
Re-designing Process Architectures
CSRG Technical Report 625

Department of Computer Science, University of Toronto

Alexei Lapouchnian, Eric Yu

University of Toronto

Toronto, Canada

alexei@cs.toronto.edu, eric.yu@utoronto.ca

Arnon Sturm

Ben-Gurion University of the Negev

Beer Sheva, Israel
sturm@bgu.ac.il

Abstract—Organizations rely on a multiplicity of processes

for their day-to-day functioning and for longer term viability and

sustainability. Together, these processes constitute the business

process architecture (BPA) of the organization. While extensive

efforts have been devoted to the analysis and design of business

processes and associated information systems, there has been

relatively little attention paid to the design of BPAs, i.e., how the

processes of an organization should best relate to each other. As

organizations are experiencing enormous changes, brought on

by disruptive technologies and continual business model innova-

tion, they can no longer optimize individual processes in isolation

from each other. Their BPAs can no longer remain static, but

need to be rethought from time to time. BPA design involves

making trade-offs across multiple processes, particularly regard-

ing how to balance flexibility and agility with other design objec-

tives such as costs and efficiency. In this paper, we propose a

framework for supporting the design of BPAs, by identifying

several dimensions along which process elements (activities or

decisions) could potentially be repositioned across processes. We
illustrate the approach using the domain of transportation.

Keywords—variability; flexibility; business process architec-

ture; process modeling; requirements

I. INTRODUCTION

Organizations rely on a multiplicity of processes for their
day-to-day functioning as well as for longer term viability and
sustainability. These processes come together to constitute the
process architecture of the organization.

Extensive efforts have been devoted to the analysis and de-
sign of individual business processes and associated infor-
mation systems. Leveraging process models, information tech-
nology systems have produced tremendous gains in efficiency
and productivity by automating or redesigning business pro-
cesses (BPs). In contrast, relatively little attention has been
paid to the design of process architectures, i.e., how the many
processes of an organization should best relate to each other –
the way these processes come together to serve the overall ob-
jectives of the organization.

As organizations are experiencing enormous changes,
brought on by disruptive technologies and continual business
model innovation, it is no longer adequate to optimize individ-
ual processes in isolation from each other. BPAs can no longer
remain static, but need to be rethought and re-engineered from
time to time.

Process architectures need to be rethought because tradi-
tional approaches to innovation and new capability develop-
ment are being challenged. In highly dynamic organizations,
new capabilities are constantly being created. Innovation cy-
cles are being shortened, with development processes becom-
ing intertwined with operational processes, as in the movement
towards “DevOps” [16] in software. Mobile apps must be cre-
ated and updated continually to keep pace with changing ex-
pectations and competitive pressures. Users and their usage
processes are coupled with development processes in a virtu-
ous cycle of value co-creation.

Similarly, the conventional boundary between planning
processes and processes that execute those plans are being re-
drawn. On the one hand, a more dynamic and fluid world with
high uncertainty invalidates many traditional planning ap-
proaches. On the other hand, the availability of massive
amounts of data from numerous sources such as social media,
mobile devices, sensor networks and devices together with
powerful analytics enable much greater context-awareness and
near-real-time response, and even pre-emptive action based on
predictive capabilities. Decisions that used to be made during
planning are often moved to the execution stage. Conversely,
there can be benefits for moving an activity “upstream” to an
earlier execution or planning stage.

Today's fast moving organization therefore cannot take an
existing process architecture for granted. The process architect
should be asking questions such as:

 Should some activities or decisions (process step) be
deferred closer to frontline, to take advantage of near‐
real‐time data, to meet customer needs and wants
better?

 Should some activities or decisions that are currently
performed in a planning stage be moved to an execu-
tion stage?

 Should activities that are previously performed for an
aggregate be performed per instance?

BPA design involves making trade-offs across processes,
particularly regarding how to balance flexibility and agility
with other design objectives such as costs, efficiency, and so
on.

Existing conceptions or treatments of process architecture
(e.g., [4] (Ch. 2), EA frameworks [20], enterprise modeling

languages – UEML [21], EO [2]) typically treat the process
architecture as a given, or as something to be discovered. There
is no conscious effort to shape or design the architecture.

We believe there is need to analyze architectural
alternatives, and provide support for exploring the space of
alternatives, and guidance and support to choosing among
them, recognizing the complex trade-offs that may exist. Need
a conceptual model as a foundation. This paper proposes a
number of dimensions including temporal, recurrence,
plan/execution, and design use, which could serve as key
elements of such a framework.

This paper is organized as follows. In Section II, we intro-
duce the business domain in which we demonstrate our ap-
proach. In Section III, we motivate and outline the architectural
design space, whereas in Section IV, we discuss the four di-
mensions that comprise this space. In Section V, we discuss the
analysis needed to arrive at the right business process architec-
ture, while Section VI discusses the related work. Section VII
discusses challenges and outlines future research directions. In
Section VIII, we conclude.

II. THE EXAMPLE SETTING

A tsunami of change is sweeping through almost every
business and industry sector today. To respond to these large-
scale changes, organizations are adjusting or rearranging their
process architectures, albeit mostly in an ad hoc fashion, in the
absence of systematic frameworks or methods. For example,
many organizations are making their processes more agile, by
bringing their development processes closer to the user. Social
media and other data analytics are used to shorten new product
development cycles. In retail, marketing decisions can be made
more frequently with better data about customer behaviour. In
finance, mobile payment options are shaking up many related
industries.

In this paper, we chose the domain of passenger transporta-
tion to illustrate our approach. The rationale for selecting this
domain is that it is a common-sense domain that most people
can relate to. It is rich enough to illustrate the features of our
approach and patterns identified here can easily be found in
other business domains.

While having a long and rich history, this domain still con-
tinues to experience change today, driven by business and
technical innovations and the shifting priorities of governments
and the public. Among such driving forces in this domain are
the sustained focus on reducing energy consumption and emis-
sions, traffic congestion, the increasing costs of owning cars
and therefore the growing popularity of car sharing, public
transit, bicycles, and bike sharing. Moreover, the proliferation
of location sensors and the availability of up-to-the-minute
traffic information can greatly improve service quality and
flexibility. Smartcard or smartphone-based electronic payment
methods improve the convenience for the service providers as
well as for the passengers and add flexibility to support innova-
tive variable payment methods that can take into consideration
travel distance, travel date/time, frequency, etc. and guarantee
savings for passengers while incentivizing them to use the ser-
vice more. The recent introduction of new disruptive personal
transportation services that deliver point-to-point service cou-

pled with mobile application-supported ordering and billing for
service consumers while allowing people to use their private
cars to deliver these services is an innovation that forces many
traditional players in the industry to rethink their business
models to remain competitive. Self-driving cars may soon dis-
rupt transportation even more. Public transportation is one sub-
area within the domain that, despite being quite heavily regu-
lated, is an interesting case study for our approach. We discuss
this domain throughout the paper and present a version of the
BPA for that domain in Fig. 5.

III. A DESIGN SPACE FOR PROCESS ARCHITECTURES

To work towards a design framework for BPA design, a
fundamental question is: what is the space of possible alterna-
tive architectural designs? We need a modeling notation to be
able to express different design configurations of processes, so
that we can reason about the pros and cons of alternative de-
signs. In this paper, we consider BPA design for an existing
organization, where there is an existing process architecture.
Alterative designs are therefore different ways of modifying
the architecture.

 We consider potential modifications as movements along
four dimensions:

(1) The temporal dimension – moving a process element
earlier or later in relation to other process elements. A process
element (PE) may be an activity that produces some output or
outcome. It may also include the act of making decisions. For
example, in the transportation domain, should we have the
payment placed before or after riding the bus?

(2) The recurrence dimension – positioning a PE in a pro-
cess (or process segment) that is repeated more frequently or
less frequently with respect to other PEs. For example, in the
transportation domain, should we plan the bus route and
schedule jointly, or we can determine that route and change the
schedule more frequently.

(3) The plan/execution dimension – positioning a PE on the
planning side of a process versus on the execution side, i.e.,
whether the activity specified by the PE is done during plan-
ning or during the execution of the plan resulting from the
planning. For example, in the transportation domain, should we
plan the bus route for every ride or can we have it planned and
just execute the plan in each ride.

(4) The design/use dimension – positioning a PE on the de-
sign side or the usage side of a process, i.e., whether the PE is
invoked as part of a design process, or is invoked during the
usage of that artifact, tool, or capability that is the outcome of
the design. For example, in the transportation domain, should
we design a vehicle for each route, or we can use that design
for each of the routes.

In considering the positioning of process elements along
these four dimensions, we aim to address one of the crucial
concerns of BPA design – the tension between flexibility and
efficiency. For an organization operating in a completely static
environment, all of its processes can be tightly coupled and
globally optimized for maximum efficiency once and for all.
For a dynamic environment however, the architecture needs to
provide appropriate flexibility at the right places in order for

the organization to respond effectively to circumstances and
uncertainties.

 A fundamental idea for accommodating uncertainty is to
keep options open. The ability to take alternate courses of ac-
tion contingent on the actual circumstances at hand as they
unfold allows for a high degree of flexibility. On the other
hand, keeping options open could incur considerable costs as
extra resources and capabilities need to be at the ready even if
they are not deployed. Determining where and when options
should be kept open is therefore a central mechanism for pro-
cess architecture design. A model of the architectural design
space hinges on a representation of where and what kinds of
options (or choices) exist, and the conditions under which the
options should no longer be held open, i.e., that a choice or
decision be made and becomes committed.

 We use the term variation point (VP) to refer to the point
in a process where multiple options exist. Variation points may
appear anywhere in a process. Together with activities, they
constitute Process Elements. We use the term variant to refer
to the individual options at a VP. We say that a VP is bound
when one of its variants is selected. When and where a varia-
tion point becomes bound is the basis for much of the reason-
ing behind the positioning of a PE along the four dimensions.
We discuss the relationship of this work to the software varia-
bility literature in a later section.

Note that although we refer to modification, the suggested
dimensions and framework can be utilized for designing new
business process architecture.

These dimensions were determined based on existing stud-
ies (see Section VI), our own experience in BPA, and the anal-
ysis of existing BPAs and their potential changes. The purpose
of the set of dimensions is to expand the space of alternatives
for business process architecture. By no means are we claiming
that these are the only possible dimensions. Nevertheless, we
found these suitable for characterizing the architecture design
space.

In the next section, each of these dimensions will be ex-
plained in detail and illustrated.

As in the area of software systems architecture, the archi-

tectural description we are aiming for here should outline the
major elements and relationships while avoiding over-
specification. A process architecture, while specifying the cru-
cial relationships among processes, should not impose unnec-
essary constraints on the detailed specification of the individual
processes. The process architecture description should be suffi-
ciently expressive so as to allow relevant architectural proper-
ties to be analyzed (e.g., how flexible one options is compared
to an alternative). Therefore, the architectural description will
likely need to refer only to certain selected elements from pro-
cess specifications, and not the complete sequence of steps,
control flows, data flows, etc.

 For the purpose of illustration, in this paper, we adopt a
notation which is adapted from a combination of BP modeling
[8] and function modeling [13].

IV. DIMENSIONS FOR PROCESS ARCHITECTURE

In this section, we describe the four dimensions along
which process elements can be (re)positioned within a BPA.

A. The Temporal Dimension

In many cases, there are multiple possible placements for
PEs within a BP/system specification that comply with the ex-
isting functional dependencies (e.g., to calculate order prices,
the system needs to know the contents of customers’ shopping
carts), achieve the same functional objective, but are different
in terms of their non-functional characteristics.

This is illustrated by the passenger payment options pre-
sented in Fig. 1A. For instance, unlike the standard fare that is
charged before a trip, after a trip, it is possible to charge a dif-
ferentiated fare based on the distance travelled. Both variants
achieve the objective of obtaining customer payment, but are,
of course, different in how much is paid, how fair or precise
the charge is, etc. Therefore, there may be multiple options
along the temporal dimension in BPs – somewhere from the
process’ start to its finish – where decisions/actions can be
placed and these choices need to be resolved by looking at how
each variant affects the quality criteria that the enterprise is
interested in.

Introducing phases. What is better – to charge the cus-
tomer before he boards a bus, during the trip or after travel? In
fact, this evaluation depends on one’s point of view. Looking
at payment fairness, we want differentiated payments based on
the actual distance travelled (this is how taxis and other similar
services operate). Here, the system needs a richer context – the
ability to sense that distance, which can only be done at the
trip’s end. This makes the payment on exit a better option. The
other variants are the same in terms of payment fairness. We
then identify phases – portions of a process such that placing a
PE under consideration anywhere within a phase produces the
same result (e.g., charging passengers before boarding or upon
boarding is no different since the trip distance is unknown in
both cases). However, moving PEs across phase boundaries
may affect the quality of decisions and the outcome of actions.
While most software variability approaches focus on the tech-
nologies that enable variability in systems, we further analyze
when (in which phase) it is best to execute actions or make
decisions. Regardless of the positioning of PEs along the tem-
poral dimension, we note that unlike other dimensions, no re-

Phase N

... ...

Postponement

Phase N-1

... ...

Phase N+1

...

Advancement

Process
Element

PE

Process
Element

PE

Process
Element

PE

Get
Customer
On Board

Get Vehicle
to Customer

Move
Customer

Unload
Customer

Get
Customer

Order
(Optional)

Get
Customer
Payment

Before/During Travel

Customer Transportation

After Travel

Move
Customer

Get Vehicle
to Customer

Get
Customer
Payment

Unload
Customer

Get
Customer

Order
(Optional)

Get
Customer
On Board

Before/During Travel

Customer Transportation

After TravelA2

B
Stage M

A1

Fig. 1. Trip payment options: (A1) Before trip's end. (A2) At trip’s end.
Options for moving elements along the temporal dimension (B).

use happens: an output of a phase belonging to one process
instance can only be used by the subsequent phases of the same
process instance. Overall, the benefits of phases are: 1) the re-
duction of the number of possible PE placement alternatives
and thus the decreased analysis effort and 2) the ability to focus
on the important issues while abstracting over some of the
lower-level BP modeling details.

Postponement. In this dimension, we are looking at choic-
es to postpone decisions/actions by placing them in later phases
or to advance them by placing the PEs into earlier phases. Fig.
1B is a generic illustration of the temporal dimension showing
the potential movements for the process element PE currently
located in Phase N. Postponement is a well-known business
strategy (e.g., in supply chains [15]) that aims at minimizing
risks and maximizing benefits by delaying certain activi-
ties/decisions that require precise, up-to-date information until
the last possible moment. Therefore, the key idea about post-
poning process elements is the expectation that there will be
better, more precise information available at some later point,
which would allow for better, more context-sensitive out-
comes. On the other hand, advancement provides for stability
and uniformity and can be enabled by either settling on coars-
er-grained process elements that rely on less information and
thus can tolerate uncertainty or by better predictions of the cur-
rently missing information (e.g., through predictive analytics).
Additional concerns include the availability of the sensed data
required for postponed process elements and the cost and other
resources required to collect and analyze that data. For exam-
ple, when processing differentiated fare payments at the end of
trips, the system should have the infrastructure to actually
measure the distance travelled by each passenger and thus re-
quires investment of resources for its development and opera-
tion.

Similarly, business domain volatility has a significant im-
pact on system/enterprise flexibility, with highly dynamic do-
mains requiring more flexibility (and thus variability) to keep
achieving system objectives in the presence of continuous
change. For instance, moving a PE from one phase to the next
may have virtually no improvement in flexibility and other
NFRs (non-functional requirements) in stable domains (in fact,
there, we may move a PE all the way from the earliest to the
latest phase without seeing much of an impact), but may result
in very significant benefits in highly dynamic, volatile do-
mains. Note that the benefit of postponing a fare payment to a
later phase depends on the sensing capability of the system.
Also, the assumption here is that trip distances are widely dif-
ferent, thus requiring differentiated fares to be fair. If most trips
are about the same (i.e., the domain is stable from this point of
view), the benefits of the added flexibility will not outweigh
the extra complexity and cost. Overall, postponement requires
system flexibility and finer-grained sensing/analytics.

B. The Recurrence Dimension

While in the previous section we described the placement
of PEs along the timeline, the assumption was that the deci-
sions/actions are executed for every process instance. Here, we
propose another variability dimension that focuses on reusing
the outcomes of decisions and activities in multiple process

instances. To put it another way, how often should certain de-
cisions or actions be (re)executed and under what conditions?

Definitions. For instance, when considering payment for
trips, should a passenger pay every time he travels or can he
buy a monthly pass and use it multiple times? We group PEs
that have the same execution cycle (i.e., that are executed to-
gether) into process chunks called stages. A stage contains one
or more phases (e.g., in Fig. 1A, Customer Transportation is a
stage consisting of two phases). Once a stage executes, its out-
put remains available to the subsequent stages, if any, until it is
re-executed. In our notation, a stage connects to its subsequent
stage using a control flow link (a solid line) labeled with “1:N”
to indicate the cardinality of their relationship (see Fig. 2B).
We say that there exist a stage boundary between a pair of
stages connected in this way. This boundary points to the two
options for placing PEs – each with a different recurrence pat-
tern. Moving a PE across such a boundary can lead to a signifi-
cant change in the frequency with which a PE is executed, see
Fig. 2B, which shows both directions of movement (note that a
PE can be moved across multiple stages). In general, a stage
represents a (sub-)process. Thus, while in the temporal dimen-
sion we focused on the intra-process analysis, here the focus is
on inter-process relationships – relative execution/change cycle
among processes.

Using the dimension. When coming up with a stage-based
configuration, one can identify decisions and actions that can
be reused for multiple process instances (i.e., are independent
of the variations in those instances), at least for a period of
time. Once these PEs are identified, they can be put into a stage
to be reused multiple times by the subsequent stages, thus sav-
ing time, money and possibly other resources (e.g., buying a
transit pass is a convenient option that removes the necessity of
paying for every transit system use). Another heuristic for cre-
ating stages is to identify process PEs that need to be executed
with the same frequency (e.g., yearly product redesign cycles
accompanied by the revision of product manuals and marketing
materials) or are triggered by the same data-driven trigger that
fires, e.g., when a product redesign cycle is deemed necessary
by market and customer sentiment analysis, when domain

Stage M+1

...
Process
Element

PEK

...
Process
Element

PEK+1

Stage M+1

...
Process
Element

PEK

...
Process
Element

DAK+1

Process
Element

PEN

Increase Recurrence

Decrease Recurrence

1:N

1:N

Stage M

...
Process
Element

PEN-1

...
Process
Element

PEN+1

Process
Element

PEN

Stage M

...
Process
Element

PEN-1

...
Process
Element

PEN+1

Plan Route
Network

Route Planning

Assign
Vehicles to

Routes

Analyze
Route

Demand

Produce
Schedule

Route Scheduling

1:N

Assign
Vehicles to

Routes

Analyze
Route

Demand

Produce
Schedule

Plan Route
Network

Route Planning & Scheduling

B1

B2

A2

A1

Passenger Demand Data

Short-Term DemandLong-Term Demand

Fig. 2. Splitting a single stage (A1) into multiple ones (A2) to increase

flexibility. Moving process elements across a stage boundary (B).

changes are detected, etc. Certain stages are executed on-
demand, being triggered by the appropriate events (e.g., for a
taxi-like service, the Customer Transportation stage is triggered
by customers requiring transportation services).

Splitting and merging stages. Changes in the stage execu-
tion frequency or in their triggers may create or eliminate stag-
es. Thus, a special case of moving a decision/activity across a
stage boundary is the split of a stage into two or a merge of two
stages into one. For instance, in the former case, deci-
sions/activities previously executed with the same frequency
are split into two groups, each with its own recurrence pattern.
This is shown in Fig 2A, further discussed below.

Domain example. To illustrate the choices that exist along
the recurrence variability dimension, we look at how public
transit route network planning and vehicle scheduling is done
in one of our case studies. One way of doing this is to combine
route planning and scheduling into a single stage (Fig. 2A1).
There, whenever a route network needs to be redrawn (e.g.,
due to significant changes in demand), a Route Planning &

Scheduling stage is triggered. The data input for the stage (the
message flow arrow arriving at the top of that stage) contains
all the passenger demand data the company has available. In
this configuration, both route planning and scheduling are bun-
dled together – they have the same change cycle, which means
that changing schedules without a route network redesign is
impossible. Clearly, in the case of the easily predictable con-
stant demand, this configuration will work well. However, this
rigidity will hurt the ability of a transit company to change its
schedules more frequently in case of evolving passenger de-
mand, which is the case in most cases. Frequently, one would
want to be able to support seasonal schedule changes, to re-
spond to sudden demand spikes due to public attractions,
events, etc. while the routes remain the same. To address this
issue, we can unbundle the route planning and scheduling as
shown in Fig. 2A2 to create two stages, Route Planning and
Route Scheduling, each triggered independently the former
when changes in long-term demand are detected and the latter
when shorter-term demand changes. This change to the trans-
portation company’s BPA allows the route network (the out-
come of the Route Planning stage) be reused for multiple Route

Scheduling instances (again note the “1:N” annotation), thus
supporting frequent schedule updates reflecting changes in pas-
senger demand. The new BPA configuration is more flexible,
but likely incurs higher cost (e.g., the need to inform custom-
ers/employees of the changes), complexity and unpredictabil-
ity.

Moving PEs among stages. Splitting/merging stages is one
way to reconfiguring BPAs along the recurrence dimension.
The other is to move PEs among stages, as illustrated in Fig.
2B. Given the recurrence dimension on BPA with a number of
possible configurations, an organization needs to analyze them
to determine which one best fits its needs based on the level of
volatility in its business environment – e.g., balancing the cost,
complexity, and the increased unpredictability of the unbun-
dled configuration, and the inherent rigidity of the bundled one
from the example of Fig. 2A. We discuss the modeling and
analysis of BPA configuration choices in Section V.

The recurrence dimension and VP binding time. It is
important to note that the recurrence dimension at the level of
BPAs described above generalizes the binding time perspective
on variability at the BP level, which focuses on whether VPs
are bound at design time (static variability) or at runtime (dy-
namic variability). The traditional view is that static variability
limits the systems’ (or organizations’) ability to change later.
Runtime (dynamic) variability improves flexibility and adapta-
bility, but also increases costs and complexity and decreases
performance due to the need to implement multiple behaviours,
the adaptation infrastructure, etc.

The problem with this view is that it is very inflexible, with
just two extreme binding time options. To illustrate this, let us
look at an example. In the transportation domain, from the op-
erational standpoint, the decision to operate in a particular
city/area (see Service Area Selection in Fig. 5) may seem like a
design time, static decision. However, for a truly agile enter-
prise, it should be possible under certain circumstances to re-
view and possibly change this decision to expand or contract
its operations. In our approach, we view the above decision not
as being bound at design time, but as its corresponding PE be-
ing positioned into a rarely executed stage. By supporting mul-
tiple stages with different execution frequencies, the recurrence
dimension allows to periodically revisit previously made deci-
sions, thus enabling finer-grained binding options for BP-level
choices.

C. The Plan/Execute Dimension

In typical business process modeling (in the context of en-
terprise agility), the process model describes or prescribes the
process that is to be executed, but not how this process gets
determined. An important consideration for enterprise agility is
whether a decision is made during planning, or is instead left to
the execution stage. There are similar considerations for activi-
ties – whether they are part of a produced plan or not. In order
to support reasoning about the possible placement of a PE on
either side of a plan/execute boundary, our modeling frame-
work allows for the explicit representation of plan-
ning/specification activities as well as the execution of the
planned activities.

In many cases, a stage does not simply produce a result for
the subsequent stage to use, but generates a plan or a specifica-
tion to be executed by it. A plan produced by a stage either
fully specifies or constrains the behaviour of the subsequent
stages. While a plan may be produced on a per-instance basis,
fully customized for the needs of a particular process instance
and therefore to be executed just once (e.g., see Maintenance

Plan in Fig. 5), in most cases plans are reused. Therefore, plan
generation implies the presence of stages and a stage boundary.
We call the stage where the plan is produced the planning
stage, while the subsequent stage is called the execution stage.
Note that due to their nature, planning stages do not achieve
domain-specific objectives – i.e., they do not change the state
of the system or its environment. Planning and execution stag-
es are relative to each other. An execution stage B with respect
to some planning stage A can be a planning stage with respect
to some execution stage C, in which case A is used to generate
the planning procedure for B.

Full and partial plans. Within planning stages, we allow
for a range of planning possibilities: from complete (full) to
partial plans. Full plans completely specify execution in ad-
vance. They are quite restrictive and inflexible, but require no
further deliberation within the execution stage, which lowers
demands on that stage, ensures uniformity and predictability,
and allows for high degree of optimization at the aggregate
level. E.g., in Fig. 3A, the (bus) route planning stage deter-
mines both the stops along the transit route as well as the pre-
cise paths between them. When a driver executes the plan, he
just has to follow the route and there is no additional planning
to be done. This certainly simplifies the job of the driver, but
also makes it impossible to make local adjustments to avoid
problems on the road. Graphically we link planning stages to
execution stages with data flow links annotated with X (for
“eXecution”) and showing what specifications are being sent to
be executed by the execution stages (e.g., Complete Route in
Fig. 3A1). The flow enters the execution stage from the top as
per convention that we borrowed from the IDEF0 notation
[13].

Unlike complete plans, partial plans allow for separation of
things that are more stable from those that are more dynamic.
Here, the output of a planning stage is a partial
plan/specification that allows for a range of behaviours within
the execution stage by leaving some previously preplanned
choices open by moving them from a planning stage to an exe-
cution one. E.g., in Fig. 3A2, a portion of route planning,
namely the planning of paths among stops is moved across the
plan/execute boundary to Customer Transportation stage. This
allows the driver to identify a path to the next stop based on the
current context (traffic and weather conditions), thus increasing
the system’s ability to deal with largely unpredictable changes.
At the same time, the driver’s job is harder and there is the
need monitor and analyze road conditions to calculate paths to
next stops.

The concept of a partial plan covers such notions as busi-
ness rules and constraint sets. The relationship between a con-
troller and its target process where the former manipulates the
parameters of the latter can also be seen as the plan/execute
relationship, with the output of the planning stage indicating
the bindings of control parameters in the execution stage.

Variability in Plan/Execute dimension. The general pat-
tern for crossing the plan/execute boundary in both directions
is shown in Fig. 3B (there, the specification Spec A is more
restrictive than Spec B). As already mentioned, decreasing plan
completeness increases flexibility and ability to handle change
when executing the plan. It allows to separate stable and vola-
tile portions of specifications. At the same time, this puts pres-
sure on the execution stage to monitor for change (which might
incur data collection and processing costs) and to complete the
partial specification provided to it by the planning stage based
on the current context. To summarize, in terms of variability
that exists in this dimension, the main focus is on analyzing
how much is to pre-plan in the planning stage and how much is
to leave to the execution stage to achieve the desired level of
flexibility in an organization.

It should be clear from the discussion above that in the
Plan/Execute dimension the planning stage can be seen as be-
ing “about” or as “operating on” the execution stage, thus cre-
ating a higher-order effect when one process constructs anoth-
er. The benefits of this include the ability to represent and ana-
lyze the capabilities of organizations/systems to evolve in the
face of changes, which is crucial for analyzing sustainability of
systems in highly volatile domains.

D. The Design/Use Dimension

The power of technology relies crucially on the creation of
enduring capabilities that can be exploited by a user who does
not know how the capability is constructed. In typical process
and enterprise models, tools, designs and other capabilities can
be represented as modeling artifacts and utilized in various
(e.g., BP) models. These capabilities are static in a sense that
they are assumed to have been externally developed and there-
fore cannot be modified. On the other hand, to support endur-
ing enterprises and IT systems, one needs to be able to repre-
sent those artifacts as evolvable objects that can be periodically
redesigned to accommodate changes in the external environ-
ments and in business or system requirements. Representations
of design, development or other tool/skill/etc. acquisition pro-
cesses need to be integrated into enterprise architectures to al-
low for modeling of evolving capabilities available to the en-
terprise and thus to support continuous design [7][11]. For in-
stance, being able to evaluate tool redesign cycles relative to
other changes in the enterprise allows the identification of ri-
gidities in organizations and the evaluations of cost-effective
ways to remove those. Moreover, not unlike the previously
discussed plan/execute dimension, the design/use variability
dimension supports the identification and analysis of
tool/capability design variations from the point of view of their
flexibility.

Definitions. In the design/use dimension, designs, tools or
other capabilities are produced by the design stage and are
used within the use stage (see Fig. 4A). A design/use boundary
is a stage boundary since a tool, once designed, can be used

Identify
Stops on

Route

Plan Paths
to Stops

Route Planning

Identify
Stops on

Route

Route Planning

Move
Customer

Get
Customer
On Board

Customer Transportation

Plan Path
to Next

Stop
... ...

Move
Customer

Get
Customer
On Board

Customer Transportation

... ...

Complete Route X

Partial Route X

Execution Stage

...
Process
Element

PEN

...
Process
Element

PEN+1

XPlanning Stage

...
Process
Element

PPEM

...
Process
Element
PPEM+1

Spec A

Execution Stage

...
Process
Element

PEN

...
Process
Element

PEN+1

XPlanning Stage

... ...
Process
Element
PPEM+1

Spec B

Process
Element

PPEM

Increase Plan Partiality

Increase Plan Completeness

A1

A2

B1

B2

Fig. 3. Complete (A1) or partial (A2) planning choices for route planning.

Moving process elements across a plan/execute boundary (B).

multiple times, by multiple instances of subsequent stages. To
support non-technical capabilities, we allow skills to be ac-
quired as capabilities through the appropriate learning rather
than development processes. Graphically, design stages are
linked to use stages through data flows annotated with U (for
“use”), which enter the latter at the bottom following the
Mechanism arrows from IDEF0. The exact circumstances of
the tool usage are not specified, thus leaving the use stage the
freedom to use the tool as appropriate. Having a tool simplifies
the achievement of business/system objectives in use stage.
Moreover, the actor (human or artificial) using the tool does
not have to know its internals. An example of such a tool is an
automatic transmission, which can be used by drivers in place
of a manual one while requiring no knowledge of how it actu-
ally shifts gears. Even though it is less fuel-efficient and less
adaptable to the various road conditions and driving styles than
a manual transmission, an automatic gearbox is simpler to op-
erate and thus has fewer demands on the use stage.

Flexibility in Design/Use dimension. When looking at
possible process architecture configurations along this variabil-
ity dimension, our focus is on the flexibility of the
tool/capability being produced in the design stage – i.e., how
generic or single-purpose it is. The more single-purpose (less
flexible) the tool is, the simpler it is to use and the more opti-
mized it can be – for the general case, not for its actual use set-
ting as the tool cannot be customized to take advantage of this
contextual information.

Example. Fig. 4A shows how the design/use boundary can
be crossed in both directions. Fig. 4A1 illustrates what it means
to move a process element from a use phase to its design phase.
In case of an activity this means that the tool takes on more
functionality, thus increasing the level of automation in the use
stage. In case of a decision (BP-level VP), it means that it is
bound in the design stage and becomes fixed in the use stage,
thus reducing the customizability of the produced tool (Design

A). On the contrary, moving an activity in the other direction
(Fig. 4A2) reduces the level of automation available to the use
stage, while moving a decision increases the level of customi-

zability of the tool since the decision is no longer built into the
tool and can be changed during its use. In the public transporta-
tion domain, an example illustrating the above moves is the
design/use of subway trains. If a decision on the length of
trains (in terms of the number of cars) is made in the design
stage, then the trains cannot be customized to reduce their size
when the demand is low (e.g., on weekends). When the deci-
sion on train length is left outside of the design stage, the trains
are more customizable and can be adjusted for each use in-
stance. Thus, tool customization is done in the use stage by
making decisions that are left unbound in the design stage.

In addition to flexibility/customizability, when analyzing
choices in the design/use dimension, we pay close attention to
a number of other factors, chief among them is the cost of the
tool/capability. The cost is incurred either through the de-
sign/development process or through tool acquisition (e.g., of a
COTS system). Development of skills, obviously, has costs as
well. Renting or leasing tools is a way to avoid the high upfront
costs. Similarly, cloud-based IT services can be used to make
tool/capability acquisition affordable. Moreover, with cloud-
based services (or with any service-based capabilities), tool
modifications (e.g., in terms of its power, processing ability,
scalability, etc.) are easy and do not require redevelopment.

Evolving Capabilities. As discussed earlier in this section,
the key reason for introducing the design/use boundary is to
gain the ability to model and analyze changes in capabilities in
continuously evolving systems. The assumption is that the de-
sign stage will not be executed just once to produce a tool or a
capability. Rather, driven by changing business needs and ex-
ternal environments, as well as based on the feedback from the
use of the current version of the tool, the design stage can be
re-executed when appropriate. This will produce/acquire new
versions of the capability, thus evolving the enterprise and/or
its systems. Note that frequently the use stages will need to
change in concert with design stage re-executions to account
for tool/capability evolution. This could be accommodated by
the configuration shown in Fig. 4B.

To illustrate changes in capabilities, in Fig. 5, which shows
an overall to-be process architecture for the public transporta-
tion domain, Vehicle Acquisition (a design stage w.r.t. Custom-

er Transportation) gets the information on the required capacity
from the Route Planning stage as its input. Based on this, it
produces vehicle specifications and proceeds to acquire those
vehicles. When demand for transportation services increases to
the point where new vehicles become needed, Vehicle Acquisi-

tion will be triggered to procure those, therefore changing the
transit company’s capability to transport passengers to match
changes in demand.

E. Process Architecture Model with Relationships from Four

Dimensions

Now that we have discussed the four dimensions, we pre-
sent a complete BPA in terms of interconnected stages, which
can be viewed as separate processes within the architecture
(Fig. 5). This is the overall BPA for a public transit company,
which is innovative in its use of analytics and monitoring (in-
cluding real-time traffic/weather and demand data), wants to be
competitive on price and quality of service with other services
and flexibly meet varying passenger demand. The BPA im-

Use Stage

...
Process
Element

PEN

...
Process
Element

PEN+1

U

Design Stage

...
Process
Element

DPEM

...
Process
Element
DPEM+1

Design A

Use Stage

...
Decision/
Activity

DAN

...
Decision/
Activity
DAN+1

U

Design Stage

... ...
Decision/
Activity
DDAM+1

Design B

Decision/
Activity
DDAM

Increase Customizability/Decrease Automation

Decrease Customizability/Increase Automation

U

Design
Stage

Design

Planning
Stage

1:1
Execution/
Use Stage

Usage Plan X

A1

A2

B

Fig. 4. Moving process elements across a design/use boundary (A). Use

stage evolution driven by changes in tool design (B).

plements the more flexible variants from the examples dis-
cussed in Section IV aiming to support agile transportation
services. The model emphasizes inter-process relationships and
while we capture PEs in stages, we abstract from modeling
phases. The model captures how stages relate to each other
using the relationship types introduced in this paper as well as
the data supplied to and exchanged among the stages. Given a
stage, its data input can arrive from another stage (e.g., Service

Price) or can be obtained from the outside through monitoring
or by other means (e.g., Competitor Pricing). The model gives
an overall view on the organization and its BPs, shows where
reuse happens, where plans are created and how they are exe-
cuted and how tools/capabilities are utilized. At the same time,
the model provides the basis for what-if analysis, with potential
configurations generated by moving PEs among stages and/or
phases.

V. ANALYZING PROCESS ARCHITECTURE ALTERNATIVES

In the previous section, we presented the four dimensions
of variability that help us identify and structure choices in
BPAs. We also hinted at how choices along the four dimen-
sions can be evaluated to help with the selection of alternative
architectures that can handle change while attaining important
quality objectives. In this section, we further elaborate on the
modeling and analysis of BPA configuration options and pro-
vide example scenarios.

A. Representing and Analyzing Business Process Architecture

Alternatives with Goal Models

In our approach, we use goal models to represent and ana-
lyze choices in BPA along the four variability dimensions.
Goal models are heavily used in Requirements Engineering to
capture stakeholder and system objectives. Their key features

are the ability to represent variability in achieving goals using
OR decompositions (exclusive ORs in our case) and to use
explicitly modeled NFRs to analyze goal refinement choices.
Here, we adapted goal models to represent possible placements
of PEs within the BPA along any of the four variability dimen-
sions together with the evaluations of those choices against the
relevant NFRs. A goal model focuses on analyzing the place-
ment of a PE within a BPA, so multiple such models will be
used to come up with a complete architecture (such as the one
in Fig. 5).

Identifying BPA choices. To illustrate the development of
such a goal model and its use for placing a PE along one of the
dimensions, we look at the transit trip payment options dis-
cussed in Section IV.A. The goal model provides the intention-
al (as opposed to the operational) perspective and captures the
objective for the PE in question as the root goal (see the top
Get Customer Payment node in Fig. 6A) and shows how it is
refined when being achieved in different stages/phases of the
BPA. For example, Fig. 6A shows three alternative phases of
Customer Transportation stage where Get Customer Payment
PE can be placed. We use the @P:PhaseName and
@S:StageName annotations to indicate where in the BPA PEs
are to be placed. Each decomposition explores alternative PE
placements within a BPA along one of the four variability di-
mensions. Thus, we annotate them with [T] for temporal, [R] for
recurrence, [D] for Design/Use, and [P] for Plan/Execute, as
shown in Fig. 6.

How we identify choices for goal refinements is based on
the dimension under consideration. For the recurrence dimen-
sion, the alternative refinements are the stages where the PE
can be placed while respecting the existing constraints among
the PEs – e.g., a PE must be placed before the PEs that rely on

Move
Customer

Get Vehicle to
Customer

Get
Customer
Payment

Unload
Customer

Get
Customer

Order
(Optional)

Get
Customer
On Board

Customer Transportation

Plan Route
Network

Route Planning

Assign Vehicles
to Routes

Analyze
Route

Demand

Produce
Schedule

Route Scheduling

Produce
Vehicle

Specifications

Acquire
Vehicles

Vehicle Acquisition

Design Ad
Campaign

Determine
Price

Range

Marketing & Advertising

Analyze
Current

Staff
Hire Staff

Staff Hiring

Select Service
Area

Service Area Selection

Select Service
Type

Service Type Selection

1:N

1:N

Vehicle Maintenance

Analyze
Vehicle

Inventory

1:N

Train
Drivers

Train
Mechanics

Training

1:N

Required
Capacity

Required
Staffing

1:N

Service
Vehicles

1:N

RT Vehicle
Telemetry

RT Traffic,
Road Conds &

Demand

Schedule

X

Routes

X
Vehicle

U

Analyze
Customer
Sentiment

Sentiment Analysis

Future Demand
Analysis

SN Demand Analysis

Service
Price

Weather,
Road

Conditions

Gov.
Population

Data

Analyze
Competitor

Prices

Adjust
Prices

Price Adjustment

Customer
Satisfaction

Level

Price Range X

Satisfaction
w/ Schedule

Plan Path
to Next

Stop

Vehicle Data Analysis

Maintenance Plan (1:1)

X

Plan
Mainte-
nance

Analyze
Vehicle

Telemetry

Vehicle Availability
Demand

Projection

Gov.
Population

Data,
Competition

Service
Demand

Projection

Legend

Budget

Social
Network

Data,
Surveys

Competitor
Pricing

Recurrence
Stage Process

Element
Data
Input 1:N Plan

X

Plan/Execute

Design

U

Design/Use

Social
Network

Data

Fig. 5. The business process architecture for a public transit company.

its output. The temporal dimension focuses on the phases
where the PE can be placed. Similarly, constraints must be re-
spected. In Fig. 6A, customers can pay before (@P:Before

Travel), during or after travel. Note that before deliberating on
which phase to place a PE into, we need to determine its stage.
Thus, we have frequent patterns of BPA-level analysis, such as
[R] followed by [T]. In Fig. 6A, we do not show the [R]-type
analysis, but indicate that the root goal is to be placed in Cus-

tomer Transportation stage.

For the Plan/Execute and Design/Use dimensions, the
choice is binary – whether the PE is inside or outside of some
particular planning or design stage. Here, once a plan or a de-
sign is produced, it is available to all the subsequent stages.
Thus, if a PE is to be placed on the “execute” or “use” side of

the plan-execute or design-use boundary respectively, we must
further deliberate on which stage is the best for the PE, and
furthermore, which phase within that stage to put it in. This is
illustrated in Fig. 6B, which shows the model for analyzing
three different dimensions for the Plan/Execute case.

In our approach, we separate the “essence” of a PE (mod-
eled as the root goal in Fig. 6A) – i.e., what, say, executing an
activity helps us achieve – from its implementation (the sub-
goals in Fig. 6A) since that implementation can change from
stage to stage and from phase to phase. E.g., the fare payment
procedure, while conceptually achieving the same objective,
may be quite different in various places of a BPA. Due to these
variances, the parameters in goal nodes modeling alternative
PE placements can vary to represent the different data these
implementations operate on. E.g., for customer payments done
before or during travel (Fig. 6A) the only information they can
operate on is the basic fare. However, the variant executed after
the trip operates in a context where the distance travelled is
already known, so it can calculate a more precise fare based on
that, thus achieving payment fairness (note the contribution
link). Moving towards later stages/phases (i.e., increasing re-
currence and postponement respectively) supports more con-
textual information, thus adding to the number of goal parame-
ters in our models.

Capturing and analyzing quality objectives. As the last
component of the model, we elicit quality objectives used for
evaluating PE placement choices. These are modeled as soft-
goals and the evaluation is done with the help of contribution
links with the help of contribution links. The evaluation can be
qualitative, with a range of possible contribution values, such
as help(+)/hurt(–), make(++)/break(--) (as in Fig. 6A). For ex-
ample, getting payment after travel achieves (makes, ++) fair-
ness, improves (+) flexibility, while negatively impacting (–)
cost and security. Then, a softgoal is satisficed if there is suffi-
cient positive and little negative evidence for this claim. Quan-
titative or finer-grained qualitative evaluations are possible
depending on the available knowledge. Frequently, desired
NFRs are conflicting and cannot be optimized for at the same
time. Softgoal prioritization will help resolve these conflicts
and arrive at sensible recommendations.

Handling trade-offs. As hinted in Section III, moving PEs
along each of the four discussed dimensions affects a number
of NFRs. The set of relevant NFRs is different for each dimen-
sion. Some of the NFRs are domain- and PE-independent. The
most common NFRs of this type and the positive/negative ef-
fects of PE movement on them are shown in Table 1 and cost
and flexibility are also modeled in Fig. 6A. It can be seen that
in general, moving PEs to later stages and phases in the BPA as
well as to use and execution stages improves flexibility, cus-
tomizability, and context awareness of enterprises and their
systems. These gains are offset by the increase in cost to main-
tain that flexibility (e.g., the flexible infrastructure), the de-
crease in stability (and predictability) and fewer opportunities
for reuse. On the other hand, moving towards earlier stag-
es/phases as well as increasing plan completeness and design
automation improves reuse, stability, cost, etc., while negative-
ly impacting flexibility and the ability to accommodate chang-
es. As previously mentioned, these trade-offs need to be re-
solved based on two things: 1) the dynamics of the business

TABLE I. EFFECTS OF MOVING PES ALONG VARIABILITY DIMENSIONS

Dimension PE Movement Effect of Movement on NFRs

Temporal

Postpone
+: flexibility, context-awareness; –: cost,

complexity, stability

Advance
+: cost, complexity, stability; –: flexibility,

context-awareness

Recurrence
Increase Recurrence +: flexibility; –: cost, reuse, stability

Decrease Recurrence +: cost, reuse, stability; –: flexibility

Plan/
Execute

 Move to Plan +: plan completeness, stability

Move to Execute +: plan partiality, flexibility

Design
/Use

Move to Design +: automation; –: customizability

Move to Use +: customizability; –: automation

[T] [T]

[R]

Get Customer
Payment

@S:Customer
Transportation

Get Customer
Payment (Basic Fare)

@P:Before Travel

Get Customer
Payment (Travelled

Distance, DistanceToFare
Mapping)

@P:After Travel

Security
(Payment)

Fairness
(Payment)

Flexibility
(Payment)

Cost
(Payment)

Legend

Softgoal
Functional

Goal

Alternative
Refinement

Softgoal
Contribution

@P:PhaseName
@S:StageName

Location in BP
Architecture

[T]

G

GE

[P]

GE11@P:E11

GP2@P:P2

[T]

GP@S:P

GP1@P:P1 GE1@S:E1 GE2@S:E2

GE12@P:E12 GE21@P:E21 GE22@P:E22

A

B

Get Customer
Payment (Basic Fare)

@P:During Travel

Variability
Dimension

[T]

Fig. 6. Analyzing the temporal placement of customer payment PE (A).

Generic goal model for positioning a PE with the objective G along the
Plan/Execute dimension (goal parameters are omitted) (B).

domain – what changes in the domain, how frequently, etc.; 2)
the enterprise’s prioritization of the above-mentioned quality
criteria.

Additionally, there are domain-specific NFRs that are of
relevance to the analysis of some particular PE. For fare pay-
ment, these are security and fairness (Fig. 6A). Note that in
Fig. 6A, softgoals are parameterized with the particular area of
focus, customer payments. Goal models allow for representing
and analyzing how the satisficing value of, e.g., Securi-

ty(Payment) affects the overall Security NFR. This can be used
to estimate the impact of local BPA adaptations on the sys-
tem/organization-wide quality objectives.

Once the analysis of BPA alternatives is done, a place in
the BPA (i.e., a stage and its phase) is identified for the PE un-
der consideration. This represents the delta between the as-is
and to-be BPA – an instruction for evolving the architecture.

B. BP Architecture Adaptation Scenarios

Now that we have shown how one can analyze the possible
movements of PEs within a BPA, we turn to the question of
whether and when an architecture needs to change. The main
objective of our approach for designing BP architectures is to
help organizations determine the right amount of flexibility to
support based on the volatility in their business domains as
well as their own preferences and priorities. They need to find
the balance between flexibility and stability/cost, etc. Once
designed, a BPA has some amount of flexibility to support cer-
tain types of changes in the domain.

A simple example is the payment in passenger transporta-
tion. The already discussed after-trip payment option supports
widely different trip distances without the need for a BPA re-
configuration. As long as the dynamics of the domain justifies
that solution, i.e., the domain assumption that passengers gen-
erally take trips of quite different distances holds, that options
will be adequate considering the added complexity and cost.
However, if at one point the analysis shows that passengers
mainly take trips of about the same distance (e.g., from a num-
ber of equidistant suburbs to downtown and back), the flexibil-
ity of the variable fare option becomes too flexible for the do-
main and its cost and complexity can no longer be justified.
This situation will require an invocation of the BPA analysis
process and a reconfiguration of the BPA.

Another example involves public transit route planning.
When a long-term demand changes (e.g., due to a population
shift), the BPA fragment in Fig. 2A2 is able to handle this
change since by (re-)executing the Route Planning stage to add
or alter routes. The assumption here is that these are rather rare
changes informed by long-term demand. On the other hand, if
a company wants to be able to frequently introduce special
routes aimed at handling passenger demand due to special
events (festivals, concerts, etc.), then the above assumption no
longer holds. This case warrants a BPA reconfiguration to im-
prove route planning flexibility – moving towards a configura-
tion in Fig. 2A1, but with the added expectation that routes will
be changing frequently.

In general, BPA reconfiguration takes place when domain
dynamics changes – i.e., not when some change happens, but

when the rate of change (or sometimes the range of change)
becomes different.

VI. RELATED WORK

“A business process architecture is a collection of business
processes and their interdependencies with each other” [5].
That notion has been discussed for a while [4][5]. During the
years various sets of relationship among business processes
have been identified. For example, Dumas et al. [4] discuss the
notion of a sequence in which the output of one process is used
by another process, hierarchy in which the details of a process
are further elaborated into sub-processes, reference in which a
process is using (as an initial step) pre-existing process specifi-
cation. The authors also provide guidelines of when to split
processes, in particular in cases of difference in execution fre-
quencies and time intervals, difference in location, and other
such granularities. Eid-Sabbagh et al. [5] suggest another view
over relationships among processes. These include “composi-
tion, which models one business process being composed of a
number of other BPs, also called the sub-processes”; “speciali-
zation”, which represents that one business process specializes
another; “trigger, which represents that one business process
causes another BP to instantiate and start”; and “information
flow, which represents that information or other objects flow
from one business process to another”.

Lately, Dijkman et al. [3] summarize the existing relation-
ships among BPs as follows: The decomposition relation ex-
presses that a process is decomposed into multiple sub-
processes; the specialization relation expresses that one process
is a specialized version of another; the trigger relation express-
es that the execution of one process can trigger the execution of
another; and the use relation expresses that one process pro-
vides services that are used by another. In addition, the authors
classified approaches for designing BPAs: goal-based, action-
based, object-based, and function based. All approaches utilize
a subset of these relationships when analyzing the business
process architecture.

In the enterprise architecture area, the notion of BPA is re-
ferred as business process cooperation. For example, in Ar-
chiMate [14] such cooperation includes the following aspects:
causal relationships between business processes, mapping of
business processes onto business functions, realization of ser-
vices by business processes, and the use of shared data. These
aspects can also imply on the type of relationships among BPs.

Another domain that business process architecture may
benefit from is the area of BP variability, which has been stud-
ied for over two decades [1]. In this domain, the key concepts
are the realization relationships among BPs and the binding
time of such processes. In particular, this domain is of interest
as it refers to alternatives within BPAs and the ways of decid-
ing upon the most suited architecture. Similar situation occurs
in software product lines. For example, Svahnberg et al. [17]
state a major reason to support variability is to postpone con-
crete design decisions to the latest point that is economically
feasible. In general, early binding facilitates better static analy-
sis while late binding enables configuration by users and post-
deployment updates [1]. This is also confirmed by Subrama-
niam et al. [18] who argue that positioning decision points as
early as possible within the process timeline can improve pro-

cess efficiency by decreasing their uncertainties and identifying
redundant activities. Other approaches examine variability
from the requirements point of view and refer to intentional
variability in BPs, e.g., [9][10]. In particular, these approaches
looked at the variability in the way objectives can be achieved
as the means to develop customizable, adaptive, and evolving
systems. The existing approaches propose various ways to
handle variability. However, they all focus on variability at the
same level of abstraction.

Recently, various approaches that weave requirements and
BPs have emerged. E.g., Santos et al. [19] recruit NFRs and
contexts for the sake of configuring business processes. Usual-
ly, process configuration is done at design time, yet in that pa-
per the authors suggest to have it tailored during runtime.

Our approach focuses on variability management and anal-
ysis at the level of BPAs. Each set of choices for placing PEs
into stages/phases (such as the one in Fig. 6) can be seen as a
VP at that level, and binding all such VPs along multiple di-
mensions produces a complete BPA. Here, we gain the ability
to represent and analyze possible BPA configurations using
variability and goal-based techniques. Also, if we consider PEs
that are decisions themselves – i.e., VPs at the process level,
then phases/stages where these VPs can be placed provide use-
ful (meta-level) options on the binding of these BP-level VPs
in terms of when (temporal dimension) and how often (recur-
rence dimension) they are to be bound. Thus, these phas-
es/stages offer domain-specific options for binding VPs, which
are much richer than "runtime" or "design time" that are usual-
ly discussed in variability research (e.g., [6]).

Within the domain of process-aware information system,
Weber et al. [22] distinguish among four important dimensions
in which change might occur. They use the notion of patterns
for changes in predefined regions to define these dimensions
and include (1) the late selection of process fragments, which
refers to runtime binding of BPs; (2) the late modeling of BP
fragments, which refers to modeling BPs in later stages; (3) the
late composition of process fragments, which refers to the crea-
tion of ad-hoc BPs; and (4) the multi-instance activity which
refers to the number of time an activity is executed at runtime.
That work implies two new business process relationships:
creation, in which a process may create another process; recur-
rence, in which a process may be followed by another process
several times. While somewhat similar to our proposal, that
approach only considers design time and runtime (compared to
the flexibility offered by stages in our approach), mainly con-
siders a specific business process, and neglects trade-offs (with
respect to NFRs) among the various options.

In our own work, we have previously outlined an enter-
prise-level framework that allows organizations to utilize
emergent technologies such as the cloud, big data analytics,
etc. as well as feedback loops to engineer BPAs that would
support flexibility and agility in the face of domain changes
and shifting expectations [12][23]. In this paper, we elaborate
on one portion of that proposal.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss some of the limitations of the
approach, outline issues, and propose enhancements.

The four dimensions for BPA design can be viewed as
supporting both adaptation and evolution of BPs and BPAs
within enterprises. The temporal and recurrence dimensions
are about identifying, analyzing, and implementing changes in
BPA configurations supported by existing set of processes and
enterprise/IT capabilities. They help determine which
configuration from the space of BPA alternatives best matches
the current business domain dynamics, thus helping enterprises
adapt to changing circumstances. The next two dimensions go
further and allow for modeling and analysis of options for
evolving enterprises and their systems to accommodate more
significant and unpredictable changes. This is done by enabling
modifications of behaviours represented through changing
plans or specifications (the plan/execute dimension) and
through supporting modifications of capabilities (designs,
tools, skills, etc.) used to achieve business and system objec-
tives (the design/use dimension).

A good BPA must reflect the properties of the domain, es-
pecially those related to the changes within it. Assumptions
about the fluctuating passenger demand, frequently changing
weather/traffic conditions, etc. represent the expectations about
the domain dynamics and need to be carefully analyzed to jus-
tify the architecture and analyze the flexibility that it affords
for dealing with this volatility. While we briefly discuss the
role of domain assumptions in Section V.B, they are not yet
explicitly captured in our approach. We are currently working
on formal modeling of such assumptions, which paves the way
for the precise specification of conditions that trigger adapta-
tions already supported by the current BPA (e.g., a change
causing a stage re-execution) and those requiring BPA recon-
figuration (e.g., a change in domain dynamics).

There is a lot to be said about integrating data into this
approach. Monitoring and analyzing the external environment
of an organization is important for creating an agile enterprise
with flexible IT systems as we need to recognize context
changes, failures, etc. Availability and volatility of data plays a
crucial role in positioning PEs within a BPA. As we have al-
ready seen, the actual distance traveled by a passenger is only
available after the end of the trip. Also, while some infor-
mation can be reused by thousands operational process in-
stances (e.g., the current sales tax), other data, such as the price
of fuel, is more volatile and PEs that depend on it must be
placed into more frequently executed stages. We are looking at
enhancing the identification of data relevant for each PE and at
capturing the effects of data availability and volatility on posi-
tioning the relevant PEs within a BP architecture.

While performing the analysis procedure described in
Section V, it is easy to see that it favours local optimization (at
the level of individual PE), possibly at the cost of globally
optimal performance. Obviously, one needs to keep the overall
configuration of the BPA in mind and evaluate the effects of a
local change on its NFRs. Having acknowledged this, we are
working on ways to mitigate this problem by, e.g., integrating
multiple goal models of the type presented in Fig. 6.

In our approach, we allow for some model incompleteness
to reduce the complexity of modeling and analysis and to focus
on important aspects of the domain. For instance, the analysis
of BPAs using our approach does not require goal models to be

constructed for all the PEs. There are certain portions of the
BPA that can be considered stable given the dynamics of the
business domain. We do not need to construct goal models and
analyze BPA alternatives in the stable areas. Only the portions
of a BPA that need to be more flexible to accommodate change
in certain areas of the environment will be the subjects of our
analysis. Similarly, many finer-grained BP modeling details are
below our threshold of interest, which is a phase. Thus, these
details do not feature in our models and in the analysis.

We view modeling and analysis complexity as an important
issue for the approach. This is why (as stated above) we focus
variability modeling and analysis on the areas of BPA where 1)
change is expected and 2) where high level of flexibility is
needed. This would limit the number of possible BPA configu-
rations. To help with the goal-based analysis of alternatives, we
plan to utilize both top-down and bottom-up goal model analy-
sis algorithms that have been successfully used in a variety of
domains and applications (e.g., in [9] for BP configuration).

In terms of evaluating the approach, we are applying it in
several domains that exhibit not only a high rate of change, but
also feature frequent changes in domain dynamics (i.e., the
second-order change) with the aim of further validating the
expressiveness and usability of the notation and the analysis
capabilities of the proposal. Furthermore, we are planning to
compare the expressivity and comprehensibility of our model-
ing notation with those used for representing BP and enterprise
architectures, specifically focusing on both model construction
and the use of models to identify/analyze architecture recon-
figuration options.

VIII. CONCLUSION

In this paper, we presented an approach for specifying and
analyzing business processes architectures to allow organiza-
tion to be better aligned with the dynamics of their business
domains and their desired level of flexibility. The approach
introduces four dimensions, namely, temporal, recurrence,
plan/execute, and design/use, along which the BPA is consid-
ered. We adopted goal-oriented analysis of architecture alterna-
tives to identify the best BPA in the context of the organiza-
tion. Based on our experience with the approach in the trans-
portation (discussed here), internet retail, and automotive do-
mains, we found the approach useful for generating feasible
BPA alternatives, for analyzing the trade-offs among these, and
as the basis for dynamically changing BPAs. We have identi-
fied a research program to further refine and evaluate the ap-
proach.

REFERENCES

[1] V. Chakravarthy and E. Eide. Binding Time Flexibility for Managing
Variability, In Proc. the OOPLSA 2005 Workshop on Managing

Variabilities Consistently in Design and Code (MVCDC 2), 2006.

[2] J. Dietz. Enterprise Ontology: Theory and Methodology. Springer,

Berlin-Heidelberg, 2006.

[3] R. Dijkman, I. Vanderfeesten, and H. Reijers. Business process
architectures: overview, comparison and framework. Enterprise

Information Systems, DOI: 10.1080/17517575.2014.928951.

[4] M. Dumas, M. La Rosa, J. Mendling and H. Reijers. Fundamentals of

Business Process Management, Ch.2. Springer-Verlag, Berlin-
Heidelberg, 2013.

[5] R. Eid-Sabbagh, R. Dijkman and M. Weske. Business process
architecture: use and correctness. In Proc. 10th International Conference

on Business Process Management (BPM'12), Springer-Verlag, Berlin-
Heidelberg, 65-81, 2012.

[6] M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou.

Variability in Software Systems – A Systematic Literature Review.
IEEE TSE, 40(3), pp. 282–306, 2014.

[7] R. Garud, S. Jain, and P. Tuertscher. Incomplete by Design and

Designing for Incompleteness. In Design Requirements Engineering: A
Ten-Year Perspective. Springer, Berlin-Heidelberg, pp. 137–156, 2009.

[8] A. Hallerbach, T. Bauer and M. Reichert. Capturing Variability in

Business Process Models: the Provop Approach. J. of Soft. Maint. and
Evol.: Research and Practice, 22(6-7), pp. 519–546, 2010.

[9] A. Lapouchnian, Y. Yu and J. Mylopoulos. Requirements-Driven

Design and Configuration Management of Business Processes. In Proc.
5th International Conference on Business Process Management (BPM

2007), Brisbane, Australia, Sep 24-28, 2007.

[10] A. Lapouchnian, Y. Yu, S. Liaskos and J. Mylopoulos. Requirements-
Driven Design of Autonomic Application Software. In Proc. 16th

Annual International Conference on Computer Science and Software
Engineering CASCON 2006, Toronto, Canada, Oct 16-19, 2006.

[11] A. Lapouchnian, E. Yu, S. Deng. Responding to Ongoing Change –
Challenges for Information Systems Modeling. International Journal of

Information System Modeling and Design (IJISMD), 5(4), 2014.

[12] A. Lapouchnian and E. Yu. Exploiting Emergent Technologies to Create
Systems that Meet Shifting Expectations. In Proc. Emergent

Technologies Track at CASCON 2014, Toronto, Canada, 2014.

[13] NIST. Integration Definition for Function Modeling (IDEF0), 1993.
Retrieved from http://www.idef.com/pdf/idef0.pdf

[14] Open Group, The. ArchiMate 2.1 Specification, 2013. Retrieved from

http://pubs.opengroup.org/architecture/archimate2-doc/

[15] J. Pagh, and M. Cooper. Supply Chain Postponement and Speculation
Strategies: How to Choose the Right Strategy. Journal of Business

Logistics, 19(2):13-33. 1998.

[16] J. Roche. Adopting DevOps practices in quality assurance.
Communications of the ACM, 56(11):38-43, 2013.

[17] M. Svahnberg, J. van Gurp and J. Bosch. A taxonomy of variability
realization techniques: Research Articles, Software—Practice &

Experience, v.35 n.8, p.705-754, July 2005

[18] S. Subramaniam, et al. Improving process models by discovering
decision points, Information Systems, 32(7), 2007, pp. 1037–1055.

[19] E. Santos, J. Pimentel, T. Pereira, K. Oliveira, J. Castro. Business

Process Configuration with NFRs and Context-Awareness. ER@BR,
2013.

[20] TOGAF Version 9.1. 2011. Retrieved from:

http://pubs.opengroup.org/architecture/togaf9-doc/arch/

[21] F. Vernadat, F. UEML: Towards a Unified Enterprise Modelling
Language. International Journal of Production Research, 40(17):4309-

4321, 2002.

[22] B. Weber, M. Reichert, and S. Rinderle-Ma. Change Patterns and
Change Support Features – Enhancing Flexibility in Process-Aware

Information Systems. Data and Knowledge Engineering 66(3):438–466,
2008.

[23] E. Yu and A. Lapouchnian. Architecting the Enterprise to Leverage a
Confluence of Emerging Technologies. In Proc. 1st International

Workshop on Advancement from Confluence of Emerging Technologies
(ACET 2013) at CASCON 2013, Toronto, Canada, 2013.

http://dl.acm.org/citation.cfm?id=1070905&CFID=458377398&CFTOKEN=33538302
http://dl.acm.org/citation.cfm?id=1070905&CFID=458377398&CFTOKEN=33538302
http://dl.acm.org/citation.cfm?id=1070905&CFID=458377398&CFTOKEN=33538302
http://ceur-ws.org/Vol-1005/erbr2013_submission_29.pdf
http://ceur-ws.org/Vol-1005/erbr2013_submission_29.pdf

