[Technical Report CSRG-627 (University of Toronto)]
How reliable are large-scale jobs in parallel clusters?

Nosayba El-Sayed Bianca Schroeder
Department of Computer Science, University of Toronto
{nosayba, biand&@cs.toronto.edu

I. INTRODUCTION

As large-scale platforms continue to grow in scale and cerify, the applications running on them are
increasingly being prone to errors and failures. A receuatlystby Snir et al. [9] predicts that large parallel
applications running on an exascale machine may abort gadrely as once every 30 minutes. Minimizing the
rate at which large-scale jobs fail is especially critiaal iong-running applications that can take up to weeks or
months to finish executing successfully [8]. Emerging @ades, such as the increasing complexity of parallel
application workflows [5] or the rising silent data corrasti(SDC) rates in large-scale platforms [6], require
substantial improvements in both system-level and appticdevel resilience.

In this technical report we are interested in answering thestion of what makes jobs fail in large, parallel
clusters. Towards this end, we use workload traces cotletteeal world systems to study the effect of different
factors onjob reliability and to identify which ones are predictive of job failures irgllel applications. We
investigate factors such as job configuration parametagstfee degree of parallelism, priority, etc), job resource
requests and constraints, job resource utilization (egmary and CPU usage), and others.

We begin by describing the workload traces included in oudytin Section II. Section Il focuses on
characterizing job failures in these clusters by using thees to quantify the correlation between a diverse set
of factors and a job’s exit status. Finally, in Section IV viady how to predict job failures in parallel clusters
using different classification techniques and evaluateqtingity of our predictors using real world traces.

Il. DESCRIPTION OF WORKLOAD TRACES

We rely on workload traces made available by three diffesenirces: Google, Carnegie Mellon University
(CMU), and Los Alamos National Labs (LANL):

(a) Google: For one of Google’s large, multi-purpose compute clusterssisting of 12,000 machines, traces
of all jobs submitted to the cluster during 29 days in May, P@te made publicly available [10]. Each job
is comprised of one or mortasks and each task is associated with a set of resource requiten¥e task is
assigned to run on a single machine, and data on task resoomseimption is made available, such as CPU,
memory, and disk usage (aggregated over 5-minute int¢nallsvalues of usage data are normalized by the
maximum value reported in each category, and fields on usersjaplication names are obfuscated. The traces
include data on when each job or task was submitted, schdarel finished (or was aborted). The exit status
of each job (and task) attempt is included in the traces andbeaone of the followingfailed, killed, evicted
or finished

Jobs were submitted by hundreds of users, where a user caGbegie engineer or a service [7], and their
tasks were assigneatiorities from O (lowest) to 11 (highest). According to a paper thabagpanied the release
of the trace [7], priorities 0 and 1 are labeled as gratise{fr@riorities 2—8 are speculated to be dominated
by batch jobs and MapReduce jobs; priority 9 is ‘normal pidun’ jobs; priority 10 represents ‘monitoring’
jobs; and priority 11 is labeled ‘infrastructure’. In ouudy, we focus on two priority groups: production jobs
(priority 9) and batch jobs (priorities 2—8).

(b) CMU OpenCloud Traces: OpenCloud [3] is a 64-node research cluster at CarnegieoMé&lhiversity used
by CMU researchers and managed by the Parallel Data Lablig]cluster runs Apache’s Hadoop [1] distributed
file system, and had different types of applications runrongt during the trace collection period from areas
such as computational biology, natural language procgssimage processing, and machine learning [3].

Technical Report CSRG-627 (University of Toronto)

The traces were collected over a period of 30 months anddedwo types of files: job configuration files,
and job history logs. The configuration files contain infotima on the parameters set by the users for each
submitted job, such as (but not limited to): the size of \@ftmemory formapandreducetasks; the maximum
number of attempts per task before the framework gives up; @md boolean flags for whether or not to enable
speculative execution. The history files contain data onsjabmission time, launch time, and finish time; the
exit status of a jobqucceededailed, or gotkilled); the number of map/reduce tasks in the job; the number of
tasks in the job that completed successfully; and the nurabeon-successful task attempts.

(c) LANL Job Traces. LANL made publicly available three years worth of job trades one of their HPC
systems (system with ID 20 on their webpage [4]), which cdsgsr of 256 nodes. The HPC cluster was used
by scientists, typically to run CPU-intensive scientifimsiations. Around 400 users submitted approximately
300,000 jobs in total to cluster during the trace collectpamiod.

The workload traces contain data on job submission tim@dadime, and exit time; the number of processors
requested for this job; the IDs of the nodes that the job wafgaed to; and the final status of the job. The
table below summarizes the possible exit statuses for aijbnited to the LANL cluster:

LANL Job Status| Description
fini shed | All processes are scheduled
fail ed | One or more of the nodes running this job crashed
abort ed | User aborted job (Ctrl/C)
ki |l ed | An application process was killed by a signal
syski |l | Job was killed by an administrative user

(either due to maintenance or due to a problem).
TABLE 1
DESCRIPTION OF EXIT STATUS MEANING IN THELANL JOB TRACES

We now look at the basic statistics and overall success fatethe jobs submitted to the three clusters in
our dataset. Table Il below provides an overview of the eltssaind their job traces, along with the breakdown
of the job exit status. (Note that as previously indicated tfie Google traces we will be studying jobs that are
categorized as ‘production’ jobs separately from jobsgatized as ‘batch’ ones.)

Data Data |Number off Number ofl #Scheduled%Succes$%Failed| %Killed or Aborted| %Other
Source Timespan| Nodes Users Jobs Jobs Jobs Jobs
Google Multipurposq 29 days 12K 265 43K 83% 1.66% 15.25% 0.01%
Cluster (Prod Jobs
Google Multipurposg 29 days 12K 227 349K 63% 1.27% 35.5% 0.003%)
Cluster (Batch Jobs
CMU OpenCloud || 883 days 64 157 78K 88.8% | 8.11% 3% 0.04%
Cluster
LANL HPC 1,022 days 256 446 290K 67.5% | 0.62% 30.7% 1%
System#20
TABLE TI

OVERVIEW OF THE WORKLOAD TRACES AND BASIC JOB STATISTICS FORHE CLUSTERS IN OUR DATASET

We find that job success rates vary across the differenteckig our data and fall within the 60-90% range.
Unsuccessful job submissions were dominated by killed forted) jobs followed by failed jobs, with the
exception of the OpenCloud cluster where an opposite treasl observed. We next take a closer look into
jobs that terminated unsuccessfully, with the goal of depielg a better understanding of why they failed and
whether certain factors are more likely to be correlatedhlieir failure.

I1l. UNSUCCESSFULJOBS: TRACE-BASED ANALYSIS
In this section we use the traces to study the correlatiomdmt several factors and job reliability in
large clusters, including: the degree of parallelism, jamfiguration parameters, fault-tolerance parameters,
job durations, and resource utilization and constraints.

Technical Report CSRG-627 (University of Toronto)

A. Degree of Parallelization (DOP)

We begin by studying the relationship between the degreeaddllelism of a job and its final status. In
Google’s cluster, a job consists of one or more tasks thatajlp execute the same binary with the same
resource requirements and scheduling constraints (éagitprscheduling-class, etc). Applications that need to
run different types of tasks will usually execute them asasafgjobs[10]. For example, MapReduce applications
would execute masters and workers as separate jobs. Ggnemalti-task jobs are meant to have their tasks run
simultaneously, where a single task can be running on aesimgichine at any point in time. A configuration
parameter is available where a user can indicate if tasks exesute ordifferent physical machines.

breakdown of single/multi task jobs in priority groups
100

90+

80

70

60

50+

percentage %

40+

30+

201

10F Il single—tas
I multi-task
o
free batch prod

Fig. 1. Breakdown of single-task and multi-task jobs in Getsgcluster.

Figure 1-(a) shows the breakdown between single-task ariitHask jobs for each priority group in Google’s
cluster. We find that production jobs are dominated by sitab& jobs (90%), whereas 65% of batch jobs are
single-task. Multi-task jobs, however, consume signififamore compute cycles in Google’s cluster: 98% and
99% of task-minutes consumed by production jobs and by bjata$, respectively, belong to multi-task jobs.
To study whether the success rate of submitted jobs varigdelea single-task and multi-task jobs in Google's
cluster, Figure 2 plots the breakdown of jobs’ exit status. (Completed, failed, or got killed) for single-task
and multi-task jobs, separately:

BATCH Jobs Status (ALL) BATCH Jobs Status (SINGLE) BATCH Jobs Status (MULTI)
fail faikill finisfail
kill
finis
finish kill
PROD Jobs Status (ALL) PROD Jobs Status (SINGLE)
fail failk PROD Jobs Status (MULTI)
Kill il
@ @ finigail
finish finish kill

Fig. 2. Breakdown of number of jobs by their exit status in Glet cluster (left-most column: all jobs; middle columnuhitask jobs;
right-most column: single-task jobs).

We observe from Figure 2 that for both production and batbls jnore than 90% of single-task jobs complete
successfully, while more than 90% of multi-task jobs arenéwally killed.

In addition to the number of job submissions in each categeeyare interested in knowing the amount of
time that is consumed by the jobs in the cluster, in terms sk-tainutes, broken down by their exit status.
Figure 3 studies the breakdown of task-minutes in singdk-end multi-task jobs by job exit status. We find
that for production jobs, the fraction of compute cyclesstaned by jobs that are eventually killed dominates
the total amount of production time in Google’s cluster,ameliless of whether the job is comprised of a single

Technical Report CSRG-627 (University of Toronto)

Breakdown of compute cycles by job exit status Breakdown of compute cycles by job exit status
(ALL PROD JOBS) (ALL BATCH JOBS)
f fail ; finish
al
Kill Kill
(l\/lULTI—TASfK_IF’ROD JOBS) (MULTI-TASK BATCH JOBS)
finish finish
o
Kill Kill

(SINGLE-TASK PROD JOBS)

fail

(SINGLE-TASK BATCH JOBS)

@m

fail

finis

finish

kill

Fig. 3. Breakdown of total time consumed by jobs by exit stdatuGoogle’s cluster (left column: production jobs, rigittumn: batch
jobs).

task or multiple tasks. To further investigate why prodaictjobs that are eventually killed dominate production

time, we asked domain experts at Google about our obsenvatid learned that some production services at
Google are expected to execute long-running jobs that remsterally ‘complete’ and are eventually terminated

(i.e. ‘killed") when their work is done.

We now turn to the CMU OpenCloud cluster to study the effeatwhber of tasks in a job. The OpenCloud
workload consisted mainly of MapReduce jobs, and the nurabanapper’ tasks and ‘reducer’ tasks that each
job spanned are made available in the traces. In Hadoop MhpiRgobs, the number of map tasks are typically
driven by the size and the number of files in the input data. ifleal number of reduce tasks as recommended
in Hadoop’s documentation is a function of the buffer sizetlsd output files in a job. We find that nearly
60% of the OpenCloud jobs consisted of one or zero reduces,tagkereas more than 80% of the jobs had at
least two mapper tasks. Note that the default number of ethgks in a job mentioned in Hadoop’s official
documentation is one reduce task [1].

We now study how the breakdown of a job’s exit status looks fibr single-task and multi-task jobs, where
the number of tasks here refers to the numbemappers Figure 4 compares the breakdown of the job’s exit
status between jobs that consist of a single mapper versitgpl®umappers. We observe that unlike Google’s
jobs, the success rates are not different between singieaiad multi-task jobs. We also observe that 50% of
the time consumed by multi-task jobs (which represent 83%llofobs submitted to the cluster) is spent on
jobs that eventuallyail. In fact, we find that 50% of the time spent on all jobs subrditi® the cluster during
the measurement period is spent on failed jobs.

Technical Report CSRG-627 (University of Toronto)

Number of Job Submissions (MULTI-M-TASK JOBS) Total task—minutes (MULTI-M-TASK JOBS)
39 12%
%

38%

I succcess jobs
[failed jobs
[Jkilled jobs

89% 50%

Number of Job Submissions (SINGLE-M-TASK JOBS)Total task—minutes (SINGLE-M-TASK JOBS)

29 8%
%
4%

- succcess jobs
[failed jobs
[Jkilled jobs

90%

Fig. 4. Breakdown of number of jobs by their exit status in Glet cluster (left-most column: all jobs; middle columnulhittask jobs;
right-most column: single-task jobs).

Finally, we examine the jobs submitted to LANL's HPC clusfEne LANL jobs do not provide information
on the number of paralléhsksa job comprised, but the number nbdesthat each job was assigned to run on
is available and is determined by the number of processaittsathob requests. Each node in LANL's cluster
had four processors and jobs typically requested processanultiples of four. Therefore, a job requesting 4
processors ran on a single node, and a job requesting marettheocessors ran orfiequested-processaddy
nodes. We therefore use the number of requested processas mdicator of the level of parallelism of a
LANL job.

Breakdown of LANL Job Exit Status Breakdown of CPU Seconds by Job Exit Status

Hll finished 100
| |l killed 0l
[COsyskill

1 |C_Jaborted
I failed

<1 | Il allocated

100

I finished
4 | I killed
[syskill

1 |CJaborted
[failed

1 |C_Jallocated

90F

80F

701
60
501

Percentage %

aot

301

20F

Percentage of Total CPU-Seconds %

10

o
single—node jobs multi—-node jobs single—node jobs multi—-node jobs

Fig. 5. Breakdown of job status for single-node and multidparallel) jobs in LANL's HPC cluster.

We find that 79% of the LANL jobs ran on a single node; the reimngi21% of jobs ran on varying numbers of
nodes, ranging from 2 nodes and up to the entire cluste26®nodes). Figure 5-(left) compares the breakdown
of the final status between jobs that ran on a single node ddtf@t ran on multiple nodes in LANL's cluster.
We observe 70% and 50% success rates in single-node andnodéijobs, respectively. We also find that job-
killing rates in particular, i.e. jobs that are eitheyski | | ed or ki | | ed, are almost doubled in multi-node
jobs compared to single jobs. Figure 5-(right) compareshifeakdown of the total time consumed by single-
and multi-node LANL jobs broken down by job exit status. hetingly, we find that almost 90% of the time
consumed by single-node jobs is time spent on jobs that amteailysyski | | ed. Jobs that arsyski | | ed
are typically terminated by an administrative user eithgr tb a problem or due to maintenance (recall Table 1).

Observation:For the clusters included in our study, we find that 50% to 9%%he time spent executing
parallel jobs (i.e. jobs that ran on two or more nodes), wassemed by unsuccessful jobs that end up either
failing or getting aborted by the user.

Technical Report CSRG-627 (University of Toronto)

B. Job Duration

Our observations above motivated us to further study thetiogiship between the duration (length) of
individual jobs and their exit status. The goal is to improwe understanding of what characterizes job failures
or abortions in large clusters.

Figure 6 below studies the empirical cumulative distribntfunction (CDF) of job durations for all clusters
in our traces. Each line in the graphs plots the CDF for jolad #fnare an exit status: either finish normally,
fail, or get killed.

CDF of total task—minutes by job exit event CDF of total task—minutes by job exit event
1 T T 1
0.9+ B 0.9+
0.8 q 0.8
0.7 1 0.7+
0.6 B 0.6
= L i = L
T 05 T 0.5
0.4r q 0.4r
0.3r q 0.3
0.2+ - 0.2+ B
—— FINISHED —— FINISHED
0.1 ——KILLED n 0.1r ——KILLED
—— FAILED ——FAILED
o ; ; : o 0 i
1072 10° 107 10" 10° 10° 107° 10° 10° 10"
X X
(a) Google Production Jobs. (b) Google Batch Jobs.
OpenCloud: total task minutes per job CDF of job durations in LANL System 20
1 T 1 T - . ;
0.9 0.9r
0.81 0.8F
0.7 0.7F
0.6 0.6F
3 0.5 Zosr
0.4- 0.41
0.3 0.31
m— finished
0.2 y 0.21 ——killed |
—— FINISHED - = syskill
0.1 ——KILLED] 0.1 aborted [
FAILED failed
o ; ; ; : o
1072 10° 10° 10" 10° 10° 10° 10° 10%°
X x
(c) CMU OpenCloud Jobs. (d) LANL Cluster jobs.

Fig. 6. Comparison of the distribution function of job dimas among jobs that finish, get killed, or fail, in all clustencluded in our
traces.

Observation:The durations of successful jobs are consistentlysthertestamong all jobs submitted to the
clusters included in our study. On the other hand, jobs teakijed spend the longest times running before
they are terminated, with the exception of the LANL clustérane both killed and failed jobs report comparable
distributions of job durations. This observation

C. Job Scheduling Attributes

We next look into the effect of different job scheduling itiites, namely the job’s priority, scheduling-class,
and requested resources, on the job’s final status.

Job Priority: Of all the workload traces in our study, Google’s data is thiy @ne that includes information
on the priority level of tasks that belong to a job (typicalsll tasks in a job have the same priority). As
mentioned earlier, the priority of a task is indicated by anber from 0 (lowest) to 11 (highest). Priorities
0-1 are labeled as gratis (free); priorities 2—8 are spéalileo be dominated by batch jobs and MapReduce

occurrences
o =
[5)) = (%))

o

Technical Report CSRG-627 (University of Toronto)

5 . .
x 10 batch jobs batch jobs
2 ! 100
(=]
815 1S
o (<)
5 g
g 1 1 € 50
=] @
S S I FINISHED
. 1 @©
S 05 o CCIKILLED
[FAILED
0 = 0
23456 8 2 3456 8
priority priority
Fig. 7. Job status as a function of job priority in Google’'scbajobs.
x10° production jobs 100 production jobs 15% 10" batch jobs 100 batch jobs
[I FINISHED
[CTIKILLED
3 [__JFAILED © 80
o 810 °
g 2 2 60
5 % £ £
I NiSHED IS § 5 g “
[JkiLLeD 3 s} 3
[JFaLED 20
0 1 2 ’; 0 0 1 2 3 0 0
: ; 0 1 2 3 0 1 2 3
scheduling class scheduling class scheduling class scheduling class

Fig. 8. Job status as a function of job scheduling-class ingls production jobs (left) and batch jobs (right).

jobs; priority 9 is ‘normal production’ jobs; priority 10 peesents ‘monitoring’ jobs; and priority 11 is labeled
‘infrastructure’.

When assigning tasks to machines, tasks with higher paserétre favoured in resources over tasks with lower
priorities. Additionally, the scheduler in Google’s clesis designed such that over-committing resources on a
machine is permissible. Therefore, in the case when therenatr enough resources to satisfy the requests of
all tasks running on a machine, tasks with lower prioritiesyrbe killed [10].

In our analysis so far we have been focusing on studying amgpadng jobs from two priority groups:
normal production jobs (priority 9) and batch jobs (pri@st 2—8). We now take a closer look at the range of
different priority levels withinbatch jobs. Figure 7 plots the number of scheduled jobs as a fumaifojob
priority, while showing the breakdown of job statuses; tb# plot shows the absolute counts of jobs and the
right plots shows the breakdown in terms of percentages. Meéetfiat the top priority levels assigned to batch
jobs by users were 4 (49% of batch jobs), 8 (36%) and 6 (12%) ket the success rates in those three groups
are correlated positively with the priority level (i.e. theher the priority, the higher the success rate).

Job Scheduling Class: In Google’s cluster, jobs have a scheduling class that ohétexs how latency-sensitive
a job is, with values ranging from 0 (least sensitive), to ®gtrsensitive). While a task priority determines if it is
scheduled on a machine or not, the scheduling class islasatly by the machine to implement machine-local
policies for accessing its resources.

Figure 8 shows the breakdown of job status as a function afdiding class for both production jobs and
batch jobs in Google’s cluster. We find that scheduling eas3 and 1 are the two most commonly chosen
classes by users for both production and batch jobs. In ptamdujobs, the higher the scheduling class of
a job the lower its success chance; an opposite trend is\a@abén batch jobs, however, with the exception
of scheduling class 3. In both production and batch jobsedualing class 3 is the least chosen by users and
approximately 99% of jobs under this class are eventuallgdi

Observation:In the Google cluster in our dataset, the priority level ofaich job was positively correlated
with the job’s success chance. Weaker trends were obsertagén the scheduling class of a job and its exit
status, when considering both batch jobs and productios job

Requested Resources: We now study the relationship between the amount of ressusrguested by tasks in
a job the final status of the job. In the LANL cluster, we onlywéalata on the number of requested processors
per job. In the Google cluster and the OpenCloud clusterend@tailed information is available. In Google,
tasks are submitted with values for requested CPU, memorglisti space, where these values represent the

Technical Report CSRG-627 (University of Toronto)

Google Prod Tasks Google Prod Tasks WOgle Prod Tasks Google Batch Tasks Google Batch Tasks 10" Google Batch Tasks
X 0.25 X
02 + + o4 : 25— + + ° T T T
5 g . g 0.2 2 02 + g 8= pooT
Z 015/ * + £ 0.4 + > 3 E : i ! + g . + $ ¥ 2 i ¥ !
9]
g H £03 B g 0.15[& + 0.5 £ S * x 61 % :
g 01 — | o + T2+ + Q ! ‘ T o I o Ty i
7 ! ® i o 7 01f ! L1804 E Lo
2 | 202 + I o | i [I @
5 0.05 =1 g O Bl Z g 2 2
o + 501 l:l) i + o 0.05 2 0.05 g =5
: P g T gli 4) B = 0
0 - =0 L 00 i 0 - I) ;' - o
2
FINISHED KILLED ~ FAILED FINISHED KILLED ~ FAILED FINISHED KILLED FAILED FINISHED KILLED FAILED FINISHED ~ KILLED FAILED 2 FINISHED ~ KILLED FAILED
(a) Google Production Jobs. (b) Google Batch Jobs.
Size of requested VM MB for single map task Size of requested VM MB for single reduce task
4000 ¥ * * 4000 + ¥ + 8 ° s 7 8 E i §
+ + — + — & H g]
| g & 8 8 3 s & & B
3000{ * + | 3000} + | g - B
+ + | N I g B & 8 N ° ° H 8 H
2000 £ i E 2000 i % D % 2 8 2 H : H
o+ 0 e A SEEL B BCE
+ + + £ g8 § o g g
0 " T L 0 n T L ol e mmm % — L ——
FINISHED FAILED KILLED FINISHED FAILED KILLED ' abo‘rted aHo;ated erlror failed hms‘hed k\l\led sys‘k\H
(c) CMU OpenCloud Jobs. (d) LANL Jobs.

Fig. 9. Requested resources by tasks in a job versus thetatis f a job in the Google cluster and CMU’s OpenCloud elust

maximum amount of resources a task is allowed to consume omchine. However, tasks are sometimes
permitted to use more than what they requested if resoureeavailable; e.g. tasks may use free CPU cycles
on a machine [10].

In the OpenCloud cluster, job configuration parametersuihelthe following fields for requested resources
(more detailed definitions are found in Hadoop’s documédtL]):
e mapr ed. j ob. map. menory. nb: The size of virtual memory for a single map task.
e mapr ed. j ob. reduce. menory. nb: The size of virtual memory for a single reduce task.

Figure 9 plots the distribution of the average requestedurees by tasks in a job, for jobs that finish, fail
or get killed, separately. We use boxpldtso examine and compare the distribution of requested ressur

The first thing we observe from the graphs is that resouragastq varied between successful and unsuccessful
job runs in all the clusters in our data. In Google’s clugpeaduction jobs thatailed had a significantly higher
median value for requested CPU, memory, or disk space thasessful jobs; production jobs that wékidled
had higher CPU and memory requests in particular (see Figygg). For Google’s batch jobs, we observe
higher median values for requested memory and disk spaabmthatfailed (see Figure 9-(b)).

In the OpenCloud cluster, we find that jobs that were evelytikdled report significantly higher requests for
virtual memory than successful jobs or even jobs that faledboth mapper and reducer tasks (see Figure 9-
(c)). In the LANL cluster, we observe significantly highestiibutions of the number of requested processors
by a job in jobs that gekilled, compared to successful jobs.

Observation:The observed correlations between the amount of requessedinces by a job and its unsuc-
cessful termination in the clusters that are included in siudy suggest that knowledge of how much CPU,
memory, or disk space a job requests can be used as predittivssfinal status. We investigate the potential
of using requested resources as predictors of job failuréed next Section, Section IV.

D. Job Resource Usage

After examining how a job’s configuration parameters suchlisadegree of parallelism, scheduling constraints
or requested resources correlate with the job’s exit statigsnow turn our attention to the actual resource
consumption of a job. Our goal is to study how the way a jobizgid resources in a cluster affects its final
status.

1Recall that in a box plot the bottom and top of the box are admine 25th and 75th percentile, respectively, and the baad the
middle of the box is always the 50th percentile (the median).

Technical Report CSRG-627 (University of Toronto)

all production jobs all production jobs all production jobs all batch jobs all batch jobs all batch jobs
w
N
1 z 1 z 1 1 ! g1
o g | 7 o] 5
8 08 u 08 %08 : © 08 Z08 %08
ral [= &2
[a} [a}
206 Qo6 006 Z 06 : Q06 © 06
50.4 i(04 <>(04 L{204 i i(04 ?—04 .
5 —FINiSHED|| 8™ —FINISHED|| 5 ——FINISHED) g™ —Fmshel| & —Ansienll o —— FINISHED)
02 ——KILLED So2 ——KILLED %02 ——KILLED 02 — KILLED S 02 —KILLED 502 ——KILLED
, ——FAILED , ——FAILED 0 , ——FAILED EAILED EAILED —FAILED
0 01 02 03 04 0 02 04 06 08 0 001 002 003 00 % 005 o1 o015 % 005 o1 0 001 o0z 003
X X X X X X
(a) Google Production Jobs. (b) Google Batch Jobs.
multi-task jobs jobs multi-task jobs jobs multi-task jobs jobs multi-task batch jobs multi-task batch jobs multi-task batch jobs
w w
1 & 1 s 1 z o1 =1
2 9 0 2 g g
8 0.8 E 0.8 508 8 0.8 g 0.8 % 08
&) > a
<>t 0.6 (>D 0.6 © 06 % 0.6 g 0.6 g 0.6
2 oa Loa 204 U 0.4 5 0.4 Zoa
g —FINISHED|| 2~ —FINISHED|| 5~ ——FINISHED o —FINISHED) ——FINISHED|| ¢ —_FINISHED
) KILLED LDL KILLED w KILLED 0.2 ——KILLED 0 0.2 ——KILLED Q0.2 ——KILLED
02 [§] 02 g 02 ——FAILED —— FAILED © —— FAILED
——FAILED ——FAILED o ——FAILED 0 0 0
0 0 0 0 0.05 0.1 0.15 0 0.05 0.1 0 0.01 0.02 0.03
0 01 02 0 02 04 06 0 001 002 00 x X x
(c) Google Production Jobs (Multi-Task). (d) Google Batch Jobs (Multi-Task).

Fig. 10. The average resource utilization in Google’s jdbs,jobs that finish successfully, fail, or get killed. Figsr(a,b) include all
production and batch jobs; figures (c,d) include multi-tasdts only.

The only dataset in our traces that allows us to explore théstion is the data from Google’s cluster where
task usage information is made available. In particulargfch task running on a machine in the cluster, there
is data on CPU, memory, and disk usage, aggregated over @animtervals. All values of usage data are
normalized by the maximum value reported in each category.

The graphs in Figure 10-(a,b) show the distribution of therage CPU, memory, and disk /O consumption
for all production jobs and batch jobs submitted to the Geaglister, plotted separately for different job exit
statuses. We find that jobs thiil reported the highest disk 1/0O consumption, on average, mogroduction
jobs and batch jobs. More precisely, the average /0O usage flajled job was 10X and 2X times higher than
that of a successful job in production jobs and batch jobspeetively.

When repeating this analysis fonulti-taskjobs only in Figure 10-(c,d), we find that multi-task prodont
jobs in particular reported significantly higher values fmth CPU and disk I/O consumption, compared to
successful jobs. For example, the average CPU usage ofeal faillti-task production job was 284X times
higher than that of a successful job. Jobs that were killedthe other hand, reported the highest values for
memoryusage in particular; for example, the average memory ustgekdled job was 10X and 4X higher
than a successful job in production jobs and batch jobsemsely.

Variability in job resource usageln addition to studying and comparing the distribution oé thverage
resource consumption of jobs, we also ask the question of thewariability in usage between tasks that
belong to the same job compares across successful and essfidgobs. Figure 11 in the next page plots the
distribution of the coefficient of variation (CoV) in res@arusage between tasks in a job. Note that we only
include multi-task jobs in this analysis.

Interestingly, we find that failed jobs which had the highestrage in 1/0 usage, report the lowest variability
in 1/0 usage between tasks working on the same job. Simjlkilled jobs which reported the highest average
in memory consumption (especially in production jobs), exignced the lowest variability in memory usage
between tasks in a job. We also find that failed jobs had thedsigvariability in the amount of memory used
by tasks in a job, in both production jobs and batch jobs.

Estimation of requested resourceSo far we have studied the correlation between rdguestedresources
by a job, and the actualsageof a job, separately. Another question one may ask is whetierover- or
under-estimation of requested resources by a job affettedinal status of the job. To study this question,
Figure 12 plots the ratio between a job’s actual average faaximum) resource consumption values and the
job’s requested values, for CPU and memory. The dashed ¢jreeindicates a ratio of 1, therefore any value

Technical Report CSRG-627 (University of Toronto)

multi-task jobs multi-task jobs multi-task batch jobs multi-task batch jobs

multi-task jobs multi-task batch jobs

- - o1 W
é 1 E 1 é ot g 1 z 1
T8 ;0-3 ;0'8 S 08 Zos8 %08
Q > s @
008 306 3§08 306 > 06 Sos
© 0.4 ——FINISHED|| B 0.4 —— FINISHED S04 J— 5 o 8
S 2 e FINISHED) w04 5 0.4 204
So2 —_KLLED So2 —KILLED | 8, ——KILLED 8 ——FINISHED|| 1 —FINISHED|| @ —— FINISHED)
——FAILED - —FAILED - ——FAILED 02 ——KILLED S o2 ——KILLED g02 ——KILLED
0 0 0 ——FAILED ——FAILED © ——FAILED
0o 1 2 3 4) 2 4 6 0 2 4 6 0 ° 0
X X X 0 2 4 0 2 4 0 2 4
X X X
(a) Google Production Jobs (Multi-Task). (b) Google Batch Jobs (Multi-Task).
Fig. 11. The variability in resource utilization betweersks in a multi-task job, for jobs that finish successfullyi, far get killed in
Google’s cluster.
10 (avg—cpuj/(req—cpu) 3D(max_avg°p”)l(req_°p”)20 (max—maxcpu)/(req—cpu) (avg—mem)/(req—mem) (max—avgmem)/(req—mem)(max—maxmem)/(req—mem)
* * ES + > N - - -
sl = 250 3 * + - . 10
i + § + 150 3 N .
e * 20 1.5 8
6 + x - - M
. . 15 % * 1100 ¥ Py — i 2r i . 6F
i | | + +
4 i % 10 * - | - i I — A i
+ 50 0.5 | El | I i
2 = e 2 &
‘ ‘ i = 8 g 1d & 2
e B o - o R o -
o FINISHED KILLED FAILED o FINISHED. KILLED FAILED o FINISHED KILLED FAILED FINISHED KILLED FAILED FINISHED KILLED FAILED FINISHED KILLED FAILED
job exit event job exit event
(a) CPU usage. (b) Memory usage.
Fig. 12. The ratio between requested resources by jobs andctinal usage of jobs.

above the dashed line indicates an under-estimation ofiress while values below the line indicate an over-
estimation. (Recall that the values for ‘requested’ resesiin Google’s cluster are defined as the maximum
anticipated usage values by the tasks belonging to a job)[10]

We observe that failed jobs had the highest portion of jolz tkeported a maximum CPU usage value
exceeding their requested CPU capacity. Jobs that werkitin the other hand, reported the highest median
of the ratio between consumed memory and requested memeryhése jobs used more memory than what
they had initially requested.

Observation: For the Google cluster in our data, the resource utilizatibjobs in terms of CPU, memory
and 1/0 consumption, varied between jobs that completedessfully, jobs that failed, and jobs that were killed.
This observation suggests that how jobs access and useaaeson large clusters can be used to characterize
job reliability and to potentially predict the exit statubabjob.

E. Task Reliability

In this subsection we turn our attention to tfaesklevel in large-scale jobs. In both Google and OpenCloud
clusters, jobs consisted of one or more tasks. The clustexdstder assigns tasks to machines, where a task
can be running on a single machine at any point in time. Taskscomplete successfully, fail, get killed, or
get evicted (in Google, task evictions happen due to resoavercommitment or when higher priority tasks
arrive at a machine and the task demands exceed machineitggd@). Our goal is to understand how the
completion of a job is affected by the reliability of its taskVe study different task fault-tolerance configuration
parameters, while focusing on task resubmissions.

We begin by asking the question of how the statuses of tasknats in a job relate to the final status of the
job. Figure 13 plots the fraction of jobs in Google’s cludiieat experienced at least one task failure, task Kkill,
or task eviction, for jobs that end up getting killed, faflinor completing successfully.

Based on Figure 13, we make the following observations ajotnst and tasks in Google’s cluster:
¢ We observe a strong association between having at leastiskddilure and the entire job eventually failing.
Similarly, a single task kill event is highly associatediwé job getting killed.

e It is extremely rare for jobs that complete successfullyxpegience any unsuccessful task attempts (see last
row of graphs).

e Jobs that end up being killed can have successful task atefpr example, 78% of killed batch jobs had
at least one task complete successfully.

Percentage % Percentage %

Percentage %

Technical Report CSRG-627 (University of Toronto)

Production jobs that end up KILLED Batch jobs that end up KILLED
100 T T T ° 100 T T T
8
[
g
50 § 50 B
g
0 - - Po— 0 - ’ - L
(atleast 1 task—kil) (atleast1fail) (atleast1evict) (zero faillkilllevict) (atleast 1 success) (atleast 1 task-kill) (atleast1fai) (atleastlevict) (zero failkillevict) (at least 1 success)
Production jobs that FAIL Batch jobs that FAIL
100 ! g 100 \
(9]
g
50 B é
jo}
OJ 1 | | &y
(atleast 1 task-kill) (atleast 1fail) (atleast L evict) (zerofaillillevict) (at least 1 success) (atleast 1 task—kill) - (atleast 1fail) ~ (atleast 1 evict) (zero faillkilllevict) (at least 1 success)
Production jobs that COMPLETE Batch jobs that COMPLETE
100 ‘ ‘ o 100 \
8
[
g
50 E § 50 ; E
©
1 o 0 L L I
(atleast 1 task—kill) (atleast 1fail) (atleast 1 evict) (zero faillkillevict) (atleast 1 success) (atleast 1 task—kill) (atleast 1fail) ~ (atleast 1 evict) (zero failkkillfevict) (at least 1 success)
(a) Google Production Jobs. (b) Google Batch Jobs.

Fig. 13. The relationship between task exit status and jabséatus in Google’s cluster.

e Task evictions show the strongest correlation with dlis. Further investigation shows that 98% and 90%
of production jobs and batch jobs, respectively, which elgpeed at least one task evict, were eventually killed.

We repeat this analysis for the CMU OpenCloud cluster in fédid below. We find that a higher fraction of
successful jobs experienced failed or killed task attepgmpared to Google’s jobs (hote that the OpenCloud
traces had no records of task ‘evicts’). We also find that thaus of (unsuccessful) mapper tasks in a job were
more indicative of the job’s final status than reducer tasks.

mappers with at least 1 killed attempt # reducers with at least 1 killed attempt
100 100
Il at least 1 map KILL Il at least 1 reduce KILL
80 I =t least 1 map FAIL ol Il ot least 1 reduce FAIL]
ES S
Y] L 601
g g
= =
[[
2 40 2 401
[[
a a
20 1 20t
0 - " " ——— 0 - " " ———
successful jobs killed jobs failed jobs successful jobs killed jobs failed jobs

Fig. 14. The relationship between task exit status and jabseatus in the OpenCloud cluster.

Going back to the Google cluster, our observation that alesitesk failure was highly predictive of a job’s
unsuccessful termination motivated us to take a closer Inotikthe nature of task failures. Note that we focus
on taskfailures in particular and not task ‘kills’ which we exclude from thpart of our analysis, since tasks
are typically killed in Google’s cluster once their job idléd (either by the user or by another dependent
job [10]). Task failures, on the other hand, are usually #sult of a software crash, and when a task fails it
is automatically resubmitted to the cluster [7].

We next investigate the effectiveness of task resubmissitue to failures by studying the likelihood of a
task completing successfully, after making previous thiadgtempts.

Figure 15 plots the probability of a taslucceedindn the next attempt as a function of the number of past
failed attempts it had made in Google’s cluster. The left-most lggseghow the results when taking all jobs into
consideration; the middle plots are for multi-task jobsypmnd the right-most plots are for single-task jobs.

Technical Report CSRG-627 (University of Toronto)

- All production tasks Tasks in multi-task prod jobs Tasks in single—task prod jobs
g 1 g 1 =3
£ 1
5 5 g
Sos Cos Sos
=<

2 2 2
=
£ 0.6 £ £
@ o 06 S 06
g E E
@
8 0.4 8 04 & 04
@ 2 3
4
2 0.2 %02 %02
g . g g,
o - - . - a ol " - - -

0 fails 1st fail 2nd fail >2 fails 0 fails 1st fail 2nd fail >2 fails e 0 fails 1st fail 2nd fail >2 fails

Number of prev task fails Number of prev task fails Number of prev task fails
(a) Google Production Jobs.
All Batch tasks Tasks in multi-task batch jobs . Tasks in single—task batch jobs
1 1
£os £ 08 5 08
£ 06 = 06 £ 06
7y 7y
g) 3
8 0.4 8 0.4 g 04
E E 2
1z [x
~ = &5
8 8 £ g2
5 02 = 0.2 5
S S g
a a a
(o] o o " -
O fails 1stfail 2nd fail >2 fails 0 fails 1stfail 2nd fail >2 fails 0 fails 1stfail 2nd fail >2 fails

Number of prev task fails Number of prev task fails Number of prev task fails

(b) Google Batch Jobs.
Fig. 15. The probability that a task succeeds in an attempt fasiction of the number of past failed attempts in the Goaglster.

The first observation we make from the figure is that when aaskno history of failing, its success chance
is 70% if it is a production task and 98% if it is a batch task.affltonsidering tasks that belong to multi-task
jobs only, a task’s chance in succeeding without any pakirés drops in production jobs to 38%. Tasks in
single-task jobs, however, have a 99% probability of suditegin both batch and production jobs, given that
no past attempts have failed.

If one task attempfails, the task’s chance of succeeding in the next attempt drogpmatically to 2% only
in production tasks, and to 42% in batch tasks. If a task faibse than twice, its success chance in subsequent
attempts becomes negligible, regardless of its prioritglle

Observation: In the Google cluster, the chance of a task attempt complsticcessfully drops significantly
once the task experiences at least one attempt failure.ofisisrvation suggests that terminating a job after the

first task failure takes place can potentially save sigmificasources in the cluster, instead of continuing to run
a job with low chances of succeeding.

IV. JoB FAILURE PREDICTION

So far in this work we have studied the impact of various feectin job reliability in large-scale clusters. Our
goal in this section is to utilize the knowledge obtainechfrour trace-based analysis in predicting job failure
events in large clusters. We apply our classification andiptien techniques to the traces made available by
Google and by CMU’s OpenCloud cluster, since these two sraomtain more detailed information on jobs.

We use two different classification techniques to classifysjaccording to their final status in the cluster, i.e.
finished, failed, or got killed: Multinomial Logistic Reggsion (MLR), and Classification and Regression Trees
(CART). We apply our classification and prediction techmigjon each data source separately, and since some

workload traces contain additional data fields about ths,jolor set of predictors can differ from one trace to
another.

1- Google ClusterWe begin by looking at Google’s job traces. Our explanatgngdictor) input variables
extracted from the trace, which we feed our classifiers ireotd learn and predict a job’s final status, are
summarized in Table Il below:

We apply the two classifiers, MLR and CART, for Google’s proiilen jobs and batch jobs, separately. For
each dataset, we split the data randomly such that 70% ofothie are used for training the MLR and CART

Technical Report CSRG-627 (University of Toronto)

[Trace [[Variable | Category [Description |

job_status Response | The outcome we are interested in predicting. A job’s stafurs ether be
FI NI SHED, FAI LED, or KI LLED.
Input Variables (Predictors)

user|I D Job Config | The ID of the user that submitted this job (either a Googleresey or g
service).

| ogi cal _j ob_nane Job Config | The name of the program (application) that this job is rugnin

schedul i ng_cl ass Job Config | Each job has a scheduling class that drives machine locadigmlfor
allocating resources.

priority Job Config | Job and task priorities determine if they are given prefezenfor
resources.

num t asks Job Config | Each job spans one or more tasks. This determines the dedree o

parallelization of a job.
di fferent _machi nes_rest | Job Config | This flag, when enabled, means that all tasks in a job must tedsted|
on different physical machines.

Google|| r equest ed_cpu Job Config | The amount of requested CPU capacity by a task in a job.

request ed_nenory Job Config | The amount of memory requested by a task in a job.

request ed_di sk Job Config | The amount of disk space requested by a task in a job.

num conpl et ed_t asks Job Counters Number of tasks in a job that completed successfully.

num f ai | ed_t asks Job Counters Number of tasks in a job that experienced one or more failezimgits
during the job’s lifetime.

num ki | | ed_t asks Job Counters Number of tasks in a job that experienced one or more killéengits
during the job’s lifetime.

num evi ct ed_t asks Job Counters Number of tasks in a job that experienced one or more eviatisglthe
job’s lifetime.

num bad_t asks Job Counters Number of tasks in a job that experienced one or more failéetikevicted
attempts during the job’s lifetime.

job_duration Job Counter$ The total amount of task-minutes spent by a job.

avg_cpu_usage Job Usage | The average amount of CPU used by a job’s tasks.

avg_nenory_usage Job Usage | The average amount of memory used by a job’s tasks.

avg_l O _usage Job Usage | The average amount of 1/0 used by a job’s tasks.

CoV_cpu_usage Job Usage | The variability in CPU usage among tasks belonging to theesjmin

CoV_nenory_usage Job Usage | The variability in memory usage among tasks belonging tosdmae job

CoV_I O_usage Job Usage | The variability in 1/0O usage among tasks belonging to theesgob.
TABLE TN

SUMMARY OF JOB STATUS CLASSIFICATION AND PREDICTION VARIABIES FOR THEGOOGLE CLUSTER

models, and 30% are used for testing. We use standard mitrasluate the quality of our predictors:

e Precision: the percentage of predicted job failure evdrds are true.

¢ Recall: the percentage of actual job failure events thatveeiccessfully predicted.

e Specificity: the percentage of negative job failures (iod. guccesses or kills) that were correctly labeled.
e Accuracy: the percentage of predictions that are correct.

a) Predicting a job’s status based on all input variable®¥/e begin by classifying a job’s final status
while assuming knowledge of all the attributes and cournteliested to a job. Figure 16 plots the results of our
classification models when using MLR and CART techniques, when using the data faall the variables
described in Table Ill as predictors. While, realisticabiptaining knowledge about some of these fields cannot
be done in practice until a job stops running (e.g. the totahiner of completed tasks, etc), it is still useful to
run and test our models on all the variables in order to devalbetter understanding of which job attributes
are most relevant to a job’s final status. This can be donécpkatly using CART, where the output of running
the model on the data produces a list of the attributes thd¢amp being used by the classifier to construct
the tree. Note that we included these lists of ‘relevanitattes’ to the graph titles in Figure 16.

We make several observations from Figure 16. First, we firat ®@ART performs better than MLR in
predicting job failures, with approximately 99% precisiand 90-95% recall. Next, we observe that most of
the attributes used by CART to classify a job successfullyewre common between batch jobs and production
jobs; in particular, we find that CART used the following figldhe amount of memory requested by a job, the
number of tasks in a job with successful/unsuccessful gtenand the total time spent by a job in the cluster.
The two additional attributes used by production jobs weser ID and the variability in memory usage over time.

The above results point us to which attributes are more fgignit to a job’s terminal status than others

Technical Report CSRG-627 (University of Toronto)

Predict PROD Job FAIL (ALL input vars) Predict BATCH Job FAIL (ALL input vars)
CART:<cpuMin, memCoV, req—mem, #completedtasks, CART:<#completedtasks, #fail-task—attempts,
#failed—task—attempts, #killed—task—attempts, totalTime, user> #killed—task—attempts,req—memavg,totalTaskMinutes>
1 — T T T 1 T T T
0.8f 0.8f
0.6 0.6
0.41 0.4
0.2f 1 0.2r
B MLR Bl MLR
ART ART
. : : C_Ic - ‘ C_Ic
precision recall spec accuracy precision recall spec accuracy
(a) Google Production Jobs. (b) Google Batch Jobs.

Fig. 16. Evaluation of predicting job failures in the Googlester when usingll input data as predictors.

whenever all job attributes and counters are considerextt, Nestead of assuming knowledge of all attributes,
we ask the question of whether we can predict a job’s stataedban the job’s configuration parameters and
resource requests that are known to the user before the gemited.

b) Predicting a job’s status based on config parametafde now consider the attributes under the category
‘Job Config’ in Table Il which are known to the user prior toabjs execution: the user and application IDs,
the job’s priority and scheduling class, the number of taekthe job, the amount of requested resources by a
job, and whether or not there is an anti-affinity constraomtthe job’s tasks.

Figure 17 shows the prediction results when using theseurgeb attributes and constraints. We find that
using configuration parameters alone dropped our recatlepéaige significantly to 20—30%; i.e. 20% to 30%
of failed jobs were correctly predicted by our CART classifferecision remained significant (99%) for batch
jobs but dropped to 60% in production jobs. Interestinglg, fimd that for batch jobs this high precision was
achieved while using only one attribute for classifyinggothe amount of requested disk space. The attributes
used for classifying production jobs, on the other hand,ewdifferent and included the requested CPU and
memory capacity, the application name, the schedulingsaéshe job, and the user ID.

We next investigate whether these predictions can be inggrifvwe consider the status tdsksthat make
failed attempts during the lifetime of a job.

c) Predicting a job’s status based on config parameters andaaktfailure flag. One of the observations
we make in Section IlI-E is that a single task failure even&istrong indicator of both the task and the job
eventually failing. This observation motivated us to stuflywe can predict a job’s final status accurately as
soon as one of its tasks makes a failed attempt to executdudy this question, we include in our input data
to the classifiers a single flag that is set to true if at least task attempt failedd{ dTaskFai |).

We plot the results of our predictions when using this flag d@dition to the pre-run job configuration
attributes), in Figure 18. We observe that including thedTaskFai | flag improved our prediction results
significantly, compared to when only config parameters wenesiclered. We find that for both production
and batch jobs more than 80% of job failures are predictedemsfully, and the precision of our predictor
exceeds 85%. We conclude that a single task failure attesrmgptsirong predictor of a job’s final status and can
be used in conjunction with job configuration parametersréaligt a job’s failure probability with high accuracy.

Technical Report CSRG-627 (University of Toronto)

Predict PROD Job FAIL (Pre-Run vars) Predict BATCH Job FAIL (Pre-Run vars)
CART:<joblD, avg-req—cpu, avg-req—mem CART:<req—disk—avg>
application, schedclass, user> 1
1 —
0.9r
0.8r
0.8r
0.7r
0.6F o.6r
0.5r
0.4r {04
0.31
0.2 4 0.2r
B MLR 0.1f
[JCART J
0 i i i 0 i i i
precision recall spec accuracy precision recall spec accuracy
(a) Google Production Jobs. (b) Google Batch Jobs.

Fig. 17. Evaluation of predicting job failures in the Googlaster when using job configuration and constraints aitte only as predictors.

Predict PROD Job FAIL (Pre—Run + TaskFail flag) Predict BATCH Job FAIL (Pre-Run + DidTaskFail)
CART:<didtaskfail, joblD, avg—-req—cpu, avg-reqg—mem CART:<didTaskFail, numtasks,req—disk—avg, req—mem-avg>
application, schedclass, user> T T T
1 —— T
0.9r
0.8r
0.8r [
0.7r
0.6F o.6r
0.5r
0.4r 0.4r
0.31
0.2+ 4 0.2
B MLR 0.1f
[JCART
i i i 0 i i i
precision recall spec accuracy precision recall spec accuracy
(a) Google Production Jobs. (b) Google Batch Jobs.

Fig. 18. Evaluation of predicting job failures in the Googlester when adding a flag for at least one failed task atteasp predictor
in addition to job config parameters.

2- CMU OpenCloud clusterWe now repeat our job failure classification and predictiomlgsis on the
workload traces provided by CMU’s OpenCloud cluster. TdWlén the next page summarizes the job attributes
available for the OpenCloud cluster jobs.

Similar to our job failure prediction analysis for the Goegbbs, we ran our MLR and CART classifiers
on the OpenCloud data to classify and predict job failurentsefirst while including all the possible input
variables describing a job, then by including variableg #ra known only at job configuration time (i.e. before
job execution starts), and finally, we tested our predioctdren considering di dTaskFai | flag as a predictor
variable in addition to the job config attributes. Figure h®ws the results for our different prediction attempts.

We observe from the graphs in Figure 19 that once again CARfbmes better in classifying job failures
than MLR. When including all job attributes, CART is able taceessfully classify 100% of all the job failures
that happened in the OpenCloud cluster, with 80% precisien 20% of the jobs classified as failures were
false negatives). The attributes used by CART were the tmtahts of failed task attempts made by mappers
and by reducers, the number of reducers that completed ssfadg, and the number of mappers and reducers
with at least one failed attempt.

When considering only job config parameters, the recallgr@ege of job failures drops significantly to 12%,
but when adding thdi dTaskFai | flag indicating that at least one task attempt has failed mbatjincreases
to 55%, and the amount of requested memory for reducer tasksnisidered by the classification tree.

Observation: For the clusters in our dataset, job status classificati@hprdiction can be achieved using
classification and regression trees (CART). Knowledge dkast one failed task attempt, in addition to job
config parameters, was a strong predictor of a job failingdifionally, the amount of requested resources by a
job, especially memory capacity, was used by our classifigrsn predicting job failure events across different
clusters.

Technical Report CSRG-627 (University of Toronto)

[Trace [[Variable | Category [Description |

job_status Response| The outcome we are interested in predicting. A job’s statais either be
FI NI SHED, FAI LED, or KI LLED.
Input Variables (Predictors)

user|I D Job Config The ID of the user that submitted this job (CMU researcher).

JobTracker | D Job Config This is the ID generated when a Hadoop JobTracker object @getlo A
JobTracker launches jobs and assigns IDs to them.

Jobl D Job Config The combination of a JobTrackerID and a JobID is a uniquetifienof a
job.

num nmaps Job Config The number of mapper tasks in a job.

num r educes Job Config The number of reducer tasks in a job.

max_attenpts_map Job Config The maximum number of attempts a map task can make beforeatimevvork

gives up on it.
max_attenpts_reduce |Job Config The maximum number of attempts a reduce task can make befiere t
framework gives up on it.

OpenCloud|ski p_attenpts Job Config The number of task attempts after which ‘skip’ mode will bekieéd off. Skip
mode means a task reports the records it will process nextatmn failureg
the framework would know which data records are possibly teadrds.

map_specul at e Job Config If true, then multiple instances of some map tasks may beutsédn parallel
red_specul ate Job Config| If true, then multiple instances of some reduce tasks mayxeeuted in
parallel.

request ed_nenory_map | Job Configl The size of VM requested for a single map task.
request ed_nenory_r ed | Job Configl The size of VM requested for a single reduce task.

finMaps Job Stats| Number of completed map tasks in the job.
fi nReduces Job Stats| Number of completed reduce tasks in the job.
fail Maps Job Stats| Total number of unsuccessful attempts by mapper tasks ijpthe
fai | Reduces Job Stats| Total number of unsuccessful attempts by reducer taskseirjott
maps_at | east _1f ai | Job Stats| Number of map tasks with at least one failed attempt.
red_atl east _1fail Job Stats| Number of reduce tasks with at least one failed attempt.
maps_at | east _1kill Job Stats| Number of map tasks with at least one killed attempt.
red_atl east _1kill Job Stats| Number of reduce tasks with at least one killed attempt.
job_duration Job Stats| The total amount of task-minutes spent by a job.
subm t Ti me Job Stats| The timestamp for the time a job was submitted to the cluster.
I aunchTi me Job Stats| The timestamp for the time a job was launched.
finishTine Job Stats| The timestamp for the time a job finished running.

TABLE IV

SUMMARY OF JOB STATUS CLASSIFICATION AND PREDICTION VARIABIES FOR THECMU OPENCLOUD CLUSTER.

Predict OpenCloud Job FAIL (ALL input vars) Predict OpenCloud Job FAIL (Pre-Run vars) (Pre-Run + DidTaskFail)
CART:<#failMaps #failReduces #finReduces CART:<JobTrackerID, numMaps, numReduces CART:<didTaskFail, numMaps, reqg-mem-R
#MapsAtleastF,#ReducesAtleastF submitTime, user> submitTime>
1 1 | 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 I VLR 0.2 0.2
[JCART
0 0
precisionrecall spec accuracy precision recall spec accuracy precision recall spec accuracy

Fig. 19. Evaluation of predicting job failures in the Googlester when usingll input data as predictors.

V. CONCLUSION

In this technical report, we analyzed workload traces ctdlé at multiple large-scale clusters to study the
guestion of how reliable are jobs that are executed on lgrgesllel clusters, and what makes these jobs prone
to failures (i.e. crashes) or abortions.

We first characterized unsuccessful jobs in our datasetunlystg how different job attributes are distributed
in the traces across jobs that finish successfully, fail,eirkijled. We investigated the effect of various factors
on a job’s terminal status, including the degree of paiaHgion of a job (i.e. the number of parallel tasks the
job spans), job duration, job scheduling attributes sucpresity and scheduling class, resource constraints and

Technical Report CSRG-627 (University of Toronto)

requests, resource utilization (e.g. CPU, memory, and Béye), and task reliability. Our results show strong
correlations between the number of parallel tasks a jobsspad the amount of resources requested or used
by the job’s tasks.

We then utilized this knowledge in building a prediction rebdsing classification and regression trees with
the goal of predicting job failure events. Our results shbat fob failures can be predicted with high accuracy
just by knowing whether a single task attempt failed or nocanjunction with knowledge of job configuration
attributes (e.g. the amount of memory requested by a jobeontimber of tasks the job spans, etc).

REFERENCES

[1] Apache’'s Hadoop DFS. http://hadoop.apache.org/.

[2] CMU Parallel Data Lab Project. http://www.pdl.cmu.éduA/index.shtml.

[3] OpenCloud Hadoop cluster trace: format and schema:/Hppdl.cmu.edu/pub/datasets/hla/dataset.html.

[4] Operational Data to Support and Enable Computer Scien&esearch, Los Alamos National Laboratory.
http://institute.lanl.gov/data/fdata/.

[5] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and $fir. Toward exascale resilience: 2014 upd&epercomputing frontiers
and innovations 1(1), 2014.

[6] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Feagind R. Brightwell. Detection and correction of silentadedrruption for
large-scale high-performance computing Pimceedings of the International Conference on High Perfance Computing, Networking,
Storage and AnalysisSC '12, pages 78:1-78:12, Los Alamitos, CA, USA, 2012. IEEinputer Society Press.

[7] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. kddz Heterogeneity and dynamicity of clouds at scale: Gobgice
analysis. InProceedings of the Third ACM Symposium on Cloud CompuBo@C '12, pages 7:1-7:13, New York, NY, USA, 2012.
ACM.

[8] B. Schroeder and G. A. Gibson. Disk failures in the reatldrowhat does an mttf of 1,000,000 hours mean to you™Ptoc. of the
5th USENIX conference on File and Storage Technoloddeskeley, CA, USA, 2007. USENIX Association.

[9] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. B&g P. Balaji, J. Belak, P. Bose, F. Cappello, B. CarlsonAAChien,
P. Coteus, N. A. Debardeleben, P. Diniz, C. Engelmann, Mz,E®e Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnathgor
S. Leyffer, D. Liberty, S. Mitra, T. S. Munson, R. Schreibdr, Stearley, and E. V. Hensbergen. Addressing failures asaate
computing. 2013.

[10] J. Wilkes. More Google cluster data. Google researchog,bl Nov. 2011. Posted at URL
http://googleresearch.blogspot.com/2011/11/moregigecluster-data.html.

