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Abstract—Organizations rely on a multiplicity of processes 

for their day-to-day functioning and for longer term viability and 

sustainability. Together, these processes constitute the business 

process architecture (BPA) of the organization. While extensive 

efforts have been devoted to the analysis and design of business 

processes and associated information systems, there has been 

relatively little attention paid to the design of BPAs, i.e., how the 

processes of an organization should best relate to each other. As 

organizations are experiencing enormous changes,  brought on 

by disruptive technologies and continual business model innova-

tion, they can no longer optimize individual processes in isolation 

from each other. Their BPAs can no longer remain static, but 

need to be rethought from time to time. BPA design involves 

making trade-offs across multiple processes, particularly regard-

ing how to balance flexibility and agility with other design objec-

tives such as costs and efficiency. In this paper, we propose a 

framework for supporting the design of BPAs, by identifying 

several dimensions along which process elements (activities or 

decisions) could potentially be repositioned across processes. We 
illustrate the approach using the domain of transportation. 

Keywords—variability; flexibility; business process architec-

ture; process modeling; requirements 

I. INTRODUCTION 

Organizations rely on a multiplicity of processes for their 
day-to-day functioning as well as for longer term viability and 
sustainability. These processes come together to constitute the 
process architecture of the organization. 

Extensive efforts have been devoted to the analysis and de-
sign of individual business processes and associated infor-
mation systems. Leveraging process models, information tech-
nology systems have produced tremendous gains in efficiency 
and productivity by automating or redesigning business pro-
cesses (BPs). In contrast, relatively little attention has been 
paid to the design of process architectures, i.e., how the many 
processes of an organization should best relate to each other – 
the way these processes come together to serve the overall ob-
jectives of the organization. 

As organizations are experiencing enormous changes,  
brought on by disruptive technologies and continual business 
model innovation, it is no longer adequate to optimize individ-
ual processes in isolation from each other. BPAs can no longer 
remain static, but need to be rethought and re-engineered from 
time to time. 

Process architectures need to be rethought because tradi-
tional approaches to innovation and new capability develop-
ment are being challenged. In highly dynamic organizations, 
new capabilities are constantly being created. Innovation cy-
cles are being shortened, with development processes becom-
ing intertwined with operational processes, as in the movement 
towards “DevOps” [16] in software. Mobile apps must be cre-
ated and updated continually to keep pace with changing ex-
pectations and competitive pressures. Users and their usage 
processes are coupled with development processes in a virtu-
ous cycle of value co-creation. 

Similarly, the conventional boundary between planning 
processes and processes that execute those plans are being re-
drawn.  On the one hand, a more dynamic and fluid world with 
high uncertainty invalidates many traditional planning ap-
proaches. On the other hand, the availability of massive 
amounts of data from numerous sources such as social media, 
mobile devices, sensor networks and devices together with 
powerful analytics enable much greater context-awareness and 
near-real-time response, and even pre-emptive action based on 
predictive capabilities. Decisions that used to be made during 
planning are often moved to the execution stage. Conversely, 
there can be benefits for moving an activity “upstream” to an 
earlier execution or planning stage. 

Today's fast moving organization therefore cannot take an 
existing process architecture for granted. The process architect 
should be asking questions such as: 

 Should some activities or decisions (process step) be 
deferred closer to frontline, to take advantage of near‐
real‐time data, to meet customer needs and wants 
better? 

 Should some activities or decisions that are currently 
performed in a planning stage be moved to an execu-
tion stage? 

 Should activities that are previously performed for an 
aggregate be performed per instance? 

BPA design involves making trade-offs across processes, 
particularly regarding how to balance flexibility and agility 
with other design objectives such as costs, efficiency, and so 
on. 

Existing conceptions or treatments of process architecture 
(e.g., [4] (Ch. 2), EA frameworks [20], enterprise modeling 



languages – UEML [21], EO [2]) typically treat the process 
architecture as a given, or as something to be discovered. There 
is no conscious effort to shape or design the architecture. 

We believe there is need to analyze architectural 
alternatives, and provide support for exploring the space of 
alternatives, and guidance and support to choosing among 
them, recognizing the complex trade-offs that may exist. Need 
a conceptual model as a foundation. This paper proposes a 
number of dimensions including temporal, recurrence, 
plan/execution, and design use, which could serve as key 
elements of such a framework. 

This paper is organized as follows. In Section II, we intro-
duce the business domain in which we demonstrate our ap-
proach. In Section III, we motivate and outline the architectural 
design space, whereas in Section IV, we discuss the four di-
mensions that comprise this space. In Section V, we discuss the 
analysis needed to arrive at the right business process architec-
ture, while Section VI discusses the related work. Section VII 
discusses challenges and outlines future research directions. In 
Section VIII, we conclude. 

II. THE EXAMPLE SETTING 

A tsunami of change is sweeping through almost every 
business and industry sector today. To respond to these large-
scale changes, organizations are adjusting or rearranging their 
process architectures, albeit mostly in an ad hoc fashion, in the 
absence of systematic frameworks or methods. For example, 
many organizations are making their processes more agile, by 
bringing their development processes closer to the user. Social 
media and other data analytics are used to shorten new product 
development cycles. In retail, marketing decisions can be made 
more frequently with better data about customer behaviour. In 
finance, mobile payment options are shaking up many related 
industries. 

In this paper, we chose the domain of passenger transporta-
tion to illustrate our approach. The rationale for selecting this 
domain is that it is a common-sense domain that most people 
can relate to. It is rich enough to illustrate the features of our 
approach and patterns identified here can easily be found in 
other business domains. 

While having a long and rich history, this domain still con-
tinues to experience change today, driven by business and 
technical innovations and the shifting priorities of governments 
and the public. Among such driving forces in this domain are 
the sustained focus on reducing energy consumption and emis-
sions, traffic congestion, the increasing costs of owning cars 
and therefore the growing popularity of car sharing, public 
transit, bicycles, and bike sharing. Moreover, the proliferation 
of location sensors and the availability of up-to-the-minute 
traffic information can greatly improve service quality and 
flexibility. Smartcard or smartphone-based electronic payment 
methods improve the convenience for the service providers as 
well as for the passengers and add flexibility to support innova-
tive variable payment methods that can take into consideration 
travel distance, travel date/time, frequency, etc. and guarantee 
savings for passengers while incentivizing them to use the ser-
vice more. The recent introduction of new disruptive personal 
transportation services that deliver point-to-point service cou-

pled with mobile application-supported ordering and billing for 
service consumers while allowing people to use their private 
cars to deliver these services is an innovation that forces many 
traditional players in the industry to rethink their business 
models to remain competitive. Self-driving cars may soon dis-
rupt transportation even more. Public transportation is one sub-
area within the domain that, despite being quite heavily regu-
lated, is an interesting case study for our approach. We discuss 
this domain throughout the paper and present a version of the 
BPA for that domain in Fig. 5. 

III. A DESIGN SPACE FOR PROCESS ARCHITECTURES 

To work towards a design framework for BPA design, a 
fundamental question is: what is the space of possible alterna-
tive architectural designs? We need a modeling notation to be 
able to express different design configurations of processes, so 
that we can reason about the pros and cons of alternative de-
signs. In this paper, we consider BPA design for an existing 
organization, where there is an existing process architecture. 
Alterative designs are therefore different ways of modifying 
the architecture.  

   We consider potential modifications as movements along 
four dimensions: 

(1) The temporal dimension – moving a process element 
earlier or later in relation to other process elements. A process 
element (PE) may be an activity that produces some output or 
outcome. It may also include the act of making decisions.  For 
example, in the transportation domain, should we have the 
payment placed before or after riding the bus?  

(2) The recurrence dimension – positioning a PE in a pro-
cess (or process segment) that is repeated more frequently or 
less frequently with respect to other PEs. For example, in the 
transportation domain, should we plan the bus route and 
schedule jointly, or we can determine that route and change the 
schedule more frequently. 

(3) The plan/execution dimension – positioning a PE on the 
planning side of a process versus on the execution side, i.e., 
whether the activity specified by the PE is done during plan-
ning or during the execution of the plan resulting from the 
planning. For example, in the transportation domain, should we 
plan the bus route for every ride or can we have it planned and 
just execute the plan in each ride. 

(4) The design/use dimension – positioning a PE on the de-
sign side or the usage side of a process, i.e., whether the PE is 
invoked as part of a design process, or is invoked during the 
usage of that artifact, tool, or capability that is the outcome of 
the design. For example, in the transportation domain, should 
we design a vehicle for each route, or we can use that design 
for each of the routes. 

In considering the positioning of process elements along 
these four dimensions, we aim to address one of the crucial 
concerns of BPA design – the tension between flexibility and 
efficiency. For an organization operating in a completely static 
environment, all of its processes can be tightly coupled and 
globally optimized for maximum efficiency once and for all. 
For a dynamic environment however, the architecture needs to 
provide appropriate flexibility at the right places in order for 



the organization to respond effectively to circumstances and 
uncertainties.  

  A fundamental idea for accommodating uncertainty is to 
keep options open. The ability to take alternate courses of ac-
tion contingent on the actual circumstances at hand as they 
unfold allows for a high degree of flexibility. On the other 
hand, keeping options open could incur considerable costs as 
extra resources and capabilities need to be at the ready even if 
they are not deployed. Determining where and when options 
should be kept open is therefore a central mechanism for pro-
cess architecture design. A model of the architectural design 
space hinges on a representation of where and what kinds of 
options (or choices) exist, and the conditions under which the 
options should no longer be held open, i.e., that a choice or 
decision be made and becomes committed.  

   We use the term variation point (VP) to refer to the point 
in a process where multiple options exist. Variation points may 
appear anywhere in a process. Together with activities, they 
constitute Process Elements. We use the term variant to refer 
to the individual options at a VP. We say that a VP is bound 
when one of its variants is selected. When and where a varia-
tion point becomes bound is the basis for much of the reason-
ing behind the positioning of a PE along the four dimensions. 
We discuss the relationship of this work to the software varia-
bility literature in a later section.  

Note that although we refer to modification, the suggested 
dimensions and framework can be utilized for designing new 
business process architecture. 

These dimensions were determined based on existing stud-
ies (see Section VI), our own experience in BPA, and the anal-
ysis of existing BPAs and their potential changes. The purpose 
of the set of dimensions is to expand the space of alternatives 
for business process architecture. By no means are we claiming 
that these are the only possible dimensions. Nevertheless, we 
found these suitable for characterizing the architecture design 
space. 

In the next section, each of these dimensions will be ex-
plained in detail and illustrated.  

As in the area of software systems architecture, the archi-

tectural description we are aiming for here should outline the 
major elements and relationships while avoiding over-
specification. A process architecture, while specifying the cru-
cial relationships among processes, should not impose unnec-
essary constraints on the detailed specification of the individual 
processes. The process architecture description should be suffi-
ciently expressive so as to allow relevant architectural proper-
ties to be analyzed (e.g., how flexible one options is compared 
to an alternative). Therefore, the architectural description will 
likely need to refer only to certain selected elements from pro-
cess specifications, and not the complete sequence of steps, 
control flows, data flows, etc.  

 For the purpose of illustration, in this paper, we adopt a 
notation which is adapted from a combination of BP modeling 
[8] and function modeling [13]. 

IV. DIMENSIONS FOR PROCESS ARCHITECTURE 

In this section, we describe the four dimensions along 
which process elements can be (re)positioned within a BPA. 

A. The Temporal Dimension 

In many cases, there are multiple possible placements for 
PEs within a BP/system specification that comply with the ex-
isting functional dependencies (e.g., to calculate order prices, 
the system needs to know the contents of customers’ shopping 
carts), achieve the same functional objective, but are different 
in terms of their non-functional characteristics. 

This is illustrated by the passenger payment options pre-
sented in Fig. 1A. For instance, unlike the standard fare that is 
charged before a trip, after a trip, it is possible to charge a dif-
ferentiated fare based on the distance travelled. Both variants 
achieve the objective of obtaining customer payment, but are, 
of course, different in how much is paid, how fair or precise 
the charge is, etc. Therefore, there may be multiple options 
along the temporal dimension in BPs – somewhere from the 
process’ start to its finish – where decisions/actions can be 
placed and these choices need to be resolved by looking at how 
each variant affects the quality criteria that the enterprise is 
interested in. 

Introducing phases. What is better – to charge the cus-
tomer before he boards a bus, during the trip or after travel? In 
fact, this evaluation depends on one’s point of view. Looking 
at payment fairness, we want differentiated payments based on 
the actual distance travelled (this is how taxis and other similar 
services operate). Here, the system needs a richer context – the 
ability to sense that distance, which can only be done at the 
trip’s end. This makes the payment on exit a better option. The 
other variants are the same in terms of payment fairness. We 
then identify phases – portions of a process such that placing a 
PE under consideration anywhere within a phase produces the 
same result (e.g., charging passengers before boarding or upon 
boarding is no different since the trip distance is unknown in 
both cases). However, moving PEs across phase boundaries 
may affect the quality of decisions and the outcome of actions. 
While most software variability approaches focus on the tech-
nologies that enable variability in systems, we further analyze 
when (in which phase) it is best to execute actions or make 
decisions. Regardless of the positioning of PEs along the tem-
poral dimension, we note that unlike other dimensions, no re-
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Fig. 1. Trip payment options: (A1) Before trip's end. (A2) At trip’s end. 
Options for moving elements along the temporal dimension (B). 



use happens: an output of a phase belonging to one process 
instance can only be used by the subsequent phases of the same 
process instance. Overall, the benefits of phases are: 1) the re-
duction of the number of possible PE placement alternatives 
and thus the decreased analysis effort and 2) the ability to focus 
on the important issues while abstracting over some of the 
lower-level BP modeling details. 

Postponement. In this dimension, we are looking at choic-
es to postpone decisions/actions by placing them in later phases 
or to advance them by placing the PEs into earlier phases. Fig. 
1B is a generic illustration of the temporal dimension showing 
the potential movements for the process element PE currently 
located in Phase N. Postponement is a well-known business 
strategy (e.g., in supply chains [15]) that aims at minimizing 
risks and maximizing benefits by delaying certain activi-
ties/decisions that require precise, up-to-date information until 
the last possible moment. Therefore, the key idea about post-
poning process elements is the expectation that there will be 
better, more precise information available at some later point, 
which would allow for better, more context-sensitive out-
comes. On the other hand, advancement provides for stability 
and uniformity and can be enabled by either settling on coars-
er-grained process elements that rely on less information and 
thus can tolerate uncertainty or by better predictions of the cur-
rently missing information (e.g., through predictive analytics). 
Additional concerns include the availability of the sensed data 
required for postponed process elements and the cost and other 
resources required to collect and analyze that data. For exam-
ple, when processing differentiated fare payments at the end of 
trips, the system should have the infrastructure to actually 
measure the distance travelled by each passenger and thus re-
quires investment of resources for its development and opera-
tion. 

Similarly, business domain volatility has a significant im-
pact on system/enterprise flexibility, with highly dynamic do-
mains requiring more flexibility (and thus variability) to keep 
achieving system objectives in the presence of continuous 
change. For instance, moving a PE from one phase to the next 
may have virtually no improvement in flexibility and other 
NFRs (non-functional requirements) in stable domains (in fact, 
there, we may move a PE all the way from the earliest to the 
latest phase without seeing much of an impact), but may result 
in very significant benefits in highly dynamic, volatile do-
mains. Note that the benefit of postponing a fare payment to a 
later phase depends on the sensing capability of the system. 
Also, the assumption here is that trip distances are widely dif-
ferent, thus requiring differentiated fares to be fair. If most trips 
are about the same (i.e., the domain is stable from this point of 
view), the benefits of the added flexibility will not outweigh 
the extra complexity and cost. Overall, postponement requires 
system flexibility and finer-grained sensing/analytics. 

B. The Recurrence Dimension 

While in the previous section we described the placement 
of PEs along the timeline, the assumption was that the deci-
sions/actions are executed for every process instance. Here, we 
propose another variability dimension that focuses on reusing 
the outcomes of decisions and activities in multiple process 

instances. To put it another way, how often should certain de-
cisions or actions be (re)executed and under what conditions? 

Definitions. For instance, when considering payment for 
trips, should a passenger pay every time he travels or can he 
buy a monthly pass and use it multiple times? We group PEs 
that have the same execution cycle (i.e., that are executed to-
gether) into process chunks called stages. A stage contains one 
or more phases (e.g., in Fig. 1A, Customer Transportation is a 
stage consisting of two phases). Once a stage executes, its out-
put remains available to the subsequent stages, if any, until it is 
re-executed. In our notation, a stage connects to its subsequent 
stage using a control flow link (a solid line) labeled with “1:N” 
to indicate the cardinality of their relationship (see Fig. 2B). 
We say that there exist a stage boundary between a pair of 
stages connected in this way. This boundary points to the two 
options for placing PEs – each with a different recurrence pat-
tern. Moving a PE across such a boundary can lead to a signifi-
cant change in the frequency with which a PE is executed, see 
Fig. 2B, which shows both directions of movement (note that a 
PE can be moved across multiple stages). In general, a stage 
represents a (sub-)process. Thus, while in the temporal dimen-
sion we focused on the intra-process analysis, here the focus is 
on inter-process relationships – relative execution/change cycle 
among processes. 

Using the dimension. When coming up with a stage-based 
configuration, one can identify decisions and actions that can 
be reused for multiple process instances (i.e., are independent 
of the variations in those instances), at least for a period of 
time. Once these PEs are identified, they can be put into a stage 
to be reused multiple times by the subsequent stages, thus sav-
ing time, money and possibly other resources (e.g., buying a 
transit pass is a convenient option that removes the necessity of 
paying for every transit system use). Another heuristic for cre-
ating stages is to identify process PEs that need to be executed 
with the same frequency (e.g., yearly product redesign cycles 
accompanied by the revision of product manuals and marketing 
materials) or are triggered by the same data-driven trigger that 
fires, e.g., when a product redesign cycle is deemed necessary 
by market and customer sentiment analysis, when domain 
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Fig. 2. Splitting a single stage (A1) into multiple ones (A2) to increase 

flexibility. Moving process elements across a stage boundary (B). 



changes are detected, etc. Certain stages are executed on-
demand, being triggered by the appropriate events (e.g., for a 
taxi-like service, the Customer Transportation stage is triggered 
by customers requiring transportation services). 

Splitting and merging stages. Changes in the stage execu-
tion frequency or in their triggers may create or eliminate stag-
es. Thus, a special case of moving a decision/activity across a 
stage boundary is the split of a stage into two or a merge of two 
stages into one. For instance, in the former case, deci-
sions/activities previously executed with the same frequency 
are split into two groups, each with its own recurrence pattern. 
This is shown in Fig 2A, further discussed below. 

Domain example. To illustrate the choices that exist along 
the recurrence variability dimension, we look at how public 
transit route network planning and vehicle scheduling is done 
in one of our case studies. One way of doing this is to combine 
route planning and scheduling into a single stage (Fig. 2A1). 
There, whenever a route network needs to be redrawn (e.g., 
due to significant changes in demand), a Route Planning & 

Scheduling stage is triggered. The data input for the stage (the 
message flow arrow arriving at the top of that stage) contains 
all the passenger demand data the company has available. In 
this configuration, both route planning and scheduling are bun-
dled together – they have the same change cycle, which means 
that changing schedules without a route network redesign is 
impossible. Clearly, in the case of the easily predictable con-
stant demand, this configuration will work well. However, this 
rigidity will hurt the ability of a transit company to change its 
schedules more frequently in case of evolving passenger de-
mand, which is the case in most cases. Frequently, one would 
want to be able to support seasonal schedule changes, to re-
spond to sudden demand spikes due to public attractions, 
events, etc. while the routes remain the same. To address this 
issue, we can unbundle the route planning and scheduling as 
shown in Fig. 2A2 to create two stages, Route Planning and 
Route Scheduling, each triggered independently the former 
when changes in long-term demand are detected and the latter 
when shorter-term demand changes. This change to the trans-
portation company’s BPA allows the route network (the out-
come of the Route Planning stage) be reused for multiple Route 

Scheduling instances (again note the “1:N” annotation), thus 
supporting frequent schedule updates reflecting changes in pas-
senger demand. The new BPA configuration is more flexible, 
but likely incurs higher cost (e.g., the need to inform custom-
ers/employees of the changes), complexity and unpredictabil-
ity. 

Moving PEs among stages. Splitting/merging stages is one 
way to reconfiguring BPAs along the recurrence dimension. 
The other is to move PEs among stages, as illustrated in Fig. 
2B. Given the recurrence dimension on BPA with a number of 
possible configurations, an organization needs to analyze them 
to determine which one best fits its needs based on the level of 
volatility in its business environment – e.g., balancing the cost, 
complexity, and the increased unpredictability of the unbun-
dled configuration, and the inherent rigidity of the bundled one 
from the example of Fig. 2A. We discuss the modeling and 
analysis of BPA configuration choices in Section V. 

The recurrence dimension and VP binding time. It is 
important to note that the recurrence dimension at the level of 
BPAs described above generalizes the binding time perspective 
on variability at the BP level, which focuses on whether VPs 
are bound at design time (static variability) or at runtime (dy-
namic variability). The traditional view is that static variability 
limits the systems’ (or organizations’) ability to change later. 
Runtime (dynamic) variability improves flexibility and adapta-
bility, but also increases costs and complexity and decreases 
performance due to the need to implement multiple behaviours, 
the adaptation infrastructure, etc.  

The problem with this view is that it is very inflexible, with 
just two extreme binding time options. To illustrate this, let us 
look at an example. In the transportation domain, from the op-
erational standpoint, the decision to operate in a particular 
city/area (see Service Area Selection in Fig. 5) may seem like a 
design time, static decision. However, for a truly agile enter-
prise, it should be possible under certain circumstances to re-
view and possibly change this decision to expand or contract 
its operations. In our approach, we view the above decision not 
as being bound at design time, but as its corresponding PE be-
ing positioned into a rarely executed stage. By supporting mul-
tiple stages with different execution frequencies, the recurrence 
dimension allows to periodically revisit previously made deci-
sions, thus enabling finer-grained binding options for BP-level 
choices. 

C. The Plan/Execute Dimension 

In typical business process modeling (in the context of en-
terprise agility), the process model describes or prescribes the 
process that is to be executed, but not how this process gets 
determined. An important consideration for enterprise agility is 
whether a decision is made during planning, or is instead left to 
the execution stage. There are similar considerations for activi-
ties – whether they are part of a produced plan or not. In order 
to support reasoning about the possible placement of a PE on 
either side of a plan/execute boundary, our modeling frame-
work allows for the explicit representation of plan-
ning/specification activities as well as the execution of the 
planned activities. 

In many cases, a stage does not simply produce a result for 
the subsequent stage to use, but generates a plan or a specifica-
tion to be executed by it. A plan produced by a stage either 
fully specifies or constrains the behaviour of the subsequent 
stages. While a plan may be produced on a per-instance basis, 
fully customized for the needs of a particular process instance 
and therefore to be executed just once (e.g., see Maintenance 

Plan in Fig. 5), in most cases plans are reused. Therefore, plan 
generation implies the presence of stages and a stage boundary. 
We call the stage where the plan is produced the planning 
stage, while the subsequent stage is called the execution stage. 
Note that due to their nature, planning stages do not achieve 
domain-specific objectives – i.e., they do not change the state 
of the system or its environment. Planning and execution stag-
es are relative to each other. An execution stage B with respect 
to some planning stage A can be a planning stage with respect 
to some execution stage C, in which case A is used to generate 
the planning procedure for B. 



Full and partial plans. Within planning stages, we allow 
for a range of planning possibilities: from complete (full) to 
partial plans. Full plans completely specify execution in ad-
vance. They are quite restrictive and inflexible, but require no 
further deliberation within the execution stage, which lowers 
demands on that stage, ensures uniformity and predictability, 
and allows for high degree of optimization at the aggregate 
level. E.g., in Fig. 3A, the (bus) route planning stage deter-
mines both the stops along the transit route as well as the pre-
cise paths between them. When a driver executes the plan, he 
just has to follow the route and there is no additional planning 
to be done. This certainly simplifies the job of the driver, but 
also makes it impossible to make local adjustments to avoid 
problems on the road. Graphically we link planning stages to 
execution stages with data flow links annotated with X (for 
“eXecution”) and showing what specifications are being sent to 
be executed by the execution stages (e.g., Complete Route in 
Fig. 3A1). The flow enters the execution stage from the top as 
per convention that we borrowed from the IDEF0 notation 
[13]. 

Unlike complete plans, partial plans allow for separation of 
things that are more stable from those that are more dynamic. 
Here, the output of a planning stage is a partial 
plan/specification that allows for a range of behaviours within 
the execution stage by leaving some previously preplanned 
choices open by moving them from a planning stage to an exe-
cution one. E.g., in Fig. 3A2, a portion of route planning, 
namely the planning of paths among stops is moved across the 
plan/execute boundary to Customer Transportation stage. This 
allows the driver to identify a path to the next stop based on the 
current context (traffic and weather conditions), thus increasing 
the system’s ability to deal with largely unpredictable changes. 
At the same time, the driver’s job is harder and there is the 
need monitor and analyze road conditions to calculate paths to 
next stops. 

The concept of a partial plan covers such notions as busi-
ness rules and constraint sets. The relationship between a con-
troller and its target process where the former manipulates the 
parameters of the latter can also be seen as the plan/execute 
relationship, with the output of the planning stage indicating 
the bindings of control parameters in the execution stage. 

Variability in Plan/Execute dimension. The general pat-
tern for crossing the plan/execute boundary in both directions 
is shown in Fig. 3B (there, the specification Spec A is more 
restrictive than Spec B). As already mentioned, decreasing plan 
completeness increases flexibility and ability to handle change 
when executing the plan. It allows to separate stable and vola-
tile portions of specifications. At the same time, this puts pres-
sure on the execution stage to monitor for change (which might 
incur data collection and processing costs) and to complete the 
partial specification provided to it by the planning stage based 
on the current context. To summarize, in terms of variability 
that exists in this dimension, the main focus is on analyzing 
how much is to pre-plan in the planning stage and how much is 
to leave to the execution stage to achieve the desired level of 
flexibility in an organization. 

It should be clear from the discussion above that in the 
Plan/Execute dimension the planning stage can be seen as be-
ing “about” or as “operating on” the execution stage, thus cre-
ating a higher-order effect when one process constructs anoth-
er. The benefits of this include the ability to represent and ana-
lyze the capabilities of organizations/systems to evolve in the 
face of changes, which is crucial for analyzing sustainability of 
systems in highly volatile domains. 

D. The Design/Use Dimension 

The power of technology relies crucially on the creation of 
enduring capabilities that can be exploited by a user who does 
not know how the capability is constructed. In typical process 
and enterprise models, tools, designs and other capabilities can 
be represented as modeling artifacts and utilized in various 
(e.g., BP) models. These capabilities are static in a sense that 
they are assumed to have been externally developed and there-
fore cannot be modified. On the other hand, to support endur-
ing enterprises and IT systems, one needs to be able to repre-
sent those artifacts as evolvable objects that can be periodically 
redesigned to accommodate changes in the external environ-
ments and in business or system requirements. Representations 
of design, development or other tool/skill/etc. acquisition pro-
cesses need to be integrated into enterprise architectures to al-
low for modeling of evolving capabilities available to the en-
terprise and thus to support continuous design [7][11]. For in-
stance, being able to evaluate tool redesign cycles relative to 
other changes in the enterprise allows the identification of ri-
gidities in organizations and the evaluations of cost-effective 
ways to remove those. Moreover, not unlike the previously 
discussed plan/execute dimension, the design/use variability 
dimension supports the identification and analysis of 
tool/capability design variations from the point of view of their 
flexibility. 

Definitions. In the design/use dimension, designs, tools or 
other capabilities are produced by the design stage and are 
used within the use stage (see Fig. 4A). A design/use boundary 
is a stage boundary since a tool, once designed, can be used 
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multiple times, by multiple instances of subsequent stages. To 
support non-technical capabilities, we allow skills to be ac-
quired as capabilities through the appropriate learning rather 
than development processes. Graphically, design stages are 
linked to use stages through data flows annotated with U (for 
“use”), which enter the latter at the bottom following the 
Mechanism arrows from IDEF0. The exact circumstances of 
the tool usage are not specified, thus leaving the use stage the 
freedom to use the tool as appropriate. Having a tool simplifies 
the achievement of business/system objectives in use stage. 
Moreover, the actor (human or artificial) using the tool does 
not have to know its internals. An example of such a tool is an 
automatic transmission, which can be used by drivers in place 
of a manual one while requiring no knowledge of how it actu-
ally shifts gears. Even though it is less fuel-efficient and less 
adaptable to the various road conditions and driving styles than 
a manual transmission, an automatic gearbox is simpler to op-
erate and thus has fewer demands on the use stage. 

Flexibility in Design/Use dimension. When looking at 
possible process architecture configurations along this variabil-
ity dimension, our focus is on the flexibility of the 
tool/capability being produced in the design stage – i.e., how 
generic or single-purpose it is. The more single-purpose (less 
flexible) the tool is, the simpler it is to use and the more opti-
mized it can be – for the general case, not for its actual use set-
ting as the tool cannot be customized to take advantage of this 
contextual information. 

Example. Fig. 4A shows how the design/use boundary can 
be crossed in both directions. Fig. 4A1 illustrates what it means 
to move a process element from a use phase to its design phase. 
In case of an activity this means that the tool takes on more 
functionality, thus increasing the level of automation in the use 
stage. In case of a decision (BP-level VP), it means that it is 
bound in the design stage and becomes fixed in the use stage, 
thus reducing the customizability of the produced tool (Design 

A). On the contrary, moving an activity in the other direction 
(Fig. 4A2) reduces the level of automation available to the use 
stage, while moving a decision increases the level of customi-

zability of the tool since the decision is no longer built into the 
tool and can be changed during its use. In the public transporta-
tion domain, an example illustrating the above moves is the 
design/use of subway trains. If a decision on the length of 
trains (in terms of the number of cars) is made in the design 
stage, then the trains cannot be customized to reduce their size 
when the demand is low (e.g., on weekends). When the deci-
sion on train length is left outside of the design stage, the trains 
are more customizable and can be adjusted for each use in-
stance. Thus, tool customization is done in the use stage by 
making decisions that are left unbound in the design stage. 

In addition to flexibility/customizability, when analyzing 
choices in the design/use dimension, we pay close attention to 
a number of other factors, chief among them is the cost of the 
tool/capability. The cost is incurred either through the de-
sign/development process or through tool acquisition (e.g., of a 
COTS system). Development of skills, obviously, has costs as 
well. Renting or leasing tools is a way to avoid the high upfront 
costs. Similarly, cloud-based IT services can be used to make 
tool/capability acquisition affordable. Moreover, with cloud-
based services (or with any service-based capabilities), tool 
modifications (e.g., in terms of its power, processing ability, 
scalability, etc.) are easy and do not require redevelopment. 

Evolving Capabilities. As discussed earlier in this section, 
the key reason for introducing the design/use boundary is to 
gain the ability to model and analyze changes in capabilities in 
continuously evolving systems. The assumption is that the de-
sign stage will not be executed just once to produce a tool or a 
capability. Rather, driven by changing business needs and ex-
ternal environments, as well as based on the feedback from the 
use of the current version of the tool, the design stage can be 
re-executed when appropriate. This will produce/acquire new 
versions of the capability, thus evolving the enterprise and/or 
its systems. Note that frequently the use stages will need to 
change in concert with design stage re-executions to account 
for tool/capability evolution. This could be accommodated by 
the configuration shown in Fig. 4B. 

To illustrate changes in capabilities, in Fig. 5, which shows 
an overall to-be process architecture for the public transporta-
tion domain, Vehicle Acquisition (a design stage w.r.t. Custom-

er Transportation) gets the information on the required capacity 
from the Route Planning stage as its input. Based on this, it 
produces vehicle specifications and proceeds to acquire those 
vehicles. When demand for transportation services increases to 
the point where new vehicles become needed, Vehicle Acquisi-

tion will be triggered to procure those, therefore changing the 
transit company’s capability to transport passengers to match 
changes in demand. 

E. Process Architecture Model with Relationships from Four 

Dimensions 

Now that we have discussed the four dimensions, we pre-
sent a complete BPA in terms of interconnected stages, which 
can be viewed as separate processes within the architecture 
(Fig. 5). This is the overall BPA for a public transit company, 
which is innovative in its use of analytics and monitoring (in-
cluding real-time traffic/weather and demand data), wants to be 
competitive on price and quality of service with other services 
and flexibly meet varying passenger demand. The BPA im-
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plements the more flexible variants from the examples dis-
cussed in Section IV aiming to support agile transportation 
services. The model emphasizes inter-process relationships and 
while we capture PEs in stages, we abstract from modeling 
phases. The model captures how stages relate to each other 
using the relationship types introduced in this paper as well as 
the data supplied to and exchanged among the stages. Given a 
stage, its data input can arrive from another stage (e.g., Service 

Price) or can be obtained from the outside through monitoring 
or by other means (e.g., Competitor Pricing). The model gives 
an overall view on the organization and its BPs, shows where 
reuse happens, where plans are created and how they are exe-
cuted and how tools/capabilities are utilized. At the same time, 
the model provides the basis for what-if analysis, with potential 
configurations generated by moving PEs among stages and/or 
phases. 

V. ANALYZING PROCESS ARCHITECTURE ALTERNATIVES  

In the previous section, we presented the four dimensions 
of variability that help us identify and structure choices in 
BPAs. We also hinted at how choices along the four dimen-
sions can be evaluated to help with the selection of alternative 
architectures that can handle change while attaining important 
quality objectives. In this section, we further elaborate on the 
modeling and analysis of BPA configuration options and pro-
vide example scenarios. 

A. Representing and Analyzing Business Process Architecture 

Alternatives with Goal Models 

In our approach, we use goal models to represent and ana-
lyze choices in BPA along the four variability dimensions. 
Goal models are heavily used in Requirements Engineering to 
capture stakeholder and system objectives. Their key features 

are the ability to represent variability in achieving goals using 
OR decompositions (exclusive ORs in our case) and to use 
explicitly modeled NFRs to analyze goal refinement choices. 
Here, we adapted goal models to represent possible placements 
of PEs within the BPA along any of the four variability dimen-
sions together with the evaluations of those choices against the 
relevant NFRs. A goal model focuses on analyzing the place-
ment of a PE within a BPA, so multiple such models will be 
used to come up with a complete architecture (such as the one 
in Fig. 5).  

Identifying BPA choices. To illustrate the development of 
such a goal model and its use for placing a PE along one of the 
dimensions, we look at the transit trip payment options dis-
cussed in Section IV.A. The goal model provides the intention-
al (as opposed to the operational) perspective and captures the 
objective for the PE in question as the root goal (see the top 
Get Customer Payment node in Fig. 6A) and shows how it is 
refined when being achieved in different stages/phases of the 
BPA. For example, Fig. 6A shows three alternative phases of 
Customer Transportation stage where Get Customer Payment 
PE can be placed. We use the @P:PhaseName and 
@S:StageName annotations to indicate where in the BPA PEs 
are to be placed. Each decomposition explores alternative PE 
placements within a BPA along one of the four variability di-
mensions. Thus, we annotate them with [T] for temporal, [R] for 
recurrence, [D] for Design/Use, and [P] for Plan/Execute, as 
shown in Fig. 6. 

How we identify choices for goal refinements is based on 
the dimension under consideration. For the recurrence dimen-
sion, the alternative refinements are the stages where the PE 
can be placed while respecting the existing constraints among 
the PEs – e.g., a PE must be placed before the PEs that rely on 
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its output. The temporal dimension focuses on the phases 
where the PE can be placed. Similarly, constraints must be re-
spected. In Fig. 6A, customers can pay before (@P:Before 

Travel), during or after travel. Note that before deliberating on 
which phase to place a PE into, we need to determine its stage. 
Thus, we have frequent patterns of BPA-level analysis, such as 
[R] followed by [T]. In Fig. 6A, we do not show the [R]-type 
analysis, but indicate that the root goal is to be placed in Cus-

tomer Transportation stage. 

For the Plan/Execute and Design/Use dimensions, the 
choice is binary – whether the PE is inside or outside of some 
particular planning or design stage. Here, once a plan or a de-
sign is produced, it is available to all the subsequent stages. 
Thus, if a PE is to be placed on the “execute” or “use” side of 

the plan-execute or design-use boundary respectively, we must 
further deliberate on which stage is the best for the PE, and 
furthermore, which phase within that stage to put it in. This is 
illustrated in Fig. 6B, which shows the model for analyzing 
three different dimensions for the Plan/Execute case. 

In our approach, we separate the “essence” of a PE (mod-
eled as the root goal in Fig. 6A) – i.e., what, say, executing an 
activity helps us achieve – from its implementation (the sub-
goals in Fig. 6A) since that implementation can change from 
stage to stage and from phase to phase. E.g., the fare payment 
procedure, while conceptually achieving the same objective, 
may be quite different in various places of a BPA. Due to these 
variances, the parameters in goal nodes modeling alternative 
PE placements can vary to represent the different data these 
implementations operate on. E.g., for customer payments done 
before or during travel (Fig. 6A) the only information they can 
operate on is the basic fare. However, the variant executed after 
the trip operates in a context where the distance travelled is 
already known, so it can calculate a more precise fare based on 
that, thus achieving payment fairness (note the contribution 
link). Moving towards later stages/phases (i.e., increasing re-
currence and postponement respectively) supports more con-
textual information, thus adding to the number of goal parame-
ters in our models. 

Capturing and analyzing quality objectives. As the last 
component of the model, we elicit quality objectives used for 
evaluating PE placement choices. These are modeled as soft-
goals and the evaluation is done with the help of contribution 
links with the help of contribution links. The evaluation can be 
qualitative, with a range of possible contribution values, such 
as help(+)/hurt(–), make(++)/break(--) (as in Fig. 6A). For ex-
ample, getting payment after travel achieves (makes, ++) fair-
ness, improves (+) flexibility, while negatively impacting (–) 
cost and security. Then, a softgoal is satisficed if there is suffi-
cient positive and little negative evidence for this claim. Quan-
titative or finer-grained qualitative evaluations are possible 
depending on the available knowledge. Frequently, desired 
NFRs are conflicting and cannot be optimized for at the same 
time. Softgoal prioritization will help resolve these conflicts 
and arrive at sensible recommendations. 

Handling trade-offs. As hinted in Section III, moving PEs 
along each of the four discussed dimensions affects a number 
of NFRs. The set of relevant NFRs is different for each dimen-
sion. Some of the NFRs are domain- and PE-independent. The 
most common NFRs of this type and the positive/negative ef-
fects of PE movement on them are shown in Table 1 and cost 
and flexibility are also modeled in Fig. 6A. It can be seen that 
in general, moving PEs to later stages and phases in the BPA as 
well as to use and execution stages improves flexibility, cus-
tomizability, and context awareness of enterprises and their 
systems. These gains are offset by the increase in cost to main-
tain that flexibility (e.g., the flexible infrastructure), the de-
crease in stability (and predictability) and fewer opportunities 
for reuse. On the other hand, moving towards earlier stag-
es/phases as well as increasing plan completeness and design 
automation improves reuse, stability, cost, etc., while negative-
ly impacting flexibility and the ability to accommodate chang-
es. As previously mentioned, these trade-offs need to be re-
solved based on two things: 1) the dynamics of the business 

TABLE I.  EFFECTS OF MOVING PES ALONG VARIABILITY DIMENSIONS 

Dimension PE Movement Effect of Movement on NFRs 

Temporal 

Postpone 
+: flexibility, context-awareness; –: cost, 

complexity, stability 

Advance 
+: cost, complexity, stability; –: flexibility, 

context-awareness 

Recurrence 
Increase Recurrence +: flexibility; –: cost, reuse, stability 

Decrease Recurrence +: cost, reuse, stability; –: flexibility 

Plan/ 
Execute 

 Move to Plan +: plan completeness, stability 

Move to Execute +: plan partiality, flexibility 

Design 
/Use 

Move to Design +: automation; –: customizability 

Move to Use +: customizability; –: automation 
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domain – what changes in the domain, how frequently, etc.; 2) 
the enterprise’s prioritization of the above-mentioned quality 
criteria.  

Additionally, there are domain-specific NFRs that are of 
relevance to the analysis of some particular PE. For fare pay-
ment, these are security and fairness (Fig. 6A). Note that in 
Fig. 6A, softgoals are parameterized with the particular area of 
focus, customer payments. Goal models allow for representing 
and analyzing how the satisficing value of, e.g., Securi-

ty(Payment) affects the overall Security NFR. This can be used 
to estimate the impact of local BPA adaptations on the sys-
tem/organization-wide quality objectives.  

Once the analysis of BPA alternatives is done, a place in 
the BPA (i.e., a stage and its phase) is identified for the PE un-
der consideration. This represents the delta between the as-is 
and to-be BPA – an instruction for evolving the architecture. 

B. BP Architecture Adaptation Scenarios 

Now that we have shown how one can analyze the possible 
movements of PEs within a BPA, we turn to the question of 
whether and when an architecture needs to change. The main 
objective of our approach for designing BP architectures is to 
help organizations determine the right amount of flexibility to 
support based on the volatility in their business domains as 
well as their own preferences and priorities. They need to find 
the balance between flexibility and stability/cost, etc. Once 
designed, a BPA has some amount of flexibility to support cer-
tain types of changes in the domain.  

A simple example is the payment in passenger transporta-
tion. The already discussed after-trip payment option supports 
widely different trip distances without the need for a BPA re-
configuration. As long as the dynamics of the domain justifies 
that solution, i.e., the domain assumption that passengers gen-
erally take trips of quite different distances holds, that options 
will be adequate considering the added complexity and cost. 
However, if at one point the analysis shows that passengers 
mainly take trips of about the same distance (e.g., from a num-
ber of equidistant suburbs to downtown and back), the flexibil-
ity of the variable fare option becomes too flexible for the do-
main and its cost and complexity can no longer be justified. 
This situation will require an invocation of the BPA analysis 
process and a reconfiguration of the BPA. 

Another example involves public transit route planning. 
When a long-term demand changes (e.g., due to a population 
shift), the BPA fragment in Fig. 2A2 is able to handle this 
change since by (re-)executing the Route Planning stage to add 
or alter routes. The assumption here is that these are rather rare 
changes informed by long-term demand. On the other hand, if 
a company wants to be able to frequently introduce special 
routes aimed at handling passenger demand due to special 
events (festivals, concerts, etc.), then the above assumption no 
longer holds. This case warrants a BPA reconfiguration to im-
prove route planning flexibility – moving towards a configura-
tion in Fig. 2A1, but with the added expectation that routes will 
be changing frequently. 

In general, BPA reconfiguration takes place when domain 
dynamics changes – i.e., not when some change happens, but 

when the rate of change (or sometimes the range of change) 
becomes different. 

VI. RELATED WORK 

“A business process architecture is a collection of business 
processes and their interdependencies with each other” [5]. 
That notion has been discussed for a while [4][5]. During the 
years various sets of relationship among business processes 
have been identified. For example, Dumas et al. [4] discuss the 
notion of a sequence in which the output of one process is used 
by another process, hierarchy in which the details of a process 
are further elaborated into sub-processes, reference in which a 
process is using (as an initial step) pre-existing process specifi-
cation. The authors also provide guidelines of when to split 
processes, in particular in cases of difference in execution fre-
quencies and time intervals, difference in location, and other 
such granularities.  Eid-Sabbagh et al. [5] suggest another view 
over relationships among processes. These include “composi-
tion, which models one business process being composed of a 
number of other BPs, also called the sub-processes”; “speciali-
zation”, which represents that one business process specializes 
another; “trigger, which represents that one business process 
causes another BP to instantiate and start”; and “information 
flow, which represents that information or other objects flow 
from one business process to another”.  

Lately, Dijkman et al. [3] summarize the existing relation-
ships among BPs as follows: The decomposition relation ex-
presses that a process is decomposed into multiple sub-
processes; the specialization relation expresses that one process 
is a specialized version of another; the trigger relation express-
es that the execution of one process can trigger the execution of 
another; and the use relation expresses that one process pro-
vides services that are used by another.  In addition, the authors 
classified approaches for designing BPAs: goal-based, action-
based, object-based, and function based. All approaches utilize 
a subset of these relationships when analyzing the business 
process architecture. 

In the enterprise architecture area, the notion of BPA is re-
ferred as business process cooperation. For example, in Ar-
chiMate [14] such cooperation includes the following aspects: 
causal relationships between business processes, mapping of 
business processes onto business functions, realization of ser-
vices by business processes, and the use of shared data. These 
aspects can also imply on the type of relationships among BPs. 

Another domain that business process architecture may 
benefit from is the area of BP variability, which has been stud-
ied for over two decades [1]. In this domain, the key concepts 
are the realization relationships among BPs and the binding 
time of such processes. In particular, this domain is of interest 
as it refers to alternatives within BPAs and the ways of decid-
ing upon the most suited architecture. Similar situation occurs 
in software product lines. For example, Svahnberg et al. [17] 
state a major reason to support variability is to postpone con-
crete design decisions to the latest point that is economically 
feasible. In general, early binding facilitates better static analy-
sis while late binding enables configuration by users and post-
deployment updates [1]. This is also confirmed by Subrama-
niam et al. [18] who argue that positioning decision points as 
early as possible within the process timeline can improve pro-



cess efficiency by decreasing their uncertainties and identifying 
redundant activities. Other approaches examine variability 
from the requirements point of view and refer to intentional 
variability in BPs, e.g., [9][10]. In particular, these approaches 
looked at the variability in the way objectives can be achieved 
as the means to develop customizable, adaptive, and evolving 
systems. The existing approaches propose various ways to 
handle variability. However, they all focus on variability at the 
same level of abstraction. 

Recently, various approaches that weave requirements and 
BPs have emerged. E.g., Santos et al. [19] recruit NFRs and 
contexts for the sake of configuring business processes. Usual-
ly, process configuration is done at design time, yet in that pa-
per the authors suggest to have it tailored during runtime. 

Our approach focuses on variability management and anal-
ysis at the level of BPAs. Each set of choices for placing PEs 
into stages/phases (such as the one in Fig. 6) can be seen as a 
VP at that level, and binding all such VPs along multiple di-
mensions produces a complete BPA. Here, we gain the ability 
to represent and analyze possible BPA configurations using 
variability and goal-based techniques. Also, if we consider PEs 
that are decisions themselves – i.e., VPs at the process level, 
then phases/stages where these VPs can be placed provide use-
ful (meta-level) options on the binding of these BP-level VPs 
in terms of when (temporal dimension) and how often (recur-
rence dimension) they are to be bound. Thus, these phas-
es/stages offer domain-specific options for binding VPs, which 
are much richer than "runtime" or "design time" that are usual-
ly discussed in variability research (e.g., [6]). 

Within the domain of process-aware information system, 
Weber et al. [22] distinguish among four important dimensions 
in which change might occur. They use the notion of patterns 
for changes in predefined regions to define these dimensions 
and include (1) the late selection of process fragments, which 
refers to runtime binding of BPs; (2) the late modeling of BP 
fragments, which refers to modeling BPs in later stages; (3) the 
late composition of process fragments, which refers to the crea-
tion of ad-hoc BPs; and (4) the multi-instance activity which 
refers to the number of time an activity is executed at runtime. 
That work implies two new business process relationships: 
creation, in which a process may create another process; recur-
rence, in which a process may be followed by another process 
several times. While somewhat similar to our proposal, that 
approach only considers design time and runtime (compared to 
the flexibility offered by stages in our approach), mainly con-
siders a specific business process, and neglects trade-offs (with 
respect to NFRs) among the various options.  

In our own work, we have previously outlined an enter-
prise-level framework that allows organizations to utilize 
emergent technologies such as the cloud, big data analytics, 
etc. as well as feedback loops to engineer BPAs that would 
support flexibility and agility in the face of domain changes 
and shifting expectations [12][23]. In this paper, we elaborate 
on one portion of that proposal. 

VII. DISCUSSION AND FUTURE WORK 

In this section, we discuss some of the limitations of the 
approach, outline issues, and propose enhancements.  

The four dimensions for BPA design can be viewed as 
supporting both adaptation and evolution of BPs and BPAs 
within enterprises.  The temporal and recurrence dimensions 
are about identifying, analyzing, and implementing changes in 
BPA configurations supported by existing set of processes and 
enterprise/IT capabilities. They help determine which 
configuration from the space of BPA alternatives best matches 
the current business domain dynamics, thus helping enterprises 
adapt to changing circumstances. The next two dimensions go 
further and allow for modeling and analysis of options for 
evolving enterprises and their systems to accommodate more 
significant and unpredictable changes. This is done by enabling 
modifications of behaviours represented through changing 
plans or specifications (the plan/execute dimension) and 
through supporting modifications of capabilities (designs, 
tools, skills, etc.) used to achieve business and system objec-
tives (the design/use dimension). 

A good BPA must reflect the properties of the domain, es-
pecially those related to the changes within it. Assumptions 
about the fluctuating passenger demand, frequently changing 
weather/traffic conditions, etc. represent the expectations about 
the domain dynamics and need to be carefully analyzed to jus-
tify the architecture and analyze the flexibility that it affords 
for dealing with this volatility. While we briefly discuss the 
role of domain assumptions in Section V.B, they are not yet 
explicitly captured in our approach. We are currently working 
on formal modeling of such assumptions, which paves the way 
for the precise specification of conditions that trigger adapta-
tions already supported by the current BPA (e.g., a change 
causing a stage re-execution) and those requiring BPA recon-
figuration (e.g., a change in domain dynamics). 

There is a lot to be said about integrating data into this 
approach. Monitoring and analyzing the external environment 
of an organization is important for creating an agile enterprise 
with flexible IT systems as we need to recognize context 
changes, failures, etc. Availability and volatility of data plays a 
crucial role in positioning PEs within a BPA. As we have al-
ready seen, the actual distance traveled by a passenger is only 
available after the end of the trip. Also, while some infor-
mation can be reused by thousands operational process in-
stances (e.g., the current sales tax), other data, such as the price 
of fuel, is more volatile and PEs that depend on it must be 
placed into more frequently executed stages. We are looking at 
enhancing the identification of data relevant for each PE and at 
capturing the effects of data availability and volatility on posi-
tioning the relevant PEs within a BP architecture. 

While performing the analysis procedure described in 
Section V, it is easy to see that it favours local optimization (at 
the level of individual PE), possibly at the cost of globally 
optimal performance. Obviously, one needs to keep the overall 
configuration of the BPA in mind and evaluate the effects of a 
local change on its NFRs. Having acknowledged this, we are 
working on ways to mitigate this problem by, e.g., integrating 
multiple goal models of the type presented in Fig. 6. 

In our approach, we allow for some model incompleteness 
to reduce the complexity of modeling and analysis and to focus 
on important aspects of the domain. For instance, the analysis 
of BPAs using our approach does not require goal models to be 



constructed for all the PEs. There are certain portions of the 
BPA that can be considered stable given the dynamics of the 
business domain. We do not need to construct goal models and 
analyze BPA alternatives in the stable areas. Only the portions 
of a BPA that need to be more flexible to accommodate change 
in certain areas of the environment will be the subjects of our 
analysis. Similarly, many finer-grained BP modeling details are 
below our threshold of interest, which is a phase. Thus, these 
details do not feature in our models and in the analysis.  

We view modeling and analysis complexity as an important 
issue for the approach. This is why (as stated above) we focus 
variability modeling and analysis on the areas of BPA where 1) 
change is expected and 2) where high level of flexibility is 
needed. This would limit the number of possible BPA configu-
rations. To help with the goal-based analysis of alternatives, we 
plan to utilize both top-down and bottom-up goal model analy-
sis algorithms that have been successfully used in a variety of 
domains and applications (e.g., in [9] for BP configuration). 

In terms of evaluating the approach, we are applying it in 
several domains that exhibit not only a high rate of change, but 
also feature frequent changes in domain dynamics (i.e., the 
second-order change) with the aim of further validating the 
expressiveness and usability of the notation and the analysis 
capabilities of the proposal. Furthermore, we are planning to 
compare the expressivity and comprehensibility of our model-
ing notation with those used for representing BP and enterprise 
architectures, specifically focusing on both model construction 
and the use of models to identify/analyze architecture recon-
figuration options. 

VIII. CONCLUSION 

In this paper, we presented an approach for specifying and 
analyzing business processes architectures to allow organiza-
tion to be better aligned with the dynamics of their business 
domains and their desired level of flexibility. The approach 
introduces four dimensions, namely, temporal, recurrence, 
plan/execute, and design/use, along which the BPA is consid-
ered. We adopted goal-oriented analysis of architecture alterna-
tives to identify the best BPA in the context of the organiza-
tion. Based on our experience with the approach in the trans-
portation (discussed here), internet retail, and automotive do-
mains, we found the approach useful for generating feasible 
BPA alternatives, for analyzing the trade-offs among these, and 
as the basis for dynamically changing BPAs. We have identi-
fied a research program to further refine and evaluate the ap-
proach. 
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