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Abstract

Efficient use of high-performance computing (HPC) instalas critically relies on effective methods for
fault tolerance. The most commonly used method is checkipestart, where an application writes periodic
checkpoints of its state to stable storage that it can iteBtam in the case of a failure. Despite the prevalence
of checkpoint/restart, it is still not very well understoad practice how to set its key parameter, the check-
point interval. Despite a large body of theoretical workagiitioners still rely on crude rules-of-thumb such as
“checkpoint once every hour”.

Our goal in this work is to identify methods for optimizingetitheckpointing process that are easy to use
in practice and at the same time achieve high quality saistion particular, this work makes the following
contributions: We evaluate an array of methods for optingzhe checkpoint interval, some previously known as
well as new ones that we propose, using real-world failugs.l&Ve show that a very simple closed-form solution
can easily be adapted for use in practice and achieves p&erad performance. We also find that more complex
solutions only negligibly improve performance based on meerld traces. We show that simple back-of-the
envelope formulas can be used to accurately estimate thedva®rk in HPC systems, and make projections of
future HPC systems and requirements for their efficient use.
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I. INTRODUCTION

The most widely used method for fault tolerance in high-perfance computing (HPC) applications is
coordinated checkpointing, where a parallel applicatieniggically stops execution to checkpoint its current
state. In the case of a failure, the application recoversdsyarting from the most recent checkpoint. It is
important to note that under coordinated checkpointing@athpute nodes involved in a parallel application stop
simultaneously to write their individual checkpoints, ahat a failure of any one node involved in a parallel
application requires all nodes to restart from their mosen¢ checkpoints.

Overhead due to faults and fault tolerance in systems usiegkpointing comes from two different sources:
the time that is spent writing periodic checkpoints and theetthat is spent to recover in the case of a failure
(i.e. the time to revert back to the state of the most receatlgoint and the time to redo all the lost work
that has been done since the most recent checkpoint). Heacantount of time that is wasted, i.e. any time
that is not spent on doing actual computation, depends osytem’s failure rate, the amount of time it takes
to write a checkpoint, and the frequency of checkpoints.

Given the importance of the problem it is not surprising timatich research has been dedicated to optimizing
the checkpointing process. Besides approaches to redeceost of a checkpoint, for example through data
compression [10] or filesystem optimizations [4], a largeyof work focuses on optimizing the choice of the
checkpoint interval, i.e. the time between two consecutiveckpoints [5]-[7], [11], [14], [18]. While frequent
checkpointing reduces the amount of lost computation irctee of a failure, it leads to a large amount of time
spent checkpointing rather than performing computatianv@rsely, the fewer checkpoints a system schedules,
the higher the recovery overhead when failures happen.

Our motivation for this work comes from discussions withqtittoners at a number of large HPC installations,
who lament that in practice crude and ad-hoc rules of thuraluaed to decide on the frequency of checkpoints,
such as “checkpoint once every hour”. Given the large boditexfaiture on the topic and the immediate impact
the choice of the checkpointing interval has on system efiity this situation is unsatisfactory, to say the least.
Further discussions identified as a reason the high contplekiexisting solutions. They often assume detailed
knowledge about the underlying failure process (such astttestical distribution function of the time between
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failures and its parameters), which is not readily avadadohd which can furthermore change over the lifetime
of a system. Moreover, existing solutions are perceivedoascomplex to implement, as they often do not
provide straightforward closed-form solutions.

The goal of our work is to revisit the problem of optimizingacdinated checkpointing in tightly-coupled,
HPC applications with gractitioner's viewin mind. We look at solutions of varying degrees of complexit
(including previously proposed solutions and our own) arajole a thorough evaluation based on real world
failure traces (rather than synthetically generated dateast previous work) to answer the question of how
much complexity is really needed. We explore the issue of bemsitive methods are to errors in their parameter
estimates, and show that the key parameter can be estimdfieiestly accurately online using simple methods.
We provide an easy to use back-of-the envelope formula torataly estimate wasted work, which can be used
by practitioners to configure their applications or in tharpling of future systems. We also make projections
of system efficiency as systems scale out and derive regeirenfor their efficient use.

Il. STARTING SIMPLE: YOUNG'S FORMULA

The first and simplest approach for computing the checkpioiatval is the closed-form solution proposed by
Young [18] in 1974. Young’s formula determines the checkpaiterval Ay, based on only two quantities,
the system’s mean time to failure (MTTF) and the checkpoast €

Ayoung = V2-C - MTTF 1)

Young’s formula relies on the following set of unrealistissamptions, which make its value questionable
and has spurred a sizeable body of follow-up work that presvishore complex, but presumably more accurate
results:

1) Young assumed that failures follow a Poisson processr Rvork [8], [9] reports dependencies between
failures and non-exponential inter-arrival time disttibns. Work in [6], [13] extends the analysis to Weibull
distributions, known to be a better model of empirical dsttions.

2) Failures do not happen during checkpoints. In practiteset are applications with a checkpoint cost that is
high enough that the probability of experiencing a failutginlg a checkpoint is significant. Several recent
papers [6], [7], [11], [13] take into account the probailitf failure during checkpoints.

3) Failures happen on average half-way between two cheatgpdiVork by Liu [12] removes this assumption
by approximating the excess lifetime distribution of thmei between failures.

4) The system’s MTTF and checkpoint castare known accurately and in advance, and do not change over
time. In reality, failure rates of a system change over tirag.(with age) and are not known a-priori by
administrators. We are not aware of any work that addresseptoblem.

In the remainder of this section our goal is to evaluate thpaich of the unrealistic assumptions 1.-3. in
practice using trace-driven simulations based on a largey af real-world failure logs, to evaluate Young's
accuracy for realistic scenarios. The next section willl degh practical implementation issues brought up in
4. and whether Young's theoretical performance can be aetie practice.

A. How accurate is Young'’s formula for real traces

In this subsection we use trace-driven simulations to etalthe quality of the solution provided by Young.
The traces we use are available online [2] and cover nearlgcade worth of failure logs from 20 different
HPC systems at Los Alamos National Lab (LANL). The data cimstaecords of all node outages that occurred
during the measurement period (a total of 23,600 node &shur

Our simulations assume a “hero run” of an application thaswal available nodes. For each system, we use
the entire log and and simulate periodic checkpoints at firegtvals that we compute using Young's formula
(recall Equation (1)) and record the fraction of time thaidst due to writing checkpoints or redoing lost
computation. (Note that we do not include the time neededstart the application to the state of the most
recent checkpoint, as this time does not depend on the chitky interval and hence will be the same for
any checkpointing policy). We run simulations varying theckpointing cost from as low as 20 seconds to
as high as 60 minutes, and we obtain the MTTF for a system flencobrresponding trace. (Note that this is
not feasible in practice as one can not know a system’s MTTBrekand. Section Il will deal with how one
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Fig. 1. Wasted time under Young compared to wasted time ut@eoptimal fixed checkpoint interval for all LANL systems.

would obtain MTTF in practice). To measure how good the piedisolution is we compare it to the wasted
work the system would have experienced underdp#mal fixed checkpointing interval, i.eAp,; that leads
for a given trace to the smallest fraction of wasted work. Waim Ap,,, by searching through the entire range
of A values and using our simulator to identify the one that perfobest.

Figure 1 compares the fraction of time that is wasted umfeg.,,, to that underAp,,, for all LANL
systems, and under differe6t costs. Results shown assume thais constant, but we also experimented with
C following an exponential or uniform distribution and readnthe same results.

We observe that the fraction of wasted time under Young'snfda is very close to the optimal, in most
cases within 2%. Interestingly, even for input scenarica theviate significantly from Young’s assumptions
checkpointing usind\y .4 is Near optimal. For example, Table Il in the appendix presidor each system
the shape parameter of the best Weibull fit to the data and shioat systems that deviate the most from an
exponential distribution (recall that an exponential vebhlve a shape parameter of 1) do not exhibit worse
performance than others. Also, a higher checkpointing @ebktch will increase the chance of failures during
checkpoints) does not reduce performance\ef,,,, compared taAp,;.

Summary: Despite a number of unrealistic assumptions that the déerivaf Young’'s formula relies on, it
achieves performance nearly identical to that under thamapbtcheckpoint interval (identified offline through
exhaustive search). This is the case even for input scentiréd significantly deviate from Young’s unrealistic
assumptions.

IIl. M AKING YOUNG'S FORMULA WORK IN PRACTICE

Employing Young’s formula in practice requires two typesimformation: the cosC of a checkpoint and
the MTTF. Our evaluation in Section II-A assumed perfectwisalge of these two quantities, which in practice
need to be estimated before the run of an application. Belewfinst study how sensitive the performance of
Young is to errors in the estimation of those parameters,tl@ad show how sufficiently accurate estimates can
be obtained in practice.

A. Sensitivity to accuracy in parameter estimation

To understand the sensitivity of Young’'s formula to the aacy of the parameter estimation we apply the
same trace-based simulation we relied on in Section II-A,rather than determining the checkpoint interval
based on the actual values f6rand MTTF we assume that they were estimated with varyingessgof error.
We range the degree of error betwedr5)X (i.e. theC or MTTF was underestimated by a factor of 5) to a
degree of error 06X, i.e. theC or MTTF was overestimated by a factor of 5.

Figure 2 shows the results when the MTTF is estimated witlyingrdegrees of error whil€' is estimated
accurately in two representative LANL systems (systems @ 20). (We also performed experiments with an
error in C instead of MTTF, with similar results.) The X-axis shows ttegree of error and the Y-axis shows
the resulting wasted time normalized by the wasted time wWwatld have resulted under error-free parameter
estimation. We observe that there is a large range of MTTHEegthat achieve almost identical, near optimal
performance. For example, to stay within a range of 5-10%eftasted work achieved under accurate parameter
estimates one can tolerate errors of a factor of 2 (either-mreunderestimation) in estimating the MTTF.

Summary: We conclude that checkpointing based on Young’s formulauitegrobust against reasonable errors
in the estimation of”' or MTTF, which motivates us to explore ways to implement Ygum practice.
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Fig. 2. Wasted time assuming an error in the MTTF estimation.
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Fig. 3. Failure rates as a function of system age for two LANKtems.

B. Parameter estimation in practice

The good results for Young in Section IlI-A were obtained lshéating”: we assumed a-priori knowledge of
the checkpoint cost and the MTTF (as we just used the entiyddoa system to determine the MTTF before
running our simulations) — an approach that is used by allipus work as well, but not realistic in practice.
In this section we turn to methods for estimating the paramseh practice.

The value of the checkpoint coét depends on the particular application and the amount of itlateeds
to checkpoint to be able to restore a previous state of eigcutor the user of an HPC system, estimating
this quantity is easier than estimating the MTTF, as it canléermined based on measurements taken during
some test runs. We therefore focus our attention on estignéie MTTF which is more challenging as perfect
estimation would require knowledge about the system’sréutailure behavior.

Estimating the MTTF is further complicated by the fact thatréality a system’s MTTF is not stable over
time. We illustrate this by plotting the failure rates ovesystem'’s lifetime for two representative LANL systems
in Figure 3. Failure rates are often higher early in a systdifie (see Figure 3 (right)), as different hardware and
software issues get exposed during the execution of reddwarrkloads. Random spikes in failure rates can
also happen later in a system’s lifetime (see Figure 3 Jldfif example due to the upgrade or installation of new
software. Based on these observations, we experiment hige implementations of Young that dynamically
maintain an estimate of the MTTF, based on the system’s tdadure history:

Young(SMA)This approach uses a Simple Moving Average, i.e. it simplgutates th MTTF as the average
value of the failure inter-arrival times within an obseigatwindow consisting of the last days and uses that
average as an estimate of the expected time to the nexteailuis a parameter that needs to be determined.

Young(WMA)This method works like Young(SMA), but uses a Weighted MgvAverage, i.e. it assigns a
weight for each value in the observation window, with moreerdg observations having greater weights. WMA,
therefore, considers recent failure inter-arrival timesrenpredictive of the time to next failure, than older ones.

Young(EMA):Young(EMA) uses an Exponential Moving Average to estimdte MTTF, i.e. the weights
of older observations decrease exponentially, giving pakies a diminishing contribution to the calculated
average. Unlike SMA and WMA that only consider values witthiea observation window, EMA is a cumulative

calculation that includes all the historical observatiataging into account the entire history of failure inter-
arrivals.



Technical Report CSRG-622 (University of Toronto)

Time waste as a function of window size (SYSTEM-2,C=10min)  Time waste as a function of window size (SYSTEM-18,C=10min) ~ Time waste as a function of window size (SYSTEM-19,C=10min)  Time waste as a function of window size (SYSTEM-20,C=10min)
21 208 18

Time Waste %

-8 Young(SMA) -&-Young(SMA) -&-Young(SMA) -&-Young(SMA)
175 -6~ Young(WMA) 208 -6~ Young(WMA)| 208 -6-Young(WMA), 175 -6-Young(WMA),
. Young(EMA) 2056 Young(EMA) 204 Young(EMA) ul ; Young(EMA)
1-HOUR 1-HOUR 1-HOUR 1-HOUR
16.5 - - - Young(stat) S 204 - - -Young(stat) 202 - - -Young(stat) 165 - - -Young(stat)

©202f B B
7]

200 H B B
q

Time Waste %

Time Waste %

14 Spp=B>g<FnA

3 5 7 10 14 21 30 42 60 90 120150180 210 240 3 5 7 10 14 21 30 42 60 90 120150 180 210 240 35 7 10 14 21 30 42 60 90 120150 180 210 240 35 7 10 14 21 30 42 60 90 120150 180 210 240
Window Size (Number of Days) Window Size (Number of Days) Window Size (Number of Days) Window Size (Number of Days)

Fig. 4. Checkpointing using Young’s formula and differeathniques to estimate the MTTF.

The only requirement of the above algorithms is that theesgshaintains a log of the the most recent times
of failures. When an application first starts running, thidgaghcheckpoint interval is computed based on Young'’s
formula applied to the MTTF estimate obtained using one efttiree moving averages. Every time a failure
occurs and the applications needs to roll-back and res¢ta@tMTTF estimate is updated (taking the most recent
failure into account), and the checkpoint interval is repated based on the new MTTF estimate.

C. Performance in practice

We use trace driven simulations based on the LANL data touet@lthe performance of Young(SMA),
Young(WMA), and Young(EMA). Figure 4 shows the results fouf LANL systems, systems 2, 18, 19, 20 (the
four systems that the largest amount of data is availabb)leTIl in the appendix shows the complete results
for all LANL systems.

Each graph plots for one of the systems the wasted time fdr efithe three algorithms as a function of the
window sizew that was used. In the case of the EMA method, which does npbrel specific time window,
the parametetw on the X-axis is used to vary the smoothing coefficientin particular,« is computed as
a=2/(w+1).

To evaluate the quality of the produced solutions each gsapiwvs for comparison the wasted time that would
have resulted under Young’s static checkpoint intervayngstat); i.e. the theoretical algorithm that knows the
system’s MTTF a-priori and uses the checkpoint intervalrdkie entire trace. We also compare our results to
the case of checkpointing every one hour, a scenario conynaglied in practice. We observe the following:

« The performance of all moving averages methods and thélityatn estimate the MTTF is nearly the same.

« For all systems one can achieve performance comparablato@ftyoung(stat), for a large range of values.

« For some systems (system 2 and system 20) running Young dATA& estimates actually performs slightly
better than Young(stat). The reason is that for these twiesysfailure rates are more variable over the course
of their life (recall the graphs in Figure 3). Using a dynarestimate of the MTTF, rather than the average
across the entire trace, can actually slightly improve granance.

« The performance is not overly sensitive to the choicewofmaking tuning easy. Values far of 30 days
or more performed well for all systems. Except for systemrily @ few days worth of data provide nearly
optimal performance, which is good news when introducing ainthe proposed methods on a system with
no prior recording of failures.

Summary: Using a combination of Young’s formula and simple movingrages of past failure one can
achieve performance comparable to the (hypothetical) wédwge the optimum checkpoint interval is known a-
priori. This method, which is easily implementable in preet obviates the need for complex (and theoretically
more accurate) methods.

IV. M ORE ADVANCED TECHNIQUES

The previous section showed that our adaptation of Youndctwhstimates the MTTF online based on a
sliding window history (rather than assuming precise asprMTTF information), can not only match, but
sometimes even slightly exceed the performance comparesing the optimum (static) checkpoint interval for
a given trace. This observation motivates us to investigatee advanced methods that adapt the checkpoint
interval on the fly based on a system’s failure charactesistiVe investigate methods that exploit three different
characteristics of real world failures: decreasing harates, autocorrelations and dependencies between differe
types of failures.
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System | Failure Type MTTF (minutes) Frequency
Environment 1231.992 2.32%
Hardware 878.7485 54.15%

P Network 453.4721 4.04%
Software 724.9778 26.28%
Memory 884.1197 15.20%
CPU 749.408 0.50%
Environment 1392.401 0.50%
Hardware 462.2575 74.48%

18 Network 516.8922 0.43%
Software 380.6104 17.19%
Memory 403.1434 14.18%
CPU 477.6332 50.90%
Environment 1410.08 0.27%
Hardware 495.0095 77.68%

19 Network 791.712 0.40%
Software 352.6268 18.15%
Memory 428.2856 6.20%
CPU 499.8085 60.35%
Environment 1373.748 0.48
Hardware 797.7577 69.45%

20 Network 911.7771 0.56%
Software 801.5455 26.07%
Memory 1013.431 15.57%
CPU 730.4533 46.60%

TABLE 1

MTTF FOR DIFFERENT FAILURE TYPES IN THE FOUR LARGESLANL SYSTEMS

A. Failure type specific MTTF estimation

We observe in our previous work [8] that the occurrence ofadertypes of failures greatly increases the
probability of later failures. To provide one example, wedfin [8] that for some systems the probability of
a failure during the week following a network failure is 3.7dhes larger than during an average week. This
leads us to the idea of adapting the checkpoint frequenoydbas the type of the most recent failure.

More precisely, we propose to use the root cause informaltianis provided with each failure recorded in
the LANL dataset, to more accurately estimate the time uhélnext failure. Each failure is attributed to one
of five root cause categories, depending on whether it wagalpeoblems with software, hardware, network,
the environment of the system, or human error. Instead ofmsntaining one moving average of the MTTF,
we keep one estimate for each type of failure. For exampéentbving average for software failures considers
only the software failures in the observation window andrages the time between a software failure and the
next follow-up failure (of any type). Any time a failure hags, the moving average that corresponds to that
failure type is updated, the new MTTF estimate is computad,the time of the next checkpoint is calculated
using Young's formula and that new MTTF estimate. We refethie approach as ETTF(Type).

The column labeled “Y%wasted ETTF(Type)” in Table Il repdtts results achieved under ETTF(Type). We
find that failure-type specific information does only slighimprove the fraction of wasted time compared to
Young(stat). To explain the results we take a closer lookhatfailure data. Table | shows the expected time
until the next failure, depending on what type the most reéaiture was, for the four largest LANL systems.
We see that the ETTF does differ across the different caiegof failures, so taking failure-type information
into account provides additional information on the ETTlewéver, we find that failures are dominated by two
large categories, hardware and software failures, ancethes types of failures tend to have a very similar
effect on the ETTF. The failure types whose follow-up ETTHeais the most from the overall ETTF, such
as environmental failures, are relatively rare, and heheebenefits reaped from taking them into account are
limited.

We considered using more detailed information on the roaiseaof a failure than the five high-level
categories described above, as the LANL data provides atdgories for each high-level root-cause category.
For example, hardware failures are grouped into failurestduCPU, memory, node board issues, fan problems,
etc. Unfortunately, we find that also the ETTF for the sulegaties of failures within each of the high-level
categories are quite similar, so little can be gained.

Summary: For the systems at LANL and the data we have, the benefits afigake type of the most
recent failure into account when estimating the ETTF arétdidy since the two most common types of failures
recorded at LANL have a similar impact on the expected tim#l time next failure. For other systems with
larger differences between the main categories of faildeélsire-type specific methods might be more effective.
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B. Decreasing hazard rates

A number of previous studies [5], [6], [12] suggest placidgeckpoints dynamically based on the statistical
distribution of the time between failures, rather than gsinfixed checkpoint interval. The motivation is that,
unlike the exponential distribution, empirical distrilmrts often exhibit decreasing hazard rates (as indicated by
a shape parameter less than 1 in a Weibull distribution; sderm “Weibull shape” in Table | for the shape
parameter of the Weibull fit for LANL data). A decreasing hakaate function predicts that if a long time
has elapsed since the last failure then the expected ramainie until the next failure is long. The intuition
is that in a system with decreasing hazard rates one canedtieccheckpoint frequency if a long time has
passed without seeing any failures (as a long time withdlutrés implies a longer expected time until the next
failure).

Note that the implementation of such a method in practice aseninvolved than that of the methods we
have previously considered. In all previous methods, thexkgoint interval was fixed at the beginning of an
application run, and updated only in the case of a failuregmwthe application was restarted. Methods that take
decreasing hazard rates into account require that an afiplicbhe able to adapt its checkpoint interval while
running, and not just at start/restart time. Furthermorethods based on hazard rates require knowledge of the
distribution of time between failures, rather than just thean of the distribution. For example, previous work
typically assumed a Weibull model of the underlying failakistribution is available.

We are mainly interested in exploring the general potemtidiazard-rate based methods, without having to
worry about issues due to the potential loss of accuracy Milttérg a theoretical distribution to the empirical
data, as required by previous approaches. We thereforaliggtly on the failure trace data to determine for
each system how exactly the expected time to the next failapends on the elapsed time since the last failure.
Figure 5 plots the expected remaining time to the next failas a function of the time since the last failure
for systems 2, 18, 19, and 20; i.e. datapdinty) means that after running without failures ferminutes the
expected remaining time until the next failure (on top of theninutes already completed) is minutes. Not
surprisingly, given the parameters of the fitted distribatin Table 1I, we observe an increasing trend in all
curves.

We use the curves in Figure 5 to implement an adaptive chéatipgp method, calledAdaptive Any time
a new checkpoint interval calculation is made (i.e. afteaifufe or a checkpoint), the curves in Figure 5 are
used to determine the expected time until the next failura &sction of how much time has elapsed since the
last failure. This estimate is then plugged into Young'sriata to determine the length of the next checkpoint
interval.

The column labeled “Y%wasted (Adaptive)” in Table Il shows tlesults obtained from runningdaptiveon
the LANL traces, compared to our old Young(stat) from Sectio Overall, we observe that improvements are
marginal. We identify as the main reason that while faillwes do change as a function of the elapsed time
since the last failure, this change happens too slowly t@ lzalarge impact. For example, in the case of systems
2 and 20 it takes 1000 minutes of failure free execution leefbe expected time until the next failure doubles
from initially around 800 minutes to 1600 minutes (leadingah increase of 1.4X in the checkpoint interval).
However, only 23% of all failure intervals are longer tharD@QGminutes, so the number of opportunities where
this knowledge can be brought to bear is limited.
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Fig. 6. The Autocorrelation Function (ACF) and Partial Acgarelation Function (PACF) of failure inter-arrival timdor LANL system
20.

We experimented with synthetically generated failure ésaosing smaller Weibull shape parameters than
the shape parameters observed for the LANL data. We do findirttirovements increase for smaller shape
parameters. For example, for a shape parameter of 0.3 wevelee average improvement of 10% fddaptive
over Young.

It is worth noting that the best method previously reportethe literature for dynamically placing checkpoints
(by Bougeret et al. in [5]) reports improvements over othethods, in particular for small shape parameters.
However, that method is in the best cases only able to matthothYoung(stat), something that we find our
much simpler moving averages methods able to accomplish.

Summary: For the LANL systems that our data comes from, improvemerdas fplacing checkpoints
dynamically based on the hazard rate function are negéigalold hence hardly justify the associated overhead
and complexity. We observe improvements only in synthetjpeeiments with shape parameters much smaller
than those observed in practice.

C. Autocorrelation

In this section, we propose to take information about thestiness of the failure process into account when
making checkpointing decisions. To quantify the burstresd degree of correlation between failures in LANL's
systems we plot in Figure 6 both the auto-correlation antgdauto-correlation functions of failure inter-arrigal
in one of LANL's systems (system 20). We observe strong pas#tuto-correlations between failure inter-arrivals
in this system. When repeating this analysis for the restANfIL's systems we found similar trends.

These observations motivate us to use autoregression @ARptlel the time between failures. We fit an AR
model to the observed sequence of failure inter-arrivalssch LANL system and then use the fitted model
to predict the time to next failure each time a checkpoinesiciing decision is to be made; i.e., after a system
failure occurs. The new checkpointing interval is detemdidby plugging the estimate from the AR model into
Young’s formula. The results from this method are shown i ¢blumn labeled “%wasted AR” in Table II.

We observe that in most cases AR provides the lowest levelasted work among all policies. (For better
readability, we have marked in each row in Table Il the lona@sserved level of wasted work in bold font).
The improvements are largest for systems 6, 11, and 13, withld of wasted work that are 10-15% lower
under AR than under Opt (the optimal interval identified tigb exhaustive search). However, in most cases
improvements are more modest with an average improvemekRafver Young(stat) of 4% and over Opt of 7%.

Summary: Among all methods, using autoregression to estimate theat&g time until failure performs best.

However, the improvements are significant (in the 10-15%gearonly in a few cases, and quite modest (in
the 2—6% range) in most cases. Hence the typical practitisnikely to prefer using moving averages (e.g.
Young(SMA)), due to their simplicity.
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Accuracy of Equation (2) — All LANL Systems Accuracy of Equation (3) — All LANL Systems
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Fig. 7. Errors in estimation of wasted work using equatiorith wespect to the wasted work under Young when using trased
simulations.

V. SYSTEM PERFORMANCE FOR VARYING CONFIGURATIONS
A. A Back-of-the envelope formula for wasted work

So far in this work we have relied on simulations based onadtilure logs to determine the fraction of
wasted time. Often it is useful to have a simple back-of-theetope estimate of wasted work available without
having to run simulations. Examples include situations neheo failure logs are available for a system, or one
wants to experiment with parameters (e.g. the MTTF) thdedifrom the real system. This allows answering
guestions such as “How much does the fraction of wasted timp il | could reduce the checkpoint overhead
by a factor of two” or “How many processors can | run on whil#l &eeping the wasted time below some
threshold”. We next explore simple approaches to estintedraction of wasted work in a system.

Consider the fraction of time that is wasted in an HPC systemiopming periodic checkpoints with an
interval A. The first component of wasted work is due to the fact that @y A time units a checkpoint
needs to be written which takes tint@ Hence, the system spend§ A fraction of its time checkpointing.
Secondly, every time a failure happens (i.e. on average emery MTTF time units), some work is lost that
needs to be recomputed. The amount of lost work is equal tdirtieesince the last checkpoint. If failures are
equally likely to happen anywhere in a checkpointing indé&rthe expected amount of lost work for each failure
would be roughlyA /2. That means on average the fraction of time spent redoingiogk is (A/2)/MTTF.
(Note that we do not include the time needed to restart thécapipn to the state of the most recent checkpoint,
as this time does not depend on the checkpointing intenalremce will be the same for any checkpointing
policy). Combining these two sources of wasted work, meaaswant to choosé\ to minimize the following
function W: o A

WA = X+ 53T 2)

It turns out that this function is minimized by choosidy according to Young's formula. However, the
derivation makes a number of assumptions that are cleatiytrne in practice, such as the assumption that
failures do not happen during checkpoints (recall the disiaun in Section I1).

We further refine Equation (2) by taking into account thatadp®ints take place only during the fraction
of failure intervals that are larger thafd, which we estimate by assuming an exponential distribufem
approximation we make for simplicity, as in theory a Weibdiétribution is a better fit). We also take into
account that checkpoints are only written once ev&ry A time units. In combination these modifications lead
to the following formula for wasted worki’:

C A
+ 3
C+A 2-MITF

Figure 7 studies the accuracy of the estimations from the dgquations versus simulations for all LANL
systems. The boxplots show the percentage of error in theaiin of wasted work by the equations, with
respect to the wasted work that results under Young whemusice-based simulations. (The actual estimations
can be found in the last two columns in Table II).

We observe that Equation (2) results are accurate for smetleckpoint costs, usually within 5% of the
simulation results, but can deviate quite a bit for largeeaipoint costs, in particular for cases where the
wasted work is large. For example, the equation overestisntite wasted work by 22% for system 18 for a
checkpoint cost of 60 min. While the numbers are still in thme ballpark, it might be desirable to have higher

W(A) = e*ﬁ .
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Fig. 8. Wasted time as systems scale out. Fig. 9. Speed-up as systems scale out.

accuracy even for those cases. However, we observe higblyate estimates for Equation (3), with an average
error of 3.7% (compared to 6.7% under Equation (2)). Everhan more difficult cases, where wasted work

is high, the error is always below 15%. We also experimentild ather refinements, addressing some of the
other simplifications that the derivation of Equation (2lje@ on, but did not find that they lead to significant

improvements.

Summary: The fraction of wasted work can be approximated with simp@ekbof-the envelope formulas
based only on the MTTF and checkpointing cast

B. Wasted time as systems scale out

As the projected increase in the speed of individual comptanis limited, performance increases in future
systems will have to come from an increase in the number ofpom@nts. To continue past growth trends for
FLOPs of leadership applications component counts in éusystems will have to increase by several orders of
magnitudes. In this section, we take a look at the wasted asrgystems scale out. We assume that the failure
rate of individual components will remain the same and thatdost for a node to write a checkpoint does not
depend on the total number of nodes involved in the compmutgtvhich is consistent with observations in [15]
and [16]), but that when increasing the number of components factor ofp, failure rates will increase by a
factor of p.

Figure 8 plots the wasted time for our four different systembken scaling up the number of nodes, and
assuming a hero run of an application which utilizes all laldé nodes. We observe that in many cases running
applications on all nodes in a system becomes infeasibleeXample, forp=100X the fraction of wasted time
ranges from 65% to 85% for checkpoint costs(&f5min or C=10min, and approaches 100% fG+=60min.

The results indicate that some drastic changes need to take for checkpointing to stay viable. As our
work shows that little can be gained from further optimiaas to the checkpoint interval and it is unlikely that
per-component reliability improves, the only factor in thguation that can make up for increasing component
counts is the checkpoint coét. In particular, in order to keep the fraction of wasted tirhe same as now,
when the number of processors increases by a factpitiof checkpoint cost needs to be reduced by a factor of
p. Various suggestions have been made in the past to speedeukpdints. Below we evaluate their potential
to deliver the required reduction in checkpoint costs.

Checkpoint compressior©ne suggestion is to reduce the amount of data that needs thdwkpointed via
data compression techniques. Previous work shows that ameachieve compression factors in the range of
5-10X. [10]. While these factors are impressive, they wilt be sufficient to achieve the level of reduction in
checkpoint cost that is required.

Checkpointing to flashAnother suggestion is to use local flash drives to store akguest and then slowly in
the background drain the checkpoint data to the disk-baaedllgl file system, while the application continues
execution [1]. Flash drives provide significantly fastetefecy in particular for random reads, compared to
traditional hard disk drives. However, the checkpoint cdspends on the sustained write bandwidth of the
storage device. Based on vendor specifications the sugdtairite bandwidth of hard disk drives is in the 80-
150 MB/sec, while typical numbers for SSDs are a few hundr@&isdc, with some high-end drives quoting up
to GB/sec. That means the expected speed-up in the optirealwi be in the order of 10X, again by itself
not sufficient to make up for the increased failure rates.
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Incremental checkpoint®ther work investigates the possibility of replacing somédheckpoints with (smaller)
incremental checkpoints, where only data that has chariged the most recent checkpoint is being stored [14],
[17]. Wang et al. [17] experiment with incremental checkyivig for a humber of applications and report
incremental checkpoint sizes that are 10-20% smaller tharsize of a full checkpoint, again an improvement
that is not sufficient by itself.

Alternatives to coordinated blocking checkpoinfs alternative is a deviation from traditional coordinated
checkpoints. Most methods for coordination free checkjugnsuffer from other overheads, as some form of
message logging is usually involved. Our work might reneteriests in methods, such as [3], which minimize
the degree of coordination.

Summary: The necessary reductions in checkpoint cost in next gaoeredPC systems will likely require a

whole array of new techniques. Improvements from each iddal previously proposed technique are on the
order of at most 10X, while overall improvements of severdeos of magnitude will be necessary. An alternative
is a deviation from traditional coordinated blocking chgaints. Uncoordinated checkpointing will require some
form of message logging, which for tightly coupled paradipplications will likely have unacceptabe overheads.
However, various methods to make checkpoints non-bloglinch as [3], might become interesting alternatives.

C. Application speed-up with increasing number of nodes

In an ideal world, a parallel application would speed updimg with the number of nodes it is running on,
e.g. a problem that takes 1 hour to solve on one processoldstenuirel/p hours onp processors. In reality
such a perfect speed-up is rarely achieved, due to the comatiom and synchronization overheads.

In this section we explore a second factor limiting the spepaf a parallel application, which has received
less attention: how do failures and the need for fault tolegaaffect the speed-up? While running an application
on a large number of nodes increases available computhtigoles, it also increases failure rates, and hence
the amount of time required to write checkpoints and rectostr work.

Figure 9 plots the speed-up for a rangepo¥alues, where indicates the factor by which the number of
processors in the original system is increased. In ordesdiate the effect of failures on speed-up, we assume
that the computational part of an application scales p#yfee.g. in a world without failures an application
achieves speed-uypwhen usingp times as many processors.

We observe that even for relatively small factors increasthé number of nodes (compared to the increases
in the number of nodes necessary for future exascale systémsachieved speed-up is far from the optimal
(linear) speed-up. Moreover, after a certain point the logads due to increased failure rates completely negate
the additional compute cycles gained when adding nodeset@gyhtem. The point where adding nodes to the
system does not result in an increase in speed-up is quitdstently reached when the system reaches around
80% wasted time (compare with Figure 8). After some poirrgéasing system size actually results idezrease
in speed-up. This point is typically reached when the foactf wasted time reaches around 90%.

Summary: Overheads due to fault tolerance can severely impact thedspe a parallel application can
achieve. Even at a checkpoint cost as small as 20 secondmctiease in the number of nodes necessary for
future systems results in a speed-up that is far from thengbt{linear) speed-up.

VI. RELATED WORK

As a testament to the importance of the problem, a large bédyodk exists on optimizing the checkpoint
interval. Section Il provided a brief summary of Young'srfarla [18] and follow-up work that strives to further
improve upon Young. Our work differs from the above in that goal is not a further refinement of existing
approaches. Instead, our focus is on the careful evaluafidifferent approaches (some previously proposed in
the literature, some new approaches, which we proposesrptper) on real world logs, and on our observation
that for real world traces very simple methods perform nesintal.

Our work is also the first to look at practical implementatissues of checkpoint interval computation. Previ-
ous work typically assumes a-priori knowledge of the unded statistical failure process (e.g. the distribution
of time between failures) and then evaluates the proposdtameon (usually synthetically generated) data
following these statistical properties. On the other hamel show that checkpointing based on Young’s formula
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is robust to errors in the parameter estimates and that n@anal performance can be achieved by learning
the parameters on the fly, based only on a short time windovecdnt failure history for a system. Finally,
we show that an adaptation of formulas used in the derivatfoMoung’s formula can be used for accurate
back-of-the envelope estimates of the wasted work undésrdiit system parameters.

VII. CONCLUSION

Despite a myriad of papers on the optimization of checkpmstart protocols, practitioners still rely on very
crude ad-hoc rules of thumb to choose the key parameter ge thmtocols, the checkpoint interval. The goal
of this paper is to remedy this situation by identifying saos that arepractical, and at the same time achieve
good performancén terms of the associated wasted work (due to lost work &ikires and time spent writing
checkpoints).

Going back 40 years in checkpointing research, we find thataijrthe oldest and simplest formulas, often
criticized for relying on too many unrealistic assumptioashieves near optimal performance across all 20
failure traces we experiment with. We find that more complethuads that try to correct inaccuracies provide
no tangible improvements in the amount of wasted work, eeeimfput scenarios that significantly deviate from
those assumptions.

We also look at a number of practical implementation issueb show that Young's formula can easily be
adapted for use in practice. We show that all required patensiean be estimated online through a combination
of simple window-based methods for MTTF estimation, achig\performance comparable to that under the
optimal checkpoint interval (obtained through offline ais&) for a trace.

We investigated a number of more advanced methods whichnadgally change the checkpoint interval. One
of these is based on a previously proposed idea (using therdhaate function of a system) and two are new
methods we propose. The best performing of these methodsds/anethod based on MTTF predictions using
autoregressionHowever, even for that method improvements over Young igmaficant (in the 10% range) for
only a small subset of the systems and parameters. On ayénagenprovements of all advanced methods are
not large enough to justify the added complexity that comigks them.

While the above results might be disappointing from a thémakpoint of view, they are good news for
practitioners as it means that they can rely on simple malcthethods without sacrificing performance.

We show that a simple back-of-the envelope formula can bd tsaccurately estimate the wasted work in
a system, based only on the MTTF and checkpoint ¢asSuch a formula is useful for tuning an application
(for example to decide on the number of processors to run erecessary reduction in the checkpoint cost) or
planning future systems.

We perform a number of projections on the impact of checki@istart overheads as the number of nodes in a
system increases. We observe that even under optimal obietkpacement, the limits of traditional coordinated
checkpoint/restart might be reached soon, and that likelgrabination of techniques will be necessary to keep
checkpoint/restart viable. Our findings might encourageenfature work on reducing coordination needs for
checkpoints, along the line of work by Agbaria et al [3].
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APPENDIX
Static Dynamic (Moving Averages) Advanced Methods Equations

System MTTF Weibull C % wasted % wasted % wasted % wasted % wasted % wasted % wasted % wasted % wasted % wasted % wasted
1D (min) (shape) (min) Opt(stat) || ‘Young(stat) | Daly SMA(w=30) WMA(w=30) EMA(w=30) AR | (Adaptive) | ETTF(Type) Equation (2) Equation (3)
0.333 2737 2.7807 2774 2.7021 2.7089 2.7119 26791 2.7581 2.796 2.8156 2.7575

2 6.596 6.5647 6.6097 6.4768 6.4628 6.4553 6.4019 6.6524 6.7089 6.8968 6.560

2 840.9 0.739 5 10.263 10.3 10.299 10.064 10.051 10.051 9.9908 10.285 10.369 10.905 10.089
10 14.238 14.275 14.265 13.996 14.018 14.051 13.82 14.34 14.475 15.422 13.847

60 31.762 31.996 31.733 31.203 31.31 31.191 31.188 32.023 32.373 37.775 29.777

0.333 1.334 1.3784 1.3784 1.3317 1.3349 1.3626 1.322 1.3684 1.316 1.3711 1.357

2 3.205 3.2544 3.3404 3.1644 3.259 3.2762 3.1721 3.2136 3.319 3.3585 3.276

3 3546.2 0.823 5 4.908 5.2461 5.1238 5.1763 5.1522 5.1006 4.8167 5.1912 5.16 5.3103 5.108
10 7.031 7.1231 7.391 7.437 7.1706 7.2192 6.7791 7.3324 7.321 7.5099 7.112

60 16.362 16.658 16.634 16.111 16.837 16.235 15.936 17.011 17.179 18.395 16.205

0.333 1.363 1.4062 1.4404 1.4246 1.3785 1.3952 1.3667 1.3542 1.388 1.4079 1.393

2 3.243 3.3935 3.3912 3.4476 3.3112 3.3435 3.2509 3.426 3.342 3.4486 3.362

4 3363.4 0.827 5 5.096 5.4381 5.1906 5.2713 5.2466 5.2903 5.0086 5.1207 5.484 5.4527 5.240
10 7.076 7.3355 7.357 7.2815 7.2111 7.211 6.9724 7.2577 7.688 7.7113 7.293

60 16.660 17.029 16.88 16.818 17.081 16.977 16.423 17.478 19.121 18.889 16.588

0.333 1.390 1.3905 1.4246 1.4183 1.3913 1.4116 1.3803 1.4028 1.449 1.4272 1.412

2 3.349 3.3552 3.3643 3.433 3.4547 3.471 3.4549 3.5174 3.613 3.496 3.407

5 32729 0.873 5 5.139 5.3036 5.4161 5.2825 5.3405 5.4058 5.1736 5.5251 5.591 5.5276 5.309
10 7.332 7.6851 7.57 7.5888 7.4957 7.4593 7.2692 7.4555 8.146 7.8172 7.387

60 17.039 17.802 17.829 17.67 17.098 17.511 17.326 17.869 20.283 19.148 16.789

0.333 0.578 0.62784 0.62685 0.60852 0.60784 0.63347 0.50624 0.66722 0.66 0.63506 0.632

2 1.382 1.5293 1.4989 1.4798 1.5097 1.6164 1.2299 1.6346 1.933 1.5556 1.538

6 16530 1.025 5 2.237 2.3973 2.3053 2.4912 2.3742 2.365 2 2.3075 3.461 2.4596 2415
10 3.187 3.4335 3.3493 3.5136 3.6032 3.4445 2.8341 3.3231 5.665 3.4784 3.390

60 7.655 7.9 8.2629 8.2598 8.8165 8.4049 6.8413 8.3467 16.654 8.5203 8.013

0.333 1.106 1112 1.1298 1.1779 1.1996 1.1596 1.0608 1.1179 1.133 1.1496 1.140

2 2.678 2.7353 2.7306 2.945 2.9689 2.8037 25612 27754 2.867 2.8159 2.758

8 5044.8 0.716 5 4.196 4.1981 4.3393 4.5056 4.5293 4.4499 4.1444 4.2332 4.806 4.4523 4.309
10 5.822 6.0805 6.0587 6.434 6.4142 6.3252 5.7993 6.1616 6.978 6.2964 6.014

60 13.632 14.12 14.125 14.535 14.72 14.541 13.547 13.98 17.83 15.423 13.848

0.333 1.302 1.2921 1.3074 1.2228 1.2148 1.1816 11373 1.3041 1.224 1.3794 1.365

2 3.106 3.2379 3.235 2.8146 2.801 2.8771 2.8854 3.2916 2.948 3.3788 3.296

9 3503.8 0.546 5 4.709 4.9291 4.8465 4.4457 4.4347 4.3498 4.7322 4.8142 4.984 5.3424 5.138
10 6.700 6.873 6.8538 6.1589 5.9046 5.8766 6.6944 6.8926 7.103 7.5552 7.153

60 15.281 15.892 16.078 14.191 13.609 13.979 17.192 15.864 18.537 18.506 16.292

0.333 1.169 1.2012 1.2083 1.1742 1.1442 1.1466 1.1587 1.2013 1.192 1.2747 1.263

2 2.807 2.8877 2.9054 2.8764 2.7157 2.6952 26495 2.8142 2.884 3.1223 3.051

10 4103 0.545 5 4.363 4.639 4.7285 4.4723 4.4739 4.2483 4.2214 4.371 4.616 4.9368 4.761
10 6.071 6.3135 6.2078 6.1359 6.0069 6.1566 5.8082 6.3467 7.076 6.9817 6.637

60 14.044 14.638 14.468 13.987 13.826 13.472 13.553 13.89 17.77 17.102 15.19

0.333 1.278 1.3264 1.3405 1.2499 1.2176 1.2154 1.1662 1.3559 1.233 1.3573 1.344

2 3.039 3.1725 3.093 2.8746 2.8118 2.8223 26712 3.2182 2.981 3.3247 3.244

11 3618.8 0.564 5 4.745 4.9438 4.7575 4.5412 4.5949 4.5198 4.1027 4.9071 4.744 5.2567 5.058
10 6.620 6.9612 6.8536 6.2551 6.4282 6.4723 5.7603 6.9131 7.054 7.4342 7.044

60 15.092 15.386 15.488 14.876 15.144 15.239 13.293 15.199 17.326 18.21 16.061

0.333 1.213 1.3031 1.2886 1.1826 1.1969 1.2009 1.084 1.2728 1.256 1.3202 1.307

2 2.887 3.1095 3.0847 2.8978 2.8796 2.8507 2.7687 3.18 3.112 3.2339 3.158

12 3824.8 0.615 5 4.580 4.8733 4.6545 4.4447 4.4494 4.2104 4.7207 4.8258 4.804 5.1133 4.925
10 6.443 6.7878 6.9175 6.4911 6.0773 5.9235 6.5195 6.7509 7.073 7.2312 6.862

60 14.862 15.951 15.345 14.299 14.21 14.491 16.375 15.786 17.862 17.713 15.672

0.333 1.066 1.086 1.0809 1.0398 1.0549 1.0341 0.91997 1.0976 1.091 1.1599 1.150

2 2477 2.6246 27177 2.4682 2.4105 2.4288 21734 2.6277 2.683 2.8412 2782

13 4955.3 0.504 5 3.994 41111 4.1273 3.8404 3.8005 3.8475 35019 4.1479 4.486 4.4923 4.346
10 5.5642 5.7855 5.6222 5.1827 5.3735 5.1697 4.7498 5.8213 6.263 6.353 6.066

60 12.857 13.128 13.313 12.511 11.908 12.629 11.212 12.622 16.137 15.562 13.960

0.333 0.899 0.94964 0.98178 0.92814 0.88763 0.88239 0.80583 0.95477 0.952 1.0394 1.031

2 2138 2.1955 22244 2.2653 2.1435 2.1492 2.1058 2.1611 2.872 2.5459 2.498

14 6171.4 0.405 5 3.324 3.5246 3.5902 3.3664 3.2901 3.0893 2.9353 3.5474 5.429 4.0254 3.908
10 4.562 4.7409 5.004 4.5693 4.4179 4.3886 4.3896 4.9067 8.599 5.6928 5.461

60 10.329 10.988 10.976 10.69 11.377 11.2 10.337 10.878 15.953 13.944 12.642

0.333 0.871 0.95433 0.99989 0.97766 0.95639 0.9237 0.94785 0.92944 0.993 0.95375 0.947

2 2137 2.3648 2.2489 23116 2.3188 22071 2.3738 22121 2.786 2.3362 2.296

15 7329 0.878 5 3.264 3.8206 3.8309 3.5734 3.296 3.3935 3.7031 3.553 5.027 3.6938 3.595
10 4.887 5.3786 5.8569 5.1086 4.8425 5.0286 5.1984 5.2196 8.021 5.2239 5.028

60 11.379 11.878 11.665 11.609 12.58 11.837 11.138 12.606 16.648 12.796 11.689

0.333 2.244 2.2574 2.2681 2.2454 2275 2.2562 2.1866 2.2793 2.254 2.3003 2.261

2 5.357 5.4337 5.4838 5.4 5.4386 5.4236 5.3206 5.4854 5.334 5.6346 5.407

16 1260 0.722 5 8.313 8.4639 8.4391 8.4557 8.4261 8.3871 8.2875 8.447 8.369 8.909 8.356
10 11.663 11.794 11.816 11.759 11.873 11.741 11.594 11.682 11.85 12.599 11.524

60 26.227 26.262 26.537 26.548 26.452 26.267 25.856 26.553 27.158 30.862 25.249

0.333 3.794 3.779 3.7776 3.7907 3.7981 3.7733 3.7514 3.8077 3.8218 3.8534 3.746

2 9.063 9.0716 9.1506 9.1589 9.0766 9.1578 8.988 9.1353 9.0717 9.4389 8.820

18 449 0.817 5 14.008 14.128 14.064 14.004 13.836 13.986 13.962 14.146 13.974 14.924 13.443
10 19.233 19.283 19.385 19.334 19.215 19.292 19.009 19.406 19.305 21.106 18.282

60 41.592 42.283 41.803 42.021 41.734 41.974 41.687 41.94 42.63 51.699 38.098

0.333 3.742 3.74 3.7249 3.7166 3.7164 3.734 3.709 3.7511 3.7165 3.7649 3.662

2 8.898 8.995 8.9243 8.8809 8.9641 8.8849 8.8224 8.9897 8.8767 9.222 8.630

19 470.3 0.889 5 13.740 13.789 13.74 13.771 13.781 13.781 13.785 13.812 13711 14.581 13.164
10 19.001 19.065 19.178 19.037 19.064 18.998 19.028 19.195 19.122 20.621 17.916

60 41.527 42.026 41.594 41.898 41.651 41.696 41.853 41.918 42.188 50.511 37.423

0.333 2.788 2.8009 28177 2.6685 2632 2.6618 2.6556 2.7829 2.7089 2.8594 2.800

2 6.658 6.6932 6.681 6.2902 6.2899 6.3113 6.3592 6.7144 6.4369 7.0041 6.657

20 815.4 0.646 5 10.235 10.273 10.332 9.7618 9.7753 9.7983 9.8406 10.292 9.8903 11.075 10.234
10 14.164 14.35 14.263 13.735 13.606 13.785 13.727 14.315 13.768 15.662 14.040

60 30.760 30.994 31.315 30.147 30.124 30.061 30.331 30.941 30.509 38.363 30.148

0.333 2.100 2.2529 2.0573 2.0358 1.9441 2.0091 1.7863 2.1417 2.049 2.1535 2119

2 4.817 5.0516 5.0356 4.9803 4.8634 4.8031 4.4285 4.7894 4.754 5.2749 5.075

21 1437.6 0.685 5 7.782 8.0971 8.0082 7.9533 7.5754 7.6675 6.8231 8.2176 7.482 8.3404 7.853
10 11.037 11.818 11.472 10.511 10.366 10.232 9.7075 11.293 10.687 11.795 10.847

60 24.254 25.431 25.46 23.964 22.916 23.197 21.531 24.344 24.418 28.892 23.901

0.333 0.848 0.87829 0.88462 0.98185 0.96799 0.93377 0.81556 0.86959 0.846 0.87338 0.868

2 2.065 2.1057 2.1518 2.3379 2.35 2.2872 2013 2.0775 2211 2.1393 2.106

23 8740 0.735 5 3.242 3.3781 3.3374 3.7333 3.7439 3.518 3.1701 3.3398 3.728 3.3826 3.299
10 4.505 4.6612 4.6919 5.1912 5.1643 5.0098 45793 4.6064 5.426 4.7837 4.619

60 10.618 11.054 10.871 11.974 11.97 11.652 10.312 11.096 14.478 11.718 10.781

0.333 0.503 0.52094 0.5248 0.51615 0.5111 0.49673 0.50762 0.53759 0.535 0.52559 0.524

2 1.220 1.2367 1.2438 1.2476 1.2452 1.208 1.2021 1.2955 1.597 1.2874 1.275

24 24133 0.716 5 1.897 2.0143 1.9559 1.9777 1.9246 1.8754 1.9268 2.0498 2.888 2.0356 2.005
10 2.748 2.9262 2.8001 2.8866 2.6974 2.7379 26244 2.7079 4.753 2.8788 2.818

60 6.515 6.9571 6.7611 6.464 6.7574 6.3707 6.3615 6.4429 8.417 7.0515 6.7

TABLE Il

COMPARISON OF THE FRACTION OF TIME WASTED WHEN USING DIFFERENCHECKPOINTING METHODS FOR ALL LANL SYSTEMS.




