
Software-Defined Caching

[Technical Report CSRG-626]

Ioan Stefanovici⋆, Eno Thereska, Greg O’Shea, Bianca Schroeder⋆, Hitesh Ballani, Thomas

Karagiannis, Antony Rowstron, Tom Talpey†

University of Toronto⋆, Microsoft Research, Microsoft†

Abstract

In data centers, caches work both to provide low IO laten-

cies and to reduce the load on the back-end network and

storage. But they are not designed for multi-tenancy; system

level caches today cannot be configured to match tenant or

provider objectives. Exacerbating the problem is the increas-

ing number of un-coordinated caches on the IO data plane.

The lack of global visibility on the control plane to coor-

dinate this distributed set of caches leads to inefficiencies,

increasing cloud provider cost.

We present Moirai, a tenant and workload aware system

that allows data center providers to control their distributed

caching infrastructure. Moirai can help ease the management

of the cache infrastructure and achieve various objectives,

such as improving overall resource utilization or providing

tenant isolation and QoS guarantees, as we show through

several use cases. A key benefit of Moirai is that it is trans-

parent to applications or VMs deployed in data centers. Our

prototype runs unmodified OSes and databases providing

immediate benefit to existing applications.

1. Introduction

An increasing number of enterprise applications have mi-

grated to hosted platforms in private enterprise and public

cloud data centers. Such platforms are typically virtualized,

i.e., tenants deploy applications in virtual machines (VMs)

whose access to the underlying resources (memory, storage,

network) is shared with other tenants, and mediated by hy-

pervisors such as Hyper-V, VMware ESX, or Xen. Uninhib-

ited sharing of such resources in a multi-tenant environment

leads to poor and variable application performance. While

recent efforts give providers control over how resources like

network [1, 17, 22, 30, 33] and storage [2, 15, 16, 34, 38]

are shared, there is no coordinated end-to-end control of the

distributed caching infrastructure, made up of storage caches

at multiple places along the IO stack (inside VMs, hypervi-

sors, storage servers; see Figure 1). Today, storage caches

along the IO stack are transparent to both applications and

cloud providers, lack workload-aware mechanisms, and are

each managed in isolation, leading to multiple problems:

VM VM

Hypervisor Hypervisor

VM VM

Hypervisor

Storage Storage

VM VM

Figure 1: Simplified IO stack in a multi-tenant data cen-

ter. Two tenants, a green and red one are shown, with 3

VMs each spread over 3 hypervisors. The circles repre-

sent typical caches on the IO stack.

• Lack of performance isolation Since caches are not

tenant- or workload-aware, applications with different IO

patterns and request rates sharing the same cache will impact

each other’s cache performance. For example, depending on

the cache eviction policy, one application’s large sequen-

tial reads can blast away another workload’s working set.

Even with scan-resistant cache management policies, such

as ARC [27], aggressive clients with higher request rates will

still be allocated larger portions of the cache.

• Lack of customization Since caches are not tenant

aware, the entire cache is treated as a single pool with one

cache write policy (write-through, write-back, etc), despite

different durability requirements of different applications,

and one eviction policy, despite the fact that different work-

loads benefit from different cache eviction policies. For ex-

ample, Figure 2(a) shows two IOMeter workloads under two

different eviction policies, LRU and MRU [9] respectively.

The workload on the left performs at its peak with an MRU

policy, while the one on the right performs best with LRU.

Today, if both workloads were running atop the same hyper-

visor, they would have to follow the same eviction policy,

leading to performance penalties on the order of 4-5x.

• Lack of coordination Each cache in the IO stack makes

its decisions locally, agnostic to the state of other caches in

the stack, leading to inefficiencies, such as double caching,

as was also noted by Wong and Wilkes [46].

1

Workload 1 Workload 2

(a) The effect of eviction policy

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1

4
4

8
7

1
3
0

1
7
3

2
1
6

2
5
9

3
0
2

3
4
5

3
8
8

4
3
1

4
7
4

5
1
7

5
6
0

6
0
3

6
4
6

6
8
9

7
3
2

7
7
5

8
1
8

8
6
1

9
0
4

9
4
7

T
h
ro
u
g
h
p
u
t
(M

B
/s
)

Time (s)

T1 T2 T3 T4

Naive Par��oning

Op�mal Par��oning

(b) The effect of cache size

Figure 2: Performance depends on the cache policy (a)

and allocation (b).

• Lack of adaptability Currently, the organization and

configuration of caches is fixed. Caches cannot be added,

removed, or resized on the fly to adapt to changes in the

workload or in provider objectives.

• Waste of system resources Simple solutions for par-

titioning caches along the IO stack are not sufficient. For

example, Figure 2(b) shows that the observed performance

triples when cache space is optimally allocated according

to workload characteristics (the workload consists of 4 ten-

ants using 120 VMs in total), compared to the case when

caches are naively allocated across tenants. We will describe

the details of this experiment in Section 5, but note that all

workloads’ throughputs benefit when the right cache size is

chosen. This is true even for tenants that receive less total

cache, as the contention at the storage device is reduced.

While some of these problems have been tackled in iso-

lation, there is no comprehensive framework for the end-to-

end management of caches that allows providers to address

the major issues they are facing today. We present Moirai1,

a tenant- and workload-aware system that allows data center

providers to control their distributed caching infrastructure

to achieve provider objectives, such as improving resource

utilization and request latency, achieving tenant isolation and

QoS guarantees. Moirai does not require changes to the IO

stack architecture, is transparent to applications and VMs,

and does not change cache consistency semantics.

2. Design

Figure 3 shows the architecture of Moirai, which comprises

three key components. At the core is a logically-centralized

controller that uses information on workload characteris-

tics maintained by the metrics engine to configure the pro-

grammable caches to achieve provider objectives. Details on

each of the three components are provided next.

2.1 The Metrics Engine

The Metrics Engine is a hypervisor-based module that main-

tains key characteristics for each workload running on the

system, such as throughput, number of reads vs. writes, etc.,

but also hit ratio curves, which describe the percentage of

1 Moirai (Ancient Greek for “apportioner”) in Greek mythology are the

three personifications of fate, who control the thread of life of every mortal

from birth to death, analogously to the end-to-end control of caches by the

three components that comprise Moirai.

�
��
�
�
�
�

�� ��

������������	
����

���

����	
����

��������	

����������
�����

���	
���

���
��

�
�
�
�
��
��	

�
��	�
���

���
��

�������

���
���
��
�
�
�
�
�����

����������	�

�	�	���	�

Figure 3: The Moirai architecture.

requests serviced from cache as a function of the cache size.

We use phantom caches, which inspect IO headers (with

fields such as accessed file name, offset, length, etc.) and ex-

ploit techniques from recent work [32, 44, 45] to generate hit

ratio curves efficiently at runtime. The Metrics Engine peri-

odically sends these performance metrics to the centralized

controller.

2.2 Programmable Caches

Caches along the IO stack are programmable through a sim-

ple API shown in Table 1. Caches are created at the desired

position in the IO stack by sending a createCache call to

the appropriate level in the stack (more details in Section 4).

A cache c is made workload-aware using the createRule

call, which installs a rule to specify the IOs that should

be cached in c. If the header of an incoming I/O matches

one of c’s rules, the IO (header+data) is sent through the

cache. The controller can also configure cache properties

(configureCache) to set the size, eviction, and write poli-

cies. Similarly, cache performance metrics are obtained via

the getCacheStats call.

Care must be taken to maintain consistency semantics

when the location of a cache changes. For example, the con-

troller could decide to cache at the storage server rather than

at the hypervisor. In order to maintain consistency, Moirai

first removes the caches on the old path, which automatically

triggers the eviction of all cached state, including writing any

dirty blocks to the back-end storage, and then installs caches

on the new path. We considered other options, such as keep-

ing the old caches until all accesses eventually move to the

new caches, but they add complexity and require maintain-

ing extra metadata.

2.3 Controller

The centralized controller uses the API described in Sec-

tion 2.2 and information provided by the Metrics Engine to

create and configure caches in order to implement a set of

objectives specified by the provider, as illustrated in the next

section.

2

createCache (<size,eviction pol,write pol>)

returns a reference to the newly created cache c

removeCache (Cache c)

createRule (IO Header h, Cache c)

creates cache rule <src,op,file,range>→ c

removeRule (IO Header h, Cache c)

configureCache (<size,eviction pol,write pol>, Cache c)

getCacheStats (Cache c)

returns cache statistics

Table 1: Moirai’s API for a configurable cache.

3. Data Plane Transformations

In this section, we explore Moirai’s ability to program

and transform the data plane to implement various cloud

provider objectives and improve workload performance. For

each goal, we illustrate how the controller effects the neces-

sary changes on the data plane.

3.1 Prioritizing a Workload

It’s often desirable to be able to isolate the performance of a

particular (high-priority) application A from that of another

application B sharing a cache in the same VM. The con-

troller can achieve this by configuring a dedicated cache C (a

50GB LRU write-through cache in this particular example)

inside the hypervisor, which is exclusive to workload A:

1: C = createCache (< 50GB, LRU, write-through>)

2: createRule (< V M, *, A.file, *>, C)

The createRule call configures the cache to accept all

R/W IOs originating from the VM, that access any part

of A.file. The figure below shows the resulting data plane.

Workload A flows through its own cache C in the hyper-

visor, while workload B continues along its previous path,

bypassing that cache, effectively isolating A’s traffic from it.

���������	 ������

����	�
��

�� ������	
�� �
�����

�

���������

3.2 Providing Per-Workload Bandwidth Guarantees

Next we extend the objectives beyond simple priorities, and

examine how Moirai allocates cache space to several arbi-

trary workloads W1,W2, . . . ,Wn, all running on the the same

system, in order to guarantee each workload Wi a partic-

ular bandwidth Bi. Similar to Section 3.1, the controller

passes each workload’s traffic through its own dedicated

cache Ci at the hypervisor (see figure on the following col-

umn), but the question now becomes what the size each of

the caches needs to be. In this section, we focus on hyper-

visor level caches only, but the techniques can be expanded

to include simultaneous allocation of hypervisor and storage

level cache space, as we explain in Section 3.5.

�� �������

����	�
��

�� �������

����	�
��

���

�� ����	
��
	 ��
	���

��

��

To answer this question, the controller uses information

from the Metrics Engine to first determine the hit ratio

Hitcache
i required for workload Wi to meet a certain band-

width guarantee, and then allocates the workload Wi cache

space ai, such that U(ai) = Hitcache
i , where U is the work-

load’s hit ratio function (provided by the Metrics Engine).

More precisely, note that if the total bandwidth achievable

from the storage back-end 2 is BW
storage
i and main memory

bandwidth is BW memory, a workload’s bandwidth depends on

its hit ratio Hitcache
i as follows:

SLABW
i ≤ Hitcache

i ×BWmemory +(1−Hitcache
i)×BW

storage
i

(1)

That means the cache hit ratio in order to achieve a band-

width SLABW
i needs to be at least:

Hitcache
i ≥

SLABW
i −BW

storage
i

BW memory −BW
storage
i

(2)

After the min. data bandwidth guarantees SLABW
1 , . . . ,SLABW

n

are met for all n workloads, the leftover cache space can be

allocated based on priorities or using approaches highlighted

in Section 3.3 to optimize for global utility.

3.3 Maximizing Global Workload Utility

Rather than per-workload guarantees, a provider might strive

to maximize the global workload utility, i.e., the sum of

the utilities across all workloads in the system. Utility of

a workload could be measured by hit ratio, or be defined

more generally in terms of bytes per second (Bps) satisfied

by the cache, or by extending the notion of hit ratio by

introducing weights to account for the type of IO (i.e. reads

vs. writes), or even to account for the impact of a workload

on the storage device (e.g. sequential vs. random access).

The choice of definition for utility will be dictated by the

optimization goals of the cloud provider.

Using the example of hit ratios as the utility function,

the controller can create a separate cache for each work-

load (similar to Section 3.2) and then use a classic result [37]

to determine the cache allocations a1, ...,an. The algorithm,

shown in Algorithm 3.1, uses a water-filling approach, i.e,

it allocates the cache to workloads in small increments. The

basic idea at each step is to allocate the next increment of

cache to the workload that will achieve the highest hit rate

out of the allocation. When the hit rate curves of workloads

are concave functions, this algorithm will achieve an alloca-

tion that maximizes the total hit rate, i.e., total hit rate at the

2 If the storage back-end is remote, BW
storage
i is the minimum of the net-

work, and the back-end storage array’s bandwidth.

3

cache. We are currently investigating meta-heuristics to deal

with non-concave hit ratio curves. E.g. Soundararajan [36]

proposed hill-climbing search, although we find that their

particular algorithm and implementation is too slow for our

system to react dynamically.

Algorithm 3.1 Utility-maximizing cache allocation

Require: n workloads sharing a cache of capacity C; U1,...,Un: hit

rate curves for workloads.

Ensure: Assign cache allocation ai to workload i s.t. ∑ai =C, and

max∑U(ai)
1: ∀i,ai = 0 //Initialize allocations

2: le f tC =C //Cache left to distribute

3: ε = 0.001×C //Water-filling constant (as fraction of C)

4: while (le f tC > 0) do

5: cacheAlloc = min(ε, le f tC)
6: j = argmax

i
(Ui(ai + cacheAlloc)−Ui(ai)) //workload with

the most utility gained from extra cache

7: a j+= cacheAlloc

8: le f tC−= cacheAlloc

One might argue that a standard, workload-agnostic sys-

tem that manages the entire cache as a single pool and ap-

plies its favourite replacement policy to it is also designed to

achieve the same goal of maximizing overall hit ratio. How-

ever, Moirai can provide generalizations of this goal (e.g. a

weighted sum of the hit ratios across workloads) and simul-

taneously provide other goals, such as isolation (e.g. pro-

tecting one workload from the effects of workload spikes in

another workload), which a standard system cannot.

3.4 Consolidating Memory Over Fast Networks

As systems are increasingly making use of fast networks

with speeds in excess of 40-100Gbps , and RDMA capabil-

ities [10], use of remote resources is becoming increasingly

feasible and can improve overall utilization of resources.

Consider as an example a read-only dataset DATA.file ac-

cessed by N VMs across N hypervisors. Placing one consol-

idated cache at the storage server can result in an Nx reduc-

tion in total cache space used, with potentially only small in-

creases in latency. The controller can accomplish this as fol-

lows (using the example of a 100GB MRU write-back cache

C as the consolidated cache):

1: C = createCache (<100GB , MRU, write-back>)

2: createRule (< V M1−N, *, DATA.file, *>, C)

The resulting data plane is shown in the figure below:

���
���������

���

���	
���
�

���

�� ����	
��
	 ��
	���

�

3.5 Scaling Out Caches

In addition to fully-remote caching, caching capacity per

workload can be split across the compute and storage server,

while appearing to the VM and applications as one single

aggregate cache. Note that today, workloads do flow through

both caches (at the hypervisor, and at the storage server),

but this occurs in an uncontrolled fashion, leading to wasted

memory capacity by double-caching of data in both places.

In situations where the hypervisor is hosting several ap-

plications and memory is limited, the controller has several

choices for how to split the cache for a workload A and con-

figure it at the hypervisor(1) and storage server(2). If the

workload access is uniform across the file, one choice is to

cache half the file in each of the respective caches:

1: createRule (< VM, *, A.file, 0, size/2>, C1)

2: createRule (< VM, *, A.file, size/2+1, size>, C2)

The resulting data plane is shown in the figure below:

���������	 ������

�� ������	
�� �
�����

��

�	

The controller can also match workload access patterns

to the way the cache is split based on hot or cold blocks or

files.

Another option is to treat both caches as a global LRU

cache. To do that, the controller programs C1 to cache

the IOs from A.file, and C2 to only cache IOs that were

evicted (or “demoted”) from C1. To provide per-workload

bandwidth guarantees, Moirai extends the cache allocation

method presented in Section 3.2. The controller now needs

to determine two things:

1. How much cache space ai to allocate for the global LRU

cache made up of both C1 and C2, such that:

U(ai) = Hitcache
i (3)

2. The individual cache space allocations a1
i and a2

i , for C1

and C2 respectively. Thus, for some α:

a1
i = α× ai

a2
i = (1−α)× ai

(4)

The relationship between these variables is illustrated

using a simple, example hit rate utility function in Figure 4.

A workload’s bandwidth SLABW
i now depends on the hit

ratio Hitcache
i of the global LRU cache as follows:

SLABW
i ≤Hitcache

i ×BWGlobalLRU
i +(1−Hitcache

i)×BW
storage
i

(5)

Similar to Equation (2), the cache hit ratio Hitcache
i needs

to be at least:

Hitcache
i ≥

SLABW
i −BW

storage
i

BW GlobalLRU
i −BW

storage
i

(6)

Here, BW GlobalLRU
i refers to the total bandwidth achiev-

able from the global LRU cache.

4

Figure 4: Example of a cache hit rate function U, and

associated parameters ai and α, used to compute cache

allocations for scaled-out LRU caches with bandwidth

guarantees.

Since C1 and C2 form the global LRU cache, the fraction

α of cache space allocated to C1 will result in U(αai)%
of the hits, while the rest of the hits, [U(ai)−U(αai)]%,

will be served from C2. Since C1 is a hypervisor cache, its

achievable bandwidth is BW memory, while C2’s achievable

bandwidth is constrained by the bandwidth of the network

BW network
i . Thus:

BW GlobalLRU
i =U(αai)×BWmemory

+[U(ai)−U(αai)]×BWnetwork
i

(7)

Simultaneously using Equations (3), (4), (6), and (7), the

controller solves for ai, and α, effectively determining the

cache allocations a1
i and a2

i , for C1 and C2 respectively. Fur-

ther constraints can also be added to the problem statement

(e.g., imposing a maximum size on either C1, or C2) to limit

the solution space.

4. Implementation

We have implemented and deployed a Moirai prototype,

comprising all components described in Section 2, on a

Windows-based system and made the code publicly avail-

able [28]. The controller is implemented in around 6000

LOC of C# and communicates with the caches through RPCs

over TCP. The Metrics Engine is implemented as a user-level

stage in the hypervisor in around 500 LOC and uses a variant

of SHARDS [44] to determine hit ratio curves. Cache mod-

ules implement the APIs in Table 1 at user-level in around

2000 LOC in C#.

One implementation challenge is how to classify and di-

rect a tenant’s traffic to the configurable caches. We decided

to build an extension of the IOFLow framework [38] to im-

plement this functionality. Note that while in its original

H.Index H.Data H.Msg H.Log Exchange

Read % 75% 61% 56% 1% 40%

IO Sizes 64 KB 8 KB 64 KB 64 KB 8 KB

Seq/rand Mixed Rand Rand Seq Rand

IOs 32M 158M 36M 54M 60M

Table 2: Characteristics for 4 Hotmail workloads, part

of a 2-day Hotmail IO trace and an Exchange workload,

part of a 1-day Exchange IO trace. Seq/rand refer to

sequential and random-access respectively. M=million.

form IOFlow does keep track of each IO’s tenant class, it was

designed to provide IO queueing and rate limiting based on

IO request headers. By contrast, caching involves inspection

and manipulation of the data associated with an IO request.

We implemented an extension of the IOFlow architecture

to add support for data transformations using a version of

the Windows messaging API for filter drivers, in around 500

new LOC. IOs are passed to a user-level cache through an

upcall, while a kernel-mode thread handling the I/O request

blocks pending a return code from the cache. The latter de-

cides whether the request is terminated at the filter driver

(hit), or is sent further down the IO stack.

5. Experimental Evaluation

This section provides an experimental evaluation of some of

Moirai’s use cases presented in Section 3. Our experimen-

tal testbed has 12 servers, each with 16 Intel Xeon 2.4 GHz,

384 GB of RAM and three Seagate Constellation 2 disks

or four Intel 520 SSDs in RAID-0. The servers run Win-

dows Server 2012 R2 operating system and can act as either

Hyper-V hypervisors or as storage servers. Each server has

a 40 Gbps Mellanox ConnectX-3 NIC supporting RDMA

and connected to a Mellanox MSX1036B-1SFR switch. We

use a combination of real enterprise application traces and

benchmarks, as specified in more detail below. As Moirai is

transparent to applications and VM’s, they can run on our

testbed without modifications

We use a mixture of real enterprise application traces and

benchmarks in the evaluation. For the former, we use pub-

lic traces from an enterprise Exchange email server [35] and

Hotmail [39]. Key characteristics of these traces are shown

in Table 2. The traces are diverse across a number of met-

rics such as the Read-to-Write ratio, IO sizes, sequentiality

of access and number of IOs which allows for a comprehen-

sive evaluation across realistic workload mixes. However, a

limitation of these workloads is that they were originally col-

lected underneath file caches. As such, they under-represent

the amount of application reads.

To account for this limitation, we also use TPC-E [41]

and TPC-H [42] to cover a broad class of workloads, rang-

ing from transaction processing OLTP operations with small

IO sizes (TPC-E) to large streaming IO from data mining

queries (TPC-H). They run over unmodified SQL Server

5

0

200

400

600

800

1000

1200

TPC-E alone TPC-E with

TPC-H

TPC-E alone TPC-E with

TPC-H

Tr
a
n
sa
ct
io
n
s/
m
in
u
te

Default caching Moirai

Figure 5: Prioritizing one workload (TPC-E) vs another

(TPC-H). With Moirai, the performance of TPC-E is not

impacted by TPC-H. In contrast, today, running both

workloads together would result in a 5x performance hit

for TPC-E.

2012 R2 databases. When error bars are shown they repre-

sent the average, minimum and maximum from 5 runs.

5.1 Enforcing Priorities

We examine Moirai’s ability to prioritize a workload using

the example of a VM with one SQL Server instance running

both TPC-E and TPC-H. The corresponding database files,

“TPCE.VHD” and “TPCH.VHD” each have a footprint of

50GB and are stored on Virtual Hard Drives (VHDs) on two

separate disk-based storage servers.

We run two experiments, one with default caching and

one where we use Moirai to prioritize the TPC-E workload,

as explained in Section 3.1 and measure the throughput

(transactions/min) for the TPC-E workload. The results are

shown in Figure 5.

We observe that in the system without Moirai, TPC-E’s

performance drops by more than 5X when TPC-H runs. On

the other hand, we find that with Moirai, TPC-E’s throughput

running alongside TPC-H is within 2.3 % of its throughput

running by itself.

Note that our current implementation of Moirai results in

a data plane overhead of 20% (this difference is due to using

our user-level cache vs. SQL Server’s native cache, which is

heavily optimized). The overhead stems in part from extra

memory copies between the kernel and the user-level cache.

However, we believe that this overhead is acceptable com-

pared to the 5x drop in performance with today’s caching in-

frastructure. Further, note that the controller can detect when

no other workloads are running and remove the user-level

cache and thus avoid the extra overhead.

5.2 Maximizing Global Hit Rate

We consider the example of maximizing global hit rate using

four tenants with 30 VMs each, spread over 10 hypervisors

accessing VHDs on an SSD-based storage server. Each ten-

ant’s VM uses IOMeter, parameterized with the key charac-

teristics of the Hotmail workloads (Tenants 1-4 are running

the Index, Data, Msg and Log workloads respectively).

1

10

100

Q2 Q6 Q7 Q15 Q19

La
te

n
cy

 (
se

co
n

d
s)

Hypervisor Storage 40Gbps Storage 1Gbps

Figure 6: Latency for 5 TPC-H queries. The controller

can decide to use file caches in the storage server for fast

RDMA-based networks. Y-axis is log scale.

We compare two approaches of dividing up the cache

space. In the first we divide space equally among the four

tenants. In the second we use the method described in Sec-

tion 3.3 to partition the cache and reconfigure the data plane.

The results are shown in Figure 2(b).

Interestingly, we observe not only that overall throughput

increases by more than 2.5x, but also that this improvement

comes at no cost to any of the individual four tenants. The

reason is that all tenants benefit from the decreased load at

the storage back-end.

We have experimented with other workload combinations

as well. In the worst case across all experiments the overall

throughput still increased by 35%, but this came at the cost

of a small penalty to one tenant, whose throughput dropped

by 10%. A cloud provider could feed into the controller a

minimum amount of cache space or minimum hit rate it

wants to guarantee each workload, and then ask it to divide

the remaining cache space to maximize global utility.

5.3 Consolidating Memory Over Fast Networks

In this section we use Moirai on a TPC-H workload running

on ten different hypervisors to illustrate the trade-offs for

memory consolidation over fast networks. We compare the

case where Moirai is used to insert a 50GB cache inside

each of the 10 hypervisors, to the case where Moirai inserts

one shared 50GB cache at the storage server, which is either

accessed at 1Gbps over TCP or at 40Gbps over RDMA. In

all cases, all the data resides in memory (100% hit rate). The

results are shown in Figure 6.

We observe that the average latency overhead when using

a consolidated cache over the fast network is around 26%,

compared to using local hypervisor caches. For the slow

network the overheads are 153%. Note that in exchange for

paying these overheads one gains a 10X reduction in the

total amount of cache space allocated for this workload. Also

note that with Moirai a provider has the option to seamlessly

switch from one cache configuration to another, depending

on the state of the system. For example, a provider might

switch to a consolidated cache at the cost of some latency

penalties when cache space is scarce.

6

0

400

800

1200

1600

2000

Baseline

(1x5GB)

Double

caching

(2x5GB)

IoCache

(2x5GB)

Ideal (1X10GB)

Tr
a
n
sa
ct
io
n
s/
m
in
u
te

Moirai

Figure 7: Splitting IOs for TPC-E across two different

caches. Today, “double caching” occurs since all IOs flow

through all caches. Moirai can prevent this, and match

the performance of an aggregate cache.

5.4 Scaling Out Caches

In this section, we evaluate Moirai’s ability to scale out

the storage cache as described in Section 3.5. We con-

sider a TPC-E workload on a machine low on memory. The

provider wishes to scale out TPC-E’s 5GB hypervisor cache

to include another 5GB at the storage server.

Figure 7 shows the results when allocating the split cache

with and without Moirai. Without Moirai there is little ben-

efit to adding a 5GB cache at the storage server (second bar

from the left), compared to having only the 5GB cache at

the hypervisor (left-most bar), due to double caching. On

the other hand when setting up the two caches with Moirai

(third bar from the left), performance is similar to that of an

aggregate 10GB cache at the hypervisor (right-most bar).

5.5 Dynamic Workloads

The controller in Moirai continuously monitors the metrics

and dynamically reacts to changes after some reaction time

s, a configurable parameter. For example, Moirai will detect

when a cache goes unutilized and reuse the space accord-

ingly. We have worked with values for s on the order of

15-30 seconds - we believe that this range presents a good

trade-off between responsiveness and unwarranted reconfig-

urations due to momentary changes in workload demand.

To illustrate Moirai’s dynamic capabilities, we evaluate a

setup consisting of 10 hypervisors each with 12 VMs, where

each VM has a 2GB file stored on an SSD back-end that

it accesses through IOMeter. The provider uses Moirai to

allocate a total of 72GB cache at the hypervisor level, which

is evenly split between VMs (i.e., each receiving 72/120

GB).

Figure 8 shows what happens if half of the VMs on each

hypervisor go idle for some time, before they become active

again at a later point. Moirai detects when the VMs go

idle and re-computes the cache allocation for each VM to

distribute spare capacity, hence improving the performance

of the active VMs. Once all VMs become active again,

Moirai re-computes the initial allocations, and performance

goes back to previous levels.

0

1

2

3

4

5

6

7

8

0

10

20

30

40

50

60

70

80

90

0

2
4

4
8

7
2

9
6

1
2

0

1
4

4

1
6

8

1
9

2

2
1

6

2
4

0

2
6

4

2
8

8

3
1

2

3
3

6

3
6

0

3
8

4

4
0

8

4
3

2

4
5

6

4
8

0

5
0

4

5
2

8

5
5

2

5
7

6

6
0

0

Te
n

a
n

t
th

ro
u

g
h

p
u

t
(G

B
/s

)

A
g

g
re

ga
te

 t
e

n
a

n
t

ca
ch

e
 s

iz
e

 (
G

B
)

Time (s)

Cache size Throughput

no cache 120 flows allocated

72GB cache

60 flows go idle. 60 active

flows allocated 72GB cache

120 flows allocated

72GB cache

Figure 8: Moirai adapting to workloads dynamically

over time. Note there are two y-axis.

5.6 Control Plane Overheads

We now consider Moirais overheads on the control plane.

Moirai implements a version of SHARDS [44] in the Met-

rics Engine to construct hit ratio curves at runtime. While our

current implementation is not as highly-optimized, the orig-

inal SHARDS paper showed that hit ratio curves with very

high fidelity can be constructed online using less than 10MB

of memory per workload [44], and marginal (less than 5

We also evaluated the time it takes to compute the opti-

mal cache size allocation as a function of the number of VMs

in the system (Algorithm 3.1, described in Section 3.3). We

varied the number of VMs from 100 to 5000, and measured

the time it took to compute the allocation. For 5000 VMs, it

took less than 15s to make that decision, with a water-filling

constant ε of 1MB. For ε of 2MB, the time is less than 5s.

This highlights the tradeoff between how fine-grained the

cache allocation is, and the completion time for the alloca-

tion algorithm. However, since cache allocations can feasi-

bly be done at granularities (ε) coarser than 2MB, and they

do not need to be re-computed at very short time intervals,

we believe this method of cache allocation is very reason-

able. We are currently exploring optimizations to reduce the

algorithms runtime further.

6. Related work

Application caches. There has been much work recently

on caches in data centers. Much of it focused on spe-

cialized application caches, such as Facebook’s photo-

serving stack [20], Facebook’s social graph store [3], mem-

cached [12], or explicit cloud caching services [6, 7]. In

contrast, our work is on system storage caches for hosting

cloud providers that run arbitrary workloads.

System caches. Work on system caches has focused on

efficient use of memory for virtual machines through bal-

looning and sharing techniques [18, 29, 43], which are im-

plemented in state-of-the-art hypervisors like VMware’s and

Hyper-V. Our work focuses on other caches in the system,

beneath the VM abstraction.

Cache replacement policies Some prior work has fo-

cused on isolating the cache effects of streams with differ-

ent access patterns (sequential versus looping) within the

7

same workload from each other [8, 13, 23, 27]. However,

these policies are not workload or tenant aware and cannot

prevent a more aggressive workload from occupying more

than its fair share of cache. Moreover, each of these policies

might actually work better when applied in the context of

Moirai, where a cache policy works on per workload seg-

regated cache, as patterns of different workloads don’t get

interspersed and hence might be easier to detect. Others pro-

pose methods to detect changes in workload patterns and dy-

namically adjust the caching policy used by the system [14].

Moirai provides a perfect vehicle for implementing such an

approach and it would be interesting to extend it to support

such functionality. Yet another line of work [19, 25] pro-

poses that applications explicitly manage their cache space

and its contents, while our goal was to provide a solution that

is transparent to the application.

Inefficiencies in cache hierarchies Several other papers

have addressed the problem of inefficiencies in cache hier-

archies, e.g., some [5, 26] pass hints from the client to bet-

ter inform caching decisions at the storage server and oth-

ers [46] extend the SCSI command set by a demote com-

mand to avoid double caching. Our goal was a solution that

does not require application or VM support, or changes to

existing protocols.

Software defined storage. Similar to recent work on

software-defined networking (SDNs) [4, 11, 21, 24, 31, 40,

47] and storage (SDS) [38], our architecture is controller-

based with a separation between the data and the control

plane. Moirai’s implementation uses IOFlow’s [38] mecha-

nisms for traffic classification, however Moirai’s implemen-

tation required extensions to IOFlow, e.g., to support arbi-

trary inspection and manipulation of IO request data, as well

as the implementation of the three core components Moirai

comprises (as described in Section 2 and Section 4).

7. Summary

Caches are a critical resource in data centers. They im-

prove latency, throughput and reduce the load on networks

and storage. But today, caches are implicit, not designed

for controlled sharing, leading to severe inefficiencies un-

der multi-tenancy. This paper presents Moirai, a software-

defined caching architecture that enables control of caches

in a multi-tenant data center. Moirai is transparent to hosted

tenants. Their throughput and latency benefit without requir-

ing any tenant input or hints. We show using several differ-

ent use cases how Moirai can help ease the management of

the distributed caching infrastructure and enable the provider

to achieve a series of different objectives. We hope that our

public release of the code [28] implementing Moirai will

help foster future work in this area.

References

[1] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. To-

wards predictable datacenter networks. In ACM SIGCOMM,

Aug. 2011.

[2] J.-P. Billaud and A. Gulati. hClock: Hierarchical QoS for

packet scheduling in a hypervisor. In EuroSys, Apr. 2013.

[3] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-

mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni, H. Li,

M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and

V. Venkataramani. Tao: Facebook’s distributed data store for

the social graph. In Presented as part of the 2013 USENIX An-

nual Technical Conference (USENIX ATC 13), pages 49–60,

San Jose, CA, 2013. USENIX.

[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,

and S. Shenker. Ethane: taking control of the enterprise. In

Proceedings of ACM SIGCOMM, Kyoto, Japan, 2007.

[5] Z. Chen, Y. Zhang, Y. Zhou, H. Scott, and B. Schiefer. Em-

pirical evaluation of multi-level buffer cache collaboration for

storage systems. In Proceedings of the 2005 ACM SIGMET-

RICS International Conference on Measurement and Model-

ing of Computer Systems, SIGMETRICS ’05, pages 145–156,

New York, NY, USA, 2005. ACM.

[6] G. Chockler, G. Laden, and Y. Vigfusson. Data caching as a

cloud service. In Proceedings of the 4th International Work-

shop on Large Scale Distributed Systems and Middleware,

LADIS ’10, pages 18–21, New York, NY, USA, 2010. ACM.

[7] G. Chockler, G. Laden, and Y. Vigfusson. Design and imple-

mentation of caching services in the cloud. IBM Journal of

Research and Development, 55(6):9:1–9:11, Nov 2011.

[8] J. Choi, S. H. Noh, S. L. Min, and Y. Cho. An imple-

mentation study of a detection-based adaptive block replace-

ment scheme. In Proceedings of the Annual Conference on

USENIX Annual Technical Conference, ATEC ’99, pages 18–

18, Berkeley, CA, USA, 1999. USENIX Association.

[9] H.-T. Chou and D. J. DeWitt. An evaluation of buffer man-

agement strategies for relational database systems. In Pro-

ceedings of the 11th International Conference on Very Large

Data Bases - Volume 11, VLDB ’85, pages 127–141, Stock-

holm, Sweden, 1985. VLDB Endowment.

[10] A. Dragojevic, D. Narayanan, O. Hodson, and M. Castro.

Farm: Fast remote memory. In Proceedings of the 11th

USENIX Conference on Networked Systems Design and Im-

plementation, NSDI’14, Seattle, WA, 2014. USENIX Associ-

ation.

[11] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krish-

namurthi. Participatory networking: An API for application

control of SDNs. In Proceedings of ACM SIGCOMM, Hong

Kong, 2013.

[12] B. Fitzpatrick. Distributed caching with memcached. Linux

J., 2004(124):5–, Aug. 2004.

[13] C. Gniady, A. R. Butt, and Y. C. Hu. Program-counter-

based pattern classification in buffer caching. In Proceedings

of the 6th Conference on Symposium on Opearting Systems

Design & Implementation - Volume 6, OSDI’04, pages 27–27,

Berkeley, CA, USA, 2004. USENIX Association.

[14] R. B. Gramacy, M. K. Warmuth, S. A. Brandt, I. Ari, and I. A.

. Adaptive caching by refetching. In In Advances in Neural

Information Processing Systems 15, pages 1465–1472. MIT

Press, 2002.

8

[15] A. Gulati, I. Ahmad, and C. A. Waldspurger. PARDA: propor-

tional allocation of resources for distributed storage access. In

FAST, Feb. 2009.

[16] A. Gulati, A. Merchant, and P. J. Varman. mClock: Handling

throughput variability for hypervisor IO scheduling. In OSDI,

Oct. 2010.

[17] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,

and Y. Zhang. SecondNet: A data center network virtu-

alization architecture with bandwidth guarantees. In ACM

CoNEXT, Nov. 2010.

[18] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,

G. Varghese, G. M. Voelker, and A. Vahdat. Difference en-

gine: Harnessing memory redundancy in virtual machines. In

Proceedings of the 8th USENIX Conference on Operating Sys-

tems Design and Implementation, OSDI’08, pages 309–322,

Berkeley, CA, USA, 2008. USENIX Association.

[19] K. Harty and D. R. Cheriton. Application-controlled physical

memory using external page-cache management. In Proceed-

ings of ACM ASPLOS, Boston, Massachusetts, USA, 1992.

[20] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar,

and H. C. Li. An analysis of Facebook photo caching. In

Proceedings of ACM SOSP, Farminton, Pennsylvania, 2013.

[21] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,

S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,

S. Stuart, and A. Vahdat. B4: Experience with a globally-

deployed software defined wan. In Proceedings of ACM

SIGCOMM, Hong Kong, China, 2013.

[22] V. Jeyakumar, M. Alizadeh, D. Mazires, B. Prabhakar, and

C. Kim. EyeQ: Practical network performance isolation at the

edge. In NSDI, Apr. 2013.

[23] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min, Y. Cho, and

C. S. Kim. A low-overhead high-performance unified buffer

management scheme that exploits sequential and looping ref-

erences. In Proceedings of the 4th Conference on Symposium

on Operating System Design & Implementation - Volume 4,

OSDI’00, pages 9–9, Berkeley, CA, USA, 2000. USENIX As-

sociation.

[24] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,

M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and

S. Shenker. Onix: a distributed control platform for large-

scale production networks. In Proceedings of USENIX OSDI,

Vancouver, BC, Canada, 2010.

[25] C.-H. Lee, M. C. Chen, and R.-C. Chang. Hipec: High per-

formance external virtual memory caching. In Proceedings of

USENIX OSDI, Monterey, California, 1994.

[26] X. Li, A. Aboulnaga, K. Salem, A. Sachedina, and S. Gao.

Second-tier cache management using write hints. In Proceed-

ings of the 4th Conference on USENIX Conference on File

and Storage Technologies - Volume 4, FAST’05, pages 9–9,

Berkeley, CA, USA, 2005. USENIX Association.

[27] N. Megiddo and D. S. Modha. Arc: A self-tuning, low over-

head replacement cache. In Proceedings of the 2Nd USENIX

Conference on File and Storage Technologies, FAST ’03,

pages 115–130, Berkeley, CA, USA, 2003. USENIX Asso-

ciation.

[28] Microsoft. Microsoft research storage toolkit. http://

research.microsoft.com/en-us/downloads/

230b8ad4-3340-4a87-8ef0-cf92b376db86/.

[29] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman. Satori:

Enlightened page sharing. In Proceedings of the 2009 Confer-

ence on USENIX Annual Technical Conference, USENIX’09,

pages 1–1, Berkeley, CA, USA, 2009. USENIX Association.

[30] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-

nasamy, and I. Stoica. Faircloud: Sharing the network in cloud

computing. In ACM SIGCOMM, Aug. 2012.

[31] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, S. Vyas, and M. Yu.

SIMPLE-fying middlebox policy enforcement using SDN. In

Proceedings of the ACM SIGCOMM, Hong Kong, 2013.

[32] T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vig-

fusson. Dynamic performance profiling of cloud caches. In

Proceedings of the ACM Symposium on Cloud Computing,

SOCC ’14, pages 28:1–28:14, New York, NY, USA, 2014.

ACM.

[33] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Sharing the

datacenter network. In NSDI, Mar. 2011.

[34] D. Shue, M. J. Freedman, and A. Shaikh. Performance isola-

tion and fairness for multi-tenant cloud storage. In OSDI, Oct.

2012.

[35] SNIA. Exchange server traces. http://iotta.snia.org/

traces/130.

[36] G. Soundararajan, J. Chen, M. A. Sharaf, and C. Amza. Dy-

namic partitioning of the cache hierarchy in shared data cen-

ters. Proc. VLDB Endow., 1(1):635–646, Aug. 2008.

[37] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partitioning

of cache memory. IEEE Trans. Comput., 41(9):1054–1068,

Sept. 1992.

[38] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Row-

strow, T. Talpey, R. Black, and T. Zhu. IOFlow: A software-

defined storage architecture. In Proceedings of ACM SOSP,

2013.

[39] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: practical

power-proportionality for data center storage. In Proceedings

of Eurosys, pages 169–182, Salzburg, Austria, 2011.

[40] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. An

architecture for internet data transfer. In Proceedings of

USENIX NSDI, NSDI’06, San Jose, CA, 2006.

[41] TPC Council. TPC-E. http://www.tpc.org/tpce/.

[42] TPC Council. TPC-H. http://www.tpc.org/tpch/.

[43] C. A. Waldspurger. Memory resource management in

VMware ESX server. SIGOPS Oper. Syst. Rev., 36(SI):181–

194, Dec. 2002.

[44] C. A. Waldspurger, N. Park, A. Garthwaite, and I. Ahmad. Ef-

ficient MRC construction with SHARDS. In 13th USENIX

Conference on File and Storage Technologies (FAST 15),

pages 95–110, Santa Clara, CA, Feb. 2015. USENIX Asso-

ciation.

[45] J. Wires, S. Ingram, Z. Drudi, N. J. A. Harvey, and

A. Warfield. Characterizing storage workloads with counter

stacks. In 11th USENIX Symposium on Operating Systems

9

http://research.microsoft.com/en-us/downloads/230b8ad4-3340-4a87-8ef0-cf92b376db86/
http://research.microsoft.com/en-us/downloads/230b8ad4-3340-4a87-8ef0-cf92b376db86/
http://research.microsoft.com/en-us/downloads/230b8ad4-3340-4a87-8ef0-cf92b376db86/
http://iotta.snia.org/traces/130
http://iotta.snia.org/traces/130
http://www.tpc.org/tpce/
http://www.tpc.org/tpch/

Design and Implementation (OSDI 14), Broomfield, CO, Oct.

2014. USENIX Association.

[46] T. M. Wong and J. Wilkes. My cache or yours? making storage

more exclusive. In Proceedings of USENIX ATC, Monterey,

California, 2002.

[47] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and

Z. Cai. Tesseract: a 4D network control plane. In Proceedings

of USENIX NSDI, Cambridge, MA, 2007.

10

	Introduction
	Design
	The Metrics Engine
	Programmable Caches
	Controller

	Data Plane Transformations
	Prioritizing a Workload
	Providing Per-Workload Bandwidth Guarantees
	Maximizing Global Workload Utility
	Consolidating Memory Over Fast Networks
	Scaling Out Caches

	Implementation
	Experimental Evaluation
	Enforcing Priorities
	Maximizing Global Hit Rate
	Consolidating Memory Over Fast Networks
	Scaling Out Caches
	Dynamic Workloads
	Control Plane Overheads

	Related work
	Summary

