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Abstract

Efficient use of high-performance computing (HPC) installations critically relies on effective methods for
fault tolerance. The most commonly used method is checkpoint/restart, where an application writes periodic
checkpoints of its state to stable storage that it can restart from in the case of a failure. Despite the prevalence
of checkpoint/restart, it is still not very well understoodin practice how to set its key parameter, the check-
point interval. Despite a large body of theoretical work, practitioners still rely on crude rules-of-thumb such as
“checkpoint once every hour”.

Our goal in this work is to identify methods for optimizing the checkpointing process that are easy to use
in practice and at the same time achieve high quality solutions. In particular, this work makes the following
contributions: We evaluate an array of methods for optimizing the checkpoint interval, some previously known as
well as new ones that we propose, using real-world failure logs. We show that a very simple closed-form solution
can easily be adapted for use in practice and achieves near-optimal performance. We also find that more complex
solutions only negligibly improve performance based on real world traces. We show that simple back-of-the
envelope formulas can be used to accurately estimate the wasted work in HPC systems, and make projections of
future HPC systems and requirements for their efficient use.
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I. I NTRODUCTION

The most widely used method for fault tolerance in high-performance computing (HPC) applications is
coordinated checkpointing, where a parallel application periodically stops execution to checkpoint its current
state. In the case of a failure, the application recovers by restarting from the most recent checkpoint. It is
important to note that under coordinated checkpointing allcompute nodes involved in a parallel application stop
simultaneously to write their individual checkpoints, andthat a failure of any one node involved in a parallel
application requires all nodes to restart from their most recent checkpoints.

Overhead due to faults and fault tolerance in systems using checkpointing comes from two different sources:
the time that is spent writing periodic checkpoints and the time that is spent to recover in the case of a failure
(i.e. the time to revert back to the state of the most recent checkpoint and the time to redo all the lost work
that has been done since the most recent checkpoint). Hence the amount of time that is wasted, i.e. any time
that is not spent on doing actual computation, depends on thesystem’s failure rate, the amount of time it takes
to write a checkpoint, and the frequency of checkpoints.

Given the importance of the problem it is not surprising thatmuch research has been dedicated to optimizing
the checkpointing process. Besides approaches to reduce the cost of a checkpoint, for example through data
compression [10] or filesystem optimizations [4], a large body of work focuses on optimizing the choice of the
checkpoint interval, i.e. the time between two consecutivecheckpoints [5]–[7], [11], [14], [18]. While frequent
checkpointing reduces the amount of lost computation in thecase of a failure, it leads to a large amount of time
spent checkpointing rather than performing computation. Conversely, the fewer checkpoints a system schedules,
the higher the recovery overhead when failures happen.

Our motivation for this work comes from discussions with practitioners at a number of large HPC installations,
who lament that in practice crude and ad-hoc rules of thumb are used to decide on the frequency of checkpoints,
such as “checkpoint once every hour”. Given the large body ofliterature on the topic and the immediate impact
the choice of the checkpointing interval has on system efficiency this situation is unsatisfactory, to say the least.
Further discussions identified as a reason the high complexity of existing solutions. They often assume detailed
knowledge about the underlying failure process (such as thestatistical distribution function of the time between
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failures and its parameters), which is not readily available and which can furthermore change over the lifetime
of a system. Moreover, existing solutions are perceived as too complex to implement, as they often do not
provide straightforward closed-form solutions.

The goal of our work is to revisit the problem of optimizing coordinated checkpointing in tightly-coupled,
HPC applications with apractitioner’s view in mind. We look at solutions of varying degrees of complexity
(including previously proposed solutions and our own) and provide a thorough evaluation based on real world
failure traces (rather than synthetically generated data as most previous work) to answer the question of how
much complexity is really needed. We explore the issue of howsensitive methods are to errors in their parameter
estimates, and show that the key parameter can be estimated sufficiently accurately online using simple methods.
We provide an easy to use back-of-the envelope formula to accurately estimate wasted work, which can be used
by practitioners to configure their applications or in the planning of future systems. We also make projections
of system efficiency as systems scale out and derive requirements for their efficient use.

II. STARTING SIMPLE: YOUNG’ S FORMULA

The first and simplest approach for computing the checkpointinterval is the closed-form solution proposed by
Young [18] in 1974. Young’s formula determines the checkpoint interval∆Y oung based on only two quantities,
the system’s mean time to failure (MTTF) and the checkpoint costC:

∆Y oung =
√
2 · C ·MTTF (1)

Young’s formula relies on the following set of unrealistic assumptions, which make its value questionable
and has spurred a sizeable body of follow-up work that provides more complex, but presumably more accurate
results:

1) Young assumed that failures follow a Poisson process. Prior work [8], [9] reports dependencies between
failures and non-exponential inter-arrival time distributions. Work in [6], [13] extends the analysis to Weibull
distributions, known to be a better model of empirical distributions.

2) Failures do not happen during checkpoints. In practice, there are applications with a checkpoint cost that is
high enough that the probability of experiencing a failure during a checkpoint is significant. Several recent
papers [6], [7], [11], [13] take into account the probability of failure during checkpoints.

3) Failures happen on average half-way between two checkpoints. Work by Liu [12] removes this assumption
by approximating the excess lifetime distribution of the time between failures.

4) The system’s MTTF and checkpoint costC are known accurately and in advance, and do not change over
time. In reality, failure rates of a system change over time (e.g. with age) and are not known a-priori by
administrators. We are not aware of any work that addresses this problem.

In the remainder of this section our goal is to evaluate the impact of the unrealistic assumptions 1.-3. in
practice using trace-driven simulations based on a large array of real-world failure logs, to evaluate Young’s
accuracy for realistic scenarios. The next section will deal with practical implementation issues brought up in
4. and whether Young’s theoretical performance can be achieved in practice.

A. How accurate is Young’s formula for real traces

In this subsection we use trace-driven simulations to evaluate the quality of the solution provided by Young.
The traces we use are available online [2] and cover nearly a decade worth of failure logs from 20 different
HPC systems at Los Alamos National Lab (LANL). The data contains records of all node outages that occurred
during the measurement period (a total of 23,600 node failures).

Our simulations assume a “hero run” of an application that uses all available nodes. For each system, we use
the entire log and and simulate periodic checkpoints at fixedintervals that we compute using Young’s formula
(recall Equation (1)) and record the fraction of time that islost due to writing checkpoints or redoing lost
computation. (Note that we do not include the time needed to restart the application to the state of the most
recent checkpoint, as this time does not depend on the checkpointing interval and hence will be the same for
any checkpointing policy). We run simulations varying the checkpointing costC from as low as 20 seconds to
as high as 60 minutes, and we obtain the MTTF for a system from the corresponding trace. (Note that this is
not feasible in practice as one can not know a system’s MTTF beforehand. Section III will deal with how one
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Fig. 1. Wasted time under Young compared to wasted time underthe optimal fixed checkpoint interval for all LANL systems.

would obtain MTTF in practice). To measure how good the provided solution is we compare it to the wasted
work the system would have experienced under theoptimal fixed checkpointing interval, i.e.∆Opt that leads
for a given trace to the smallest fraction of wasted work. We obtain∆Opt by searching through the entire range
of ∆ values and using our simulator to identify the one that performs best.

Figure 1 compares the fraction of time that is wasted under∆Y oung to that under∆Opt, for all LANL
systems, and under differentC costs. Results shown assume thatC is constant, but we also experimented with
C following an exponential or uniform distribution and reached the same results.

We observe that the fraction of wasted time under Young’s formula is very close to the optimal, in most
cases within 2%. Interestingly, even for input scenarios that deviate significantly from Young’s assumptions
checkpointing using∆Y oung is near optimal. For example, Table II in the appendix provides for each system
the shape parameter of the best Weibull fit to the data and shows that systems that deviate the most from an
exponential distribution (recall that an exponential would have a shape parameter of 1) do not exhibit worse
performance than others. Also, a higher checkpointing cost(which will increase the chance of failures during
checkpoints) does not reduce performance of∆Y oung compared to∆Opt.

Summary: Despite a number of unrealistic assumptions that the derivation of Young’s formula relies on, it
achieves performance nearly identical to that under the optimal checkpoint interval (identified offline through
exhaustive search). This is the case even for input scenarios that significantly deviate from Young’s unrealistic
assumptions.

III. M AKING YOUNG’ S FORMULA WORK IN PRACTICE

Employing Young’s formula in practice requires two types ofinformation: the costC of a checkpoint and
the MTTF. Our evaluation in Section II-A assumed perfect knowledge of these two quantities, which in practice
need to be estimated before the run of an application. Below we first study how sensitive the performance of
Young is to errors in the estimation of those parameters, andthen show how sufficiently accurate estimates can
be obtained in practice.

A. Sensitivity to accuracy in parameter estimation

To understand the sensitivity of Young’s formula to the accuracy of the parameter estimation we apply the
same trace-based simulation we relied on in Section II-A, but rather than determining the checkpoint interval
based on the actual values forC and MTTF we assume that they were estimated with varying degrees of error.
We range the degree of error between(1/5)X (i.e. theC or MTTF was underestimated by a factor of 5) to a
degree of error of5X , i.e. theC or MTTF was overestimated by a factor of 5.

Figure 2 shows the results when the MTTF is estimated with varying degrees of error whileC is estimated
accurately in two representative LANL systems (systems 2 and 20). (We also performed experiments with an
error inC instead of MTTF, with similar results.) The X-axis shows thedegree of error and the Y-axis shows
the resulting wasted time normalized by the wasted time thatwould have resulted under error-free parameter
estimation. We observe that there is a large range of MTTF values that achieve almost identical, near optimal
performance. For example, to stay within a range of 5-10% of the wasted work achieved under accurate parameter
estimates one can tolerate errors of a factor of 2 (either over- or underestimation) in estimating the MTTF.

Summary: We conclude that checkpointing based on Young’s formula is quite robust against reasonable errors
in the estimation ofC or MTTF, which motivates us to explore ways to implement Young in practice.
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Fig. 2. Wasted time assuming an error in the MTTF estimation.
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Fig. 3. Failure rates as a function of system age for two LANL systems.

B. Parameter estimation in practice

The good results for Young in Section III-A were obtained by “cheating”: we assumed a-priori knowledge of
the checkpoint cost and the MTTF (as we just used the entire log for a system to determine the MTTF before
running our simulations) – an approach that is used by all previous work as well, but not realistic in practice.
In this section we turn to methods for estimating the parameters in practice.

The value of the checkpoint costC depends on the particular application and the amount of datait needs
to checkpoint to be able to restore a previous state of execution. For the user of an HPC system, estimating
this quantity is easier than estimating the MTTF, as it can bedetermined based on measurements taken during
some test runs. We therefore focus our attention on estimating the MTTF which is more challenging as perfect
estimation would require knowledge about the system’s future failure behavior.

Estimating the MTTF is further complicated by the fact that in reality a system’s MTTF is not stable over
time. We illustrate this by plotting the failure rates over asystem’s lifetime for two representative LANL systems
in Figure 3. Failure rates are often higher early in a system’s life (see Figure 3 (right)), as different hardware and
software issues get exposed during the execution of real world workloads. Random spikes in failure rates can
also happen later in a system’s lifetime (see Figure 3 (left)), for example due to the upgrade or installation of new
software. Based on these observations, we experiment with three implementations of Young that dynamically
maintain an estimate of the MTTF, based on the system’s recent failure history:

Young(SMA):This approach uses a Simple Moving Average, i.e. it simply calculates th MTTF as the average
value of the failure inter-arrival times within an observation window consisting of the lastw days and uses that
average as an estimate of the expected time to the next failure. w is a parameter that needs to be determined.

Young(WMA):This method works like Young(SMA), but uses a Weighted Moving Average, i.e. it assigns a
weight for each value in the observation window, with more recent observations having greater weights. WMA,
therefore, considers recent failure inter-arrival times more predictive of the time to next failure, than older ones.

Young(EMA):Young(EMA) uses an Exponential Moving Average to estimate the MTTF, i.e. the weights
of older observations decrease exponentially, giving pastvalues a diminishing contribution to the calculated
average. Unlike SMA and WMA that only consider values withinthe observation window, EMA is a cumulative
calculation that includes all the historical observations, taking into account the entire history of failure inter-
arrivals.
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Fig. 4. Checkpointing using Young’s formula and different techniques to estimate the MTTF.

The only requirement of the above algorithms is that the system maintains a log of the the most recent times
of failures. When an application first starts running, the initial checkpoint interval is computed based on Young’s
formula applied to the MTTF estimate obtained using one of the three moving averages. Every time a failure
occurs and the applications needs to roll-back and restart,the MTTF estimate is updated (taking the most recent
failure into account), and the checkpoint interval is recomputed based on the new MTTF estimate.

C. Performance in practice

We use trace driven simulations based on the LANL data to evaluate the performance of Young(SMA),
Young(WMA), and Young(EMA). Figure 4 shows the results for four LANL systems, systems 2, 18, 19, 20 (the
four systems that the largest amount of data is available). Table II in the appendix shows the complete results
for all LANL systems.

Each graph plots for one of the systems the wasted time for each of the three algorithms as a function of the
window sizew that was used. In the case of the EMA method, which does not rely on a specific time window,
the parameterw on the X-axis is used to vary the smoothing coefficientα. In particular,α is computed as
α = 2/(w + 1).

To evaluate the quality of the produced solutions each graphshows for comparison the wasted time that would
have resulted under Young’s static checkpoint interval, Young(stat); i.e. the theoretical algorithm that knows the
system’s MTTF a-priori and uses the checkpoint interval over the entire trace. We also compare our results to
the case of checkpointing every one hour, a scenario commonly applied in practice. We observe the following:

• The performance of all moving averages methods and their ability to estimate the MTTF is nearly the same.
• For all systems one can achieve performance comparable to that of Young(stat), for a large range ofw values.
• For some systems (system 2 and system 20) running Young on theMTTF estimates actually performs slightly

better than Young(stat). The reason is that for these two systems failure rates are more variable over the course
of their life (recall the graphs in Figure 3). Using a dynamicestimate of the MTTF, rather than the average
across the entire trace, can actually slightly improve performance.

• The performance is not overly sensitive to the choice ofw making tuning easy. Values forw of 30 days
or more performed well for all systems. Except for system 2, only a few days worth of data provide nearly
optimal performance, which is good news when introducing any of the proposed methods on a system with
no prior recording of failures.

Summary: Using a combination of Young’s formula and simple moving averages of past failure one can
achieve performance comparable to the (hypothetical) casewhere the optimum checkpoint interval is known a-
priori. This method, which is easily implementable in practice, obviates the need for complex (and theoretically
more accurate) methods.

IV. M ORE ADVANCED TECHNIQUES

The previous section showed that our adaptation of Young, which estimates the MTTF online based on a
sliding window history (rather than assuming precise a-priori MTTF information), can not only match, but
sometimes even slightly exceed the performance compared tousing the optimum (static) checkpoint interval for
a given trace. This observation motivates us to investigatemore advanced methods that adapt the checkpoint
interval on the fly based on a system’s failure characteristics. We investigate methods that exploit three different
characteristics of real world failures: decreasing hazardrates, autocorrelations and dependencies between different
types of failures.
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System Failure Type MTTF (minutes) Frequency

2

Environment 1231.992 2.32%
Hardware 878.7485 54.15%
Network 453.4721 4.04%
Software 724.9778 26.28%
Memory 884.1197 15.20%
CPU 749.408 0.50%

18

Environment 1392.401 0.50%
Hardware 462.2575 74.48%
Network 516.8922 0.43%
Software 380.6104 17.19%
Memory 403.1434 14.18%
CPU 477.6332 50.90%

19

Environment 1410.08 0.27%
Hardware 495.0095 77.68%
Network 791.712 0.40%
Software 352.6268 18.15%
Memory 428.2856 6.20%
CPU 499.8085 60.35%

20

Environment 1373.748 0.48
Hardware 797.7577 69.45%
Network 911.7771 0.56%
Software 801.5455 26.07%
Memory 1013.431 15.57%
CPU 730.4533 46.60%

TABLE I
MTTF FOR DIFFERENT FAILURE TYPES IN THE FOUR LARGESTLANL SYSTEMS.

A. Failure type specific MTTF estimation

We observe in our previous work [8] that the occurrence of certain types of failures greatly increases the
probability of later failures. To provide one example, we find in [8] that for some systems the probability of
a failure during the week following a network failure is 3.7Xtimes larger than during an average week. This
leads us to the idea of adapting the checkpoint frequency based on the type of the most recent failure.

More precisely, we propose to use the root cause informationthat is provided with each failure recorded in
the LANL dataset, to more accurately estimate the time untilthe next failure. Each failure is attributed to one
of five root cause categories, depending on whether it was dueto problems with software, hardware, network,
the environment of the system, or human error. Instead of just maintaining one moving average of the MTTF,
we keep one estimate for each type of failure. For example, the moving average for software failures considers
only the software failures in the observation window and averages the time between a software failure and the
next follow-up failure (of any type). Any time a failure happens, the moving average that corresponds to that
failure type is updated, the new MTTF estimate is computed, and the time of the next checkpoint is calculated
using Young’s formula and that new MTTF estimate. We refer tothis approach as ETTF(Type).

The column labeled “%wasted ETTF(Type)” in Table II reportsthe results achieved under ETTF(Type). We
find that failure-type specific information does only slightly improve the fraction of wasted time compared to
Young(stat). To explain the results we take a closer look at the failure data. Table I shows the expected time
until the next failure, depending on what type the most recent failure was, for the four largest LANL systems.
We see that the ETTF does differ across the different categories of failures, so taking failure-type information
into account provides additional information on the ETTF. However, we find that failures are dominated by two
large categories, hardware and software failures, and those two types of failures tend to have a very similar
effect on the ETTF. The failure types whose follow-up ETTF differs the most from the overall ETTF, such
as environmental failures, are relatively rare, and hence the benefits reaped from taking them into account are
limited.

We considered using more detailed information on the root cause of a failure than the five high-level
categories described above, as the LANL data provides sub-categories for each high-level root-cause category.
For example, hardware failures are grouped into failures due to CPU, memory, node board issues, fan problems,
etc. Unfortunately, we find that also the ETTF for the sub-categories of failures within each of the high-level
categories are quite similar, so little can be gained.

Summary: For the systems at LANL and the data we have, the benefits of taking the type of the most
recent failure into account when estimating the ETTF are limited, since the two most common types of failures
recorded at LANL have a similar impact on the expected time until the next failure. For other systems with
larger differences between the main categories of failures, failure-type specific methods might be more effective.
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B. Decreasing hazard rates

A number of previous studies [5], [6], [12] suggest placing checkpoints dynamically based on the statistical
distribution of the time between failures, rather than using a fixed checkpoint interval. The motivation is that,
unlike the exponential distribution, empirical distributions often exhibit decreasing hazard rates (as indicated by
a shape parameter less than 1 in a Weibull distribution; see column “Weibull shape” in Table I for the shape
parameter of the Weibull fit for LANL data). A decreasing hazard rate function predicts that if a long time
has elapsed since the last failure then the expected remaining time until the next failure is long. The intuition
is that in a system with decreasing hazard rates one can reduce the checkpoint frequency if a long time has
passed without seeing any failures (as a long time without failures implies a longer expected time until the next
failure).

Note that the implementation of such a method in practice is more involved than that of the methods we
have previously considered. In all previous methods, the checkpoint interval was fixed at the beginning of an
application run, and updated only in the case of a failure, when the application was restarted. Methods that take
decreasing hazard rates into account require that an application be able to adapt its checkpoint interval while
running, and not just at start/restart time. Furthermore, methods based on hazard rates require knowledge of the
distribution of time between failures, rather than just themean of the distribution. For example, previous work
typically assumed a Weibull model of the underlying failuredistribution is available.

We are mainly interested in exploring the general potentialof hazard-rate based methods, without having to
worry about issues due to the potential loss of accuracy whenfitting a theoretical distribution to the empirical
data, as required by previous approaches. We therefore relydirectly on the failure trace data to determine for
each system how exactly the expected time to the next failuredepends on the elapsed time since the last failure.
Figure 5 plots the expected remaining time to the next failure as a function of the time since the last failure
for systems 2, 18, 19, and 20; i.e. datapoint(x, y) means that after running without failures forx minutes the
expected remaining time until the next failure (on top of thex minutes already completed) isy minutes. Not
surprisingly, given the parameters of the fitted distribution in Table II, we observe an increasing trend in all
curves.

We use the curves in Figure 5 to implement an adaptive checkpointing method, calledAdaptive. Any time
a new checkpoint interval calculation is made (i.e. after a failure or a checkpoint), the curves in Figure 5 are
used to determine the expected time until the next failure asa function of how much time has elapsed since the
last failure. This estimate is then plugged into Young’s formula to determine the length of the next checkpoint
interval.

The column labeled “%wasted (Adaptive)” in Table II shows the results obtained from runningAdaptiveon
the LANL traces, compared to our old Young(stat) from Section II. Overall, we observe that improvements are
marginal. We identify as the main reason that while failure rates do change as a function of the elapsed time
since the last failure, this change happens too slowly to have a large impact. For example, in the case of systems
2 and 20 it takes 1000 minutes of failure free execution before the expected time until the next failure doubles
from initially around 800 minutes to 1600 minutes (leading to an increase of 1.4X in the checkpoint interval).
However, only 23% of all failure intervals are longer than 1000 minutes, so the number of opportunities where
this knowledge can be brought to bear is limited.
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20.

We experimented with synthetically generated failure traces using smaller Weibull shape parameters than
the shape parameters observed for the LANL data. We do find that improvements increase for smaller shape
parameters. For example, for a shape parameter of 0.3 we observe an average improvement of 10% forAdaptive
over Young.

It is worth noting that the best method previously reported in the literature for dynamically placing checkpoints
(by Bougeret et al. in [5]) reports improvements over other methods, in particular for small shape parameters.
However, that method is in the best cases only able to match that of Young(stat), something that we find our
much simpler moving averages methods able to accomplish.

Summary: For the LANL systems that our data comes from, improvements from placing checkpoints
dynamically based on the hazard rate function are negligible and hence hardly justify the associated overhead
and complexity. We observe improvements only in synthetic experiments with shape parameters much smaller
than those observed in practice.

C. Autocorrelation

In this section, we propose to take information about the burstiness of the failure process into account when
making checkpointing decisions. To quantify the burstiness and degree of correlation between failures in LANL’s
systems we plot in Figure 6 both the auto-correlation and partial auto-correlation functions of failure inter-arrivals
in one of LANL’s systems (system 20). We observe strong positive auto-correlations between failure inter-arrivals
in this system. When repeating this analysis for the rest of LANL’s systems we found similar trends.

These observations motivate us to use autoregression (AR) to model the time between failures. We fit an AR
model to the observed sequence of failure inter-arrivals for each LANL system and then use the fitted model
to predict the time to next failure each time a checkpoint scheduling decision is to be made; i.e., after a system
failure occurs. The new checkpointing interval is determined by plugging the estimate from the AR model into
Young’s formula. The results from this method are shown in the column labeled “%wasted AR” in Table II.

We observe that in most cases AR provides the lowest level of wasted work among all policies. (For better
readability, we have marked in each row in Table II the lowestobserved level of wasted work in bold font).
The improvements are largest for systems 6, 11, and 13, with levels of wasted work that are 10-15% lower
under AR than under Opt (the optimal interval identified through exhaustive search). However, in most cases
improvements are more modest with an average improvement ofAR over Young(stat) of 4% and over Opt of 7%.

Summary: Among all methods, using autoregression to estimate the expected time until failure performs best.
However, the improvements are significant (in the 10-15% range) only in a few cases, and quite modest (in
the 2–6% range) in most cases. Hence the typical practitioner is likely to prefer using moving averages (e.g.
Young(SMA)), due to their simplicity.
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Fig. 7. Errors in estimation of wasted work using equations with respect to the wasted work under Young when using trace-based
simulations.

V. SYSTEM PERFORMANCE FOR VARYING CONFIGURATIONS

A. A Back-of-the envelope formula for wasted work

So far in this work we have relied on simulations based on actual failure logs to determine the fraction of
wasted time. Often it is useful to have a simple back-of-the envelope estimate of wasted work available without
having to run simulations. Examples include situations where no failure logs are available for a system, or one
wants to experiment with parameters (e.g. the MTTF) that differ from the real system. This allows answering
questions such as “How much does the fraction of wasted time drop if I could reduce the checkpoint overhead
by a factor of two” or “How many processors can I run on while still keeping the wasted time below some
threshold”. We next explore simple approaches to estimate the fraction of wasted work in a system.

Consider the fraction of time that is wasted in an HPC system performing periodic checkpoints with an
interval∆. The first component of wasted work is due to the fact that onceevery∆ time units a checkpoint
needs to be written which takes timeC. Hence, the system spendsC/∆ fraction of its time checkpointing.
Secondly, every time a failure happens (i.e. on average onceevery MTTF time units), some work is lost that
needs to be recomputed. The amount of lost work is equal to thetime since the last checkpoint. If failures are
equally likely to happen anywhere in a checkpointing interval, the expected amount of lost work for each failure
would be roughly∆/2. That means on average the fraction of time spent redoing lost work is (∆/2)/MTTF .
(Note that we do not include the time needed to restart the application to the state of the most recent checkpoint,
as this time does not depend on the checkpointing interval and hence will be the same for any checkpointing
policy). Combining these two sources of wasted work, means we want to choose∆ to minimize the following
functionW :

W (∆) =
C

∆
+

∆

2 ·MTTF
(2)

It turns out that this function is minimized by choosing∆ according to Young’s formula. However, the
derivation makes a number of assumptions that are clearly not true in practice, such as the assumption that
failures do not happen during checkpoints (recall the discussion in Section II).

We further refine Equation (2) by taking into account that checkpoints take place only during the fraction
of failure intervals that are larger than∆, which we estimate by assuming an exponential distribution(an
approximation we make for simplicity, as in theory a Weibulldistribution is a better fit). We also take into
account that checkpoints are only written once everyC+∆ time units. In combination these modifications lead
to the following formula for wasted workW :

W (∆) = e−
∆

MTTF · C

C +∆
+

∆

2 ·MTTF
(3)

Figure 7 studies the accuracy of the estimations from the twoequations versus simulations for all LANL
systems. The boxplots show the percentage of error in the estimation of wasted work by the equations, with
respect to the wasted work that results under Young when using trace-based simulations. (The actual estimations
can be found in the last two columns in Table II).

We observe that Equation (2) results are accurate for smaller checkpoint costs, usually within 5% of the
simulation results, but can deviate quite a bit for larger checkpoint costs, in particular for cases where the
wasted work is large. For example, the equation overestimates the wasted work by 22% for system 18 for a
checkpoint cost of 60 min. While the numbers are still in the same ballpark, it might be desirable to have higher
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Fig. 9. Speed-up as systems scale out.

accuracy even for those cases. However, we observe highly accurate estimates for Equation (3), with an average
error of 3.7% (compared to 6.7% under Equation (2)). Even in the more difficult cases, where wasted work
is high, the error is always below 15%. We also experimented with other refinements, addressing some of the
other simplifications that the derivation of Equation (2) relied on, but did not find that they lead to significant
improvements.

Summary: The fraction of wasted work can be approximated with simple back-of-the envelope formulas
based only on the MTTF and checkpointing costC.

B. Wasted time as systems scale out

As the projected increase in the speed of individual components is limited, performance increases in future
systems will have to come from an increase in the number of components. To continue past growth trends for
FLOPs of leadership applications component counts in future systems will have to increase by several orders of
magnitudes. In this section, we take a look at the wasted workas systems scale out. We assume that the failure
rate of individual components will remain the same and that the cost for a node to write a checkpoint does not
depend on the total number of nodes involved in the computation (which is consistent with observations in [15]
and [16]), but that when increasing the number of componentsby a factor ofp, failure rates will increase by a
factor of p.

Figure 8 plots the wasted time for our four different systems, when scaling up the number of nodes, and
assuming a hero run of an application which utilizes all available nodes. We observe that in many cases running
applications on all nodes in a system becomes infeasible. For example, forp=100X the fraction of wasted time
ranges from 65% to 85% for checkpoint costs ofC=5min orC=10min, and approaches 100% forC=60min.

The results indicate that some drastic changes need to take place for checkpointing to stay viable. As our
work shows that little can be gained from further optimizations to the checkpoint interval and it is unlikely that
per-component reliability improves, the only factor in theequation that can make up for increasing component
counts is the checkpoint costC. In particular, in order to keep the fraction of wasted time the same as now,
when the number of processors increases by a factor ofp the checkpoint cost needs to be reduced by a factor of
p. Various suggestions have been made in the past to speed up checkpoints. Below we evaluate their potential
to deliver the required reduction in checkpoint costs.

Checkpoint compression:One suggestion is to reduce the amount of data that needs to becheckpointed via
data compression techniques. Previous work shows that one can achieve compression factors in the range of
5–10X. [10]. While these factors are impressive, they will not be sufficient to achieve the level of reduction in
checkpoint cost that is required.

Checkpointing to flash:Another suggestion is to use local flash drives to store a checkpoint and then slowly in
the background drain the checkpoint data to the disk-based parallel file system, while the application continues
execution [1]. Flash drives provide significantly faster latency in particular for random reads, compared to
traditional hard disk drives. However, the checkpoint costdepends on the sustained write bandwidth of the
storage device. Based on vendor specifications the sustained write bandwidth of hard disk drives is in the 80-
150 MB/sec, while typical numbers for SSDs are a few hundred MB/sec, with some high-end drives quoting up
to GB/sec. That means the expected speed-up in the optimal case will be in the order of 10X, again by itself
not sufficient to make up for the increased failure rates.
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Incremental checkpoints:Other work investigates the possibility of replacing some full checkpoints with (smaller)
incremental checkpoints, where only data that has changed since the most recent checkpoint is being stored [14],
[17]. Wang et al. [17] experiment with incremental checkpointing for a number of applications and report
incremental checkpoint sizes that are 10-20% smaller than the size of a full checkpoint, again an improvement
that is not sufficient by itself.

Alternatives to coordinated blocking checkpoints:An alternative is a deviation from traditional coordinated
checkpoints. Most methods for coordination free checkpointing suffer from other overheads, as some form of
message logging is usually involved. Our work might renew interests in methods, such as [3], which minimize
the degree of coordination.

Summary: The necessary reductions in checkpoint cost in next generation HPC systems will likely require a
whole array of new techniques. Improvements from each individual previously proposed technique are on the
order of at most 10X, while overall improvements of several orders of magnitude will be necessary. An alternative
is a deviation from traditional coordinated blocking checkpoints. Uncoordinated checkpointing will require some
form of message logging, which for tightly coupled parallelapplications will likely have unacceptabe overheads.
However, various methods to make checkpoints non-blocking, such as [3], might become interesting alternatives.

C. Application speed-up with increasing number of nodes

In an ideal world, a parallel application would speed up linearly with the number of nodes it is running on,
e.g. a problem that takes 1 hour to solve on one processor should require1/p hours onp processors. In reality
such a perfect speed-up is rarely achieved, due to the communication and synchronization overheads.

In this section we explore a second factor limiting the speed-up of a parallel application, which has received
less attention: how do failures and the need for fault tolerance affect the speed-up? While running an application
on a large number of nodes increases available computational cycles, it also increases failure rates, and hence
the amount of time required to write checkpoints and recoverlost work.

Figure 9 plots the speed-up for a range ofp values, wherep indicates the factor by which the number of
processors in the original system is increased. In order to isolate the effect of failures on speed-up, we assume
that the computational part of an application scales perfectly, e.g. in a world without failures an application
achieves speed-upp when usingp times as many processors.

We observe that even for relatively small factors increase in the number of nodes (compared to the increases
in the number of nodes necessary for future exascale systems), the achieved speed-up is far from the optimal
(linear) speed-up. Moreover, after a certain point the overheads due to increased failure rates completely negate
the additional compute cycles gained when adding nodes to the system. The point where adding nodes to the
system does not result in an increase in speed-up is quite consistently reached when the system reaches around
80% wasted time (compare with Figure 8). After some point, increasing system size actually results in adecrease
in speed-up. This point is typically reached when the fraction of wasted time reaches around 90%.

Summary: Overheads due to fault tolerance can severely impact the speed-up a parallel application can
achieve. Even at a checkpoint cost as small as 20 seconds, theincrease in the number of nodes necessary for
future systems results in a speed-up that is far from the optimal (linear) speed-up.

VI. RELATED WORK

As a testament to the importance of the problem, a large body of work exists on optimizing the checkpoint
interval. Section II provided a brief summary of Young’s formula [18] and follow-up work that strives to further
improve upon Young. Our work differs from the above in that our goal is not a further refinement of existing
approaches. Instead, our focus is on the careful evaluationof different approaches (some previously proposed in
the literature, some new approaches, which we propose in this paper) on real world logs, and on our observation
that for real world traces very simple methods perform near optimal.

Our work is also the first to look at practical implementationissues of checkpoint interval computation. Previ-
ous work typically assumes a-priori knowledge of the underlying statistical failure process (e.g. the distribution
of time between failures) and then evaluates the proposed method on (usually synthetically generated) data
following these statistical properties. On the other hand,we show that checkpointing based on Young’s formula
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is robust to errors in the parameter estimates and that near optimal performance can be achieved by learning
the parameters on the fly, based only on a short time window of recent failure history for a system. Finally,
we show that an adaptation of formulas used in the derivationof Young’s formula can be used for accurate
back-of-the envelope estimates of the wasted work under different system parameters.

VII. C ONCLUSION

Despite a myriad of papers on the optimization of checkpoint-restart protocols, practitioners still rely on very
crude ad-hoc rules of thumb to choose the key parameter in these protocols, the checkpoint interval. The goal
of this paper is to remedy this situation by identifying solutions that arepractical, and at the same time achieve
good performancein terms of the associated wasted work (due to lost work afterfailures and time spent writing
checkpoints).

Going back 40 years in checkpointing research, we find that one of the oldest and simplest formulas, often
criticized for relying on too many unrealistic assumptions, achieves near optimal performance across all 20
failure traces we experiment with. We find that more complex methods that try to correct inaccuracies provide
no tangible improvements in the amount of wasted work, even for input scenarios that significantly deviate from
those assumptions.

We also look at a number of practical implementation issues and show that Young’s formula can easily be
adapted for use in practice. We show that all required parameters can be estimated online through a combination
of simple window-based methods for MTTF estimation, achieving performance comparable to that under the
optimal checkpoint interval (obtained through offline analysis) for a trace.

We investigated a number of more advanced methods which dynamically change the checkpoint interval. One
of these is based on a previously proposed idea (using the hazard rate function of a system) and two are new
methods we propose. The best performing of these methods is anew method based on MTTF predictions using
autoregression. However, even for that method improvements over Young are significant (in the 10% range) for
only a small subset of the systems and parameters. On average, the improvements of all advanced methods are
not large enough to justify the added complexity that comes with them.

While the above results might be disappointing from a theoretical point of view, they are good news for
practitioners as it means that they can rely on simple practical methods without sacrificing performance.

We show that a simple back-of-the envelope formula can be used to accurately estimate the wasted work in
a system, based only on the MTTF and checkpoint costC. Such a formula is useful for tuning an application
(for example to decide on the number of processors to run on ornecessary reduction in the checkpoint cost) or
planning future systems.

We perform a number of projections on the impact of checkpoint/restart overheads as the number of nodes in a
system increases. We observe that even under optimal checkpoint placement, the limits of traditional coordinated
checkpoint/restart might be reached soon, and that likely acombination of techniques will be necessary to keep
checkpoint/restart viable. Our findings might encourage more future work on reducing coordination needs for
checkpoints, along the line of work by Agbaria et al [3].
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APPENDIX

System MTTF Weibull C
Static Dynamic (Moving Averages) Advanced Methods Equations

% wasted % wasted % wasted % wasted % wasted % wasted % wasted % wasted % wasted % wasted % wasted
ID (min) (shape) (min) Opt(stat) Young(stat) Daly SMA(w=30) WMA(w=30) EMA(w=30) AR (Adaptive) ETTF(Type) Equation (2) Equation (3)

2 840.9 0.739

0.333 2.737 2.7807 2.774 2.7021 2.7089 2.7119 2.6791 2.7581 2.796 2.8156 2.7575
2 6.596 6.5647 6.6097 6.4768 6.4628 6.4553 6.4019 6.6524 6.7089 6.8968 6.560
5 10.263 10.3 10.299 10.064 10.051 10.051 9.9908 10.285 10.369 10.905 10.089
10 14.238 14.275 14.265 13.996 14.018 14.051 13.82 14.34 14.475 15.422 13.847
60 31.762 31.996 31.733 31.203 31.31 31.191 31.188 32.023 32.373 37.775 29.777

3 3546.2 0.823

0.333 1.334 1.3784 1.3784 1.3317 1.3349 1.3626 1.322 1.3684 1.316 1.3711 1.357
2 3.205 3.2544 3.3404 3.1644 3.259 3.2762 3.1721 3.2136 3.319 3.3585 3.276
5 4.908 5.2461 5.1238 5.1763 5.1522 5.1006 4.8167 5.1912 5.16 5.3103 5.108
10 7.031 7.1231 7.391 7.437 7.1706 7.2192 6.7791 7.3324 7.321 7.5099 7.112
60 16.362 16.658 16.634 16.111 16.837 16.235 15.936 17.011 17.179 18.395 16.205

4 3363.4 0.827

0.333 1.363 1.4062 1.4404 1.4246 1.3785 1.3952 1.3667 1.3542 1.388 1.4079 1.393
2 3.243 3.3935 3.3912 3.4476 3.3112 3.3435 3.2509 3.426 3.342 3.4486 3.362
5 5.096 5.4381 5.1906 5.2713 5.2466 5.2903 5.0086 5.1207 5.484 5.4527 5.240
10 7.076 7.3355 7.357 7.2815 7.2111 7.211 6.9724 7.2577 7.688 7.7113 7.293
60 16.660 17.029 16.88 16.818 17.081 16.977 16.423 17.478 19.121 18.889 16.588

5 3272.9 0.873

0.333 1.390 1.3905 1.4246 1.4183 1.3913 1.4116 1.3803 1.4028 1.449 1.4272 1.412
2 3.349 3.3552 3.3643 3.433 3.4547 3.471 3.4549 3.5174 3.613 3.496 3.407
5 5.139 5.3036 5.4161 5.2825 5.3405 5.4058 5.1736 5.5251 5.591 5.5276 5.309
10 7.332 7.6851 7.57 7.5888 7.4957 7.4593 7.2692 7.4555 8.146 7.8172 7.387
60 17.039 17.802 17.829 17.67 17.098 17.511 17.326 17.869 20.283 19.148 16.789

6 16530 1.025

0.333 0.578 0.62784 0.62685 0.60852 0.60784 0.63347 0.50624 0.66722 0.66 0.63506 0.632
2 1.382 1.5293 1.4989 1.4798 1.5097 1.6164 1.2299 1.6346 1.933 1.5556 1.538
5 2.237 2.3973 2.3053 2.4912 2.3742 2.365 2 2.3075 3.461 2.4596 2.415
10 3.187 3.4335 3.3493 3.5136 3.6032 3.4445 2.8341 3.3231 5.665 3.4784 3.390
60 7.655 7.9 8.2629 8.2598 8.8165 8.4049 6.8413 8.3467 16.654 8.5203 8.013

8 5044.8 0.716

0.333 1.106 1.112 1.1298 1.1779 1.1996 1.1596 1.0608 1.1179 1.133 1.1496 1.140
2 2.678 2.7353 2.7306 2.945 2.9689 2.8037 2.5612 2.7754 2.867 2.8159 2.758
5 4.196 4.1981 4.3393 4.5056 4.5293 4.4499 4.1444 4.2332 4.806 4.4523 4.309
10 5.822 6.0805 6.0587 6.434 6.4142 6.3252 5.7993 6.1616 6.978 6.2964 6.014
60 13.632 14.12 14.125 14.535 14.72 14.541 13.547 13.98 17.83 15.423 13.848

9 3503.8 0.546

0.333 1.302 1.2921 1.3074 1.2228 1.2148 1.1816 1.1373 1.3041 1.224 1.3794 1.365
2 3.106 3.2379 3.235 2.8146 2.801 2.8771 2.8854 3.2916 2.948 3.3788 3.296
5 4.709 4.9291 4.8465 4.4457 4.4347 4.3498 4.7322 4.8142 4.984 5.3424 5.138
10 6.700 6.873 6.8538 6.1589 5.9046 5.8766 6.6944 6.8926 7.103 7.5552 7.153
60 15.281 15.892 16.078 14.191 13.609 13.979 17.192 15.864 18.537 18.506 16.292

10 4103 0.545

0.333 1.169 1.2012 1.2083 1.1742 1.1442 1.1466 1.1587 1.2013 1.192 1.2747 1.263
2 2.807 2.8877 2.9054 2.8764 2.7157 2.6952 2.6495 2.8142 2.884 3.1223 3.051
5 4.363 4.639 4.7285 4.4723 4.4739 4.2483 4.2214 4.371 4.616 4.9368 4.761
10 6.071 6.3135 6.2078 6.1359 6.0069 6.1566 5.8082 6.3467 7.076 6.9817 6.637
60 14.044 14.638 14.468 13.987 13.826 13.472 13.553 13.89 17.77 17.102 15.19

11 3618.8 0.564

0.333 1.278 1.3264 1.3405 1.2499 1.2176 1.2154 1.1662 1.3559 1.233 1.3573 1.344
2 3.039 3.1725 3.093 2.8746 2.8118 2.8223 2.6712 3.2182 2.981 3.3247 3.244
5 4.745 4.9438 4.7575 4.5412 4.5949 4.5198 4.1027 4.9071 4.744 5.2567 5.058
10 6.620 6.9612 6.8536 6.2551 6.4282 6.4723 5.7603 6.9131 7.054 7.4342 7.044
60 15.092 15.386 15.488 14.876 15.144 15.239 13.293 15.199 17.326 18.21 16.061

12 3824.8 0.615

0.333 1.213 1.3031 1.2886 1.1826 1.1969 1.2009 1.084 1.2728 1.256 1.3202 1.307
2 2.887 3.1095 3.0847 2.8978 2.8796 2.8507 2.7687 3.18 3.112 3.2339 3.158
5 4.580 4.8733 4.6545 4.4447 4.4494 4.2104 4.7207 4.8258 4.804 5.1133 4.925
10 6.443 6.7878 6.9175 6.4911 6.0773 5.9235 6.5195 6.7509 7.073 7.2312 6.862
60 14.862 15.951 15.345 14.299 14.21 14.491 16.375 15.786 17.862 17.713 15.672

13 4955.3 0.504

0.333 1.066 1.086 1.0809 1.0398 1.0549 1.0341 0.91997 1.0976 1.091 1.1599 1.150
2 2.477 2.6246 2.7177 2.4682 2.4105 2.4288 2.1734 2.6277 2.683 2.8412 2.782
5 3.994 4.1111 4.1273 3.8404 3.8005 3.8475 3.5019 4.1479 4.486 4.4923 4.346
10 5.542 5.7855 5.6222 5.1827 5.3735 5.1697 4.7498 5.8213 6.263 6.353 6.066
60 12.857 13.128 13.313 12.511 11.908 12.629 11.212 12.622 16.137 15.562 13.960

14 6171.4 0.405

0.333 0.899 0.94964 0.98178 0.92814 0.88763 0.88239 0.80583 0.95477 0.952 1.0394 1.031
2 2.138 2.1955 2.2244 2.2653 2.1435 2.1492 2.1058 2.1611 2.872 2.5459 2.498
5 3.324 3.5246 3.5902 3.3664 3.2901 3.0893 2.9353 3.5474 5.429 4.0254 3.908
10 4.562 4.7409 5.004 4.5693 4.4179 4.3886 4.3896 4.9067 8.599 5.6928 5.461
60 10.329 10.988 10.976 10.69 11.377 11.2 10.337 10.878 15.953 13.944 12.642

15 7329 0.878

0.333 0.871 0.95433 0.99989 0.97766 0.95639 0.9237 0.94785 0.92944 0.993 0.95375 0.947
2 2.137 2.3648 2.2489 2.3116 2.3188 2.2071 2.3738 2.2121 2.786 2.3362 2.296
5 3.264 3.8206 3.8309 3.5734 3.296 3.3935 3.7031 3.553 5.027 3.6938 3.595
10 4.887 5.3786 5.8569 5.1086 4.8425 5.0286 5.1984 5.2196 8.021 5.2239 5.028
60 11.379 11.878 11.665 11.609 12.58 11.837 11.138 12.606 16.648 12.796 11.689

16 1260 0.722

0.333 2.244 2.2574 2.2681 2.2454 2.275 2.2562 2.1866 2.2793 2.254 2.3003 2.261
2 5.357 5.4337 5.4838 5.4 5.4386 5.4236 5.3206 5.4854 5.334 5.6346 5.407
5 8.313 8.4639 8.4391 8.4557 8.4261 8.3871 8.2875 8.447 8.369 8.909 8.356
10 11.663 11.794 11.816 11.759 11.873 11.741 11.594 11.682 11.85 12.599 11.524
60 26.227 26.262 26.537 26.548 26.452 26.267 25.856 26.553 27.158 30.862 25.249

18 449 0.817

0.333 3.794 3.779 3.7776 3.7907 3.7981 3.7733 3.7514 3.8077 3.8218 3.8534 3.746
2 9.063 9.0716 9.1506 9.1589 9.0766 9.1578 8.988 9.1353 9.0717 9.4389 8.820
5 14.008 14.128 14.064 14.004 13.836 13.986 13.962 14.146 13.974 14.924 13.443
10 19.233 19.283 19.385 19.334 19.215 19.292 19.009 19.406 19.305 21.106 18.282
60 41.592 42.283 41.803 42.021 41.734 41.974 41.687 41.94 42.63 51.699 38.098

19 470.3 0.889

0.333 3.742 3.74 3.7249 3.7166 3.7164 3.734 3.709 3.7511 3.7165 3.7649 3.662
2 8.898 8.995 8.9243 8.8809 8.9641 8.8849 8.8224 8.9897 8.8767 9.222 8.630
5 13.740 13.789 13.74 13.771 13.781 13.781 13.785 13.812 13.711 14.581 13.164
10 19.001 19.065 19.178 19.037 19.064 18.998 19.028 19.195 19.122 20.621 17.916
60 41.527 42.026 41.594 41.898 41.651 41.696 41.853 41.918 42.188 50.511 37.423

20 815.4 0.646

0.333 2.788 2.8009 2.8177 2.6685 2.632 2.6618 2.6556 2.7829 2.7089 2.8594 2.800
2 6.658 6.6932 6.681 6.2902 6.2899 6.3113 6.3592 6.7144 6.4369 7.0041 6.657
5 10.235 10.273 10.332 9.7618 9.7753 9.7983 9.8406 10.292 9.8903 11.075 10.234
10 14.164 14.35 14.263 13.735 13.606 13.785 13.727 14.315 13.768 15.662 14.040
60 30.760 30.994 31.315 30.147 30.124 30.061 30.331 30.941 30.509 38.363 30.148

21 1437.6 0.685

0.333 2.100 2.2529 2.0573 2.0358 1.9441 2.0091 1.7863 2.1417 2.049 2.1535 2.119
2 4.817 5.0516 5.0356 4.9803 4.8634 4.8031 4.4285 4.7894 4.754 5.2749 5.075
5 7.782 8.0971 8.0082 7.9533 7.5754 7.6675 6.8231 8.2176 7.482 8.3404 7.853
10 11.037 11.818 11.472 10.511 10.366 10.232 9.7075 11.293 10.687 11.795 10.847
60 24.254 25.431 25.46 23.964 22.916 23.197 21.531 24.344 24.418 28.892 23.901

23 8740 0.735

0.333 0.848 0.87829 0.88462 0.98185 0.96799 0.93377 0.81556 0.86959 0.846 0.87338 0.868
2 2.065 2.1057 2.1518 2.3379 2.35 2.2872 2.013 2.0775 2.211 2.1393 2.106
5 3.242 3.3781 3.3374 3.7333 3.7439 3.518 3.1701 3.3398 3.728 3.3826 3.299
10 4.505 4.6612 4.6919 5.1912 5.1643 5.0098 4.5793 4.6064 5.426 4.7837 4.619
60 10.618 11.054 10.871 11.974 11.97 11.652 10.312 11.096 14.478 11.718 10.781

24 24133 0.716

0.333 0.503 0.52094 0.5248 0.51615 0.5111 0.49673 0.50762 0.53759 0.535 0.52559 0.524
2 1.220 1.2367 1.2438 1.2476 1.2452 1.208 1.2021 1.2955 1.597 1.2874 1.275
5 1.897 2.0143 1.9559 1.9777 1.9246 1.8754 1.9268 2.0498 2.888 2.0356 2.005
10 2.748 2.9262 2.8001 2.8866 2.6974 2.7379 2.6244 2.7079 4.753 2.8788 2.818
60 6.515 6.9571 6.7611 6.464 6.7574 6.3707 6.3615 6.4429 8.417 7.0515 6.7

TABLE II
COMPARISON OF THE FRACTION OF TIME WASTED WHEN USING DIFFERENT CHECKPOINTING METHODS, FOR ALL LANL SYSTEMS.


