
Require: A vector of preferences, pref
S = graphToMatrix(G)
diag(similarities) = pref
R = A = 0|V |,|V |
repeat
R = updateResponsibilities(S,A)
A = updateAvailabilities(S,R)
{Assume updates calculated for all matrix index pairs.}
{Matrix index pair traversal and parameter input omitted here.}
pseudoMarginals = R+A

exemplars = index(pseudoMarginals > 0)
until some notion of convergence, or a maximum allowable number
of iterations has been reached
return proper assignments of non-exemplars to exemplars based
on maximum similarity

4 Evaluation

In this section, we present our evaluation methodology. We
first describe the data characteristics used in our experi-
ments. We then explain the experimental settings including
the similarity measure used for calculating the approximate
join.

4.1 Datasets

We generated data using an enhanced version of the UIS
database generator which has been effectively used in the
past to evaluate duplicate detection algorithms and has been
made publicly available [39, 44]. We used the data generator
to inject different realistic types and percentages of errors to
a clean database of string attributes. The erroneous records
made from each clean record were put in a single cluster
(which we used as a ground truth) in order to be able to
measure the quality of the clustering algorithms. The gener-
ator permits the creation of data sets of varying sizes, error
types and distributions. Different error types injected by the
data generator include common edit errors (insertion, dele-
tion, replacement or swapping of character)4 token swap er-
rors and domain specific abbreviation errors, e.g., replac-
ing Inc. with Incorporated and vice versa. We used
two different clean sources of data: a data set consisting of

4 These errors are injected based on a study of common types of edit
errors found in real dirty databases [44].

company names that contains 2, 139 records (names of com-
panies) with average record length of 21.03 characters and
2.92 words in each record on average, and a data set con-
sisting of titles from DBLP which contains 10, 425 records
with an average of 33.55 characters and 4.53 words in each
record. Note that the data sets created by the data generator
can be much larger than the original clean sources. In our
experiments, we created data sets of up to 100K records.

For the results in this paper, we used 29 different
datasets5 (tables) with different sizes, error types and dis-
tributions. Tables 1 and 2 show the description of all these
datasets along with the percentage of erroneous records in
each dataset (i.e., the average number of the records in each
cluster which are erroneous), the percentage of errors within
each duplicate (i.e., the number of errors injected in each
erroneous record), the percentage of token swap and abbre-
viation errors as well as the distribution of the errors (col-
umn Dist. in Table 2), the size of the datasets (the number
of records in each table) and the number of the clusters of
duplicates (column Cluster# in Table 2).6 Five datasets con-
tain only a single type of error (3 levels of edit errors, to-
ken swap or abbreviation replacement errors) to measure
the effect of each type of error individually. The datasets
with uniform distribution have equal cluster sizes on aver-
age (e.g., 10 records in each cluster on average for a dataset
of 5, 000 records with 500 clusters) whereas the size of the
clusters in the Zipfian datasets follow a Zipfian distribution
(i.e., most of the clusters have size 1 while a few clusters
are very large). The Zipfian distribution is normally used
to model the occurrence of rare events (in this case errors).
It is also used to model the characteristics of a linguistic
or world-wide-web-harvested corpus. We expect the task of
duplicate-detection may be used with some sort of harvest-
ing process, and as such use the Zipfian distribution to gen-
erate a more realistic dataset. We believe the errors in these
datasets are highly representative of common types of errors
in databases with string attributes [39].

4.2 Centrality Measures

The importance a vertex has within a graph can be ex-
pressed by the notion of centrality. Centrality has tradition-
ally been used in analyzing social networks [60]. The effects
of sampling graph edges and edge connectivity errors on
different centralities have been studied for the past decade
[21, 14, 35].

Centrality measures determine the relative importance of
a vertex in a graph structure, and its relationship to neighbor-
ing vertices. Centrality measures have been studied in social

5 The datasets refer to the output of the data generator, not the clean
data sources.

6 All these datasets along with a small sample of them are available
at: http://dblab.cs.toronto.edu/project/stringer/clustering/

Clustering for Duplicate Detection 11

Table 1 Datasets used in the experiments

Percentage of
Group Name Erroneous Errors in Token Abbr.

Duplicates Duplicates Swap Error
High H1 90 30 20 50
Error H2 50 30 20 50

Medium M1 30 30 20 50
Error M2 10 30 20 50

M3 90 10 20 50
M4 50 10 20 50

Low L1 30 10 20 50
Error L2 10 10 20 50

AB 50 0 0 50
Single TS 50 0 20 0
Error EDL 50 10 0 0

EDM 50 20 0 0
EDH 50 30 0 0

Zipfian ZH1 90 30 20 50
High ZH2 50 30 20 50

Zipfian ZM1 30 30 20 50
Medium ZM2 10 30 20 50

Error ZM3 90 10 20 50
ZM4 50 10 20 50

Zipfian ZL1 30 10 20 50
Low ZL2 10 10 20 50

DBLP DH1 90 30 20 0
High DH2 50 30 20 0

DBLP DM1 30 30 20 0
Medium DM2 10 30 20 0

Error DM3 90 10 20 0
DM4 50 10 20 0

DBLP DL1 30 10 20 0
Low DL2 10 10 20 0

Table 2 Size, distribution and source of the datasets

Group Source Dist. Size Cluster#
High Error, Company Uniform 5K 500

Medium Error, Names
Low Error,

Single Error
Zipfian High Company Zipfian 1.5K 1K

Zipfian Medium Names
Zipfian Low
DBLP High DBLP Uniform 5K 500

DBLP Medium Titles
DBLP Low

network analysis to identify authoritative hubs that influence
the information flow and structure of a social network [51].
Similarly, the Star clustering algorithm adopted centrality
measures to assess relative vertex importance when select-
ing star centers, a choice that directly influence the quality
of the final clustering [70]. In the context of Cut-based clus-
tering algorithms, centrality allows us to order the vertices
prior to running Algorithm 3. Specifically, we use centrali-
ties to analyze the deterministic behavior of the algorithms.
In our paper, we consider centrality measures as defined
and used previously for the Star clustering algorithms [70],
which are further detailed below.

In our work, we use clustering to maximize intra-cluster
similarity (i.e., the average similarity among pairs of ver-
tices within a cluster) and minimize inter-cluster similarity
(i.e., the similarity among pairs of edges across different
clusters), such that vertices representing similar strings be-
long to the same cluster. To improve the effectiveness of our
clustering algorithms, we apply a set of centrality measures,

as described below, that consider the edge weight similarity
scores between two vertices.

Markov Steady-State. This centrality measure indi-
cates the probability other vertices will associate with a
given vertex. This probability is calculated by assuming ran-
dom walks occur along the edges of the similarity graph
and the similarity indicates the likelihood of walking be-
tween vertices. The computation begins by interpreting the
similarity-graph as an adjacency matrix and normalizing all
rows, producing a stochastic matrix. The stochastic matrix
is then multiplied with itself repeatedly until the resulting
matrix no longer changes or meets sufficient convergence
conditions. The centrality measure is the column sum of the
resulting matrix.

Degree. The degree of a vertex is the number of adjacent
vertices.

Strength. The strength of a vertex is the sum of all
weights (similarities) along its (first-order) neighborhood.

Mean. The mean centrality measure is obtained by di-
viding the vertex strength by its degree.

We evaluate these centralities using the Star, Center, and
Affinity-Propagation Clustering algorithms. However, the
semantic requirement of the Affinity Propagation Algorithm
for setting exemplar preferences limits the type of usable
centrality measures to Mean (see Section 3.4.2).

4.3 Settings

4.3.1 Similarity Function

There are a large number of similarity measures for string
data that can be used in the similarity join. Based on past
work comparing such measures [42], we use weighted-
Jaccard similarity along with q-gram tokens (substrings of
length q of the strings) as the measure of choice due to its
relatively high efficiency and accuracy compared with other
measures. Jaccard similarity is the fraction of tokens in r1
and r2 that are present in both.

simJaccard(r1, r2) =
|r1 ∩ r2|
|r1 ∪ r2|

(4)

Weighted-Jaccard similarity is the weighted version of Jac-
card similarity, i.e.,

simWJaccard(r1, r2) =

∑
t∈r1∩r2 w(t, R)∑
t∈r1∪r2 w(t, R)

(5)

where w(t, R) is a weight function that reflects the im-
portance of the token t in the relation R. We choose the
commonly-used Inverse Document Frequency (IDF) as to-
ken weights. IDF is the logarithm of the inverse of the fre-
quency with which a token occurs over the base relation.

w(t, R) = −log
(nt
N

)
(6)

12 U. Toronto, DCS, Technical Report No. CSRG-620

For our evaluations, we used a slight modification based on
the RSJ (Robertson/Sparck Jones) weights which has been
shown to make the weight values more effective [39]. Here
N is the number of tuples in the base relation R and nt is
the number of tuples in R containing the token t.

wRJS(t, R) = log

(
N − nt + 0.5

nt + 0.5

)
(7)

The similarity value returned is between 0 (for strings that
do not share any q-grams) and 1 (for equal strings).

Note, the similarity predicate can be implemented
declaratively and used as a join predicate in a standard
RDBMS engine [39], or used with some of the specialized,
high performance, state-of-the-art approximate join algo-
rithms [4, 9]. In our experiments, we use q-grams of size
2. We use a q-gram generation technique proposed in pre-
vious work [39]. In this generation technique, strings are
first padded with whitespace at the beginning and the end,
then all whitespace is replaced with q − 1 special sym-
bols (e.g., $). For example, the string ”lorem ipsum” is
padded with whitespace becoming ” lorem ipsum ”. Whites-
pace is then replaced with special character transforming
the string to ”$lorem$ipsum$” for q = 2. The string is
then broken down to q-grams to produce the collection
{l, lo, or, re, em,m, i, ip, ps, su, um,m}.

4.3.2 Implementation Details of the Clustering Algorithms.

To compare the clustering algorithms, we implemented the
algorithms based on the description given by their authors’
in the R programming language7. We report running times,
but they should be taken as an upper bound on the compu-
tation time. Our implementations could be optimized fur-
ther and, more notably for our study, we have tried to en-
sure the time optimization is equitable. The implementation
used for the Affinity Propagation Clustering Algorithm was
based on a modified version of the APCluster library [13].
We modified the library to use sparse matrices [8], instead of
dense matrices. Some of the clustering algorithms were not
originally designed for an input similarity graph and there-
fore we needed to make decisions on how to transform the
similarity graph to suit the algorithm’s input format. The
original implementation of the Ricochet algorithms obtained
from the authors worked only for complete graphs (meaning
graphs containing all edges where some edge weights many
be zero). In our implementation, we fixed this issue. In Cor-
relation Clustering, we build the input correlation graph by
assigning ’+’ to edges between nodes with similarity greater
than θ, and assign ’−’ to edges between nodes with similar-
ity less than θ.

For the results in this paper, we use the term Correla-
tion Clustering to refer to the approximation algorithm CC-

7 Source code is available at https://github.com/hussaibi/libclustER.

PIVOT [2] (CC-PIV), which is a randomized expected 3-
approximation algorithm for the correlation clustering prob-
lem. As described in Section 3.3, CC-PIV is similar to the
partition variant of the STAR algorithm, but the vertices are
chosen randomly and not from an ordered list. Note that
CC-PIV is actually classifiable as Cut-based clustering, but
this is not necessarily true for all correlation clustering algo-
rithms.

For the MCL algorithm, we employed an R implemen-
tation of MCL, based on the original C implementation.8 As
noted previously, we fix the inflation parameter of the MCL
algorithm for all the datasets and treat it as an unconstrained
algorithm. We use the default parameter value (I = 2.0) as
recommended by the author of the MCL algorithm. It should
be noted that the MCL algorithm and the MCL process de-
scribed by van Dongen [65] are not always equivalent.9 Mis-
understandings of the difference have lead to some contra-
dictory results in the past [15]. Although the MCL process
is used in the MCL algorithm, the MCL algorithm can make
use of approximations. With respect to such an implemen-
tation, a top-k matrix-element approximation is used during
the expansion phase, effectively changing the complexity of
the algorithm.9 This forces faster convergence of the process
for very large graphs that are not capable of being stored in
available memory9. This approximation was not used during
the experimental trials.

For the Cut Clustering algorithm, we implemented an
R version of the Ford-Fulkerson algorithm. We evaluated
different values for the parameter α across a subset of the
datasets at varying thresholds to find the α value that would
produce a total number of clusters (for each dataset) that was
closest to the ground truth. We found that α = 0.2 worked
best and used this value throughout our tests. We used the
R programming language [23, 46, 8, 13] for all implemen-
tations.

The different centralities measures were observed using
the Star algorithm10 and the Center algorithm. Upon closer
inspection of the Center clustering algorithm, we realized it
was a subroutine used by the non-sequential Ricochet algo-
rithms. We applied centrality measures to the Center cluster-
ing algorithm in an attempt to avoid the KL-heuristic used
by the Ricochet algorithms. The KL-heuristic is responsible
for the runtime complexity difference between the Star and
the Ricochet Clustering algorithms. Avoiding the heuristic
was achieved by using centralities to remove the arbitrary
labeling decisions made by CENTER (see Algorithm 1).

We also test the Mean centrality measure in setting ex-
emplar preferences for AP. We were limited in using central-
ities for setting initial exemplar preferences, because prefer-

8 http://micans.org/mcl/src/mcl-06-058/
9 http://micans.org/mcl/man/mclfaq.html

10 Evaluation was motivated by past work which was not in the con-
text of string duplicate detection.

Clustering for Duplicate Detection 13

ences have to be related to the notion of similarity used. Ad-
ditionally, AP’s parameters for deciding convergence were
changed from the default. The number of iterations deciding
convergence was changed to 10, and the maximum num-
ber of iterations was changed to 100. The values used were
purposely lowered from the default settings because poorer
accuracy measures were being returned for substantially
longer run-times.

4.3.3 Limitations

In our evaluation, we focused on a θ threshold of [0.1, 0.5].
We have found that under this range of θ values, the accu-
racy measures used for our evaluations (detailed in Section
5) are less correlated (across the different clustering algo-
rithms and the different synthetically-generated data-sets),
thereby warranting further investigation. This section briefly
describes our justification and evaluation process.

For each algorithm and data-set, we calculated multi-
ple accuracy measures. These measures were compared in
a pairwise manner for fixed θ-thresholds and clustering-
algorithms. We used the data at all error levels to com-
pare the relationship between measures to exclude thresh-
olds with high multi-collinearity (i.e. thresholds where all
changes in accuracy measures can be described using the
changes in a single accuracy measure). We summarized the
accuracy measures across the different datasets using Prin-
ciple Component Analysis (PCA) to pick basis vectors for
calculating a statistical summary with minimal covariance
between accuracy measures. A Gaussian distribution was
used to summarize the data for a given fixed θ-value and
algorithm. We then evaluated the different clustering algo-
rithms, using each of our accuracy measure summaries, for
θ ∈ [0.1, 0.9].

For θ over 0.5, we observed that: (a) the accuracy dete-
riorates, because as we remove more edges, the graph be-
comes increasingly sparse; and (b) the accuracy measures
are highly correlated. This indicates that the clusterings can
be evaluated using a single accuracy measure, and we can
consequently compute our other accuracy measures due to
the strong correlation and covariance present. Hence, a de-
tailed evaluation using different accuracy measures is not
needed at these higher thresholds.

For θ in the range of [0.1, 0.5], we observed that while
the graph is dense (an increased number of edges are avail-
able), the accuracy measures are not strongly correlated (and
the covariance between accuracy measures is weak). Hence,
further study is needed at these threshold values to evaluate
the accuracy of the clusterings.

We omit accuracy measures for θ = 0.1 as rela-
tively high collinearity was observed at this threshold value.
Specifically, a few algorithms (including the one used as the

baseline for our experiments) produced clusterings consist-
ing of only one cluster (trivial case).

5 Accuracy Measures

In this section, we explain the accuracy measures used in
our evaluations. Accuracy measures evaluate the quality of
clusters when compared against a ground truth.

There has been some recent work on the axiomatic ap-
proach to measure different quality aspects of clustering al-
gorithms [1, 56, 52]. Different clustering algorithms aim
to optimize different (implicit or explicit) objective func-
tions and therefore are likely to produce different clusterings
even with the same data. Thus, axiomatization of clustering-
quality measures should provide a principled method to
compare the pros and cons of each clustering algorithm and
evaluate its significance for each application context. One
important consequence of such an axiomatization effort is
the natural emergence of some impossibility theorems stat-
ing that having a single clustering algorithm that can sat-
isfy all given axioms is impossible or near impossible with
some probability. Thus, some proposals to relax the orig-
inal axioms have been attempted [1, 56]. This motivates
our work by seeking out more measures to describe clus-
tering accuracy. We evaluate the different clustering algo-
rithms presented in our paper with multiple measures. It is
most likely that no single clustering algorithm can outper-
form every other clustering algorithm for all datasets and is
not capable of satisfying all desirable distance properties.

In this section, we briefly introduce what the previous
axiomatic approach work entails, followed by describing a
more general family of accuracy measures derived from the
work by Menestrina et al. [57] and some additional accuracy
measures that we introduce in our paper.

5.1 Lattice of Partitions

Meilǎ uses the concept of a Lattice of Partitions as a formal
geometric representation to compare partitions [56]. The lat-
tice is constructed by applying splitting and merging oper-
ations on a partition in order to transform it into another
partition. Edges in the lattice represent the application of
the merge and split operations. The edges of the lattice are
undirected since splitting is the inverse operation of merg-
ing. Partitions force a mutual exclusion of all their member
elements, like non-overlapping clusters.

Functions can be calculated along these lattice edges to
compute an accuracy measure. Specifically, each point of the
lattice represents the partitions, and edges represent splitting
or merging operations. By traversing a path on the lattice,
partitions are having a sequence of splitting and merging

14 U. Toronto, DCS, Technical Report No. CSRG-620

operations applied. By associating a function to each op-
eration, it is possible to obtain a value per operation. This
provides the basis for computing a measure to compare
two different partitions over one operation. Deciding how
these functions are combined when computed over a path in
the lattice results in a measure for comparing partitions. It
also provides a method for comparing the endpoints of the
lattice-path, which is precisely what an accuracy measure
is doing when comparing a partitioning produced by an al-
gorithm to the true partitioning of the elements (the ground
truth).

5.1.1 An Example

Here we show why the lattice of partitions is a useful ab-
straction for accuracy measure construction. We will use the
partitions A = {{1, 2, 3, 4}}, and B = {{1}, {2}, {3, 4}}
in this example. Suppose we want a distance measure, d,
which indicates the number of edits required for one clus-
tering to be transformed into another.11 Both A and B can
be interpreted as points or vertices on the lattice of parti-
tions. Edges of the lattice represent transformations caused
by splits or merging of partitions. No splits or merges are re-
quired to transform A into itself. Additionally, a single split
or merge should result in one edit.

d(A,A) = 0 (8)

d(A, {{1}, {2, 3, 4}}) = 1 (9)

d({{1}, {2, 3, 4}}, A) = 1 (10)

However, we can contradict this by simply splitting an ele-
ment and merging it back. Intuitively, we know this is not
correct. In terms of the lattice of partitions, a circular path
is valid and consistent with the restrictions we’ve placed so
far.

d(A,A) = d(A, {{1}, {2, 3, 4}}) + d({{1}, {2, 3, 4}}, A)
(11)

This means we need to restrict our measure in terms of what
paths are valid along the lattice. The simplest solution would
be to perform splits before merges. Our measure is now bro-
ken up in terms of a splitting phase followed by a merging
phase.

d(C,D) = dsplit(C,E) + dmerge(E,D) (12)

We have removed the contradiction. This was enforced by
introducing phases as part of the measure, which can be for-
malized as axioms of the distance measure.

dsplit(A,A) = 0 (13)

11 This is an actual accuracy measure, known as basic merge distance
(BMD).

dmerge(A,A) = 0 (14)

As a result, our measure now behaves as we intended.

d(A,A) = dsplit(A,A) + dmerge(A,A) = 0 (15)

There are other aspects that could also be formalized with
axioms. For example, what if there are multiple valid path-
ways between two endpoints in the lattice of partitions? Is
this acceptable due to an invariant property for picking valid
paths, or would further axioms be needed to restrict the paths
available?

A→ {{1}, {2, 3, 4}} → B (16)

A→ {{2}, {1, 3, 4}} → B (17)

These are the types of questions the axiomatic approach
attempts to solve. The lattice of partitions serves as a useful
abstraction when deciding on further axioms to enforce on a
measure. For further information, we refer the reader to the
prior work of Meilǎ [56, 55].

5.2 Taxonomy

The intuitive consequences of the properties arising from an
axiomatic approach for accuracy measure construction were
made more explicit in Meilǎ’s later work [55], where two
broad accuracy measure categorizations were highlighted,
counting pairs and set cardinality based accuracy measures.
Note that these classifications are not mutually exclusive.
We also provide examples of measures for each categoriza-
tion. The definitions for these measues can be found in Sec-
tion 5.4.

5.2.1 Set Cardinality

Set cardinality accuracy measures do not align to the lat-
tice of partitions.12 The lattice structure is not referenced for
calculating accuracy. Instead, a specific partition refinement
is used for computation. These measures compare the par-
titions based on their content by using set operations and
matches (i.e. maximal coverings). Examples of such mea-
sures in our paper include the precision, recall, and the F1-
measure (see Section 5.4). However, these measures suf-
fer from the partition matching problem [55]. This problem
refers to how set cardinality measures account for the ac-
curacy of the best match of partitions, but ignore the accu-
racy of partitions that do not constitute the best match. In
later work [22], the K-measure was proposed to address this
problem by comparing all partitions, rather than using only
a best match in the form of a maximal match. However, even

12 See Lemma 5 of Meilǎ’s previous work for a detailed reasoning of
how this can occur [56].

Clustering for Duplicate Detection 15

this measure suffers from drawbacks. Specifically, by com-
paring all partitions the measure prefers coarser partition re-
finements than almost perfect partitions with singleton parti-
tions [1]. We refer the reader to Section 5.4 for further details
and definitions of all the measures mentioned.

Note that unlike lattice-aligned accuracy measures, it is
easier to extend these measures from partitioning to cluster-
ing problem domains, where elements are allowed to have
membership in multiple partitions (also referred to as over-
lapping clusters).

5.2.2 Counting Pairs

Counting pairs measures refer to pairs of elements which
appear together within a partition (as opposed to pairwise
across partitions being compared). Rather than elements be-
ing members of a partition, pairs of elements are members
of partitions. With respect to the measures in this paper
(see Section 5.4), the Clustering Precision (CPr) , Penal-
ized Clustering Precision (PCPr) , and Variation of Infor-
mation (VI) [66, 55] accuracy measures are counting-pair
accuracy measures. These measures are included in this pa-
per because they have efficient implementations using the
General-Merge-Distance [57], and were proposed specifi-
cally for evaluating duplicate detection results.

5.3 General Merge Distance

Menestrina et al. built upon the work of Meilǎ by formu-
lating a General-Merge-Distance (GMD), which they cate-
gorize as an edit-based accuracy measure [57]. Unlike set-
cardinality-based accuracy measures, GMD only calculates
distances aligned to the lattice of partitions. This means the
lattice used to transform one partition to another is refer-
enced as input during the computation. GMD performs all
split operations prior to merge operations. The defining fea-
tures of GMD (what makes it an edit-based measure) is
that the distance functions calculated along the lattice can-
not take clusterings as input, but rather scalars correspond-
ing to the clusterings (i.e. cluster size, probability of occur-
rence, etc.). Additionally, all distance functions calculated
over splits and merges must be order-independent (return the
same value regardless of the applied ordering of lattice op-
erations). All of these properties allow GMD to guarantee a
linear runtime complexity making it ideal for large dupli-
cate detection tasks.

5.4 Measure Details

In order to evaluate the quality of the clusters produced by
the clustering algorithms, we use several accuracy measures

from the clustering literature and also measures that are suit-
able for the final goal of duplicate detection. Suppose that
we have a set of k ground truth clusters G = {g1, . . . , gk}
of base relation R. Let C = {c1, . . . , ck′} denote the set
of k′ output clusters of a clustering algorithm. We define a
mapping f from the elements of G to the elements of C,
such that each cluster gi is mapped to a cluster cj = f(gi)

that has the highest percentage of common elements with gi.
Precision and recall for a cluster gi, 1 ≤ i ≤ k is defined as.

Pri =
|f(gi) ∩ gi|
|f(gi)|

(18)

Rei =
|f(gi) ∩ gi|
|gi|

(19)

Intuitively, the value of Pri is a measure of the accuracy
with which cluster f(gi) reproduces cluster gi, while the
value of Rei is a measure of the completeness with which
f(gi) reproduces class gi. Precision, Pr, and recall, Re, of
the clustering are defined as the weighted averages of the
precision and recall (respectively) values over all ground
truth clusters. The F1-measure is defined as the harmonic
mean of precision and recall.

Pr =

k∑
i=1

|gi|
|R|

Pri (20)

Re =

k∑
i=1

|gi|
|R|

Rei (21)

F1 =
2× Pr ×Re
Pr +Re

(22)

We use precision, recall and F1-measure as indicative
values of the ability of an algorithm to reconstruct the
ground truth clusters . However, in our framework, the num-
ber of clusters created by the clustering algorithms is not
fixed and depends on the datasets and the threshold value
used in the similarity join. Therefore, we define two other
measures specifically suitable for our framework. Let CPri
be the number of pairs (of records) in each cluster ci that are
in the same ground truth cluster gj : ci = f(gj), i.e.,

CPri =
|(t, s) ∈ ci × ci|t 6= s ∧ ∃j, (t, s) ∈ gj × gj |(

k′

2

)
(23)

We define Clustering Precision, CPr, to be the average of
CPri for all clusters of size greater than or equal to 2. The
value of CPr indicates the ability of the clustering algo-
rithm to assign records that should be grouped together to
a single clustering, regardless of the number and the size
of the clusters produced. Note, Clustering Precision [41] is
equivalent to the pair precision accuracy measure defined by
Menestrina et al [57].

16 U. Toronto, DCS, Technical Report No. CSRG-620

Table 3 Re-expressing some accuracy measures using General Merge
Distance (GMD). Note,⊥ is used as a place holder for a trivial cluster-
ing of singletons,> is a place holder for a trivial clustering of one clus-
ter, and Basic Merge Distance is included for completeness of known
measure implementable by GMD.

Measure Rewrite
BMD GMD(C,G, fm = 1, fs = 1)

Pair Pr 1− GMD(C,G,fm=0,fs=xy)
GMD(C,⊥,fm=0,fs=xy)

Pair Re 1− GMD(C,G,fm=xy,fs=0)
GMD(⊥,G,fm=xy,fs=0)

VI GMD(C,G, fm = fs = H(x) +H(y)−H(x+ y))
k BMD(C,>) + 1
k′ BMD(G,>) + 1

In order to penalizes algorithms that create greater or
fewer clusterings than the ground truth, we define Penalized
Clustering Precision, PCPr, and compute it as CPr mul-
tiplied by the ratio of extra or missing clusters in the result,
i.e.,

PCPr =

{
k
k′CPr k < k′

k′

k CPr k ≥ k′
(24)

It should be noted that Clustering Precision (CPr) falls
under Meilǎ’s framework and under the GMD framework.
Specifically, CPr is equivalent to the GMD-based Pair Pre-
cision for partitions. Clusterings are treated as graph cliques,
and the edges of each graph clique make up the members of
a clustering (rather than vertices, as is the case with Count-
ing Pairs measures). Edges are unused if they occur between
clique representations (inter-clique edges) for either the pro-
duced or ground-truth clusterings. In short, CPr measures
how well the transitivity of the similarity-join has been pre-
served in the ground-truth. As a result, CPr is more sensi-
tive than precision to displaced records with respect to the
size of the cluster. CPr is less sensitive to displacements in
large clusters, than it is to those in smaller clusters. Hence
more importance is given to records with less duplicates. In
the GMD framework, the functions fs and fm are the func-
tions applied over split and merge operations (as mentioned
in Section 5.3).

CPr = 1− GMD(C,G, fm = 0, fs = xy)

GMD(C,⊥, fm = 0, fs = xy)
(25)

We include the K-measure that measures the amount of frag-
mentation or incompleteness between a produced clustering
and a ground truth clustering. The K-measure differs from
the F1-measure by observing all matches, instead of the best
matches. The K-measure is defined as the geometric mean
of Average Cluster Purity (ACP) and Average Author Purity
(AAP). The ACP and AAP are defined as the fragmenta-
tion and incompleteness between the produced and ground
truth clusterings, respectively (see equations 26 and 27). The
ACP and AAP are similar to precision and recall, respec-
tively. ACP and AAP differentiate from precision and recall

by considering all cluster mappings (as opposed to maxi-
mal mappings, f). The maximal mappings used in calculat-
ing the F1-measure are a strict subset of the mappings used
in the K-measure. As a result of these extra mappings, it is
possible to create conditions for the K-measure to fluctuate
while the F1-measure remains unchanged (due to unchanged
maximal mappings). This results directly from ACP (AAP)
being a mean of means but precision (recall) being a mean
of maximums. In terms of duplicate detection, F1 evaluates
accuracy by assuming the best matchings to be the default
usage of a produced clustering for detecting duplicates. This
default usage is not assumed by the K-measure. As a result,
a mean of means is calculated. The K-measure assumes all
matchings to be possible with respect to the default usage
of the produced clusters. The K-measure’s bias for coarser
cluster refinements [1] stems from this assumption. The K-
measure rewards a produced clustering that can be turned
into a ground truth clustering exclusively with either split or
merge operations. If both operations are required, then the
K-measure will penalize the accuracy of the produced clus-
tering (both ACP and AAP are contributing to the penalty).

ACP =
1

|V |
∑
c∈C

∑g∈G |c ∩ g|2

|c|
(26)

AAP =
1

|V |
∑
g∈G

∑c∈C |c ∩ g|2

|g|
(27)

Kmeasure =
√
ACP ×AAP (28)

By definition, ACP and AAP do not take into account clus-
ters which overlap. As such, we contribute a new defini-
tion for this accommodation by weighing the vertices of the
graph, V . We treat overlaps as fuzzy clusterings, where re-
occurring vertices have uniform partial membership to the
containing clusterings [47]. We use partial membership to
avoid using the notion of best match. The effect is given in
equation 29, where the size of a vertex is changed to sum-
ming the inverse number of occurrences of each vertex in a
clustering (see equation 30). The sum of size of all vertex
instances in a clustering will always equal to one. We en-
force partial membership by using size to calculate the size
of clusters in the ACP and AAP.

size(v ∈ V) =
1

| {c | c ∈ C, v ∈ c} |
(29)

|c ∈ C| =
∑
v∈c

size(v) (30)

Variation of Information (VI) treats all vertices as being ho-
mogeneous within a cluster. Similar to the K-measure, VI
also uses a complete set of comparisons (mappings) between
clusterings. According to Meilǎ, VI was identified as be-
ing ideal for describing the performance of clustering al-
gorithms which utilize the concept of centers, centroids or

Clustering for Duplicate Detection 17

clustering representatives. The analogy between information
theory and clustering algorithms being centers represent a
properly encoded source. A center’s associated clusters rep-
resent bounds upon where error-correction for an encoded
source may occur. With respect to duplicate detection, all
non-center verticies would be duplicates created by string
errors such as token-swapping, or edit errors. As such, VI
makes the assumption that an entity always has a single
correct representative present within a cluster. Intuitively,
VI indicates the amount of remaining uncertainty associated
with the produced clustering when knowing the ground truth
clustering and vice versa. The higher the VI measure, the
more information needs to be accounted for by the produced
and ground truth clusterings. Factors increasing VI include
overly fragmented, encompassing or overlapping clusters.
These factors contribute to a need for better information ac-
counting regarding uncertainty between two given cluster-
ings, in order to reproduce one another.

V I(X,Y) = H(X) +H(Y)− 2I(X,Y) (31)

I(x ∈ X, y ∈ Y) = P (x, y)log
P (x, y)

P (x)× P (y)
(32)

I(X,Y) =
∑
x∈X

∑
y∈Y

I(x, y) (33)

H (X) =
∑
x∈X
−P (x) log2 P (x) (34)

The original definition of VI does not accommodate for
overlapping clusters. We deal with this by proposing a dif-
ferent set of normalized values, so a probability space is de-
fined. This normalization is consistent with probability cal-
culations on partitions. Thus the original definition is used
for non-overlapping clusters.

P (x ∈ X, y ∈ Y) =
|x ∩ y|∑

a∈X
∑
b∈Y |a ∩ b|

(35)

VI is not bounded like F1 and K. Hence, we use a normal-
ized version of VI.

V Inorm(X,Y) =
V I(X,Y)

H(X) +H(Y)
(36)

Almost all accuracy measures in this section indicate per-
fect accuracy by returning 1, and are normalized. VI differs
in that a normalized VI value of 0 indicates perfect accu-
racy, while 1 indicates the worst accuracy possible. A sum-
mary of the accuracy measure characteristics mentioned in
this section can be found in Table 4.

Table 4 Summary of accuracy measure characteristics.

Measure Characteristics
Precision Measure uses best match and is based on

set cardinality. It doesn’t align to lattice
of partitions. It measures a cluster’s abil-
ity to query elements from another clus-
ter. A singleton cluster used for querying
a best match cluster will always have per-
fect Precision.

Recall Measure uses best match and is based on
set cardinality. It doesn’t align to lattice of
partitions. It measures a cluster’s ability to
retrieve elements from another cluster. A
cluster retrieving elements from a cluster
of all elements has perfect Recall.

F1 Measure uses best match and is based on
set cardinality. It doesn’t align to lattice of
partitions. The harmonic mean of Preci-
sion and Recall.

CPr Measure uses best match and is based
on counting pairs. It aligns to lattice of
partitions for disjoint clusters. It is more
sensitive than Precision. Differentiation
between coarse cluster refinements from
perfectly accurate clusters is more sever
than that of Precision. The usage of count-
ing pairs penalizes coarse cluster refine-
ments.

PCPr Measure uses best match and based on
counting pairs. It aligns to lattice of parti-
tions for disjoint clusters. It is more sen-
sitive than CPr. Differentiation between
cluster refinements with singleton clusters
from perfectly accurate clusters is more
sever than that of CPr. The usage of a
number of clusters ratio penalizes the for-
mation of singleton clusters.

K-measure Measure is based on set cardinality and
considers all matches (not only best
match). It is bias towards coarser clus-
ter refinements. Indicates the fragmenta-
tion and incompleteness among two clus-
ters being compared.

VI Measure can be calculated using either set
cardinality or counting pairs. It aligns to
lattice of partitions. Logarithmic scaling
makes highly accurate clusters and perfect
clusters to be much closer than other mea-
sures.

6 Results

We first report the results of our experiments and observa-
tions for each individual algorithm. We use the Partitioning
algorithm (see Section 3.1.1), which returns the connected
components in the similarity graph as clusters, as the base-
line for our evaluations. We then present a comparative per-
formance study among the algorithms, and finally, we report
the running times for each algorithm.

Most of the accuracy results reported in this paper are
average results over the medium error class of datasets in

18 U. Toronto, DCS, Technical Report No. CSRG-620

Table 1 since we believe that these results are representa-
tive of algorithm behavior when using datasets with differ-
ent characteristics. We show the results from other datasets
whenever the trends deviate from the medium class datasets.
Our results are publicly available.13 Lastly, in the follow-
ing sections we refer to the K-measure as ’K’ and the nor-
malized variation of information measure as ’VI’. In the
following sections we show our experimental results. Sec-
tion 6.1 shows the behavior of the different clustering al-
gorithms over changing similarity graph thresholds. Section
6.2 shows the effects of centrality measures on CENTER
and STAR, and the exemplar preferences for AP. Lastly, Sec-
tion 6.3 shows the sensitivity to similarity graph threshold,
and data error amount and distributions of the different clus-
tering algorithms.

6.1 Individual Results

In this section we present the accuracy results for our exper-
iments.

6.1.1 Single-pass Algorithms

Figure 5 shows the mean accuracy values for the single-pass
algorithms over the Medium Error Group datasets (see Table
1), with the accuracy measure ranges over the Low, Medium,
and High Error Group datasets. The ranges were calculated
as the difference between the maximum and minimum at-
tainable accuracy for a specific θ threshold.

The results, in Figure 5, show CENTER performs better
than the Partitioning algorithm for small θ. Merge Center’s
(MC) accuracy is inbetween the two other algorithms. This
occurs because Partitioning creates the largest clusters. For
higher θ values, Partitioning obtains higher recall and lower
precision. CENTER puts many similar records into different
clusters resulting in lower recall, but higher precision. MC
has lower precision than CENTER but higher than Partition-
ing.

MC’s best recall is almost as high as that of Partitioning.
MC performs better for medium θ values. However, CEN-
TER generally has a smaller accuracy range. Thus it is the
most reliable among the three with respect to the amount of
error present in the dataset. However, for medium-range θ
values, those that do not produce clusterings close to trivial
clustering cases, MC generally outperforms CENTER and
Partitioning. Particular attention should be given to PCPr
and CPr. For CENTER, PCPr declines more than CPr for
larger θ values, showing poor quality clusterings. Looking
at the K-measure verifies the cause to be due to increased
fragmentation. If the k-measure had not changed, than the

13 https://github.com/hussaibi/libclustER/blob/master/results/results-
parser/output.csv

cause would have been the displacement of records. To dis-
place a record means to split off a record from its correct
cluster and merging it to another cluster.

Note that the number of clusters in the ground truth is
500. These results show that precision, recall and F1 mea-
sures alone cannot determine the best algorithm since they
do not take into account the number of clusters generated,
this justifies using the CPr and PCPr measures. Furthermore,
we can observe the high degree of sensitivity of all these al-
gorithms to the threshold value used in the similarity graph.
In general, the main takeaway from these results would be
that MC’s accuracy is not consistent over error groups, while
CENTER is not consistent over θ thresholds. Partitioning
achieves the best recall for larger θ values due to forming
fewer and larger clusters (see Figure 3).

6.1.2 Star Algorithm

Figure 6 includes the results for the Star algorithm
(STAR).14 The figure shows that the algorithm has relatively
poor performance in terms of accuracy when a lower thresh-
old value is used. For medium-range threshold values, STAR
begins to peak in performance. This can be largely attributed
to using a first-order neighbourhood, instead of a graph com-
ponent search for forming clusters. This is indicated by the
F1, K and PCPr trends peaking. Initially the clusters are ca-
pable of providing better recall, like Partition, but quickly
transition to the same behavior as CENTER. Interestingly,
the non-overlapping cluster variants of STAR do not have
one optimal threshold for all accuracy measures, resulting
in slightly more complex behavior as larger θ thresholds
are used. Note that the non-overlapping (partition) variant
of STAR achieved slightly higher accuracy for all measures,
except Recall. For higher thresholds, the quality of the clus-
tering considerably decreases. Partitioning, MC, CENTER
and STAR exhibit similar behavior for higher thresholds due
to fewer edges in the similarity graph. Partitioning performs
slightly better in this case due to using graph components.
STAR is able to perform slight better than CENTER due to
using overlapping clusters. STAR’s decrease in accuracy is
due to the centers in its algorithm (see Algorithms 3 and
6) being traversed based on vertex degree. Using higher
threshold values decreases the degree of all nodes and makes
the choice of a proper cluster center harder, resulting in
clusterings of lower quality. Even with an ideal threshold,
STAR’s accuracy is less than the accuracy of the single-pass
algorithms. STAR obtains high recall accuracy initially for
low thresholds, but it is it is still lower than the initial recall
of CENTER.

14 As stated in Section 3.2.3, the degree centrality measure is used
for traversing vertices in STAR.

Clustering for Duplicate Detection 19

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

P
r

)

algorithms

CENTER

MC

PART

0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

R
e

)

algorithms

CENTER

MC

PART

0.00

0.25

0.50

0.75

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

F
1

)

algorithms

CENTER

MC

PART

0.0

0.2

0.4

0.6

0.8

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

P
C

P
r

)

algorithms

CENTER

MC

PART

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

V
I) algorithms

CENTER

MC

PART

0.25

0.50

0.75

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

K
) algorithms

CENTER

MC

PART

Fig. 5 Mean accuracy measures of single-pass algorithms for Medium Error Group.

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75
θ

A
cc

ur
ac

y

measure

Pr

Re

F1

CPr

PCPr

VI

K

0.00

0.25

0.50

0.75

1.00

0.2 0.4 0.6 0.8
θ

A
cc

ur
ac

y

measure

Pr

Re

F1

CPr

PCPr

VI

K

0.00

0.25

0.50

0.75

1.00

0.4 0.6 0.8
θ

A
cc

ur
ac

y

measure

Pr

Re

F1

CPr

PCPr

VI

K

(a) STAR (b) ArtPt (c) CUT

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75
θ

A
cc

ur
ac

y

measure

Pr

Re

F1

CPr

PCPr

VI

K

0.00

0.25

0.50

0.75

1.00

0.25 0.50 0.75
θ

A
cc

ur
ac

y

measure

Pr

Re

F1

CPr

PCPr

VI

K

0.00

0.25

0.50

0.75

1.00

0.4 0.6 0.8
θ

A
cc

ur
ac

y

measure

Pr

Re

F1

CPr

PCPr

VI

K

(d) CCPiv (e) AP (f) MCL

Fig. 6 Mean accuracy measures for Cut-based and Probablistic clustering algorithms over Medium Error Group.

20 U. Toronto, DCS, Technical Report No. CSRG-620

θ = 0.2 θ = 0.4
Part. SR BSR Part. SR BSR

PCPr 0.101 0.628 0.466 0.645 0.590 0.578
CPr 0.991 0.821 0.868 0.879 0.754 0.895
Pr 0.104 0.989 0.675 0.788 0.991 0.828
Re 0.953 0.863 0.932 0.929 0.818 0.930
F1 0.177 0.917 0.779 0.850 0.893 0.873

Cluster# 51 735 268 704 703 323

Table 5 Sequential Ricochet Accuracy

θ = 0.2 θ = 0.5
Part. CR OCR Part. CR OCR

PCPr 0.101 0.494 0.351 0.469 0.402 0.687
CPr 0.991 0.967 0.981 0.805 0.782 0.817
Pr 0.104 0.434 0.299 0.934 0.958 0.862
Re 0.953 0.869 0.952 0.891 0.869 0.883
F1 0.177 0.567 0.454 0.910 0.910 0.872

Cluster# 51 258 180 994 1079 593

Table 6 Concurrent Ricochet Accuracy

6.1.3 Ricochet Algorithms

The accuracy results for SR and BSR, presented in Table 5,
show that these algorithms are also more effective at lower
thresholds, but are overall more robust (less sensitive) across
varying threshold values. The reasoning for more effec-
tive lower thresholds can be explained via the KL-heuristic
and the usage of neighbourhoods for cluster formation. For
lower thresholds, non-overlapping STAR performs poorly
due to fragmenting and displacing duplicate records. This
can be seen by the peaking of CPr and PCPr before the peak-
ing of the k-measure in CC-Piv (see Figure6). The initial
cluster formed by STAR retains the most errors. All subse-
quent clusters are formed on a smaller and smaller similarity
graph, making latter clusters more accurate. When similarity
graph edge information is lost due to using a higher thresh-
old, the displacement of duplicate records are less likely to
occur in the initial cluster, and more likely to occur in sub-
sequent clusters. The KL-heuristic provides the Sequential
Ricochet algorithms a mechanism for dismantling the initial
few clusters, by forcing record swaps with newer clusters.
OCR and CR algorithms (Table 6), on the other hand, are
very sensitive to the threshold value, and are more effec-
tive at higher θ values. This is again due to different way
of choosing cluster seeds used in these algorithms. Marking
all the nodes as seeds and gradually merging the clusters,
as done in OCR and CR, results in higher quality clusters
when the threshold value is high (i.e., the similarity graph
is not dense) but does not work well when the threshold
value is low (i.e., the similarity graph is very dense). On the
other hand, when seeds are chosen sequentially based on the
weight of the nodes, as done in SR and BSR, a lower thresh-
old value (i.e., a dense similarity graph) results in more ac-
curate weight values and therefore better choice of cluster
seeds and higher quality clusters.

6.1.4 Cut Clustering

The quality of the clustering when compared to all other
clustering algorithms is remarkably stable for the Cut Clus-
tering algorithm (CUT). CUT is the most robust algorithm
against both varying θ thesholds and the different error
groups. Variance is largely seen in the accuracy measures
CPr, PCPr, VI, and K. The relative stability of K implies the
coarseness of the clusters is not changing. PCPr closely fol-
lows CPr, indicating CUT does produce relatively the same
number of clusters. Upon closer manual inspection of the
clusters, many singleton clusters were present in the result.
The main take away would be that CUT suffers from the
displacement of records based on the error group.

6.1.5 Articulation Point Clustering

The Articulation Point clustering (ArtPt) algorithm aug-
ments the Partitioning algorithm by splitting components in
the graph into more refined clusters. The algorithm works
best with the optimal threshold for the Partitioning algo-
rithm (the θ value that creates partitions of highest quality in
the Partitioning algorithm). ArtPt follows a similar trend to
Partition, however its accuracy shows sudden improvement
for the sparsest similarity graph. This sudden increase can
be explained by the number of articulation points increas-
ing for sparser similarity graphs. As such, more overlaps
will occur, resulting in improvements in cluster recall. Inter-
estingly, for large θ VI doesn’t change, but other measures
begin increasing. This behavior can be attributed to over-
lapping clusters and how they improve the completeness of
clusterings, but not in a scalable manner. That is to say, K
has a bias for coarser cluster refinements, but this doesn’t
mean larger chunks of entities haven’t been clustered prop-
erly for completeness. The increase in θ increases the num-
ber of produced clusters while reducing cluster sizes, result-
ing in finer clusters. The steady value for VI reflects the lack
of cluster fragmentation due to overlapping clusters. Since
the articulation points in ArtPt are dependent on a similarity
graph edges’ existence, ArtPt accuracy varies across both θ
and the different error groups. Although overlapping clus-
ters should retain recall well, we observed ArtPt to perform
better than STAR. This can be explained by two observa-
tions. The initial clusters of STAR are responsible for ab-
sorbing fragments. An Artpt cluster only shares articulation
points with one other cluster per articulation point. As such,
membership is largely non-partial, and allows for coarser
clusters.

6.1.6 Correlation Clustering

CCPiv (see Figure 6) performs best when using lower to
medium threshold values, producing clusters with more

Clustering for Duplicate Detection 21

complex accuracy behavior than those created by other al-
gorithms. The quality of the produced clusters degrade at
higher θ values. This is to be expected since the algorithm
performs clustering based on correlation information be-
tween the nodes and a higher θ means a loss of this infor-
mation. For lower thresholds, CCPiv first maximizes recall
and CPr. When these two measures decline, K is observed
to hit its maximum. This is a direct consequence of CCPiv’s
relationship to STAR. The first few clusters introduce frag-
mentation in the form of record displacement errors. But as
the threshold rises, the amount of comparison information
reduces greatly, preventing displacement from being possi-
ble to the same extent. But as more comparison information
is lost for even higher thresholds, the produced clusters be-
gin to split into more refined clusters, resulting in a steady
decrease in K, CPr, and PCPr. CCPiv follows similar trends
to STAR, however the quality of the clusterings is lower than
STAR. This is a consequence of randomly ordering vertices,
since the partition variant of STAR is similar to CCPiv and
actually improves in all measure performance, with respect
to the overlapping variant of STAR.

6.1.7 Markov Clustering

According to Figure 6, MCL produces clusters of increased
quality than those created by the Partitioning algorithm. The
MCL algorithm is most effective when used with an optimal
threshold value, although it is much less sensitive overall
across different error groups. This shows the effectiveness
of the flow simulation process using random walks on the
graph. Unlike Partitioning and CR, denser similarity graphs
do not result in MCL clusters with low precision. For sparser
similarity graphs, MCL drops in accuracy due to detect-
ing duplicates with very high similarity only. This has been
documented as one of the cases where MCL does not per-
form as well [65], where using stochastic flow becomes less
meaningful. Observing CPr and PCPr, we can deduce that
the number of clusters is very different between those pro-
duced and the ground truth. However, MCL also exihibits a
high K, suggesting the produce clusters to be coarse clus-
ter refinements for higher thresholds. This suggests the in-
troduction of many vertex displacements. Upon manual in-
spection of the clusters, many of the clusters were single-
ton. From this we can infer that coarser clusters successfully
capture records with high intra-cluster similarity. But with
less graph edge information, boundaries for these clusters
become harder to identify and were displaced into singleton
clusters. Our inference is based on MCL’s better retention of
PCPr and CPr for higher θ values than all other algorithms.

6.1.8 Affinity Propagation Clustering

The Affinity Propagation Clustering Algorithm (AP) per-
forms best when using lower threshold values, similar to

CENTER. All AP accuracy measures show a trend of lo‘sing
accuracy. As the error levels increase, AP performs better
for an increased range of thresholds near lower threshold
values. This trend over error is not directly observable from
Figure 6. Note that AP consistently improves with respect
to all accuracy measures and error levels, as lower θ values
are used. Lastly, AP obtains the highest recall out of all the
algorithms observed. AP’s recall is consistently high across
all θ values.

6.2 Centrality Measures

In this section we show the results of varying the type of cen-
trality measure used for clustering (see Figure 7). We show
these results by using the normalized variation of informa-
tion (VI) measure, which has the property of being both a
true and universal metric [56]. As such, all other quality
(distance) measures will have a tendency to follow the same
trends as VI for values indicating high accuracy. Note, that
this doesn’t mean VI is the only measure necessary for indi-
cating accuracy. We use VI to make clear under what con-
ditions the best accuracy was achievable. VI alone doesn’t
give us insight on why or how accuracy is being lost by the
produced clusterings. Thus, VI is the measure of choice for
accurately conveying the results for this section.

6.2.1 CENTER

The Center Clustering algorithm generally did not change
across different centrality measures. The differences in per-
formance were negligible with the exception of the Markov
Steady-State centrality measure. The Markov Steady-State
variant out-performed all other centrality variants of CEN-
TER. In terms of accuracy, the Markov Steady-State variant
was able to maintain a consistently low variation of informa-
tion for Single Error Group data, which was accompanied
with high F1-measure and K-measure values.

6.2.2 STAR

The Star Clustering (STAR) algorithm did not significantly
change performance trends when using different centralities.
This held true regardless of whether overlapping clusterings
were allowed. STAR was observed to obtain better perfor-
mance when using the Mean centrality-measure for lower
θ values. STAR achieved larger performance gains when
forming non-overlapping clusters with the mean centrality
measure. Note, our results are consistent with past work.
[70], but we deal with a different dataset.

22 U. Toronto, DCS, Technical Report No. CSRG-620

0.04

0.08

0.12

0.16

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

V
I)

algorithms

CENTER

CENTER(degree)

CENTER(markov)

CENTER(mean)

CENTER(sum)

0.2

0.4

0.6

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

V
I) algorithms

STAR(degree, part.)

STAR(markov, part.)

STAR(mean, part.)

STAR(sum, part.)

0.2

0.4

0.6

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

V
I) algorithms

STAR

STAR(markov)

STAR(mean)

STAR(sum)

0.2

0.4

0.6

0.8

0.25 0.50 0.75
θ

A
cc

ur
ac

y
(

V
I)

algorithms

mAP

mu AP

theta AP

uAP(pref=0)

uAP(pref=1)

(a) CENTER (b) STAR (No overlapping clusters) (c) STAR (Overlapping clusters) (d) AP

Fig. 7 Mean VI of different centrality measures for STAR, CENTER, and AP. (a) Results for CENTER using the Single Error Group dataset. (b,
c) Results for STAR, both the overlapping and non-overlapping cluster variants, using the Medium Error Group dataset. (d) Results for AP, using
the High Error Group dataset.

6.2.3 Affinity-Propagation

The Affinity Propagation (AP) clustering algorithm exhib-
ited many trade-offs in its behavior. Exemplar preferences
set to one allowed AP to perform well for lower θ values,
while zero value preference settings resulted in better perfor-
mance for higher θ values, with respect to the other AP vari-
ants. The sparse-median, sparse-min, and mean centrality
preference settings made AP more robust for Medium and
High Error Group data. Additionally, AP converged more
quickly for higher preference settings. The default prefer-
ence settings of AP perform best for High Error Group data,
and low θ-values. With dynamically changing preference
settings (i.e., sparse minimum), AP outperforms other al-
gorithms for these settings.15 However, a higher value set-
ting for exemplar preference resulted in AP becoming robust
against different amounts of string errors.

6.3 Overall Comparison

In this section, we present more general impressions of the
results. A summary is presented in Table 10.

6.3.1 Threshold Sensitivity

Among all the algorithms, SR, CUT, and BSR are the least
sensitive to the threshold value. However their accuracy
does not always outperform the other algorithms. In other
algorithms, those that use the weight and degree of edges
for clustering perform relatively better with lower thresh-
old values, when the similarity graph is more dense. CEN-
TER, STAR, CCPiv and MCL algorithms performed better
with low threshold values when compared with other algo-
rithms. The single-pass algorithms along with articulation-
point clustering were generally more sensitive to the thresh-
old value and were considerably more effective when used

15 Specifically, MCL, MC, STAR, and Transitive-Closure.

with the optimal threshold (where the number of compo-
nents in the graph is close to the number of ground truth
clusters).

6.3.2 Amount of Errors

The results in Table 7 show the best accuracy values ob-
tained by the algorithms on datasets with different amounts
of error, along with the difference (Diff.) between the value
obtained for the High Error to Low Error Groups of datasets.
Note that the accuracy numbers in this table cannot be used
to directly compare the algorithms since they are based on
different thresholds, and the input similarity graph is differ-
ent for each algorithm. We use these results to compare the
effect of the amount of error. These results suggest that the
Ricochet group of algorithms, CUT and MCL algorithm are
relatively more robust on datasets with different amounts of
errors, i.e., they perform equally well on the three groups of
datasets with the lowest drop in the cluster quality between
the High Error and Low Error Group dataset.

6.3.3 Sensitivity to Error Distribution

Table 8 shows the best accuracy values obtained for the al-
gorithms on Medium Error Group datasets with uniform and
Zipfian distributions. Note that in the Zipfian dataset, there
are many records with no duplicates (singleton clusters) and
only a few records with many duplicates. PCPr is less in-
dicative of the performance of the algorithms on this class of
datasets. Our results show all algorithms are equally robust
with respect to the distribution of errors, except for BSR and
OCR which produce clusters of significantly lower quality.
For the sequential algorithms, this is primarily due to the ini-
tial step of placing all vertices in one clustering. Even with
the KL-heuristic, there is no mechanism in place for the rep-
resentative of the initial clustering to disassociate with sin-
gletons present in the graph. As such, singletons should be
clustered and removed prior to applying the algorithm, and
merged with the produced cluster.

Clustering for Duplicate Detection 23

Table 7 Best accuracy values for all the algorithms over different groups of datasets

Measure Group Part. CENTER MC Star SR BSR CR OCR MCL CUT ArtPt. CCPiv. AP
Max. Low 0.842 0.849 0.904 0.841 0.854 0.661 0.918 0.847 0.921 0.855 0.900 0.655 0.359
PCPr Medium 0.645 0.638 0.695 0.614 0.633 0.578 0.718 0.687 0.768 0.689 0.680 0.410 0.513

High 0.399 0.217 0.340 0.197 0.538 0.461 0.632 0.557 0.476 0.232 0.278 0.084 0.630
Diff. -0.443 -0.632 -0.565 -0.644 -0.316 -0.201 -0.286 -0.290 -0.445 -0.623 -0.621 -0.571 -0.270

Max. Low 0.959 0.956 0.960 0.953 0.976 0.918 0.957 0.917 0.960 0.959 0.957 0.913 0.558
F1 Medium 0.910 0.887 0.918 0.892 0.920 0.873 0.910 0.872 0.921 0.913 0.907 0.781 0.712

High 0.685 0.640 0.734 0.660 0.853 0.695 0.733 0.640 0.760 0.760 0.668 0.441 0.831
Diff. -0.273 -0.316 -0.225 -0.292 -0.123 -0.223 -0.223 -0.277 -0.199 -0.198 -0.288 -0.472 -0.273

Min. Low 0.030 0.009 0.029 0.037 0.0176 0.092 0.277 0.236 0.0278 0.0202 0.001 0.033 0.380
VI Medium 0.070 0.035 0.072 0.080 0.0411 0.428 0.259 0.236 0.067 0.03 0.01 0.085 0.245

High 0.198 0.070 0.197 0.198 0.133 0.372 0.277 0.258 0.154 0.143 0.001 0.200 0.142
Diff. -0.167 -0.061 -0.168 -0.161 -0.115 -0.336 -0.018 -0.0224 -0.126 -0.123 -0.017 -0.167 -0.238

Max. Low 0.948 0.982 0.950 0.952 0.97 0.83 0.361 0.454 0.952 0.966 0.860 0.942 0.487
K Medium 0.877 0.932 0.873 0.872 0.93 0.457 0.406 0.459 0.886 0.948 0.635 0.849 0.635

High 0.642 0.873 0.638 0.698 0.753 0.423 0.365 0.406 0.731 0.763 0.353 0.624 0.755
Diff. -0.306 -0.107 -0.311 -0.254 -0.217 -0.407 -0.045 -0.0532 -0.220 -0.203 -0.507 -0.317 -0.268

Best Low 428 460 460 471 501 364 468 445 471 434 458 554 276
Cluster# Medium 354 472 459 521 504 386 527 454 528 665 428 446 377

High 919 203 200 221 470 356 643 455 236 1404 143 200 517
Diff. +491 -257 -260 -250 -32 -8 +175 +11 -235 +970 -315 +245 -240

Table 8 Best accuracy values for algorithms over Medium Error Group datasets with different distributions

Measure Group Part. CENTER MC Star SR BSR CR OCR MCL CUT ArtPt. CC-PIV AP
F1 Uniform 0.910 0.887 0.918 0.892 0.920 0.873 0.910 0.872 0.921 0.721 0.907 0.951 0.88

Zipfian 0.936 0.936 0.938 0.934 0.873 0.463 0.935 0.697 0.937 0.819 0.934 0.91 0.873
Diff. +0.026 +0.049 +0.020 +0.041 -0.047 -0.411 +0.025 -0.175 +0.016 +0.098 +0.027 0.573 0.863

Cluster# Uniform 354 472 459 521 504 386 527 454 528 665 428 555 495
Zipfian 1018 934 1047.5 933 698.5 158 1061 992 1021 1038 1067 1516 414

6.3.4 Clusters Size Effectiveness

The results of our experiments, partly shown in Tables 7 and
8, show that none of the algorithms are capable of accurately
predicting the number of clusters regardless of the charac-
teristics of the dataset. For uniform datasets, SR algorithms
perform extremely well for finding the correct number of
clusters on datasets with different amounts of errors. How-
ever, this algorithm fails when it comes to datasets with a
Zipfian distribution of errors. Overall, algorithms that find
star-shaped clusters, namely CENTER, MC, STAR, CR and
OCR algorithms, can effectively find the right number of
clusters with an optimal threshold. CC-PIV and MCL also
find a reasonable number of clusters at lower thresholds.

6.4 Run Time and Scalability

As stated previously, in this work we focus mainly on com-
paring the quality of duplicates detected by each algorithm.
However we do report the running times in this section, but
the times taken by the different algorithms are not directly
comparable, and should be taken as an upper bound on the
computation time. All the implementations could be opti-
mized further. Implementations of the algorithms (coded in
the R programming language) are used to run these exper-
iments on the same machine. Table 9 shows the running
times for the algorithms run on Medium Error Group data
with uniformly distributed errors described in Section 4.1,
and with thresholds of 0.5 and above. All experiments

Algorithm Mean (sec) Stand. Dev(sec)
Partitioning 4.58e-02 1.76e-03
CENTER 3.63e-01 1.44e-01
MC 3.64e-01 1.38e-01
STAR 4.65e+00 1.34e+00
CUT 5.55e+01 6.23e+00
ArtPt. 4.83e-03 9.83e-04
CC-PIV. 3.73e+00 1.63e+00
MCL 3.78e+01 1.98e+01
AP 1.21e+03 1.59e+03
SR 1.62e+02 1.21e+02
BSR 8.46e+00 7.53e+00
CR 9.7e+01 5.95e+01
OCR 9.35e+01 5.9e+01

Table 9 Mean and standard deviation runtimes for uniform medium
error level data.

were run on a computer with an Intel Core i7-2600 processor
(3.4GHz), 12GB of RAM, and running the Ubuntu (12.04.1
LTS) operating system. These results support the runtime
efficiency of the single-pass algorithms as well as MCL and
Articulation Point clustering algorithms.

We reimplemented the clustering algorithms in the R
programming language, allowing a more consistent scala-
bility comparison. Our scalability evaluations compare run-
times (normalized by maximum runtime) over the density
of the similarity-graph, |E|/

(|V |
2

)
. Note, the type of plot

used in Figure 8 was generated using Loess regression to
smoothen trends. Smoothening allowed easy visualization
of experimental results patterns in the presence of overplot-

24 U. Toronto, DCS, Technical Report No. CSRG-620

0.1

1.0

0.001 0.010
Edge Density

N
or

m
al

iz
ed

 R
un

tim
e

algorithm

ArtPt

CC−PIV

CENTER

MC

PART

STAR

uAP [pref=1]
0.01

0.10

0.001 0.010
Edge Density

N
or

m
al

iz
ed

 R
un

tim
e

algorithm

BSR

CR

CUT

MCL

OCR

SR

uAP [pref=0]

Fig. 8 Scalability Comparisons. These graphs compare normalized runtime (normalized by the max runtime for an algorithm) and edge density
(of the similarity graph). A uniform trend indicates the algorithm to be scalable. The closer the entire trend is to 1 for normalized runtime, the
more stable its execution behavior. Sharp growth indicates sensitivity to the size of the similarity-graph. Trend decline indicates sensitivity to other
factors. These graphics use a log-log scale and show the loess regression of the normalized runtime.

ting [34]. We show the Loess regression trends of these com-
parisons. We found the single-pass algorithms to be the most
scalable, followed by ArtPt, CCPiv, and then STAR. Al-
though AP was found to be scalable, its runtime was not
stable (for zero value preference settings), relative to other
algorithms. In comparison, CUT and MCL were found to be
less scalable. STAR and CCPiv have larger initial runtime
because they are sensitive to both the similarity graph edge
size, and the number of vertices considered. In this case,
edge size becomes the determining factor of scalability for
denser cases.

7 Conclusions

In this paper, we evaluated and compared several uncon-
strained clustering algorithms for duplicate detection by ex-
tensive experiments over various sets of string data with dif-
ferent characteristics. We made the results of our extensive
experiments publicly available and we intend to keep the
results up-to-date with state-of-the-art clustering algorithms
and various synthetic and real datasets. The set of cluster-
ing algorithms previously studied [41] was expanded by in-
cluding the Affinity Propagation Clustering algorithm. We
include an algorithm scalability comparison, in addition to
runtime comparisons. We used the K-measure and Varia-
tion of Information accuracy measures for further describ-
ing cluster quality, and the justify the accuracy measures
used to describe cluster quality. We also defined and intro-
duced a new family of clustering algorithms, which we refer

to as Cut-Based clustering algorithms. Lastly, we presented
the effects of centrality measures, and their use in removing
arbitrary decisions in clustering algorithms. We hope these
results serve as a guideline for researchers and practition-
ers interested in using unconstrained clustering algorithms
especially for the task of duplicate detection.

Our results using the partitioning of similarity graphs
(finding the transitive closure of the similarity join), which
is the common approach in many early duplicate detection
techniques, confirms the common wisdom that this scalable
approach results in poor quality of duplicate groups. But
more importantly, we show that this quality is poor even
when compared to other clustering algorithms that are as
efficient.

Our evaluation of centrality measures shows that algo-
rithm behavior does significantly change for duplicate detec-
tion, by improving clustering quality. The non-overlapping
variant of Star Clustering performs best using the Mean cen-
trality measure. Center Clustering benefits the most from us-
ing the Markov Steady-State centrality measure, allowing it
to better handle Single Error Group data. This variant was
considered for approximating the non-sequential Ricochet
algorithms, but retains the same behavior as other variants
for different non-single error levels. The Affinity Propaga-
tion clustering algorithm performs well on highly erroneous
data for denser similarity joins, but is outperformed in other
scenarios.

The Ricochet algorithms produce high quality cluster-
ings when used with uniformly distributed duplicates, but

Clustering for Duplicate Detection 25

failed in other distributions. The remaining algorithms were
robust to different distributions. Our results also show that
sophisticated but popular algorithms, like Cut clustering and
Correlation clustering, gave lower accuracy than some of
the more efficient single-pass algorithms. We were the first
to propose the use of Affinity Propagation as an uncon-
strained algorithm for duplicate detection and showed that
it is among the most scalable algorithms for this task.

A basic observation is that none of the clustering algo-
rithms produce perfect clusterings. Therefore a reasonable
approach is to not only keep the clustering that results from
our algorithms, but to also keep the important quantitative
information produced by these algorithms. In previous work
[41], we show how this quantitative information can be used
to provide an accurate confidence score for each duplicate
that can be used in probabilistic query answering.

We do not claim that our work is completely exhaustive
in terms of clustering algorithms that we cover. Specifically,
considering the high popularity of some Spectral clustering
algorithms, it might be worth to compare the performance of
these against the unconstrained algorithms that we consider
in our paper for duplicate detection.

References

1. M. Ackerman and S. Ben-David. Measures of cluster-
ing quality: A working set of axioms for clustering. In
Proceedings of Neural Information Processing Systems
(NIPS), pages 121–128, 2008.

2. N. Ailon, M. Charikar, and A. Newman. Aggregating
Inconsistent Information: Ranking and Clustering. In
Proceedings of the thirty-seventh annual ACM sympo-
sium on Theory of computing, STOC ’05, pages 684–
693, 2005.

3. P. Andritsos. Scalable Clustering of Categorical Data
And Applications. PhD thesis, University of Toronto,
Toronto, Canada, September 2004.

4. A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-
similarity joins. In Proceedings of the 32nd interna-
tional conference on Very large data bases, VLDB ’06,
pages 918–929. VLDB Endowment, 2006.

5. J. A. Aslam, E. Pelekhov, and D. Rus. The star clus-
tering algorithm for static and dynamic information or-
ganization. Journal of Graph Algorithms and Applica-
tions, 8(1):95–129, 2004.

6. N. Bansal, A. Blum, and S. Chawla. Correlation Clus-
tering. Machine Learning, 56(1-3):89–113, 2004.

7. N. Bansal, F. Chiang, N. Koudas, and F. W. Tompa.
Seeking Stable Clusters In The Blogosphere. In Pro-
ceedings of the 33rd international conference on Very
large data bases, pages 806–817, Vienna, Austria,
2007. VLDB Endowment.

8. D. Bates and M. Maechler. Matrix: Sparse and Dense
Matrix Classes and Methods, 2010. R package version
0.999375-46.

9. R. J. Bayardo, Y. Ma, and R. Srikant. Scaling Up All
Pairs Similarity Search. In Proceedings of the 16th in-
ternational conference on World Wide Web, WWW ’07,
pages 131–140, 2007.

10. O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su,
S. E. Whang, and J. Widom. Swoosh: A Generic Ap-
proach to Entity Resolution. VLDB J., 18(1):255–276,
2009.

11. I. Bhattacharya and L. Getoor. A Latent Dirichlet Model
for Unsupervised Entity Resolution. In Proceedings of
the 2006 SIAM International Conference on Data Min-
ing, pages 47–58, 2006.

12. I. Bhattacharya and L. Getoor. Collective Entity Res-
olution in Relational Data. Data Engineering Bulletin,
29(2):4–12, 2006.

13. U. Bodenhofer, A. Kothmeier, and S. Hochreiter. Ap-
cluster: an r package for affinity propagation clustering.
Bioinformatics, 27:2463–2464, 2011.

14. S. Borgatti, K. Carley, and D. Krackhardt. On the ro-
bustness of centrality measures under conditions of im-
perfect data. Social Networks, 28(2):124–136, 2006.

15. U. Brandes, M. Gaertler, and D. Wagner. Experi-
ments on Graph Clustering Algorithms. In The 11th
Europ. Symp. Algorithms, pages 568–579. Springer-
Verlag, 2003.

16. S. Brohee and J. van Helden. Evaluation of Clustering
Algorithms for Protein-Protein Interaction Networks.
BMC Bioinformatics, 7:488+, 2006.

17. M. Charikar, V. Guruswami, and A. Wirth. Cluster-
ing with Qualitative Information. J. Comput. Syst. Sci.,
71(3):360–383, 2005.

18. F. Chierichetti, A. Panconesi, P. Raghavan, M. Sozio,
A. Tiberi, and E. Upfal. Finding Near Neighbors
Through Cluster Pruning. In Proceedings of the twenty-
sixth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, PODS ’07, pages 103–
112, Beijing, China, 2007.

19. W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A
Comparison of String Distance Metrics for Name-
Matching Tasks. In Proc. of IJCAI-03 Workshop on
Information Integration on the Web (IIWeb-03), pages
73–78, Acapulco, Mexico, 2003.

20. T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. McGraw Hill and MIT Press,
1990.

21. E. Costenbader and T. Valente. The stability of central-
ity measures when networks are sampled. Social net-
works, 25(4):283–307, 2003.

22. R. G. Cota, M. A. Gonçalves, and A. H. F. Laender.
A Heuristic-based Hierarchical Clustering Method for

26 U. Toronto, DCS, Technical Report No. CSRG-620

Author Name Disambiguation in Digital Libraries. In
XXII Simpósio Brasileiro de Banco de Dados, pages
20–34, 2007.

23. G. Csardi and T. Nepusz. The igraph software package
for complex network research. InterJournal, Complex
Systems:1695, 2006.

24. W. H. Day and H. Edelsbrunner. Efficient Algorithms
for Agglomerative Hierarchical Clustering Methods.
Journal of Classification, 1(1):7–24, 1984.

25. E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica.
Correlation Clustering In General Weighted Graphs.
Theor. Comput. Sci., 361(2):172–187, 2006.

26. C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano.
In M. J. Atallah and M. Blanton, editors, Algorithms
and theory of computation handbook, chapter Dynamic
graph algorithms, pages 9–9. Chapman & Hall/CRC,
2010.

27. P. Domingos and K. Kersting. Combining Logic and
Probability: Languages, Algorithms, and Applications
(Tutorial). In The Twenty-Seventh AAAI Conference on
Artificial Intelligence, Seattle, USA, 2013.

28. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. TKDE, 19(1):1–
16, 2007.

29. I. P. Fellegi and A. B. Sunter. A theory for record link-
age. Journal of the American Statistical Association,
64(328):1183–1210, 1969.

30. P. F. Felzenszwalb and D. P. Huttenlocher. Efficient
Graph-Based Image Segmentation. Int. J. Comput. Vi-
sion, 59(2):167–181, 2004.

31. M. Filippone, F. Camastra, F. Masulli, and S. Rovetta. A
Survey of Kernel and Spectral Methods for Clustering.
Pattern Recognition, 41(1):176–190, 2008.

32. G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis.
Graph Clustering and Minimum Cut Trees. Internet
Mathematics, 1(4):385–408, 2004.

33. L. Ford and D. Fulkerson. Maximal Flow Through a
Network. Canadian J. Math, 8:399–404, 1956.

34. J. Fox. Nonparametric Regression. John Wiley & Sons,
Ltd, 2005.

35. T. Frantz, M. Cataldo, and K. Carley. Robustness of
centrality measures under uncertainty: Examining the
role of network topology. Computational & Mathemat-
ical Organization Theory, 15(4):303–328, 2009.

36. B. J. J. Frey and D. Dueck. Clustering by passing mes-
sages between data points. Science, January 2007.

37. D. Gibson, R. Kumar, and A. Tomkins. Discovering
large dense subgraphs in massive graphs. In Proceed-
ings of the 31st international conference on Very large
data bases, VLDB ’05, pages 721–732. VLDB Endow-
ment, 2005.

38. M. Halkidi, Y. Batistakis, and M. Vazirgiannis. On clus-
tering validation techniques. Journal of Intelligent In-

formation Systems, 17(2-3):107–145, 2001.
39. O. Hassanzadeh. Benchmarking Declarative Approxi-

mate Selection Predicates. Master’s thesis, University
of Toronto, February 2007.

40. O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller.
Framework for evaluating clustering algorithms in du-
plicate detection. Proc. VLDB Endow., 2(1):1282–1293,
Aug. 2009.

41. O. Hassanzadeh and R. J. Miller. Creating Probabilistic
Databases from Duplicated Data. VLDB J., 18(5):1141–
1166, 2009.

42. O. Hassanzadeh, M. Sadoghi, and R. J. Miller. Accu-
racy of Approximate String Joins Using Grams. In Pro-
ceedings of the Fifth International Workshop on Quality
in Databases, pages 11–18, Vienna, Austria, 2007.

43. T. H. Haveliwala, A. Gionis, and P. Indyk. Scalable
techniques for clustering the web. In Proceedings
of the Third International Workshop on the Web and
Databases, pages 129–134, 2000.

44. M. A. Hernández and S. J. Stolfo. Real-world data
is dirty: Data cleansing and the merge/purge problem.
Data Min. Knowl. Discov., 2(1):9–37, Jan. 1998.

45. B. Hussain, O. Hassanzadeh, F. Chiang, H. C. Lee, and
R. J. Miller. An evaluation of clustering algorithms in
duplicate detection. Technical Report CSRG-620, Uni-
versity of Toronto, Department of Computer Science,
2013.

46. L. J. Plotrix: a package in the red light district of r.
R-News, 6(4):8–12, 2006.

47. A. Jain and R. Dubes. Algorithms for Clustering Data.
Prentice Hall, 1988.

48. A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clus-
tering: A Review. ACM computing surveys (CSUR),
31(3):264–323, 1999.

49. B. Kernighan and S. Lin. An eflicient heuristic proce-
dure for partitioning graphs. Bell system technical jour-
nal, 1970.

50. A. D. King. Graph Clustering with Restricted Neigh-
bourhood Search. Master’s thesis, University of
Toronto, 2004.

51. J. Kleinberg. Authoritative sources in a hyperlinked en-
vironment. Journal of the ACM (JACM), 46(5):604–
632, 1999.

52. J. Kleinberg. An impossibility theorem for cluster-
ing. Advances in neural information processing sys-
tems, pages 463–470, 2003.

53. J. Kogan. Introduction to Clustering Large and High-
Dimensional Data. Cambridge Univ. Press, 2007.

54. C. Li, B. Wang, and X. Yang. VGRAM: Improving Per-
formance of Approximate Queries on String Collections
Using Variable-Length Grams. In Proceedings of the
33rd international conference on Very large data bases,
pages 303–314, Vienna, Austria, 2007. VLDB Endow-

Clustering for Duplicate Detection 27

ment.
55. M. Meilă. Comparing clusterings—an information

based distance. Journal of Multivariate Analysis,
98(5):873–895, 2007.

56. M. Meilǎ. Comparing clusterings: an axiomatic view.
In Proceedings of the 22nd international conference
on Machine learning, ICML ’05, pages 577–584, New
York, NY, USA, 2005. ACM.

57. D. Menestrina, S. E. Whang, and H. Garcia-Molina.
Evaluating entity resolution results. Proceedings of the
VLDB Endowment, 3:208–219, September 2010.

58. A. M. D. Pelleg. X-Means: Extending K-Means with
Efficient Estimation of the Number of Clusters. In Proc.
of the Int’l Conf. on Machine Learning, pages 727–734,
San Francisco, CA, USA, 2000.

59. P. Perona and L. Zelnik-Manor. Self-tuning spectral
clustering. Advances in neural information processing
systems, 17:1601–1608, 2004.

60. G. Sabidussi. The centrality index of a graph. Psy-
chometrika, 31(4):581–603, 1966.

61. S. Sarawagi and A. Kirpal. Efficient Set Joins On Simi-
larity Predicates. In Proceedings of the 2004 ACM SIG-
MOD international conference on Management of data,
pages 743–754, 2004.

62. N. Slonim. The Information Bottleneck: Theory And
Applications. PhD thesis, The Hebrew University, 2003.

63. C. Swamy. Correlation Clustering: Maximizing Agree-
ments Via Semidefinite Programming. In Proceed-
ings of the fifteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 526–527, New Orleans,
Louisiana, USA, 2004. Society for Industrial and Ap-
plied Mathematics.

64. C. Umans. Hardness of Approximating Sigma2
p Min-

imization Problems. In Foundations of Computer
Science, 40th Annual Symposium on, pages 465–474.
IEEE, 1999.

65. S. van Dongen. Graph Clustering By Flow Simulation.
PhD thesis, University of Utrecht, 2000.

66. N. Vinh, J. Epps, and J. Bailey. Information theoretic
measures for clusterings comparison: Variants, prop-
erties, normalization and correction for chance. The
Journal of Machine Learning Research, 11:2837–2854,
2010.

67. J. Vlasblom and S. Wodak. Markov clustering versus
affinity propagation for the partitioning of protein inter-
action graphs. BMC bioinformatics, 10(1):99, 2009.

68. U. Von Luxburg. A tutorial on spectral clustering.
Statistics and computing, 17(4):395–416, 2007.

69. J. A. Whitney. Graph Clustering With Overlap. Mas-
ter’s thesis, University of Toronto, 2006.

70. D. T. Wijaya and S. Bressan. Journey to the centre of the
star: Various ways of finding star centers in star cluster-
ing. In 18th International Conference on Database and

Expert Systems Applications, pages 660–670, 2007.
71. D. T. Wijaya and S. Bressan. Ricochet: A Family of

Unconstrained Algorithms for Graph Clustering. In
Database Systems for Advanced Applications, 14th In-
ternational Conference, pages 153–167, 2009.

72. R. Xu and I. Wunsch. Survey of clustering algorithms.
IEEE Transactions on Neural Networks, 16(3):645–
678, 2005.

73. J. Zupan. Clustering of Large Data Sets. Research Stud-
ies Press, 1982.

28 U. Toronto, DCS, Technical Report No. CSRG-620

Robustness Against
Algorithm Scalability Ability to Find Correct Number of Clusters Chosen threshold Error Amount Error Distribution

Part. H L L L H
CENTER H H L L H

MC H H L L H
STAR M H L L H

SR L M H H L
BSR L L H H L
CR L H M H H

OCR L H M H L
CCPiv H H L M H
MCL M H M M H
CUT L L L L H
ArtPt H M L L H
AP H H L L M

Table 10 Summary of the results. (H = High, M = Medium, L = Low)

