
Combining Quantitative and Logical Data Cleaning

Nataliya Prokoshyna
∗

Dept. of Computer Science
University of Toronto

nataliya@cs.toronto.edu

Jaroslaw Szlichta*
University of Ontario

Institute of Technology
jaroslaw.szlichta@uoit.ca

Fei Chiang
Dept. of Computing and Software

McMaster University
fchiang@mcmaster.ca

Renée J. Miller*
CS, University of Toronto

miller@cs.toronto.edu

Divesh Srivastava
AT&T Labs Research

divesh@research.att.com

ABSTRACT
Quantitative data cleaning relies on the use of statistical
methods to identify and repair data quality problems while
logical data cleaning tackles the same problems using vari-
ous forms of logical reasoning over declarative dependencies.
Each of these approaches has its strengths: the logical ap-
proach is able to capture subtle data quality problems using
sophisticated dependencies, while the quantitative approach
excels at ensuring that the repaired data has desired statisti-
cal properties. We propose a novel framework within which
these two approaches can be used synergistically to combine
their respective strengths.

We instantiate our framework using (i) metric functional
dependencies (metric FDs), a type of dependency that gen-
eralizes the commonly used FDs to identify inconsistencies
in domains where only large differences in metric data are
considered to be a data quality problem, and (ii) repairs
that modify the inconsistent data so as to minimize sta-
tistical distortion, measured using the Earth Mover’s Dis-
tance (EMD). We show that the problem of computing a
statistical distortion minimal repair is NP-hard. Given this
complexity, we present an efficient algorithm for finding a
minimal repair that has a small statistical distortion using
EMD computation over semantically related attributes. To
identify semantically related attributes, we present a sound
and complete axiomatization and an efficient algorithm for
testing implication of metric FDs. While the complexity of
inference for some other FD extensions is co-NP complete,
we show that the inference problem for metric FDs remains
linear, as in traditional FDs. We prove that every instance
that can be generated by our repair algorithm is set mini-
mal (with no redundant changes). Our experimental evalua-
tion demonstrates that our techniques obtain a considerably
lower statistical distortion than existing repair techniques,
while achieving similar levels of efficiency.

∗Supported by NSERC BIN (and Szlichta by MITACS).

1. INTRODUCTION
Two major trends in data cleaning have emerged. The

first is a logical approach to cleaning; the second a quan-
titative or statistical one. In logical data cleaning, error
detection is typically performed using declarative cleaning
programs that specify data quality rules [13]. In constraint-
based cleaning, data dependencies are used to specify qual-
ity requirements. Cleaning, then, can take a form of logical
rules for correcting errors (for example, if a cleaning pro-
gram asserts that a sensor should have a single reading at
any time point, it may also contain a resolution strategy
that replaces multiple readings with their average). Data
that is inconsistent with respect to the constraints can be
repaired by finding a minimal set of changes that fix the
errors [7, 16]. An important advantage of such approaches
is that they are able to find subtle data quality problems
using sophisticated dependencies. Repair is typically done
based on minimizing the number or cost of changes needed
to create a consistent database.

In quantitative data cleaning, there has been considerable
work on outlier detection for quantitative data (both uni-
variate and multivariate or relational data) [15]. This has
been complemented with work on pairing repair strategies
with detection which considers multiple types of errors (for
different types of data) [3]. An important insight in this lat-
ter work is that the cleaned data should be of higher data
quality than the original uncleaned data. To quantify this,
Berti-Equille et al. [3] propose cleaning techniques that en-
sure the cleaned data is statistically close to an ideal dataset.
Dasu and Loh [10] coined the term statistical distortion for
the distance between the distribution of a (cleaned) dataset
and a user-defined ideal dataset. Both these papers propose
statistical distortion as a way to (post facto) evaluate (and
compare) different cleaning strategies. However, a quanti-
tative repair is not guaranteed to be logically consistent.

There has, to date, been little work combining the in-
sights of these two separate threads of research. Yakout et
al. [26] propose a cleaning technique that separates detec-
tion from repair. Detection may be done using clean master
data, using constraints or using quantitative outlier detec-
tion. Repair on the detected (potential) errors is done using
quantitative cleaning. However, unlike our approach they
do not make use of integrity constraints to obtain a finer-
grained view of what data needs to be repaired, ensure the
repair is a consistent database, or guarantee that only min-
imal (necessary) changes are done.

1

In contrast, our technique comprehensively combines quan-
titative and logical approaches. We propose a new constraint-
based cleaning strategy in which we use statistical distortion
during cleaning to ensure the chosen (minimal) repair is of
as high quality as possible.

1.1 Cleaning Example
Consider the relation in Table 1.1. The data is inte-

grated information about employees, their positions in or-
ganizations, and the locations (latitude, longitude) of the
organizations, from multiple sources. For our data quality
constraints, we make use of metric functional dependencies
(metric FDs) [17]. Metric FDs generalize traditional FDs to
permit some variation in the values of attributes that ap-
pear in their consequent. They are appropriate in domains
where only a large variation in values indicates a real seman-
tic difference. In each of the three dependencies (Table 1.1),
the value of θ indicates how much variation is permitted.
For values in the Latitude and Longitude attributes, we
use a metric that is the difference in degrees; θ = 0.01 is
approximately 1km. For values in the Organization at-
tribute, we use a metric that is an edit distance (θ = 6); for
example, an edit distance between Univ of Toronto and
University of Toronto is six, therefore these two values
satisfy the threshold. Additionally, we assume a preprocess-
ing step is performed that takes into account organizational
synonyms. Since AT&T Labs Research and Shannon Labs

are synonyms we use their canonical name, for instance,
AT&T Labs Research (Section 2.1).

The metric FD M1 indicates that if two tuples share the
same Person and Position values, then the edit distance
between their Organization values should be 6 (indicated
by the θ = 6 in Table 1.1); this variation may be permit-
ted due to conventions in different sources. Assuming that
AT&T Labs Research and Shannon Labs are synonyms with
a canonical name AT&T Labs Research, then normalized tu-
ples t8 and t9 (and our entire example relation) satisfy M1.

The metric FDs M2 and M3 indicate that if two tuples
share the same Organization value (i.e., their distance is
0), then their Latitude and Longitude values, respectively,
should differ by no more than 0.01 degree; this variation may
be permitted due to differences in GPS measurements or
in conventions about the exact location of an organization.
Hence, tuples t6 and t7 together satisfy these dependencies,
as do tuples t8 and t9, while t1 and t2 do not.

Consider a purely logical approach to cleaning, using a
minimal repair. There are different notions of minimality
in the literature, but for illustration, consider only modifi-
cations of attribute values (i.e., no deletion or insertion of
tuples). A repair is minimal if we cannot undo any mod-
ification and still have a relation that is consistent; as we
explain in Section 2, this is called set-minimal repair [5].

Consider repairing the inconsistencies on metric FDs M2
andM3 among tuples for the organization Univ of Toronto

(namely, t1, t2, t4, t6 and t7). A set-minimal repair could
change the Latitude values of t2 and t4 to be within 0.01
degrees of both 43.66 and 43.662892, and the Longitude val-
ues of t2 and t4 to be within 0.01 degrees of both −79.395656
and −79.40. But set-minimality does not tell us which val-
ues in these ranges to pick. We could use a measure like
support [8] to change a value to the most frequent value
(in this case, 43.662892 for Latitude and −79.395656 for
Longitude). Or we could use Winsorization [10] to change

a value to the closest value that is consistent with the other
tuples (in this case, both the Latitude values −33.0142425
in t2 and 40.4587165 in t4 would change to 43.66). However,
such approaches can lead to statistical drift, with frequent
values being overly represented in the cleaned relation, or
outlier erroneous values (like −33.0142425) pulling the data
distribution too far in the direction of the outliers.

Alternatively, we could change the Organization of t2
and t4 to be different from that of t1, t6, t7. This change
would be minimal as well, and would involve changing only
two attribute values instead of four values as in the case of
changing Latitude and Longitude values of t2 and t4. But
which repair is better? And what values (in the specified
ranges) should we pick for the repairs? Some approaches use
measures like support or co-occurrence of values within the
dirty relation itself to pick among alternate minimal repairs.
We propose instead to pick a repair that minimizes statistical
distortion with respect to an ideal relation [10, 3, 26].

To illustrate why the strategy to minimize statistical dis-
tortion can be desirable, consider M2 and M3 in our ex-
ample. Instead of creating a potential statistical bias by
repairing the Latitude and Longitude values of t2 and t4
to the most frequent or the closest values, or changing the
Organization values of t2 and t4 to some different values,
our approach will use the ideal relation (Section 2) as a
guide, and pick repair values so as to mimic the ideal distri-
bution as close as possible.

Most existing repair approaches use a notion of minimal-
ity (minimizing the number of changes) [5] or minimal cost
repair [4, 7, 16] to decide on values to use in repairing errors.
Their objective function is based on the number or cost of
repairs with respect to the original dirty dataset. Like these
existing approaches, we could define DI as the original dirty
dataset. The difference would be the objective function –
they minimize counts or cost (where cost is defined with re-
spect to a distance function over attribute values), while we
minimize statistical distortion. A benefit of our approach
however (one that has been observed by others [3, 10, 26]) is
that we have freedom in defining DI . It can be the original
dirty data or it can be a clean subset of the data. A user
can decide if the evidence they want to use in cleaning is
best captured by the original data, or only the data without
the errors (since these errors may change the distribution).
Alternatively, and most realistically, in a continuous data
cleaning process [24], a user can use a previously cleaned
and verified dataset as DI .

Our approach is applicable for applications where errors
are introduced in a relatively independent manner and the
amount of errors remains small relative to the data size or
to a previously cleaned DI . Such datasets are common
in practice (e.g., sensor based appli- cations, flight arrival
times, GPS transit tracking) where unexpected events (e.g.,
dropped data or delays) can lead to errors, but the data is
expected to conform to a (known) distribution of expected
events. In contrast, when errors are introduced systemati-
cally, for example by a faulty information-extraction process,
then other approaches, like the Data X-Ray [25], are more
appropriate than ours.

In our example, if the ideal relation is the user-specified
set of tuples t1, t3, t5, t6, t7, t8 and t9 (which in this case is a
maximal consistent subset of the dirty data), the distribu-
tions of values for Organization, Latitude and Longitude

in the ideal relation leads to a repair of t2, t4 and t10 shown in

2

TID Source Person Position Organization Latitude Longitude

t1 S2 NP Student Univ of Toronto 43.662892 -79.395656
t2 S3 JS Student University of Toronto -33.0142425 151.5818976
t3 S2 JS Faculty UOIT 43.943445 -78.895452
t4 S3 FC Student Univ of Toronto 40.4587165 -80.6088795
t5 S2 FC Faculty McMaster Univ 43.260879 -79.919225
t6 S2 RJM Faculty Univ of Toronto 43.662892 -79.395656
t7 S1 RJM Faculty Univ of Toronto 43.66 -79.40
t8 S2 DS Manager AT&T Labs Research 40.669550 -74.636399
t9 S1 DS Manager Shannon Labs 40.67 -74.63
t10 S3 DS Manager AT&T Labs Research 30.391161 -97.751548

M1: Person, Position 7→ Organization (θ = 6) M2: Organization 7→ Latitude (θ = 0.01) M3: Organization 7→ Longitude (θ = 0.01)

Table 1.1: A dirty relation & data quality constraints.

TID Source Person Position Organization Latitude Longitude

t′2 S3 JS Student Univ of Toronto 43.66 -79.40
t′4 S3 FC Student Univ of Toronto 43.662892 -79.395656
t′10 S3 DS Manager AT&T Labs Research 40.669550 -74.636399

Table 1.2: Repaired tuples.

Table 1.2. Note that distributions of attribute values in the
cleaned relation t1, t

′
2, t3, t

′
4, t5, t6, t7, t8, t9, t

′
10 is statistically

closer or equal to the ideal relation than other modification-
only repairs that could be performed.

1.2 Contributions
• A new framework that combines the benefits of
logical and quantitative data cleaning. A statistical-
distortion minimal repair is a consistent relation that both
differs set-minimally from the original dirty relation and that
differs minimally, in terms of statistical distortion from an
ideal relation. We have chosen to use metric FDs (a strict
superset of FDs) to capture data quality requirements, be-
cause of their importance in representing the semantics of
integrated data (where small differences in a quantitative
attribute may not indicate a semantic difference). We use
metric FDs to identify errors in the data, and we propose
statistical repairs to resolve these errors.
• An algorithm that efficiently and effectively com-
putes a set-minimal repair with low statistical dis-
tortion. We present that the problem of computing statis-
tical distortion minimal repairs is NP-hard. Our algorithm
uses the Earth Mover’s Distance (EMD) to calculate the
statistical distortion. Computing the EMD is well-known to
be computationally expensive [18, 19]. Hence, we propose
several optimizations via sampling that significantly improve
the performance of our algorithm without compromising the
quality of our repairs. These include a pruning strategy that
removes low frequency values (at the tail of the distribution)
to reduce the search space of repairs since these values are
unlikely to be chosen in a statistical repair.
• The foundations of how metric FDs can be used
for data cleaning. While FDs and extensions including
conditional FDs [6] and matching dependencies [11] have
been used extensively for data cleaning, ours is the first ap-
plication of metric FDs to cleaning. To permit their use
in cleaning, we must understand the inference problem for
metric FDs. To this end, we present a sound and complete
axiomatization for metric FDs. While the complexity of in-
ference for some other FD extensions with various notions of
similarity instead of strict equality, called differential depen-
dencies [21], is co-NP-complete, we show that interestingly
the inference problem for metric FDs remains linear, as in
traditional FDs. Our cleaning solution includes an imple-

mentation of our inference algorithm to compute the mini-
mal cover of a set of metric FDs, and the closure of a set of
attributes under a set of metric FDs. As an optimization,
our algorithm computes EMD only over attribute closures
rather than over the whole relation. We experimentally ver-
ified that our inference system is efficient in practice.
• An experimental evaluation showing the perfor-
mance and effectiveness of our techniques using real
and synthetic data. We experiment with different er-
ror injection strategies (resulting in different relational data
distributions), and show that our framework achieves small
statistical distortion when compared against an ideal data
distribution. Finally, we show that our algorithm is able to
achieve improved (lower) statistical distortion over a recent
logical data repair solution [8].

Outline. We begin in Section 2 with a problem statement
and a discussion of how logical and statistical data cleaning
can be combined. In Section 3, we present our repair algo-
rithm that combines logical and statistical approaches. In
Section 4, we provide logical foundations including an ax-
iomatization and an inference procedure for metric FDs. We
experimentally evaluate our techniques in Section 5. In Sec-
tion 6, we discuss related work, and conclude in Section 7.

2. PROBLEM DEFINITION
To combine logical and quantitative data cleaning, we will

use a set of constraints M to both identify errors and to
define a space of possible corrections (repairs). Following
common practice in quantitative data cleaning [10, 3, 26],
we make use of an ideal distribution. We use DI to measure
the quality of a repair, that is, how well a repair preserves
the desired distribution of the data. Abstractly, we use the
following problem definition.
Problem Definition Given a set of constraintsM , a dataset
D where D 6|= M , and a dataset reflecting the desired data
distribution DI , find a repair Dr where Dr |= M and the
statistical distortion between Dr and DI is minimized.

We now give the specifics of the constraint language we
consider, the class of repairs, and how we will measure dis-
tance between two relations.

2.1 Logical Foundations
To begin, our constraint language will include functional

dependencies (FDs), the most common constraint used in

3

Table 2.1: Notational conventions.

• A bold capital letter represents a relation schema: R.
• Italic capital letters near the beginning of the alphabet

represent single attributes: A, B and C.
• A capital letter D in italic represents a relation.
• Small italic letters near the end of the alphabet denote

tuples: s and t.
• Small italic letters near the beginning of the alphabet

denote attribute values: a, b and c.
• A small italic letter m denotes a similarity metric.
• Italic capital letters near the end of alphabet stand for

sets of attributes: X, Y and Z.
• XY is shorthand for X ∪ Y . Likewise, AX or XA stand

for X ∪ {A} and {} denotes an empty set.

data cleaning. In addition, we have chosen to consider met-
ric functional dependencies, a strict superset of FDs [17].
While the verification problem (determining if D |= M), for
metric FDs has been studied, their use in data cleaning to
guide data repair has not been studied. Metric FDs use a
similarity metric m that we define next.

Let R be a relation schema containing a set of attributes.
For each attribute A ∈ R with domain dom(A), we assume
there is metric m : dom(A) × dom(A) → R. We use this
metric together with a threshold θ to define a similarity
operator over A.

Definition 2.1. (similarity operator)
For every attribute A in a relational schema R assume a
binary similarity relation (≈m,θ) wrt some similarity met-
ric m and threshold parameter θ ≥ 0. For two tuples s and
t, s[A] ≈m,θ t[A] iff m(s[A], t[A]) ≤ θ. Metric m satis-
fies standard properties: symmetry, triangle inequality and
identity of indiscernibles (m(a, b) = 0 iff a = b)). For two
tuples s, t in relation D over R we write s[X] ≈m, Θ t[X] to
mean s[A1] ≈m1,θ1 t[A1], ..., s[An] ≈mn,θn t[An], where X
= {A1, ..., An}, m = [m1, ..., mn] and Θ = [θ1, ..., θn].

A metric FD generalizes FDs to permit slight variations
in a functionally determined attribute. Note that if θ = 0
then a metric FD is an FD.

Definition 2.2. (metric FD)
Let X and Y be sets of attributes, mY and ΘY be metrics
and thresholds for all the attributes in Y . Then, X 7→ Y
denotes a metric FD. A relation D satisfies X 7→ Y (D |=
X 7→ Y), iff for all tuples s, t ∈ D, s[X] = t[X] implies
s[Y] ≈mY ,ΘY t[Y].

Metric FDs are defined over relations and throughout this
paper, we assume the dataset to be cleaned is a relation.

Example 2.3. Let D = {t1, ..., t10} from Table 1.1 and
let M = {M1,M2,M2}. As we argued in Section 1 D 6|= M ,
more specifically M1 is satisfied, but M2 and M3 are not.
However, if we remove t2, t4 and t10, then the remaining
seven tuples do satisfy all constraints since the difference
in Latitude and Longitude values for tuples with the same
Organization is less than 0.01.

To permit attributes to contain synonyms (like the Orga-
nization attribute in our running example), we assume that
each attribute value has a canonical name (in our example,
AT&T Labs Research and Shannon Labs have a canonical

name AT&T Labs Research). Therefore, for any relation D,
there is a function normalize(D) that replaces attribute val-
ues with canonical names. So when we write D |= M , we
mean normalize(D) |= M .

Definition 2.4. (consistent relation)
Given M , a set of metric FDs, a relation D is consistent

iff D |= M . Otherwise, D is inconsistent (or dirty).

We define repairs using value modification only, that is,
attribute values of a tuple may be changed but tuples may
not be inserted or deleted.

Definition 2.5. (repair)
A repair of an inconsistent relation Dd is a consistent re-

lation Dr that can be created from Dd using a set of value
modifications V.

Obviously, not all repairs are equally valuable. Changing
the value of every attribute to 1 in our running example
creates a repair. But such a repair is intuitively less desir-
able than the repair we depict in Table 1.2. Hence, there
are several well-know notions of minimal repairs for FDs
that are based on minimizing the number or cost of the
changes made to the data. A well-known notion of min-
imality is cardinality-minimal repairs [5, 7, 16]. A repair
is cardinality-minimal if the number of changes (|V|) is the
smallest possible among all possible repairs. A less restric-
tive notion is set-minimal repairs. A repair Dr created by a
set of value modifications is set-minimal if no subset of the
changed values in Dr can be reverted to their original values
without violating M [1, 5]. Cardinality-minimal repairs are
set-minimal, but not vice versa.

Definition 2.6. (set-minimal repair)
A repair Dr created by a set of changes V of an inconsistent

relation Dd is set-minimal iff there is no repair Dr′ that can
be created by a strict subset V ′ ⊂ V.

In set-minimal repairs, every change is necessary. Hence,
the decision of whether to change a value is driven exclu-
sively by the constraints. No value is changed unless it is
necessary to restore consistency. However, set-minimality
leaves some freedom (more freedom than cardinality-mini-
mality) in selecting what values to use for modification, i.e.,
how to repair. We will use statistical distortion to guide this
choice and decide which set-minimal repair to choose.

2.2 Statistical Foundations
We assume a relation DI that follows the desired data

distribution. Given a set of candidate repairs, we will con-
sider one repair better than another if it has lower statistical
distortion from DI . Let MD(D) be the multi-dimensional
distribution of a relation D.

Definition 2.7. (statistical distortion)
Given relations D1 and D2, the statistical distortion (SD)

is defined as a distance between the distributions of D1 and
D2, denoted as distance(MD(D1), MD(D2)).

For simplicity, we write distance(D1, D2) to mean dista-
nce(MD(D1), MD(D2)). Following Dasu and Loh [10],
to calculate the distance between distributions, we use the
Earth Mover’s distance (EMD). EMD is a distance function
that measures the dissimilarity of two histograms. In our

4

C11 = 0.0

wp1 = 2/3

p1 =
43.662892

p2 =
43.66

wp2 = 1/3

q1 =
43.662892

wq1 = 3/4

q2 =
43.66

wq1 = 1/4

C22 = 0.0

(a) Flow graph.

F11 = 2/3 p1 =
43.662892

p2 =
43.66

q1 =
43.662892

q2 =
43.66

F22 = 1/4

ssss

(b) Minimum cost flow.

Figure 2.1: The flow network.

work, this is based on the frequencies of the unique values
in the dataset, often computed over a subset Z of the at-
tributes in R. The set of bins in the histogram is the set
of tuples in ΠZ(D). The weight, wpi , of a bin pi is the
relative number of occurrences of this value in D (meaning
|{t|ΠZ(t) = pi}| divided by |D|, where t is a tuple in D).

Definition 2.8. (Earth Mover’s Distance (EMD))
Given two relational histograms, let P = {(p1, wp1), ...,

(pm, wpm)} and Q = {(q1, wq1), ..., (qn, wqn)}, each having
m and n bins respectively. Define a cost matrix C, where ci,j
is a measure of dissimilarity between pi and qj, that models
the cost of transforming pi to qj, and a flow matrix F where
fi,j indicates the flow capacity between pi and qj. EMD is
defined in terms of an optimal flow that minimizes

d(P,Q) =

m∑
i=1

n∑
j=1

fij ∗ cij (1)

The EMD is defined as follows:

EMD(P,Q) = min
F

d(P,Q) (2)

subject to the following constraints:

∀i ∈ [1,m],∀j ∈ [1, n] : fi,j ≥ 0,

∀i ∈ [1,m] :

n∑
j=1

fi,j = wpi ,

∀j ∈ [1, n] :
m∑
i=1

fi,j = wqj ,

(3)

Equations 1-3 in Definition 2.8 are defined based on chang-
ing the distribution of P to Q (and not vice versa) and limit
the amount of change that can be done to the bins in P and
Q according to their respective weights. For two distribu-
tions P and Q, EMD computes the distance between every
i-th bin in P and every j-th bin in Q. This is known as the
cross-bin difference, and can be seen in Figure 2.1(a) where
an edge exists between every pair of nodes in the graph.
Considering cross-bin differences makes EMD less sensitive
to the positioning of bin boundaries (note that a bin need
not contain only one value pi, but may in general contain
many consecutive values).

Example 2.9. Continuing our example from Section 1,
to compute EMD(P , Q), we compute the amount of work to
transform P to Q. Let P = {t ∈ DI | ΠLat..(DI)}, where
DI = {t1, t6, t7}. Similarly, let Q = {t∈ DT | ΠLat.(DT)},
where DT = {t1, t′4, t6, t7}, be the set of bins obtained by
changing the distribution from [2

3
; 1

3
] to [3

4
; 1

4
].

Figure 2.1(a) shows a graph representing P and Q, where
each node represents a bin (e.g., bin p1 = ΠLat.(t1, t6)
= 43.662892) along with their relative weights (wp1 = 2

3
).

Let an edge weight cij be the absolute distance to trans-
form pi to qj (e.g., c(1,2) = |43.662892 −43.66| = 0.002892).
The best transformation (i.e., minimum flow between P and
Q) is (0* 2

3
) + (0.002892* 1

12
) + (0* 1

4
) = 0.000241 (Figure

2.1(b)).

We now define statistical-distortion minimal repair.

Definition 2.10. (statistical-distortion minimal repair)
Given an ideal relation DI and a relation Dd that is incon-
sistent with respect to a set of metric FDs M , a statistical-
distortion (SD) minimal repair is a set-minimal repair
Dr for which EMD(Dr, DI) is minimal.

Despite the fact that we are relaxing minimality to con-
sider set-minimal repairs which are easier to find than cardi-
nality-minimal repairs (the problem of finding a cardinality-
minimal repair for FDs is NP-hard [7, 16]), the problem of
finding a SD minimal repair remains NP-hard.

Theorem 2.11. (complexity)
The problem of finding a SD minimal repair is NP-hard.

In our proof [20], we show that for any set of FDs F over
schema R, we can create (in polynomial time) a set of metric
FDsM and function f such that Dr is a cardinality-minimal
repair for F iff f(Dr) is a statistical-distortion minimal re-
pair of M. Hence, finding a statistical-distortion minimal
repair for a set of metric FDs is at least as hard as finding
a cardinality-minimal repair for a set of FDs.

3. STATISTICAL REPAIR MODEL
We propose a greedy algorithm that finds a maximal con-

sistent subset of a dirty relation Dd, and searches for a min-
imal repair of each inconsistent tuple one at a time. We
select among alternate tuple repairs by minimizing statis-
tical distortion. We first discuss the main structure of the
algorithm, then discuss some additional ways of making the
computation more efficient over large relations.

3.1 Algorithm for Generating Repairs
Let Dd be a dirty relation and let Dc ⊂ Dd be a maximally

consistent set of tuples from Dd, meaning there is no tuple
t ∈ Dd −Dc such that {t} ∪Dc is consistent. We call Du =
Dd −Dc the unresolved data.

For each tuple td ∈ Du, we compute a set of possible
modifications (tuple repairs). Each repair modifies attribute
values in td to create a candidate repaired tuple tr where
{tr} ∪ Dc is consistent. Among the possible tuple repairs
for td, we select the tuple repair that minimizes statistical
distortion from DI . To ensure we generate a set-minimal
repair, we ensure that tr is minimal, meaning that we can-
not revert any value in tr to the value in td and still have a
tuple repair. Our algorithm assumes that the set of metric
FDs M is a minimal cover meaning, among other things,
that each constraint has the form X 7→ A (θA) where A is a
single attribute. Algorithms to compute a minimal cover for
FDs are well-known. We show in Section 4 how to compute
a minimal cover for metric FDs. Note that our algorithm is
greedy. We repair tuples one at a time (without backtrack-
ing) and minimize the distortion of the current clean subset.
Of course, considering tuples in different orders (or using
different maximally consistent subsets of tuples to start our
algorithm) may lead to different repair choices. We empir-
ically evaluate the influence of these choices on the quality

5

Algorithm 1 StatisticalDistRepair

Input: M (a minimal cover of a set of metric FDs),
inconsistent relation Dd 6|= M , maximal clean subset Dc ⊆ Dd,
ideal relation DI
Output: Repaired relation Dr of Dd
1: Du = Dd −Dc (unresolved set)
2: while Du 6= {} do
3: select td ∈ Du; Du = Du − {td}
4: M [td] = {m ∈M |{td} ∪Dc 6|= m} (deps violated by td)
5: U = ∪X 7→A∈M [td]X (antecedents in violated deps)

6: V = ∪X 7→A∈M [td]A (consequents in violated deps)

7: Z = ∪XA ∈M (union of all attributes in M)
8: Candidates = ∅ (find consequent repair candidates)
9: for all v ∈ ΠV (σU=td[U](Dc)) do

10: tv = td; tv [V] = v
11: if {tv} ∪Dc |= M then
12: Candidates = Candidates ∪{tv}
13: if Candidates 6= ∅ then
14: tcons = argmint∈CandidatesEMD(t ∪Dc, DI)
15: else
16: tcons = ∅
17: Candidates = ∅ (find antecedent repair candidates)
18: for all u ∈ ΠU (V = σtd[V](Dc))) do

19: tu = td; tu[U] = u
20: if {tu} ∪Dc |= M then
21: Candidates = Candidates ∪{tu}
22: if Candidates 6= ∅ then
23: tante = argmint∈CandidatesEMD(t ∪Dc, DI)
24: else
25: tante = ∅
26: if (tcons = ∅) ∧ (tante = ∅) then
27: Candidates = k tuples in Dc closest to td[Z]
28: tr = argmint∈CandidatesEMD(t ∪Dc, DI)
29: else
30: if (tante = ∅) ∨ (tcons 6= ∅ ∧ EMD(tcons ∪ Dc, DI) <

EMD(tante ∪Dc, DI)) then
31: tr = tcons
32: else
33: tr = tante
34: Dc = Dc ∪ { set-minimal(tr)}
35: return Dr = Dc

of our solution in Section 5. Our algorithm is guaranteed
to create a set-minimal repair and strives to minimize dis-
tortion, but is not guaranteed to find a statistical-distortion
minimal repair.

3.2 Tuple Repairs
To generate tuple repairs for a tuple td, we must consider

that td may violate many constraints in M . Let M [td] =
{m ∈ M |{td} ∪ Dc 6|= m} be the set of dependencies that
would be violated if td were added unmodified to Dc. Let
U be the union of antecedents in M [td]. Let V be the union
of the consequents in M [td]. For each tuple, we first con-
sider modifying attributes in V to create consequent-repairs
(Lines 9-12 of Algorithm 1), then we consider modifying
attributes in U to create antecedent-repairs (Lines 18-21).
For consequent-repairs, we consider modifying td[V] (the
tuple projected on the attributes of V) to each value in
ΠV (U = σtd[U](Dc)). Intuitively, this means that we re-
pair the tuple to have the same consequent as some other
tuple in Dc that shares its antecedent. This defines a set
of candidate consequent-repairs. We keep only those repairs
tr such that {tr} ∪Dc |= M . We then compute the repair
that minimally distorts Dc among all these candidate repairs
(argmintrEMD({tr} ∪ Dc, DI)). (Note in the rest of the
paper we omit set notation and write tr ∪Dc for simplicity.)

TID CEO Organization Longitude

t1 Stephenson AT&T -74.636399
t2 Stephenson AT&T -74.636399
t3 Stephenson IBM -97.751548

t′r Stephenson AT&T -97.751548
t′′r Stephenson AT&T -74.636399

M1′: CEO 7→ Org (θ = 0) M2′: Org 7→ Longitude (θ = 1)

Table 3.1: Repairing both sides to satisfy constraints.

We do the same for antecedent-repairs. Specifically, we
consider modifying td[U] to each value in ΠU (V = σtd[V](Dc)).
This defines a set of candidate antecedent-repairs. Again,
we keep only those repairs tr such that tr ∪ Dc |= M and
again find one repair among these that minimally distorts
Dc from DI . If either a best consequent or a best antecedent
repair is found, we select the one with minimum distortion.
Throughout, we break ties arbitrarily.

Example 3.1. Continuing our example from Section 1,
Table 1.1, we may select the following maximally clean sub-
set: Dc = {t1, t3, t5, t6, t7, t8, t9}. Suppose we select t4 as td
which violates M2 and M3. There are two possible consequent-
repair candidates for t4, for each we would change only the
Lat and Long values of t4.

i) t
′
4[Lat, Long] = [43.662892, −79.395656] (uses t1, t6)

ii) t
′′
4 [Lat, Long] = [43.66,−79.40] (uses t7)

We choose the lower cost repair by computing EMD(t′4 ∪
Dc, DI) and EMD(t4

′′∪Dc, DI). We also compute the set of
candidate antecedent-repairs. Antecedent-repairs in this ex-
ample change the Org value of t4 to be an organization that is
located at Lat =40.4587165 and Long = −80.6088795. How-
ever, there are no such organizations in the clean dataset
(no antecedent-repair candidates).

If we fail to find a valid antecedent or consequent-repair,
then we consider modifying values in Z, where Z is all at-
tributes in M (we call this a both-repair, see Lines 26–28 of
Algorithm 1). Following the logic we used for other repairs,
we could modify td[Z] to each value in ΠZ(Dc). However,
this leads to a large number of candidate tuple repairs and
they will all be consistent wrt Dc. We limit this set to
k tuples that are the closest to td (meaning the distance
mZ(ΠZ(td),ΠZ(tr)) is minimum). Again, we keep the re-
pair that minimally distorts Dc with respect to DI .

Example 3.2. Consider the new example in Table 3.1,
which violates dependency M1′ and satisfies M2′. If we at-
tempt to repair t3[Org.]=[AT&T] the repair (t′r) would vio-
late M2′. Therefore, there is no suitable antecedent or con-
sequent repair for this tuple, we can only repair both sides.
A both-repair is t′′r .

As a final step, we verify that our recommended repairs
are set-minimal (Line 34). For a chosen tuple tr, we iterate
through all combinations of attributes in W ⊆ Z, ordered
by size from large to small, we revert the current values in
tr[W] back to their original values, to obtain a tuple t′r. If we
find a subset W such that (Dc∪t′r) |= M , we replace tr with
t′r. Once this process terminates we add the resulting set-
minimal tuple to Dc. The reversion step can be performed
efficiently, since it is done at the schema level over the at-
tributes in M , which is smaller than the size of the data.
We experimentally verified that the reversion step takes less
than 10% of the total running time of our algorithm. Note

6

however, that performing this check for each candidate re-
pair could be expensive, hence we only perform the check
once for each dirty tuple td. Note that set-minimal(tr) may
add more (or possibly less) distortion than tr, but we have
not found this effect to be significant. The following theo-
rem states that Algorithm 1 produces a set-minimal repair,
after iterating through all the tuples td.

Theorem 3.3. (Set-minimal repair algorithm)
Algorithm 1 creates a set-minimal repair of the inconsistent

relation Dd over the set of metric FDs M and has worst case
complexity O(n3log n).

Note that Algorithm 1 does not necessarily create a statist-
ical-distortion minimal repair. Each inconsistent tuple is
only considered once (hence we go throug the while loop
less than n times) and we greedily pick the best resolution
that minimize statistical distortion for this tuple. In each
iteration, we do an EMD computation using an approxima-
tion algorithm that runs in O(n2log2 n) time [19].

3.3 Using Closures to Compute EMD
To determine the best repair to correct an inconsistency in

td, we must select one of a set of candidate repairs tr. To do
this, we compute the statistical distortion between tr ∪Dc
and DI . We choose to use EMD to measure statistical dis-
tortion as it has been effectively used in past data cleaning
and information retrieval applications [10, 27]. However,
computing an exact value for EMD is still computationally
expensive. The Hungarian algorithm [18] computes an exact
EMD value with cubic complexity. To improve performance,
many approximation algorithms have been developed in re-
cent years (and are available in open source libraries). We
use an approximation algorithm of Pele and Werman [19].

To further improve performance, Zhang et al. [27] propose
optimizations to compute EMD over g groups of attributes
where each group contains h non-overlapping attributes (in-
stead of computing over all |R| attributes). This is favorable
when h is much smaller than |R|. Zhang et al. [27] propose
to sample from the g groups and compute EMD only for se-
lected groups rather than computing it exhaustively for all
combinations of attributes groups.

We adopt a similar sampling approach to compute the
EMD. However, instead of randomly dividing the |R| at-
tributes into groups, we define the set of attribute groups
based on the closure of attributes used in M [td]. This al-
lows us to leverage the natural attribute relationships that
exist and have already been defined by the constraints. Al-
gorithms to compute attribute closures for FDs are well-
known. In the next section, we present a new algorithm
to compute attribute closures for metric FDs. We postulate
that it is the correlation among these attributes that are the
most important to preserve in cleaning. For each violated
dependency X 7→ A ∈M [td], we compute the closure of X,
denoted X+, and compute EMD only over a projection on
X+ and pick maximal EMD. Hence, our computations are
typically on small projections of the relation (which results
in a smaller number of bins for the EMD computation) and
we perform at most |M [td]| such computations. We demon-
strate the performance benefits of using attribute closures
in our experimental evaluation.

Example 3.4. Continuing Example 3.1, without using clo-
sures, the EMD computations for the two candidate repairs

Organization Latitude Longitude Wt

1 Univ of Toronto 43.662892 -79.395656 2/7
2 UOIT 43.943445 -78.895452 1/7
3 McMaster Univ 43.260879 -79.919225 1/7
4 Univ of Toronto 43.66 -79.40 1/7
5 AT&T ... 40.669550 -74.636399 1/7
6 AT&T... 40.67 -74.63 1/7

Table 3.2: Distribution of DI over the closure Org+.

t′4 and t4
′′ would be computed over all six attributes of R.

With our optimization, we compute the closure for the an-
tecedent of M2 and the closure for the antecedents of M3.
In this simple example, both closures are the same: Org+ =
{Org, Lat, Long}. Hence, we would compute EMD only over
the projection on these three attributes.

For this example, let us assume that DI= Dc. This cer-
tainly does not need to be the case, but it is one option that
has been proposed in the literature. The distribution of Dc
and DI is depicted in Table 3.2.

The weight vectors are shown below.
DI [2/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7]

t′4 ∪Dc [3/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8]
t′′4 ∪Dc [2/8, 1/8, 1/8, 2/8, 1/8, 1/8, 1/8]

The EMD cost for t′4 is 0.34626 which is less than for
t′′4 (0.34644). These numbers reflect the intuition that t′′4
flattens what was a skewed distribution for the two possi-
ble locations for the University of Toronto (note that the
two possible locations are consistent because of the metric
FD). The repair t′4 makes the distribution more skewed but
this effect is distributionally a smaller difference from the
ideal than t′′4 . We select the lower cost repair and add it
to Dc. This repair is set-minimal since reverting any of the
attribute values in the updated t4 would no longer satisfy M .

3.4 Pruning Low Frequency Values
When dealing with the complexity of EMD calculation, a

large number of bins is proportional to a high cost in runtime
of the algorithm. Therefore, without affecting the asymp-
totic complexity of the algorithm we attempt to reduce the
number of bins used for EMD computation in order to re-
duce the cost. Intuitively, we want to capture the relevant
portion of the distribution, that is a significant probabil-
ity mass of the distribution with the minimum of bins. We
implement two strategies.

First, we prune low frequency values by introducing a pa-
rameter β that captures the ratio of frequency of each bin
in a distribution to the maximum bin frequency. For distri-
butions with a long tail (e.g., Zipf), it is easy to see that the
candidates whose corresponding bins are at the low end of
the distribution will almost never be picked as repairs, but
calculating EMD for each of those (unlikely) candidates is
expensive. Computing a threshold β such that we only keep
candidates with frequency greater than or equal to β allows
us to optimize our algorithm. Note that each candidate has
a corresponding bin in the distribution. When we prune a
candidate, we also prune the bin for this candidate. So EMD
computations for other candidates will be over a distribution
from which low frequency bins have been removed

The parameter β allows us to deal with heavily skewed
distributions, at the other end of the spectrum lie distribu-
tions that are almost uniform. In that case, no matter the
setting of β the number of bins (and therefore iterations of
EMD computations) will remain large. We use a second pa-
rameter, $, to deal with large distributions where β cannot

7

Organization Latitude Longitude Frequency

1 Univ of Toronto 43.662892 -79.395656 5
2 Univ of Toronto 43.66 -79.40 4
3 Univ of Toronto 43.6628 -79.3956 1

Table 3.3: Sample distribution of data.

discriminate between frequencies without eliminating most
of the probability mass of the distribution. Thus, when the
number of bins following the pruning based on β is large,
we take top-$ bins (according to frequency) and compute
EMD.

Example 3.5. (using β) Consider the values in Table 3.3
with the relevant attributes sorted into bins together with
a frequency count of each bin. The resulting distribution
then becomes: [1/2; 2/5; 1/10]. Assume β = 30% (and
$ = 10, therefore, the second threshold parameter does not
prune tuples, since the total number of tuples in Table 3.3
is 10). The maximum frequency is 5, so that is our baseline
of 100%. Since 30% (based on β) of 5 is 1.5, then all the
values below the frequency of 2 are pruned. Therefore, we do
not consider bin 3 as a viable repair candidate, thus reducing
the number of EMD computations we need to perform.

Setting β to 0% and $ to the total number of tuples in the
dataset would allow the user to consider every candidate for
repair and the EMD computations would be done over the
full distribution (all bins). We show in our experiments that
by increasing β or decreasing $, we can effectively improve
the efficiency of our algorithm with very little impact on the
quality of the repairs that we find.

4. REASONING OVER METRIC FDS
Our repair algorithm assumes that a set of metric FDs

are given as a minimal cover and makes use of attribute
closures (the set of attributes metrically implied by a set of
attributes). To compute minimal covers and closures, we
need to understand the inference problem for metric FDs.

We present the first sound and complete axiomatization
for metric FDs (Section 4.1) and use this to develop an
inference procedure (Section 4.2). Our axiomatization re-
veals some interesting insights into metric FDs that influ-
ence how they can be used for data cleaning, including their
lack of transitivity. We show that while the complexity of
inference for another FD extension (differential dependen-
cies [21]) that uses similarity rather than strict equality is
co-NP-complete, the inference problem for metric FD re-
mains linear, as in traditional FDs. We use the inference
system to compute closures to identify semantically related
attributes over which statistical distortion needs to be min-
imized.

4.1 Metric FD Axiomatization
We present an axiomatization for metric FDs, analogous

to Armstrong’s axiomatization for FDs [2]. This provides
a formal framework for reasoning about metric FDs. The
axioms give insights into how metric FDs behave that are
not easily seen when reasoning from first principles. Before
presenting our axioms, it is interesting to note that some ax-
ioms that hold for FDs do not hold for metric FDs, including
transitivity (if X 7→ Y , and Y 7→ Z, then X 7→ Z).

Example 4.1. Consider this relation with two tuples.

Person Position Organization Latitude

RJM Faculty University of Toronto 40
RJM Faculty Univ of Toronto 43.66

The metric FD M1: Person, Position 7→ Organization

(θ = 6) holds since the two organizations are within an edit
distance of 6. In addition, M2: Organization 7→ Latitude

(θ = .01) holds trivially since each tuple has a different
Organization. However, the transitive dependency: Person,

Position 7→ Latitude (θ = .01) does not hold.

Theorem 4.2. (soundness & completeness)
These axioms are sound and complete for metric FDs.

1. Identity: ∀X ⊆ R, X 7→ X

2. Decomposition: If X 7→ YW , then X 7→ Y

3. Composition: If X 7→ Y and Z 7→ W then XZ 7→ YW

4. Limited Reduce: If XY 7→ Z, X 7→ Y and ΘY = 0 then
X 7→ Z

Next, we define the closure of a set of attributes X over
a set of metric FDs M . We use the notation M ` X 7→ Y
to state that X 7→ Y is provable from M .

Definition 4.3. (closure X+)
The closure of X, denoted X+, with respect to a set of metric
FDs M , is defined as X+ = {A | M ` X 7→ A}.

Importantly, the closure can be used to determine if a
metric FD is logically entailed from M (Lemma 4.4).

Lemma 4.4. (closure)
M ` X 7→ Y iff Y ⊆ X+.

4.2 Metric FD Inference Procedure
Another integrity constraint that considers similarity (dif-

ference), called differential dependencies (DDs), was intro-

duced by Song and Chen [21]. A DD SequentialId[0,2] ↪→
Timestamp[4,5] means that if two tuples have SequentialId

values whose difference is less than (or equal to) 2, then their
Timestamp values must have a difference that is at least 4
and less than (or equal to) 5. By definition DDs subsume
metric FDs. For instance, a metric FD Organization 7→
Latitude (θ = 0.01), is equivalent to a DD Organization[0,0]

↪→ Latitude[0,0.01]. Song and Chen [21] show that the infer-
ence problem for DDs is co-NP-complete. This establishes
an upper bound on the complexity of inference for metric
FDs. However, we show that the inference problem for met-
ric FDs remains linear, as in traditional FDs, even though
they capture additional similarity semantics.

Our inference procedure takes time proportional to the
length of the dependencies in M . Our experiments show
that this cost is marginal. For the 10 metric FDs described
in Sec. 5, our algorithm runs in ≤ 1ms.

Example 4.5. Let M = {M1,M2,M2} be the set of met-
ric FDs from our running example Table 1.2. To identify se-
mantically related attributes, one can split the attributes into
two groups by computing closures of the antecedents of the
dependencies, {Person, Position}+ and Organization+, re-
spectively. The closure Organization+ is {Organization,
Latitude, Longitude}. The closure {Person, Position}+
is {Person, Position, Organization}. Note that for the
same set of traditional FDs, the closure of {Person, Position}
is {Person, Position, Organization, Latitude, Longitude},
as transitivity holds for FDs.

8

Algorithm 2 Inference procedure for metric FDs

Input: A set M of metric FDs and a set of attributes X.
Output: The closure of X with respect to M.

1: Munused = M ; n = 0
2: Xn = X
3: loop
4: if ∃ V 7→ Z ∈ Munused and V ⊆ {X ∪W},

where W = {A | A ∈ Xn and θA = 0} then
5: Xn+1 = Xn ∪ Z
6: Munused = Munused \ {V 7→ Z}
7: n = n+ 1
8: else
9: return Xn

10: end loop

Theorem 4.6. (correctness of inference)
Algorithm 2 correctly computes the closure X+.

Our proof [20] is an induction on k that uses our axioms
to show that if Z is placed in Xk by Algorithm 2, then Z
is in X+. Using the completeness of our axioms, we also
show that if Z is in X+, then Z is in the set returned by
Algorithm 2.

A minimal set of metric FDs is a set with single attributes
in the consequence that contain no redundant attributes in
the antecedent and that contain no redundant dependencies.
We assumed that the input metric FDs for our repair algo-
rithm in Section 3 were minimal. To achieve this, we can
apply the inference procedure described above to compute
a minimal cover of a set of metric FDs.

Definition 4.7. (minimal cover)
A set M of metric FDs is minimal iff

1. ∀ X 7→ Y ∈M , Y contains a single attribute;

2. for no X 7→ A and proper subset Z of X is M \ {X 7→ A}
∪ {Z 7→ A} equivalent to M;

3. for no X 7→ Y ∈M is M \ {X 7→ A} equivalent to M .

If M is minimal and M is equivalent to a set of metric FDs
N , then we say M is a minimal cover of N .

Theorem 4.8. (minimality)
Every set of metric FDs M has a minimal cover.

From the soundess of our axioms, it is possible for every set
of metric FDs, to create an equivalent set with only a single
attribute on the right-hand side. For a metric FD X 7→ A,
the second condition can be satisfied by checking for each
B ∈ X if A ∈ {X \ B}+. For the third condition, we can
test whether X 7→ A is redundant by computing closure X+

with respect to M \ {X 7→ A}.

5. EXPERIMENTAL STUDY
We present an experimental evaluation of our techniques.

Our evaluation focuses on four objectives.
• An evaluation of the effectiveness of our approach using

real and synthetic datasets (Section 5.3).
• A comparative study of our algorithm with other ap-

proaches, quantifying the benefits of our approach in
terms of statistical distortion and accuracy (Sec. 5.3.3).
• Scalability and performance (Section 5.4).
• Robustness over a number of input parameters and dif-

ferent problem characteristics (Section 5.4).

5.1 Setup
Our experiments were performed on an Intel Xeon X3470

machine with 8 2.93GHz processors and 23GB of RAM on
Ubuntu 12.04. All algorithms were implemented in Java.

Table 5.1 summarizes the main parameters that we used,
the range of values we considered, and the default value for
the parameter (shown in bold). The default value is used
unless otherwise mentioned in an experiment. We used the
UIS Database generator [23] to generate datasets with a
Zipf distribution containing N tuples (N varied from 100K
to 3M). The error introduced is varied from 3-10%. An error
rate of 3% for a dataset D means there is a maximally clean
subset Dc such that |D −Dc|/|D| = 0.03.

In addition to synthetic data, we used two real datases.
The Flight dataset [12] containing 26,987 flights and for
which ground truth is provided. We also used the CORA
dataset, a bibliographic dataset with 1300 tuples, for which
ground truth has also been provided [8]. We report on the
precision of our algorithm, computed using the ground truth
(Section 5.3.3).

We ran each experiment six times and report the average
and maximum SD over these runs (each run using a different
random order of tuples). We perform cleaning with respect
to different numbers of metric dependencies F (from 1 to
10). For all experiments, we compute EMD over attribute
closures (Section 3.3) rather than over the full set of at-
tributes R. In addition, to improve performance, our algo-
rithm takes two pruning parameters as input β (for pruning
candidates and their corresponding bins with relative fre-
quencies under β) and $ (pruning all but the $ most fre-
quent bins). When β = 0% and $ = N (or $ ≥ maximum
number of bins in a distribution) we perform no pruning.
Our experiments vary β from 0−70% and $ from 20−500.

5.2 Data Creation
Clean Data The UIS generator can create clean data that
satisfies the ten FDs in Figure 5.1. For our experiments,
we needed metric FDs and data conforming to these met-
ric FDs. To do this, we set θSSN = 0, leaving constraint 8
as a traditional FD. For the string attributes (FirstName,
LastName, StreetAddr, State, City), we used Jaro-Winkler
as the similarity metric and set θ = 0.75. Thus, FDs 1, 2, 4,
6, 7, 9, and 10 are turned into metric FDs using this metric
and threshold. For the numeric attributes (StreetNum and
Zip), we use absolute difference as the metric and a thresh-
old θ = 3. We then perturb the data (which satisfies the
FDs) to create a DB that satisfies the metric FDs (but not
necessarily the original FDs). We limit our changes to 10%
of the data and denote the result as Dgold.
Dirty Data We modified Dgold to create a dirty relation
by injecting two kinds of violations. Consequent violations:
for two tuples t1 and t2 that satisfy some metric FD X 7→ A
we modify t1[A] to a value that is picked uniformly from
the distribution of A, such that the mA(t1[A], t2[A]) > θA.
Antecedent violations: for three tuples t1, t2 and t3 where
t1[X] = t2[X], t1 and t2 satisfy some metric FD X 7→ A,

Table 5.1: Parameters and defaults (bolded).

Sym. Description Values
N # of tuples 100K, 500K, 1M, 2M, 3M
γ Zipf distribution 0.01, 0.25, 0.5, 0.75, 0.99
e error percentage 3%, 5%, 7%, 10%
F # of FDs 1-10, default: 3
β candidate pruning 0, 30, 50, 70%
$ distribution pruning 20, 50, 100, 500

9

1) {SSN} 7→ {FirstName}; 2) {SSN} 7→ {LastName}
3) {SSN} 7→ {StreetNum}; 4) {SSN} 7→ {StreetAddr}
5) {SSN} 7→ {ZIP}; 6) {Zip} 7→ {City}; 7) {Zip} 7→ {State}
8) {FirstName, LastName, MidInitial} 7→ {SSN}
9) {FirstName, LastName, MidInitial} 7→ {City}
10) {FirstName, LastName, MidInitial} 7→ {State}

Figure 5.1: Metric FDs over UIS Dataset.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Winsorization Our

D
is

ta
n

ce

max (Dd, Dideal) avg(Dd, Dideal)

max(Dr, Dideal) avg(Dr, Dideal)

(a) Vs Winsorization.

0

5

10

15

20

25

30

35

40

45

50

100k 500k 1M 2M 3M
Number of tuples

T
im

e
(m

in
)

(b) Num tuples vs time.

Figure 5.2: Distance of repair & scalability.

mA(t1[A], t3[A]) > θA and t1[X] 6= t3[X], we modify t1[X],
such that t1[X] = t3[X]. We refer to the resulting instance
as the dirty dataset Dd.

5.3 Repair Quality
To assess the accuracy of our repairs, we begin with a

study where we compute a maximally clean subset of Dd,
Dc, and set DI= Dc.

5.3.1 Accuracy Study
First, to understand if our (heuristic) approach to min-

imizing statistical distortion has a significant influence on
the distortion of repairs, we compared it against another re-
pair strategy, called Winsorization that for an error e picks
the closest acceptable value to e as its repair. Winsoriza-
tion was also used for comparison by Dasu and Loh [10] and
would be a natural choice for a logical repair technique that
minimizes the cost (measured by distance) of a change [7].
This approach does not attempt to preserve the distribution
and thus, we expect our repair algorithm to do better at
minimizing statistical distortion. Figure 5.2a shows the dis-
tortion (max and average) of a set-minimal repair produced
by Winsorization compared to our approach confirming that
we are able to find significantly better (lower distortion) re-
pairs. On average, in our experiments consequent-repairs
were chosen approximately 80% of the time compared to
20% of the time for antecedent-repairs. Our algorithm se-
lected to repair both the consequent and antecedent of a
tuple only in a very small number of cases.

While the above experiment illustrates that our algorithm
significantly reduces the distortion compared to another nat-
ural method, it does not tell us how good our approxima-
tion is. For this purpose, we designed the following exper-
iment. We generate dataset Dsilver from dataset Dgold by
replacing values in Dgold one at a time by corresponding
attribute values in Dd as long as this modification does
not cause a violation. That is, with Dsilver we approxi-
mate the repair we should get from Dgold given our con-
dition of set-minimality (no redundant changes). Only for
this particular experiment, we use Dgold as DI (i.e., DI =
Dgold), because we attempt to show how close to the origi-
nal ground truth dataset we can get in the best possible sce-
nario, given the requirement that the final repair has to be
set-minimal. (Therefore, we may not be able obtain Dgold

itself as a repair.) The relation Dsilver can then be con-
sidered a lower bound on statistical distortion from Dgold.
Hence, EMD(Dsilver, Dgold) is the best we can achieve, and
our objective is to verify how close our repair comes to this
“best” distance. We expect EMD(Dd, Dgold) >> EMD(Dr,
Dgold) > EMD(Dsilver, Dgold). This expectation is borne
out by experimental data where the best possible distance
of 0.0038 is very close to the distance of our repair to Dgold
0.0041 (compared to a distance of 0.162 for dirty data).

Next, we show that our algorithm achieves low statistical
distortion over different DI ’s. We varied the ideal dataset
by changing 1% to 3% of the tuples in DI with the goal
of showing the stability of our approach. In more detail,
we vary the ideal dataset by randomly updating values of
attributes in DI so that the distribution of attributes is
different. In this experiment, we observe that the change of
DI had only a very slight impact on the returned statistical
distortion of Dr. The distance varies only in the 4th or
higher decimal place (e.g. 0.005655 to 0.005654).

5.3.2 Distribution Preserving Data
To further stress test the ability of our algorithm to con-

sistently produce a low statistical-distortion repair we took
the original dataset Dgold and injected errors following a
specific distribution, rather than randomly. We applied two
approaches (a) preserve Dpres: the distribution of the errors
mimics the distribution of the original dataset, (b) malicious
Ddest: the distribution of the errors destroys the distribu-
tion of the original dataset. We accomplish this by first
calculating the histogram of each attribute and then pick-
ing the new values to perturb the cells according to this
distribution, either intentionally preserving it or intention-
ally changing the distribution. In this way, we are able to
preserve the marginal distributions, or alternatively change
the distribution of the dataset by purposefully shifting the
values into a single quantile of the original distribution.

We calculate the statistical distortion from our repair to
DI and compare it to the EMD(Dpres, DI) and EMD(Ddest,
DI). In Figure 5.3a we observe that the distance for the
dataset with malicious error injection (0.0164) is much fur-
ther from DI than either data preserving or random error
injection dataset (0.0053 and 0.0056 respectively), as ex-
pected, and that in the worst case (with a distribution de-
stroying errors which are not independent or random) we
still successfully minimize statistical distortion. The rela-
tion Dpres is slightly closer in terms of statistical distance
(for both Dd and Dr) than the datasets with randomly in-
jected errors. However, it is noteworthy that the difference
between EMD(Dr, DI) is larger for the Ddest dataset than
Dpres. Overall, our conclusion is that the quality of the re-
pair is affected by the error injection method, however, this
effect is small and we are still able to achieve small distor-
tion.

Next, we use DBGen to generate a synthetic dataset Dfar,

0

0.05

0.1

0.15

0.2

random preserving malicious

D
is

ta
n

ce

max (Dd, Dideal)

avg(Dd, Dideal)

max(Dr, Dideal)

avg(Dr, Dideal)

(a) Varying error injection.

8.99 8.91

0.0161 0.016
0.0056 0.0055

0.001

0.01

0.1

1

10

D
is

ta
n

ce

max(Dd, Dfar)

avg(Dd, Dfar)

max(Dd, Dideal)

avg(Dd, Dideal)

max(Dr, Dideal)

avg(Dr, Dideal)

(b) Distance wrt Dfar.

Figure 5.3: Distance in context.

10

which is statistically far from DI . This can be accomplished
by using correlations between the multiple dimensions (at-
tributes) to model the effect of skewed data. While in the
case of the data Ddest we inject 5% error by shifting the
distribution, in this case we shift the entire dataset. Let
δ = EMD(Dfar, DI). Our hypothesis is that all of our re-
pairs will fall between [0, δ], and will lie much closer to zero
than δ. In Figure 5.3b, Dfar has a distance of 8.99 com-
pared to 0.005653 of our repair, meaning that our repair is
statistically very close to DI (and much closer than Dd).

5.3.3 Comparative Study
We compare our algorithm against another algorithm, the

Unified Repair Model by Chiang and Miller [8], that per-
forms data repairs as well as constraint repairs, but for FDs,
not metric FDs. Their algorithm recommends data and FD
repairs. To ensure a fair comparison, we ran the algorithm
with only the data repair option. We ran this experiment on
the real bibliographic dataset CORA (which has only 1300
tuples and two FDs. (For detailed description of the CORA
dataset see original paper [8].) The two FDs we consider are
{Title, Venue } → Authors and {Venue, Year} → Location.
For this experiment, we computed the repairs using both
algorithms and then checked the statistical distortion com-
pared to the dirty dataset for our repair (Dr) and the repair
produced by the Unified Repair Model (Dum). For this ex-
periment, EMD(Dd, DI) is 0.107. Our approach produces a
Dr with lower distortion EMD(Dr, DI) = 0.105 compared
to the Unified Model EMD(Dum, DI) = 0.114. Because the
Unified Model algorithm is cost based, it repairs errors to
high frequency values possibly leading to skewed distribu-
tions. As a result, certain values are over-represented in the
repaired solution. Our solution keeps the distribution more
consistent with that of the ideal distribution. The preci-
sion of our algorithm on this dataset was 86.4% compared
to the results from the Unified Repair Model of 83.9%. We
calculated precision as: precision = (#CorrectRepairs) /
(#TotalRepairs), where #CorrectRepairs is the number
of correct repairs checked manually by verifying the correct-
ness of the data on the web and (#TotalRepairs) is the
total number of performed repairs. The results of this ex-
periment show that our algorithm can achieve comparable
precision to the Unified Model and still achieve significant
gains in minimizing the distortion of the repair. This exper-
iment illustrates the benefits of using a combined statistical
and logical approach, since our algorithm achieves a com-
parable precision and a lower statistical distortion given the
same set of data.

We also performed experiments on the real flights data [12],
an integration of several online data sources. This dataset
contains 26987 tuples for a single day of flights (2011-12-
01), and two metric FDs: FlightId 7→ DepartureTime and
FlightId 7→ ArrivalTime. We only present results for one
day out of thirty since repairing each day’s worth of data
is independent of other days. For this experiment, we have
a set of flights whose information has been manually veri-
fied by using a trusted source (airline website), this is the
ground truth dataset. We computed the precision with Uni-
fied Model (83.2%) and with our algorithm (82.0%).

5.4 Scalability and Performance
We measure performance by computing the system time

for running the repair algorithm over the synthetic datasets.

0

10

20

30

40

50

60

70

0% 30% 50% 70%

Varying β

T
im

e
(m

in
)

(a) Vs time (min).

0.00525

0.0053

0.00535

0.0054

0.00545

0.0055

0.00555

0.0056

0.00565

0.0057

0.00575

0% 30% 50% 70%
Varying β

D
is

ta
n

ce

max(Dr, Dideal) avg(Dr,Dideal)

(b) Vs EMD distance.

Figure 5.4: Effect of lower number of iterations.

0

20

40

60

80

100

120

20 50 100 500
Varying ω

T
im

e
(m

in
)

(a) Vs time (min).

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

20 50 100 500 max (Dd,
Dideal)Varying ω

D
is

ta
n

ce

max(Dr, Dideal) avg(Dr, Dideal)

(b) Vs EMD distance.

Figure 5.5: Effect of pruning lower frequency candidates.

We also demonstrate the benefits (and impact on accuracy)
of our pruning strategies.

5.4.1 Impact of Pruning
As described, in Section 3.4, we proposed two pruning

strategies (based on parameter β and $) to make our algo-
rithm more efficient. In Figure 5.4, we vary the parameter
β and measure its effect on statistical distortion and on the
repair algorithm runtime. While increasing β, the accu-
racy decreases moderately, β= 0% (i.e., no pruning of re-
pair candidates) producing the lowest statistical distortion.
Meanwhile, the runtime decreases. Since the accuracy only
decreased a small amount from β=30% to β=50% (0.0056
to 0.0054, compared to the distance of 0.016 for the Dd to
DI) we set the default β to 50% for other experiments (in-
cluding the previously described experiments). Note that
the runtime for β = 50% is 12 min. compared to 65 min. for
β = 0%, with comparable distance (0.005653 for β = 50%
vs. 0.005455 for β = 0%).

We also measure the effects of pruning the number of bins
used in the EMD calculations, by varying the parameter
$ that, for large distributions, controls how many bins we
keep for the calculation. Note that setting a cut-off of 100
bins over 500 bins has negligible effect on accuracy (e.g.,
distance of 0.005655 vs 0.005653) and great improvement in
performance (approximately 12 min. vs 97 min.) as shown in
Figure 5.5. Note also that the repair algorithm fails to finish
after 24 hours if we do not use either β or $ parameters, so
they are necessary for effective calculation.

5.4.2 Number of Tuples and Constraints
In Figure 5.2b, we vary the number of tuples. Our run-

times are roughly 12 minutes for 1M tuples, and roughly
43 minutes for 3M tuples. The runtime is partly depen-
dent on the library we used to calculate EMD which is a
super-quadratic (in the number of bins) approximation on
the exact super-cubic algorithm [18]. These results compare
favorably to other approaches, such as the Unified Model [8].

Furthermore, we study the impact of varying the number
of constraints for N = 1M, e = 5% and µ ∈ [2, 4] on our
synthetic dataset. Figure 5.6 shows that the repair accuracy
scales well as the number of constraints increase, despite

11

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10
Number of MFDs

T
im

e
(m

in
)

(a) Number of constraints.

0

2

4

6

8

10

12

14

0.01 0.25 0.5 0.75 0.99
Zipf theta (0 <= theta <= 1)

T
im

e
(m

in
)

(b) Varying the Zipf.

Figure 5.6: Varying parameters vs time.

0

5

10

15

20

25

3% 5% 7% 10%

Percentage error

T
im

e
(m

in
)

(a) Vs time (min).

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

3% 5% 7% 10%
Percentage error

D
is

ta
n

ce

max(Dd, Dideal) avg(Dd, Dideal)

max(Dr, Dideal) avg(Dr, Dideal)

(b) Vs EMD distance.

Figure 5.7: Percentage error.

the increase in search space. We select ten of the metric
FDs that hold over our synthetic relation, and randomly
remove one metric FD at a time until we are left with one.
We report the average time, with the default 3 metric FDs
yielding roughly 12 min. runtime.

5.4.3 Varying the Distribution and Error Rate
We varied the parameter that controls the Zipf distri-

bution while generating the synthetic data, 0 ≤ γ ≤ 1
where 1 is uniform distribution. We ran experiments for
γ = {0.01, 0.25, 0.5, 0.75, 0.99}. Figure 5.6 shows the time
increasing as the distribution becomes more uniform (and
the number of iterations required to find the repair candi-
date increases). By default, we set γ = 0.75. We also exper-
imented with various sizes of attributes in a matrix that is
used to compute EMD. Our findings are that the number of
attributes impacts the calculation significantly, however, not
as much as the active domain of each attribute. If we have
many attributes but the domain only contains two values
(e.g., “Male” and “Female”) then the EMD computation is
fast. However, if the active domain for the same closure is
vast, the EMD computation will be significantly slowed by
the number of possibilities that have to be considered.

Figure 5.7 shows the accuracy and scalability as the error
rate e increases. We fix N = 1M tuples, with µ ∈ [2, 4]. The
accuracy decreases moderately with increasing error, from
0.0043 for 3% to 0.0081 for 10% (both smaller than max(Dd,
DI) of 0.0102 and 0.0312 respectively).

6. RELATED WORK
Our work combines logical and quantitative data cleaning.

We have made contributions that relate to each of these
fields in addition to proposing a novel problem definition
and solution that combines the benefits of both.

Our approach uses metric FDs [17], one of many logical
formalisms that permit the expression of constraints that
use similarity rather than exact equality. While metric FDs
permit similarity only in the consequent, one could certainly
define an alternate formulation with similarity in the an-
tecedent. With a similar motivation, Fan et al. [11] pro-
posed matching dependencies (MDs). In contrast to metric

FDs, MDs have been used in data cleaning. MDs can be
defined across multiple relations and permit similarity oper-
ators over the antecedent. Fan et al. [11] present a quadratic
inference procedure for MDs and a complex axiomatization
for MDs (with 11 axioms). Notably, ours is the first work
to consider how to use metric FDs in data cleaning and the
first to present an axiomatization and inference system for
metric FDs. Inference for metric FDs is linear (and char-
acterized by 4 axioms) in contrast to MDs. An interesting
extension of our work would be to consider the problem of
statistical-distortion minimal repairs for MDs.

Song and Chen [21] introduced differential dependencies
(DDs) which specify that when two tuples have antecedent
values within a specified range (specified by a min and max
value), then their consequents must be within a specified
consequent range. A related notion is that of sequential de-
pendencies (SDs), which specify that when tuples have con-
secutive antecedent values, their consequents must be with
a specified range [14]. The verification problem has been
studied for approximate SDs [14]. To the best of knowledge,
inference over SDs has not been studied. For DDs, the in-
ference problem is co-NP-complete (and has been used to
define minimal covers for DDs) [21].

Existing logical cleaning approaches strive to find repairs
that are minimal with respect to the number or cost of modi-
fications without using any statistical properties to guide the
repairs. While some quantitative notions of logical repairs
exist for denial and aggregate constraints [4] that rely on
finding the closest (lowest cost) repair, these repairs can dra-
matically change the statistical properties of the data [10].
In contrast, quantitative data cleaning uses statistical prop-
erties to guide the selection of repairs [3, 10, 15]. Yakout
et al. [26] present a repair measure based on the likelihood
benefit in approaching an ideal distribution. None of these
quantitative cleaning approaches guarantee that a repair will
satisfy a set of integrity constraints.

We used the EMD approximation algorithm of Pele and
Werman [19] in our experiments. More recently, Tang et
al. [22] provide a new optimization to what they call the
refinement phase of EMD, making EMD computation even
more scalable. This work is complimentary to our work
as our optimizations are restricted to the filtering phase of
EMD. Hence, Tang et al.’s innovations fully apply to our al-
gorithm and could be used in future work to further improve
the scalability of our approach.

7. CONCLUSIONS AND FUTURE WORK
We believe ours is the first approach to combine the bene-

fits of logical data cleaning (that effectively uses data quality
rules to specify both what is an error and what is a correct
repair) with quantitative data cleaning (that uses distribu-
tional properties of data to find a good repair that preserves
these properties). We provided a first instantiation of this
approach that uses metric FDs to specify when data is er-
roneous, and that uses EMD to measure the statistical dis-
tortion between a repair and a desired distribution.

Our approach can certainly be applied to other measures
of statistical distortion and to other classes of constraints.
(This includes constraints that use equality or inequality
like denial constraints [9] and constraints that permit more
approximation or difference in values than metric FDs such
as differential constraints [21]). e believe this is an important
direction for data cleaning – combining the successes of both

12

logical and statistical approaches to provide more robust
cleaning solutions.

8. REFERENCES
[1] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent

query answers in inconsistent databases. In PODS, pages
68–79, 1999.

[2] W. W. Armstrong. Dependency structures of data base
relationships. In IFIP Congress, pages 580–583, 1974.

[3] L. Berti-Equille, T. Dasu, and D. Srivastava. Discovery of
complex glitch patterns: A novel approach to quantitative
data cleaning. In ICDE, pages 733–744, 2011.

[4] L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. The
complexity and approximation of fixing numerical
attributes in databases under integrity constraints.
Information Systems, 33(4–5):407–434, 2008.

[5] G. Beskales, I. F. Ilyas, and L. Golab. Sampling the repairs
of functional dependency violations under hard constraints.
PVLDB, 3(1):197–207, 2010.

[6] P. Bohannon, W. Fan, F. Geerts, X. Jia, and
A. Kementsietsidis. Conditional functional dependencies for
data cleaning. In ICDE, pages 746–755, April 2007.

[7] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi. A
cost-based model and effective heuristic for repairing
constraints by value modification. In SIGMOD, pages
143–154, 2005.

[8] F. Chiang and R. J. Miller. A unified model for data and
constraint repair. In ICDE, pages 446–457, 2011.

[9] X. Chu, F. Ilyas, and P. Papotti. Discovering Denial
Constraints. PVLDB, 6(13):1498–1509, 2013.

[10] T. Dasu and J. M. Loh. Statistical distortion: Consequences
of data cleaning. PVLDB, 5(11):1674–1683, 2012.

[11] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record
matching rules. PVLDB, 2(1):407–418, 2009.

[12] Flights data.
http://www.lunadong.com/fusionDataSets.htm.

[13] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and
C. Saita. Declarative data cleaning: Language, model, and
algorithms. In VLDB, pages 371–380, 2001.

[14] L. Golab, H. Karloff, F.Korn, A. Saha, and D. Srivastava.
Sequential dependencies. PVLDB, 2(1):574–585, 2009.

[15] J. Hellerstein. Quantitative data cleaning for large
databases. In Technical report, UC Berkeley, Feb 2008.

[16] S. Kolahi and L. Lakshmanan. On approximating optimum
repairs for functional dependency violations. In ICDT,
pages 53–62, 2009.

[17] N. Koudas, A. Saha, D. Srivastava, and
S. Venkatasubramanian. Metric Functional Dependencies.
In ICDE, pages 1291–1294, 2009.

[18] O. Pele and M. Werman. A linear time histogram metric
for improved SIFT matching. In Eur. Conf. on Computer
Vision, pages 495–508, 2008.

[19] O. Pele and M. Werman. Fast and robust earth mover’s
distances. In IEEE Int. Conf. on Computer Vision, pages
460–467, 2009.

[20] N. Prokoshyna, J. Szlichta, F. Chiang, R. J. Miller, and
D. Srivastava. Combining quantitative and logical data
cleaning. April 2015.
http://dblab.cs.toronto.edu/project/DataQuality.

[21] S. Song and L. Chen. Differential dependencies: Reasoning
and discovery. TODS, 36(3):16, 2011.

[22] Y. Tang, L. H. U, Y. Cai, N. Mamoulis, and R. Cheng.
Earth mover’s distance based similarity search at scale.
Proc. VLDB Endow., 7(4):313–324, Dec. 2013.

[23] UIS Data Generator.
http://www.cs.utexas.edu/users/ml/riddle/data.html.

[24] M. Volkovs, F. Chiang, J. Szchilta, and R. J. Miller.
Continuous data cleaning. In ICDE, pages 244–255, 2014.

[25] X. Wang, X. L. Dong, and A. Meliou. Data x-ray: A
diagnostic tool for data errors. In SIGMOD, pages
1231–1245, 2015.

[26] M. Yakout, L. Berti-Equille, and A. K. Elmagarmid. Don’t
be SCAREd: use SCalable Automatic REpairing with
maximal likelihood and bounded changes. In SIGMOD,
pages 553–564, 2013.

[27] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc,
and D. Srivastava. On multi-column foreign key discovery.
PVLDB, 3(1):805–814, 2010.

13

APPENDIX
A. REASONING OVER METRIC FDS

We now provide proofs for our results on reasoning over metric
FDs.

A.1 Metric FD Axiomatization
Below we present the proof that our axioms (Identity, Decom-

position, Composition, and Limited Reduce) are sound and com-
plete (Theorem 4.2).

Proof. First we prove that axioms are sound. That is, if M `
X 7→ Y , then M |= X 7→ Y . The Identity axiom is clearly sound.
We cannot have a relation D with two tuples that agree on X yet
are not similar on X. To prove Decomposition, suppose we have
a relation D that satisfies X 7→ YW . Let s, t ∈ D, such that
s[X] = t[X]. This implies s[YW] ≈mY W ,ΘY W

t[YW], hence,
s[Y] ≈mY ,ΘY

t[Y]. Therefore, D |= X 7→ Y . The soundness
of Composition is an extension of the argument given previously.
Suppose we have a relation D that satisfies X 7→ Y and Z 7→
W . Let s, t ∈ D, such that s[X] = t[X] and s[Z] = t[Z], that
is s[XZ] = t[XZ]. Since X 7→ Y and Z 7→ W , s[Y] ≈mY ,ΘY

t[Y] and s[W] ≈mW ,ΘW
t[W] hold. This implies that s[YW]

≈mY W ,ΘY W
t[YW]. Therefore, D |= XZ 7→ YW . To prove

Limited Reduce, suppose we have a relation D that satisfies XY
7→ Z, X 7→ Y and ΘY = 0. Let s, t ∈ D, such that s[X] = t[X].
Therefore, since ΘY = 0 and X 7→ Y , this implies that s[XY] =
t[XY]. As XY 7→ Y , it can be concluded that s[Z] ≈mZ ,ΘZ

t[Z].
Therefore, D |= X 7→ Z.

Below we present the completeness proof (if M |= X 7→ Y ,
then M ` X 7→ Y). We consider a relation D with two rows as
shown in Table A.1. We divide the attributes of a relation D into
four subsets: X; the set W , consisting of attributes in closure
X+ minus attributes in X, for which distance threshold is set to
zero; attributes in closure X+ minus attributes in W ∪X; and all
remaining attributes. All the attributes in the relation D for the
first row have the value a, while for the second row, the attributes
in X are a’s, the attributes in W are a’s, the attributes in closure
X+ minus attributes in W ∪ X are b’s and the other attributes
are c’s. (For traditional FDs, by Transitivity if X functionally
determines Y and Y functionally determines Z, then Z is in clo-
sure X+; however, this is not necessarily true for metric FDs as
shown in Example 4.1.) Without loss of generality, assume that
for all attributes A over relation D we use the same metric m, a
≈m,θA b, however, a 6= b. Furthermore, values a and c are not
similar (a 6≈m,θA c).

We first show that D satisfies the set of metric FDs M (D
|= M). Since metric FDs axioms are sound, metric FDs inferred
from M are true. Assume V 7→ Z is in M but is not satisfied by a
relation D. Therefore, V ⊆ {X ∪W} because otherwise two rows
of D are not equal on some attribute of V since for all attributes
A over a relation D a ≈m,θA b, however, a 6= b and a 6≈m,θA
c, and consequently a metric FD V 7→ Z would not be violated.
Moreover, Z cannot be a subset of X+ (Z 6⊆ X+), or else V 7→
Z would be satisfied by a relation D. Let A be an attribute of Z
not in X+. Since, V ⊆ {X ∪W} ⊆ X+ by Lemma 4.4, X 7→ V .
Also dependency V 7→ Z is in M , so by Decomposition, V 7→ A.
By Composition XV 7→ V A can be inferred, therefore, XV 7→ A
by Decomposition. Let V = V1V2, where V1 ⊆ X and V2 ⊆ W .
By Lemma 4.4, X 7→ V2 holds. As XV2 7→ A, X 7→ V2 and ΘV2
= 0, by the Limited Reduce axiom X 7→ A. This would mean by
the definition of the closure that A is in X+, which we assumed
not to be the case. Contradiction. A metric FD V 7→ Z which is
in set of dependencies M is satisfied by relation D.

Our remaining proof obligation is to show that any metric FD
not inferable from the set of metric FDs M with metric FDs
axioms (M 6` X 7→ Y) is not true (M 6|= X 7→ Y). Suppose it is
satisfied (M |= X 7→ Y). By Reflexivity X 7→ X, so by Lemma
4.4, X ⊆ X+. Since X ⊆ X+ it follows by the construction of a
relation D that Y ⊆ X+. Otherwise, two rows of a relation D are
equal on X but are not similar on some attribute A from Y . Then,
from Lemma 4.4, it can be inferred that X 7→ Y . Contradiction.
Therefore, whenever X 7→ Y does not follow from M by metric
FDs axioms, M does not logically imply X 7→ Y . That is, the
axiom system is complete over metric FDs, which ends the proof.

Our proof of Lemma 4.4 makes use of an additional axiom, the
Union axiom, which follows directly from the Composition axiom.

Table A.1: Table template for metric FDs.

X+

X W = {A| A ∈ X+ \X X+ \ {X ∪W} Other
and θA = 0} attributes

a...a a...a a...a a...a
a...a a...a b...b c...c

A.2 Closures (Lemma 4.4)
Theorem A.1. (Union)

If X 7→ Y and X 7→ Z, then X 7→ Y Z.

Proof. We are given metric FDs X 7→ Y and X 7→ Z, there-
fore we can use the Composition axiom to infer XX 7→ Y Z.
Hence, X 7→ Y Z holds.

We now prove Lemma 4.4 stating that M ` X 7→ Y iff Y ⊆
X+.

Proof. Let Y = {A1, ..., An}. Assume Y ⊆ X+. By defi-
nition of X+, X 7→ Ai, for all i ∈ {1, ..., n}. Therefore, by the
Union inference rule, X 7→ Y follows.

For the other direction, suppose X 7→ Y follows from the ax-
ioms. For each i ∈ {1, ..., n}, X 7→ Ai by the Decomposition
axiom, hence Y ⊆ X+.

A.3 Proof of Theorem 4.6
Algorithm 2 correctly computes closure X+.

Proof. First we show by induction on k that if Z is placed in
X k by Algorithm 2, then Z is in X+.
Basis: k = 0. By Identity axiom X 7→ X.
Induction: k > 0. Assume that X k−1 consists only of attributes
in X+. Suppose Z is placed in X k because V 7→ Z, and V ⊆
X∪W . Let V = V1V2, where V1 ⊆X and V2 ⊆W . By Reflexivity
X 7→ V1. Since V2 ⊆ W by Lemma 4.4, X 7→ V2. Therefore, by
the Union inference rule X 7→ V . Hence, by Composition XV 7→
V Z holds. Thus, by Limited Reduce X 7→ V Z as ΘV2

= 0, and
by Decomposition X 7→ Z is true.

Now we prove the opposite, if Z is in X+, then Z is in the set
returned by Algorithm 2. Suppose Z is in X+ but Z is not in
the set returned by Algorithm 2. Consider a relation D similar to
the one shown in Table A.1. A relation D has two tuples that are
equal on attributes in X ∪ W , are similar but not equal on Xn

\ {X ∪W} and are not similar on all other attributes. We claim
that D satisfies M . If not, let P 7→ O be a dependency in M that
is violated by D. Then P ⊆ X∪W and set of attributes O cannot
be a subset of Xn, if the violation happens. (Similar argument
was used in the proof of Theorem 4.2.) Thus, by Algorithm 2,
Lines 4–7 there exists Xn+1, which is a contradiction.

A.4 Proof of Theorem 4.8
Every set of metric FDs M has a minimal cover.

Proof. By the Union and Decomposition inference rules, it is
possible to have M with only a single attribute in the right hand
side. Second (no redundant attributes) and third (no redundant
dependencies) conditions can be satisfied by repeatedly deleting
an attribute and then repeatedly removing a dependency. We can
test whether an attribute B from X is redundant for the metric
FD X 7→ A by checking if A is in {X \B}+. We can test whether
X 7→ A is redundant by computing closure X+ with respect to
M \ {X 7→ A}.

B. SD MINIMAL REPAIRS
B.1 Proof of Theorem 2.11

The problem of finding a statistical-distortion minimal repair
is NP-hard.

Proof. Let F be a set of FDs over R where |R| = d. Let I
be an instance of R. Let R′ be R with d+ 1 additional columns
~Id = Id1, ..., Idd+1. Let I′ be I where each Idi contains a unique

14

value for each tuple of I (i.e., each Idi is a key for I′). If Dr is
a cardinality-minimal repair for I′ and F over R′ then ΠR(Dr)
is a cardinality-minimal repair for I = ΠR(I′) and F over R.
Similarly, suppose Dr is a cardinality-minimal repair for I and F .

Let I′ contain unique values on all attributes in ~Id and ΠR(I′) =
I. Then Dr extended to Dr’ such that Π ~Id

(I′) = ΠvecId(Dr ′) is

a cardinality-minimal repair for F over R′ and I′.

Let Mi be a key dependency (FD) on R′ : Idi → R ∪ ~Id.
Without loss of generality, we assume F is a minimal cover, so
each f ∈ F has the form X 7→ A. Let M be a set of metric FDs
(on R′) constructed as follows from F . First, Mi ∈ M for all
1 ≤ i ≤ d + 1. In addition, for each (X 7→ A) ∈ F , let (X 7→ A)
with metric mA and threshold ΘA = 0 be in M. We define
mA(a1, a2) = 0 if a1 = a2, and 1 otherwise.

Let Dr be a repair for I′ (therefore ΠR(Dr) is a repair for I).
Let DI = I′. We claim that Dr is a cardinality-minimal repair
for F iff Dr is a statistical-distortion minimal repair for M.

(⇒) Let Dr be a cardinality-minimal repair of F for I′. Let
V be the set of changes used to create Dr from I′. Then clearly
Dr is a set-minimal repair of M. This follows from the fact
that every cardinality-minimal repair is set minimal and also from
the construction of M. If Dr |= F , then necessarily Dr |= M.
We need to show that Dr is statistical-distortion minimal repair
meaning that EMD(Dr, DI) is minimal.

The distributions of both Dr and DI each contain n bins, each
corresponding to a single tuple (so n = |I′|) and each bin has
weight 1. Let t ∈ I′. We need to flow or change t into one of the
tuples t′ from Dr. The lowest cost way to do this is to change
each t into a t′ where Π ~Id

(t) = Π ~Id
(t′). Such a change would have

a cost of d or less, where as changing t to any other tuple in Dr
would have a cost of at least d+ 1. Hence, the EMD cost is 1 for
each value of an attribute in R that has been changed in Dr from
the original I′ = DI . Therefore, EMD(Dr, DI) = |V| (where V
is the set of changes used to create Dr from I′ = DI). If there is a
repair with a lower statistical distortion from DI , then Dr is not
a cardinality-minimal repair. Hence, Dr is a statistical-distortion
minimal repair for M.

(⇐) Let Dr be a statistical-distortion minimal repair for M
over R′. Let V be the set of changes used to create Dr from I′.
We need to show that Dr is cardinality-minimal.

As in the first half of the proof, the EMD cost is 1 for each
value of an attribute in R that has been changed in Dr from
the original I′ = DI . Also EMD(Dr, DI) = |V|. If there is a
value of an attribute that could be reverted to the original value
without Dr 6|= M, then there is a repair where EMD cost for
that value of an attribute is 0, and Dr would not be statistically-
distortion minimal, which is a contradiction. Therefore, |V| has
the smallest possible number of changes for all repairs. Thus, Dr
is a cardinality-minimal repair for M.

B.2 Proof of Theorem 3.3
The relation Dr that is generated by Algorithm 1 is a set-

minimal repair of the input inconsistent relation Dd over the set
of metric FDs M .

Proof. We need to prove the following: a) generated relation
Dr is a repair (Definition 2.5) of inconsistent relation Dd over
the set of metric FDs M ; b) generated repair Dr is set-minimal
(Definition 2.6).

To prove that relation Dr is a repair of relation Dd, we show
that Dr is consistent and tuples in Dd are carried over to Dr.
We prove this by induction over tuples. We show in the induc-
tion step that if relation Dc is consistent, then Dc = {Dc ∪ tr} is
consistent, where a tuple tr is modified from a tuple td ∈ Du (and
Du denotes unresolved tuples) by consequent repairs (Algorithm
1 Line 9), antecedent repairs (Algorithm 1 Line 18) or otherwise
both consequent and antecedent repairs (Algorithm 1 Line 26).
That is {Dc ∪ tr} is consistent since repairs to attributes in both
the antecedents and consequents always guarantee resolving in-
consistencies, as they are conducted with respect to clean tuple
t ∈ Dc, i.e., tr[Z] = t[Z], where Z represents closure of all at-
tributes in violated dependencies. After this step, we choose a
maximal subset of reverts of attribute values of tuple tr w.r.t. td,
denoted as t′r, such that {Dc ∪ t′r} |= M (Algorithm 1 Line 34).
Therefore, upon termination of the algorithm, relation Dr = Dc

(Algorithm 1 Line 35) contains all modified tuples from Dd and
is consistent by the induction step.

To prove that generated repair Dr is set-minimal, we need
to show that any subset of changed attribute values cannot be
reverted to their original values in relation Dd without violating
the set of prescribed metric FDs M . Let t0, t1, .., tn be the order
in which tuples are inserted into Dc in Algorithm 1. We prove by
induction that every attribute value from tuples t0,..., ti, where
0 ≤ i ≤ n, is either an unchanged attribute value or a changed
attribute value that represents a necessary change.

1. Base Case: initial dataset Dc = {t0, ..., tm} (where m < n)
is a maximal consistent set of tuples from relation Dd, and
therefore, t0, ..., tm remains unchanged.

2. Induction Step: we show that if every attribute value from
tuples t0, .., ti is either unchanged or necessarily changed,
attribute values in ti+1 are either unchanged or necessar-
ily changed. If attribute values in ti+1 are unchanged, the
induction step is correct. Otherwise, ti+1 is changed and
we have to show that changing values in ti+1 was neces-
sary. We prove this by contradiction. Assume we can revert
attribute values C of tuple ti+1 to their original values in
Dd without violating the set of metric FDs M . However,
in this case, Algorithm 1 would not change C, as it tries to
revert all possible subsets of attribute values in the tuple tr
back to their original values in td to obtain a tuple t′r, such
that Dc ∪ t′r |= M and choose the maximal subset satisfying
this condition, denoted as min(tr) (Algorithm 1 Line 34).
Therefore, we reach contradiction.

Hence, it follows that every attribute value change in dataset
Dr = Dc = {t0, ..., tn} is a necessary change, which implies that
Dr is set-minimal.

15

