
1

[Technical Report CSRG-627 (University of Toronto)]

How reliable are large-scale jobs in parallel clusters?
Nosayba El-Sayed Bianca Schroeder

Department of Computer Science, University of Toronto
{nosayba, bianca}@cs.toronto.edu

I. I NTRODUCTION

As large-scale platforms continue to grow in scale and complexity, the applications running on them are
increasingly being prone to errors and failures. A recent study by Snir et al. [9] predicts that large parallel
applications running on an exascale machine may abort as frequently as once every 30 minutes. Minimizing the
rate at which large-scale jobs fail is especially critical for long-running applications that can take up to weeks or
months to finish executing successfully [8]. Emerging challenges, such as the increasing complexity of parallel
application workflows [5] or the rising silent data corruption (SDC) rates in large-scale platforms [6], require
substantial improvements in both system-level and application-level resilience.

In this technical report we are interested in answering the question of what makes jobs fail in large, parallel
clusters. Towards this end, we use workload traces collected at real world systems to study the effect of different
factors onjob reliability and to identify which ones are predictive of job failures in parallel applications. We
investigate factors such as job configuration parameters (e.g. the degree of parallelism, priority, etc), job resource
requests and constraints, job resource utilization (e.g. memory and CPU usage), and others.

We begin by describing the workload traces included in our study in Section II. Section III focuses on
characterizing job failures in these clusters by using the traces to quantify the correlation between a diverse set
of factors and a job’s exit status. Finally, in Section IV we study how to predict job failures in parallel clusters
using different classification techniques and evaluate thequality of our predictors using real world traces.

II. D ESCRIPTION OF WORKLOAD TRACES

We rely on workload traces made available by three differentsources: Google, Carnegie Mellon University
(CMU), and Los Alamos National Labs (LANL):

(a) Google: For one of Google’s large, multi-purpose compute clusters consisting of 12,000 machines, traces
of all jobs submitted to the cluster during 29 days in May, 2011 are made publicly available [10]. Each job
is comprised of one or moretasks, and each task is associated with a set of resource requirements. A task is
assigned to run on a single machine, and data on task resourceconsumption is made available, such as CPU,
memory, and disk usage (aggregated over 5-minute intervals). All values of usage data are normalized by the
maximum value reported in each category, and fields on users and application names are obfuscated. The traces
include data on when each job or task was submitted, scheduled, and finished (or was aborted). The exit status
of each job (and task) attempt is included in the traces and can be one of the following:failed, killed, evicted,
or finished.

Jobs were submitted by hundreds of users, where a user can be aGoogle engineer or a service [7], and their
tasks were assignedpriorities from 0 (lowest) to 11 (highest). According to a paper that accompanied the release
of the trace [7], priorities 0 and 1 are labeled as gratis (free); priorities 2–8 are speculated to be dominated
by batch jobs and MapReduce jobs; priority 9 is ‘normal production’ jobs; priority 10 represents ‘monitoring’
jobs; and priority 11 is labeled ‘infrastructure’. In our study, we focus on two priority groups: production jobs
(priority 9) and batch jobs (priorities 2–8).

(b) CMU OpenCloud Traces: OpenCloud [3] is a 64-node research cluster at Carnegie Mellon University used
by CMU researchers and managed by the Parallel Data Lab [2]. The cluster runs Apache’s Hadoop [1] distributed
file system, and had different types of applications runningon it during the trace collection period from areas
such as computational biology, natural language processing, image processing, and machine learning [3].

Technical Report CSRG-627 (University of Toronto)

The traces were collected over a period of 30 months and include two types of files: job configuration files,
and job history logs. The configuration files contain information on the parameters set by the users for each
submitted job, such as (but not limited to): the size of virtual memory formapandreducetasks; the maximum
number of attempts per task before the framework gives up on it; and boolean flags for whether or not to enable
speculative execution. The history files contain data on jobsubmission time, launch time, and finish time; the
exit status of a job (succeeded, failed, or gotkilled); the number of map/reduce tasks in the job; the number of
tasks in the job that completed successfully; and the numberof non-successful task attempts.

(c) LANL Job Traces: LANL made publicly available three years worth of job tracesfor one of their HPC
systems (system with ID 20 on their webpage [4]), which comprises of 256 nodes. The HPC cluster was used
by scientists, typically to run CPU-intensive scientific simulations. Around 400 users submitted approximately
300,000 jobs in total to cluster during the trace collectionperiod.

The workload traces contain data on job submission time, launch time, and exit time; the number of processors
requested for this job; the IDs of the nodes that the job was assigned to; and the final status of the job. The
table below summarizes the possible exit statuses for a job submitted to the LANL cluster:

LANL Job Status Description
finished All processes are scheduled
failed One or more of the nodes running this job crashed

aborted User aborted job (Ctrl/C)
killed An application process was killed by a signal

syskill Job was killed by an administrative user
(either due to maintenance or due to a problem).

TABLE I
DESCRIPTION OF EXIT STATUS MEANING IN THELANL JOB TRACES.

We now look at the basic statistics and overall success ratesfor the jobs submitted to the three clusters in
our dataset. Table II below provides an overview of the clusters and their job traces, along with the breakdown
of the job exit status. (Note that as previously indicated, for the Google traces we will be studying jobs that are
categorized as ‘production’ jobs separately from jobs categorized as ‘batch’ ones.)

Data Data Number of Number of #Scheduled%Success%Failed %Killed or Aborted %Other
Source Timespan Nodes Users Jobs Jobs Jobs Jobs

Google Multipurpose 29 days 12K 265 43K 83% 1.66% 15.25% 0.01%
Cluster (Prod Jobs)

Google Multipurpose 29 days 12K 227 349K 63% 1.27% 35.5% 0.003%
Cluster (Batch Jobs)

CMU OpenCloud 883 days 64 157 78K 88.8% 8.11% 3% 0.04%
Cluster

LANL HPC 1,022 days 256 446 290K 67.5% 0.62% 30.7% 1%
System#20

TABLE II
OVERVIEW OF THE WORKLOAD TRACES AND BASIC JOB STATISTICS FOR THE CLUSTERS IN OUR DATASET.

We find that job success rates vary across the different clusters in our data and fall within the 60–90% range.
Unsuccessful job submissions were dominated by killed (or aborted) jobs followed by failed jobs, with the
exception of the OpenCloud cluster where an opposite trend was observed. We next take a closer look into
jobs that terminated unsuccessfully, with the goal of developing a better understanding of why they failed and
whether certain factors are more likely to be correlated with their failure.

III. U NSUCCESSFULJOBS: TRACE-BASED ANALYSIS

In this section we use the traces to study the correlation between several factors and job reliability in
large clusters, including: the degree of parallelism, job configuration parameters, fault-tolerance parameters,
job durations, and resource utilization and constraints.

Technical Report CSRG-627 (University of Toronto)

A. Degree of Parallelization (DOP)

We begin by studying the relationship between the degree of parallelism of a job and its final status. In
Google’s cluster, a job consists of one or more tasks that typically execute the same binary with the same
resource requirements and scheduling constraints (e.g. priority, scheduling-class, etc). Applications that need to
run different types of tasks will usually execute them as separatejobs[10]. For example, MapReduce applications
would execute masters and workers as separate jobs. Generally, multi-task jobs are meant to have their tasks run
simultaneously, where a single task can be running on a single machine at any point in time. A configuration
parameter is available where a user can indicate if tasks must execute ondifferentphysical machines.

free batch prod
0

10

20

30

40

50

60

70

80

90

100
pe

rc
en

ta
ge

 %

breakdown of single/multi task jobs in priority groups

single−task
multi−task

Fig. 1. Breakdown of single-task and multi-task jobs in Google’s cluster.

Figure 1-(a) shows the breakdown between single-task and multi-task jobs for each priority group in Google’s
cluster. We find that production jobs are dominated by single-task jobs (90%), whereas 65% of batch jobs are
single-task. Multi-task jobs, however, consume significantly more compute cycles in Google’s cluster: 98% and
99% of task-minutes consumed by production jobs and by batchjobs, respectively, belong to multi-task jobs.
To study whether the success rate of submitted jobs varied between single-task and multi-task jobs in Google’s
cluster, Figure 2 plots the breakdown of jobs’ exit status (i.e. completed, failed, or got killed) for single-task
and multi-task jobs, separately:

fail

finish

kill

BATCH Jobs Status (ALL)
fail

finish

kill
BATCH Jobs Status (SINGLE)

failfinish

kill

BATCH Jobs Status (MULTI)

fail

finish

kill

PROD Jobs Status (ALL)
fail

finish

kill
PROD Jobs Status (SINGLE)

failfinish

kill

PROD Jobs Status (MULTI)

Fig. 2. Breakdown of number of jobs by their exit status in Google’s cluster (left-most column: all jobs; middle column: multi-task jobs;
right-most column: single-task jobs).

We observe from Figure 2 that for both production and batch jobs more than 90% of single-task jobs complete
successfully, while more than 90% of multi-task jobs are eventually killed.

In addition to the number of job submissions in each category, we are interested in knowing the amount of
time that is consumed by the jobs in the cluster, in terms of task-minutes, broken down by their exit status.
Figure 3 studies the breakdown of task-minutes in single-task and multi-task jobs by job exit status. We find
that for production jobs, the fraction of compute cycles consumed by jobs that are eventually killed dominates
the total amount of production time in Google’s cluster, regardless of whether the job is comprised of a single

Technical Report CSRG-627 (University of Toronto)

fail
finish

kill

Breakdown of compute cycles by job exit status
(ALL PROD JOBS)

fail
finish

kill

(MULTI−TASK PROD JOBS)

fail
finish

kill

(SINGLE−TASK PROD JOBS)

finish
fail

kill

Breakdown of compute cycles by job exit status
(ALL BATCH JOBS)

finish
fail

kill

(MULTI−TASK BATCH JOBS)

finish
fail

kill

(SINGLE−TASK BATCH JOBS)

Fig. 3. Breakdown of total time consumed by jobs by exit status in Google’s cluster (left column: production jobs, right-column: batch
jobs).

task or multiple tasks. To further investigate why production jobs that are eventually killed dominate production
time, we asked domain experts at Google about our observation and learned that some production services at
Google are expected to execute long-running jobs that neveractually ‘complete’ and are eventually terminated
(i.e. ‘killed’) when their work is done.

We now turn to the CMU OpenCloud cluster to study the effect ofnumber of tasks in a job. The OpenCloud
workload consisted mainly of MapReduce jobs, and the numberof ‘mapper’ tasks and ‘reducer’ tasks that each
job spanned are made available in the traces. In Hadoop MapReduce jobs, the number of map tasks are typically
driven by the size and the number of files in the input data. Theideal number of reduce tasks as recommended
in Hadoop’s documentation is a function of the buffer size ofthe output files in a job. We find that nearly
60% of the OpenCloud jobs consisted of one or zero reduce tasks, whereas more than 80% of the jobs had at
least two mapper tasks. Note that the default number of reduce tasks in a job mentioned in Hadoop’s official
documentation is one reduce task [1].

We now study how the breakdown of a job’s exit status looks like for single-task and multi-task jobs, where
the number of tasks here refers to the number ofmappers. Figure 4 compares the breakdown of the job’s exit
status between jobs that consist of a single mapper versus multiple mappers. We observe that unlike Google’s
jobs, the success rates are not different between single-task and multi-task jobs. We also observe that 50% of
the time consumed by multi-task jobs (which represent 83% ofall jobs submitted to the cluster) is spent on
jobs that eventuallyfail. In fact, we find that 50% of the time spent on all jobs submitted to the cluster during
the measurement period is spent on failed jobs.

Technical Report CSRG-627 (University of Toronto)

89%

8%
3%

Number of Job Submissions (MULTI−M−TASK JOBS)

38%

50%

12%
Total task−minutes (MULTI−M−TASK JOBS)

succcess jobs

failed jobs

killed jobs

90%

7%
2%

Number of Job Submissions (SINGLE−M−TASK JOBS)

78%

14%

8%
Total task−minutes (SINGLE−M−TASK JOBS)

succcess jobs

failed jobs

killed jobs

Fig. 4. Breakdown of number of jobs by their exit status in Google’s cluster (left-most column: all jobs; middle column: multi-task jobs;
right-most column: single-task jobs).

Finally, we examine the jobs submitted to LANL’s HPC cluster. The LANL jobs do not provide information
on the number of paralleltasksa job comprised, but the number ofnodesthat each job was assigned to run on
is available and is determined by the number of processors that a job requests. Each node in LANL’s cluster
had four processors and jobs typically requested processors in multiples of four. Therefore, a job requesting 4
processors ran on a single node, and a job requesting more than 4 processors ran on (#requested-processors/4)
nodes. We therefore use the number of requested processors as an indicator of the level of parallelism of a
LANL job.

single−node jobs multi−node jobs
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 %

Breakdown of LANL Job Exit Status

finished
killed
syskill
aborted
failed
allocated

single−node jobs multi−node jobs
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f T
ot

al
CP

U−
Se

co
nd

s %

Breakdown of CPU Seconds by Job Exit Status

finished
killed
syskill
aborted
failed
allocated

Fig. 5. Breakdown of job status for single-node and multi-node (parallel) jobs in LANL’s HPC cluster.

We find that 79% of the LANL jobs ran on a single node; the remaining 21% of jobs ran on varying numbers of
nodes, ranging from 2 nodes and up to the entire cluster (i.e.255 nodes). Figure 5-(left) compares the breakdown
of the final status between jobs that ran on a single node and jobs that ran on multiple nodes in LANL’s cluster.
We observe 70% and 50% success rates in single-node and multi-node jobs, respectively. We also find that job-
killing rates in particular, i.e. jobs that are eithersyskilled or killed, are almost doubled in multi-node
jobs compared to single jobs. Figure 5-(right) compares thebreakdown of the total time consumed by single-
and multi-node LANL jobs broken down by job exit status. Interestingly, we find that almost 90% of the time
consumed by single-node jobs is time spent on jobs that are eventuallysyskilled. Jobs that aresyskilled
are typically terminated by an administrative user either due to a problem or due to maintenance (recall Table I).

Observation:For the clusters included in our study, we find that 50% to 99% of the time spent executing
parallel jobs (i.e. jobs that ran on two or more nodes), was consumed by unsuccessful jobs that end up either
failing or getting aborted by the user.

Technical Report CSRG-627 (University of Toronto)

B. Job Duration

Our observations above motivated us to further study the relationship between the duration (length) of
individual jobs and their exit status. The goal is to improveour understanding of what characterizes job failures
or abortions in large clusters.

Figure 6 below studies the empirical cumulative distribution function (CDF) of job durations for all clusters
in our traces. Each line in the graphs plots the CDF for jobs that share an exit status: either finish normally,
fail, or get killed.

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

CDF of total task−minutes by job exit event

FINISHED
KILLED
FAILED

(a) Google Production Jobs.

10
−5

10
0

10
5

10
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

CDF of total task−minutes by job exit event

FINISHED
KILLED
FAILED

(b) Google Batch Jobs.

10
−2

10
0

10
2

10
4

10
6

10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

CD
F

OpenCloud: total task minutes per job

FINISHED
KILLED
FAILED

(c) CMU OpenCloud Jobs.

10
0

10
2

10
4

10
6

10
8

10
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

F(
x)

CDF of job durations in LANL System 20

finished
killed
syskill
aborted
failed

(d) LANL Cluster jobs.

Fig. 6. Comparison of the distribution function of job durations among jobs that finish, get killed, or fail, in all clusters included in our
traces.

Observation:The durations of successful jobs are consistently theshortestamong all jobs submitted to the
clusters included in our study. On the other hand, jobs that get killed spend the longest times running before
they are terminated, with the exception of the LANL cluster where both killed and failed jobs report comparable
distributions of job durations. This observation

C. Job Scheduling Attributes

We next look into the effect of different job scheduling attributes, namely the job’s priority, scheduling-class,
and requested resources, on the job’s final status.

Job Priority: Of all the workload traces in our study, Google’s data is the only one that includes information
on the priority level of tasks that belong to a job (typically, all tasks in a job have the same priority). As
mentioned earlier, the priority of a task is indicated by a number from 0 (lowest) to 11 (highest). Priorities
0–1 are labeled as gratis (free); priorities 2–8 are speculated to be dominated by batch jobs and MapReduce

Technical Report CSRG-627 (University of Toronto)

2 3 4 5 6 8
0

0.5

1

1.5

2
x 10

5

priority

oc
cu

rre
nc

es

batch jobs

2 3 4 5 6 8
0

50

100

priority

pe
rc

en
ta

ge
 %

batch jobs

FINISHED
KILLED
FAILED

Fig. 7. Job status as a function of job priority in Google’s batch jobs.

0 1 2 3
0

0.5

1

1.5

2
x 10

4

scheduling class

oc
cu

rr
en

ce
s

production jobs

0 1 2 3
0

50

100

scheduling class

pe
rc

en
ta

ge
 %

production jobs

FINISHED

KILLED

FAILED

0 1 2 3
0

5

10

15
x 10

4

scheduling class

o
cc

u
rr

e
n

ce
s

batch jobs

0 1 2 3
0

20

40

60

80

100

scheduling class

p
e

rc
e

n
ta

g
e

 %

batch jobs

FINISHED
KILLED
FAILED

Fig. 8. Job status as a function of job scheduling-class in Google’s production jobs (left) and batch jobs (right).

jobs; priority 9 is ‘normal production’ jobs; priority 10 represents ‘monitoring’ jobs; and priority 11 is labeled
‘infrastructure’.

When assigning tasks to machines, tasks with higher priorities are favoured in resources over tasks with lower
priorities. Additionally, the scheduler in Google’s cluster is designed such that over-committing resources on a
machine is permissible. Therefore, in the case when there are not enough resources to satisfy the requests of
all tasks running on a machine, tasks with lower priorities may be killed [10].

In our analysis so far we have been focusing on studying and comparing jobs from two priority groups:
normal production jobs (priority 9) and batch jobs (priorities 2–8). We now take a closer look at the range of
different priority levels withinbatch jobs. Figure 7 plots the number of scheduled jobs as a function of job
priority, while showing the breakdown of job statuses; the left plot shows the absolute counts of jobs and the
right plots shows the breakdown in terms of percentages. We find that the top priority levels assigned to batch
jobs by users were 4 (49% of batch jobs), 8 (36%) and 6 (12%), and that the success rates in those three groups
are correlated positively with the priority level (i.e. thehigher the priority, the higher the success rate).

Job Scheduling Class: In Google’s cluster, jobs have a scheduling class that determines how latency-sensitive
a job is, with values ranging from 0 (least sensitive), to 3 (most sensitive). While a task priority determines if it is
scheduled on a machine or not, the scheduling class is usedlocally by the machine to implement machine-local
policies for accessing its resources.

Figure 8 shows the breakdown of job status as a function of scheduling class for both production jobs and
batch jobs in Google’s cluster. We find that scheduling classes 0 and 1 are the two most commonly chosen
classes by users for both production and batch jobs. In production jobs, the higher the scheduling class of
a job the lower its success chance; an opposite trend is observed in batch jobs, however, with the exception
of scheduling class 3. In both production and batch jobs, scheduling class 3 is the least chosen by users and
approximately 99% of jobs under this class are eventually killed.

Observation:In the Google cluster in our dataset, the priority level of a batch job was positively correlated
with the job’s success chance. Weaker trends were observed between the scheduling class of a job and its exit
status, when considering both batch jobs and production jobs.

Requested Resources: We now study the relationship between the amount of resources requested by tasks in
a job the final status of the job. In the LANL cluster, we only have data on the number of requested processors
per job. In the Google cluster and the OpenCloud cluster, more detailed information is available. In Google,
tasks are submitted with values for requested CPU, memory, or disk space, where these values represent the

Technical Report CSRG-627 (University of Toronto)

0

0.05

0.1

0.15

0.2

FINISHED KILLED FAILED

re
q

u
e

s
te

d
 C

P
U

Google Prod Tasks

0

0.1

0.2

0.3

0.4

FINISHED KILLED FAILED

re
q

u
e

s
te

d
 m

e
m

o
ry

Google Prod Tasks

0

1

2

3

4
x 10

−3

FINISHED KILLED FAILED

re
q

u
e

s
te

d
 d

is
k
 s

p
a

c
e

Google Prod Tasks

(a) Google Production Jobs.

0

0.05

0.1

0.15

0.2

0.25

FINISHED KILLED FAILED

re
q

u
e

st
e

d
 C

P
U

Google Batch Tasks

0

0.05

0.1

0.15

0.2

0.25

FINISHED KILLED FAILED

re
q

u
e

st
e

d
 m

e
m

o
ry

Google Batch Tasks

−2

0

2

4

6

8

x 10
−4

FINISHED KILLED FAILED

re
q

u
e

st
e

d
 d

is
k

sp
a

ce

Google Batch Tasks

(b) Google Batch Jobs.

0

1000

2000

3000

4000

FINISHED FAILED KILLED

Size of requested VM MB for single map task

0

1000

2000

3000

4000

FINISHED FAILED KILLED

Size of requested VM MB for single reduce task

(c) CMU OpenCloud Jobs. (d) LANL Jobs.
Fig. 9. Requested resources by tasks in a job versus the exit status of a job in the Google cluster and CMU’s OpenCloud cluster.

maximum amount of resources a task is allowed to consume on a machine. However, tasks are sometimes
permitted to use more than what they requested if resources are available; e.g. tasks may use free CPU cycles
on a machine [10].

In the OpenCloud cluster, job configuration parameters include the following fields for requested resources
(more detailed definitions are found in Hadoop’s documentation [1]):
• mapred.job.map.memory.mb: The size of virtual memory for a single map task.
• mapred.job.reduce.memory.mb: The size of virtual memory for a single reduce task.

Figure 9 plots the distribution of the average requested resources by tasks in a job, for jobs that finish, fail
or get killed, separately. We use boxplots1 to examine and compare the distribution of requested resources.

The first thing we observe from the graphs is that resource requests varied between successful and unsuccessful
job runs in all the clusters in our data. In Google’s cluster,production jobs thatfailed had a significantly higher
median value for requested CPU, memory, or disk space than successful jobs; production jobs that werekilled
had higher CPU and memory requests in particular (see Figure9-(a)). For Google’s batch jobs, we observe
higher median values for requested memory and disk space in jobs thatfailed (see Figure 9-(b)).

In the OpenCloud cluster, we find that jobs that were eventually killed report significantly higher requests for
virtual memory than successful jobs or even jobs that failed, for both mapper and reducer tasks (see Figure 9-
(c)). In the LANL cluster, we observe significantly higher distributions of the number of requested processors
by a job in jobs that getkilled, compared to successful jobs.

Observation:The observed correlations between the amount of requested resources by a job and its unsuc-
cessful termination in the clusters that are included in ourstudy suggest that knowledge of how much CPU,
memory, or disk space a job requests can be used as predictorsof its final status. We investigate the potential
of using requested resources as predictors of job failures in the next Section, Section IV.

D. Job Resource Usage

After examining how a job’s configuration parameters such asits degree of parallelism, scheduling constraints
or requested resources correlate with the job’s exit status, we now turn our attention to the actual resource
consumption of a job. Our goal is to study how the way a job utilizes resources in a cluster affects its final
status.

1Recall that in a box plot the bottom and top of the box are always the 25th and 75th percentile, respectively, and the band near the
middle of the box is always the 50th percentile (the median).

Technical Report CSRG-627 (University of Toronto)

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f
A

V
G

 C
P

U

all production jobs

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f
A

V
G

 M
E

M
O

R
Y

all production jobs

0 0.01 0.02 0.03 0.04
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f
A

V
G

 D
IS

K
−

T
IM

E

all production jobs

FINISHED
KILLED
FAILED

FINISHED
KILLED
FAILED

FINISHED
KILLED
FAILED

(a) Google Production Jobs.

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f A
V

G
 C

P
U

all batch jobs

FINISHED
KILLED
FAILED

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f A
V

G
 M

E
M

O
R

Y

all batch jobs

FINISHED
KILLED
FAILED

0 0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f A
V

G
 D

IS
K

−
T

IM
E

all batch jobs

FINISHED
KILLED
FAILED

(b) Google Batch Jobs.

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f
A

V
G

 C
P

U

multi−task jobs jobs

FINISHED
KILLED
FAILED

0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f
A

V
G

 M
E

M
O

R
Y

multi−task jobs jobs

FINISHED
KILLED
FAILED

0 0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f
A

V
G

 D
IS

K
−

T
IM

E

multi−task jobs jobs

FINISHED
KILLED
FAILED

(c) Google Production Jobs (Multi-Task).

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f A
V

G
 C

P
U

multi−task batch jobs

0 0.05 0.1
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f A
V

G
 M

E
M

O
R

Y

multi−task batch jobs

0 0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f A
V

G
 D

IS
K

−T
IM

E

multi−task batch jobs

FINISHED
KILLED
FAILED

FINISHED
KILLED
FAILED

FINISHED
KILLED
FAILED

(d) Google Batch Jobs (Multi-Task).

Fig. 10. The average resource utilization in Google’s jobs,for jobs that finish successfully, fail, or get killed. Figures (a,b) include all
production and batch jobs; figures (c,d) include multi-taskjobs only.

The only dataset in our traces that allows us to explore this question is the data from Google’s cluster where
task usage information is made available. In particular, for each task running on a machine in the cluster, there
is data on CPU, memory, and disk usage, aggregated over 5-minute intervals. All values of usage data are
normalized by the maximum value reported in each category.

The graphs in Figure 10-(a,b) show the distribution of the average CPU, memory, and disk I/O consumption
for all production jobs and batch jobs submitted to the Google cluster, plotted separately for different job exit
statuses. We find that jobs thatfail reported the highest disk I/O consumption, on average, bothin production
jobs and batch jobs. More precisely, the average I/O usage bya failed job was 10X and 2X times higher than
that of a successful job in production jobs and batch jobs, respectively.

When repeating this analysis formulti-task jobs only in Figure 10-(c,d), we find that multi-task production
jobs in particular reported significantly higher values forboth CPU and disk I/O consumption, compared to
successful jobs. For example, the average CPU usage of a failed multi-task production job was 284X times
higher than that of a successful job. Jobs that were killed, on the other hand, reported the highest values for
memoryusage in particular; for example, the average memory usage of a killed job was 10X and 4X higher
than a successful job in production jobs and batch jobs, respectively.

Variability in job resource usage:In addition to studying and comparing the distribution of the average
resource consumption of jobs, we also ask the question of howthe variability in usage between tasks that
belong to the same job compares across successful and unsuccessful jobs. Figure 11 in the next page plots the
distribution of the coefficient of variation (CoV) in resource usage between tasks in a job. Note that we only
include multi-task jobs in this analysis.

Interestingly, we find that failed jobs which had the highestaverage in I/O usage, report the lowest variability
in I/O usage between tasks working on the same job. Similarly, killed jobs which reported the highest average
in memory consumption (especially in production jobs), experienced the lowest variability in memory usage
between tasks in a job. We also find that failed jobs had the highest variability in the amount of memory used
by tasks in a job, in both production jobs and batch jobs.

Estimation of requested resources:So far we have studied the correlation between therequestedresources
by a job, and the actualusageof a job, separately. Another question one may ask is whetherthe over- or
under-estimation of requested resources by a job affected the final status of the job. To study this question,
Figure 12 plots the ratio between a job’s actual average (andmaximum) resource consumption values and the
job’s requested values, for CPU and memory. The dashed greenline indicates a ratio of 1, therefore any value

Technical Report CSRG-627 (University of Toronto)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f
C

o
V

 (
C

P
U

)

multi−task jobs

FINISHED
KILLED
FAILED

0 2 4 6
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f
C

o
V

 (
M

E
M

)

multi−task jobs

FINISHED
KILLED
FAILED

0 2 4 6
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f
C

o
V

 (
D

IS
K

)

multi−task jobs

FINISHED
KILLED
FAILED

(a) Google Production Jobs (Multi-Task).

0 2 4
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f C
oV

 C
P

U

multi−task batch jobs

FINISHED
KILLED
FAILED

0 2 4
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f C
oV

 M
E

M
O

R
Y

multi−task batch jobs

FINISHED
KILLED
FAILED

0 2 4
0

0.2

0.4

0.6

0.8

1

x

C
D

F
 o

f C
oV

 D
IS

K
−

T
IM

E

multi−task batch jobs

FINISHED
KILLED
FAILED

(b) Google Batch Jobs (Multi-Task).
Fig. 11. The variability in resource utilization between tasks in a multi-task job, for jobs that finish successfully, fail, or get killed in
Google’s cluster.

0

2

4

6

8

10

FINISHED KILLED FAILED

(avg−cpu)/(req−cpu)

0

5

10

15

20

25

30

FINISHED KILLED FAILED

job exit event

(max−avgcpu)/(req−cpu)

0

50

100

150

200

FINISHED KILLED FAILED

(max−maxcpu)/(req−cpu)

(a) CPU usage.

0

0.5

1

1.5

2

FINISHED KILLED FAILED

(avg−mem)/(req−mem)

0

1

2

3

FINISHED KILLED FAILED

job exit event

(max−avgmem)/(req−mem)

0

2

4

6

8

10

FINISHED KILLED FAILED

(max−maxmem)/(req−mem)

(b) Memory usage.
Fig. 12. The ratio between requested resources by jobs and the actual usage of jobs.

above the dashed line indicates an under-estimation of resources while values below the line indicate an over-
estimation. (Recall that the values for ‘requested’ resources in Google’s cluster are defined as the maximum
anticipated usage values by the tasks belonging to a job [10].)

We observe that failed jobs had the highest portion of jobs that reported a maximum CPU usage value
exceeding their requested CPU capacity. Jobs that were killed, on the other hand, reported the highest median
of the ratio between consumed memory and requested memory; i.e. these jobs used more memory than what
they had initially requested.

Observation: For the Google cluster in our data, the resource utilizationof jobs in terms of CPU, memory
and I/O consumption, varied between jobs that completed successfully, jobs that failed, and jobs that were killed.
This observation suggests that how jobs access and use resources in large clusters can be used to characterize
job reliability and to potentially predict the exit status of a job.

E. Task Reliability

In this subsection we turn our attention to thetask level in large-scale jobs. In both Google and OpenCloud
clusters, jobs consisted of one or more tasks. The cluster scheduler assigns tasks to machines, where a task
can be running on a single machine at any point in time. Tasks can complete successfully, fail, get killed, or
get evicted (in Google, task evictions happen due to resource overcommitment or when higher priority tasks
arrive at a machine and the task demands exceed machine capacity [10]). Our goal is to understand how the
completion of a job is affected by the reliability of its tasks. We study different task fault-tolerance configuration
parameters, while focusing on task resubmissions.

We begin by asking the question of how the statuses of task attempts in a job relate to the final status of the
job. Figure 13 plots the fraction of jobs in Google’s clusterthat experienced at least one task failure, task kill,
or task eviction, for jobs that end up getting killed, failing, or completing successfully.

Based on Figure 13, we make the following observations aboutjobs and tasks in Google’s cluster:
• We observe a strong association between having at least one task failure and the entire job eventually failing.
Similarly, a single task kill event is highly associated with a job getting killed.
• It is extremely rare for jobs that complete successfully to experience any unsuccessful task attempts (see last
row of graphs).
• Jobs that end up being killed can have successful task attempts. For example, 78% of killed batch jobs had
at least one task complete successfully.

Technical Report CSRG-627 (University of Toronto)

(at least 1 task−kill) (at least 1 fail) (at least 1 evict) (zero fail/kill/evict) (at least 1 success)
0

50

100

P
e

rc
e

n
ta

g
e

 %

Production jobs that end up KILLED

(at least 1 task−kill) (at least 1 fail) (at least 1 evict) (zero fail/kill/evict) (at least 1 success)
0

50

100

P
e

rc
e

n
ta

g
e

 %

Production jobs that FAIL

(at least 1 task−kill) (at least 1 fail) (at least 1 evict) (zero fail/kill/evict) (at least 1 success)
0

50

100

P
e

rc
e

n
ta

g
e

 %

Production jobs that COMPLETE

(a) Google Production Jobs.

(at least 1 task−kill) (at least 1 fail) (at least 1 evict) (zero fail/kill/evict) (at least 1 success)
0

50

100

P
e

rc
e

n
ta

g
e

 %

Batch jobs that end up KILLED

(at least 1 task−kill) (at least 1 fail) (at least 1 evict) (zero fail/kill/evict) (at least 1 success)
0

50

100

P
e

rc
e

n
ta

g
e

 %

Batch jobs that FAIL

(at least 1 task−kill) (at least 1 fail) (at least 1 evict) (zero fail/kill/evict) (at least 1 success)
0

50

100

P
e

rc
e

n
ta

g
e

 %

Batch jobs that COMPLETE

(b) Google Batch Jobs.
Fig. 13. The relationship between task exit status and job exit status in Google’s cluster.

• Task evictions show the strongest correlation with jobkills. Further investigation shows that 98% and 90%
of production jobs and batch jobs, respectively, which experienced at least one task evict, were eventually killed.

We repeat this analysis for the CMU OpenCloud cluster in Figure 14 below. We find that a higher fraction of
successful jobs experienced failed or killed task attempts, compared to Google’s jobs (note that the OpenCloud
traces had no records of task ‘evicts’). We also find that the status of (unsuccessful) mapper tasks in a job were
more indicative of the job’s final status than reducer tasks.

successful jobs killed jobs failed jobs
0

20

40

60

80

100
mappers with at least 1 killed attempt

P
er

ce
nt

ag
e

%

at least 1 map KILL
at least 1 map FAIL

successful jobs killed jobs failed jobs
0

20

40

60

80

100
reducers with at least 1 killed attempt

P
er

ce
nt

ag
e

%

at least 1 reduce KILL
at least 1 reduce FAIL

Fig. 14. The relationship between task exit status and job exit status in the OpenCloud cluster.

Going back to the Google cluster, our observation that a single task failure was highly predictive of a job’s
unsuccessful termination motivated us to take a closer lookinto the nature of task failures. Note that we focus
on taskfailures in particular and not task ‘kills’ which we exclude from thispart of our analysis, since tasks
are typically killed in Google’s cluster once their job is killed (either by the user or by another dependent
job [10]). Task failures, on the other hand, are usually the result of a software crash, and when a task fails it
is automatically resubmitted to the cluster [7].

We next investigate the effectiveness of task resubmissions due to failures by studying the likelihood of a
task completing successfully, after making previous failed attempts.

Figure 15 plots the probability of a tasksucceedingin the next attempt as a function of the number of past
failed attempts it had made in Google’s cluster. The left-most graphs show the results when taking all jobs into
consideration; the middle plots are for multi-task jobs only; and the right-most plots are for single-task jobs.

Technical Report CSRG-627 (University of Toronto)

0 fails 1st fail 2nd fail >2 fails
0

0.2

0.4

0.6

0.8

1
All production tasks

Number of prev task fails

Pr
ob

 ta
sk

 s
uc

ce
ed

s
in

 n
ex

t a
tte

m
pt

0 fails 1st fail 2nd fail >2 fails
0

0.2

0.4

0.6

0.8

1

Pr
ob

 ta
sk

 s
uc

ce
ed

s
in

 n
ex

t a
tte

m
pt

Tasks in multi−task prod jobs

Number of prev task fails
0 fails 1st fail 2nd fail >2 fails

0

0.2

0.4

0.6

0.8

1

Pr
ob

 ta
sk

 s
uc

ce
ed

s
in

 n
ex

t a
tte

m
pt

Tasks in single−task prod jobs

Number of prev task fails

(a) Google Production Jobs.

0 fails 1st fail 2nd fail >2 fails
0

0.2

0.4

0.6

0.8

1
All Batch tasks

Number of prev task fails

Pr
ob

 ta
sk

 s
uc

ce
ed

s
in

 n
ex

t a
tte

m
pt

0 fails 1st fail 2nd fail >2 fails
0

0.2

0.4

0.6

0.8

1

Pr
ob

 ta
sk

 s
uc

ce
ed

s
in

 n
ex

t a
tte

m
pt

Tasks in multi−task batch jobs

Number of prev task fails
0 fails 1st fail 2nd fail >2 fails

0

0.2

0.4

0.6

0.8

1

Pr
ob

 ta
sk

 s
uc

ce
ed

s
in

 n
ex

t a
tte

m
pt

Tasks in single−task batch jobs

Number of prev task fails

(b) Google Batch Jobs.
Fig. 15. The probability that a task succeeds in an attempt asa function of the number of past failed attempts in the Googlecluster.

The first observation we make from the figure is that when a taskhas no history of failing, its success chance
is 70% if it is a production task and 98% if it is a batch task. When considering tasks that belong to multi-task
jobs only, a task’s chance in succeeding without any past failures drops in production jobs to 38%. Tasks in
single-task jobs, however, have a 99% probability of succeeding in both batch and production jobs, given that
no past attempts have failed.

If one task attemptfails, the task’s chance of succeeding in the next attempt drops dramatically to 2% only
in production tasks, and to 42% in batch tasks. If a task failsmore than twice, its success chance in subsequent
attempts becomes negligible, regardless of its priority level.

Observation: In the Google cluster, the chance of a task attempt completing successfully drops significantly
once the task experiences at least one attempt failure. Thisobservation suggests that terminating a job after the
first task failure takes place can potentially save significant resources in the cluster, instead of continuing to run
a job with low chances of succeeding.

IV. JOB FAILURE PREDICTION

So far in this work we have studied the impact of various factors on job reliability in large-scale clusters. Our
goal in this section is to utilize the knowledge obtained from our trace-based analysis in predicting job failure
events in large clusters. We apply our classification and prediction techniques to the traces made available by
Google and by CMU’s OpenCloud cluster, since these two traces contain more detailed information on jobs.

We use two different classification techniques to classify jobs according to their final status in the cluster, i.e.
finished, failed, or got killed: Multinomial Logistic Regression (MLR), and Classification and Regression Trees
(CART). We apply our classification and prediction techniques on each data source separately, and since some
workload traces contain additional data fields about the jobs, our set of predictors can differ from one trace to
another.

1- Google Cluster:We begin by looking at Google’s job traces. Our explanatory (predictor) input variables
extracted from the trace, which we feed our classifiers in order to learn and predict a job’s final status, are
summarized in Table III below:

We apply the two classifiers, MLR and CART, for Google’s production jobs and batch jobs, separately. For
each dataset, we split the data randomly such that 70% of the rows are used for training the MLR and CART

Technical Report CSRG-627 (University of Toronto)

Trace Variable Category Description

job_status Response The outcome we are interested in predicting. A job’s status can either be
FINISHED, FAILED, or KILLED.

Input Variables (Predictors)

Google

userID Job Config The ID of the user that submitted this job (either a Google engineer or a
service).

logical_job_name Job Config The name of the program (application) that this job is running.
scheduling_class Job Config Each job has a scheduling class that drives machine local policies for

allocating resources.
priority Job Config Job and task priorities determine if they are given preferences for

resources.
num_tasks Job Config Each job spans one or more tasks. This determines the degree of

parallelization of a job.
different_machines_rest Job Config This flag, when enabled, means that all tasks in a job must be scheduled

on different physical machines.
requested_cpu Job Config The amount of requested CPU capacity by a task in a job.
requested_memory Job Config The amount of memory requested by a task in a job.
requested_disk Job Config The amount of disk space requested by a task in a job.
num_completed_tasks Job CountersNumber of tasks in a job that completed successfully.
num_failed_tasks Job CountersNumber of tasks in a job that experienced one or more failed attempts

during the job’s lifetime.
num_killed_tasks Job CountersNumber of tasks in a job that experienced one or more killed attempts

during the job’s lifetime.
num_evicted_tasks Job CountersNumber of tasks in a job that experienced one or more evicts during the

job’s lifetime.
num_bad_tasks Job CountersNumber of tasks in a job that experienced one or more failed/killed/evicted

attempts during the job’s lifetime.
job_duration Job CountersThe total amount of task-minutes spent by a job.
avg_cpu_usage Job Usage The average amount of CPU used by a job’s tasks.
avg_memory_usage Job Usage The average amount of memory used by a job’s tasks.
avg_IO_usage Job Usage The average amount of I/O used by a job’s tasks.
CoV_cpu_usage Job Usage The variability in CPU usage among tasks belonging to the same job.
CoV_memory_usage Job Usage The variability in memory usage among tasks belonging to thesame job.
CoV_IO_usage Job Usage The variability in I/O usage among tasks belonging to the same job.

TABLE III
SUMMARY OF JOB STATUS CLASSIFICATION AND PREDICTION VARIABLES FOR THEGOOGLE CLUSTER.

models, and 30% are used for testing. We use standard metricsto evaluate the quality of our predictors:
• Precision: the percentage of predicted job failure events that are true.
• Recall: the percentage of actual job failure events that were successfully predicted.
• Specificity: the percentage of negative job failures (i.e. job successes or kills) that were correctly labeled.
• Accuracy: the percentage of predictions that are correct.

a) Predicting a job’s status based on all input variables.We begin by classifying a job’s final status
while assuming knowledge of all the attributes and countersrelated to a job. Figure 16 plots the results of our
classification models when using MLR and CART techniques, and when using the data forall the variables
described in Table III as predictors. While, realistically, obtaining knowledge about some of these fields cannot
be done in practice until a job stops running (e.g. the total number of completed tasks, etc), it is still useful to
run and test our models on all the variables in order to develop a better understanding of which job attributes
are most relevant to a job’s final status. This can be done particularly using CART, where the output of running
the model on the data produces a list of the attributes that ended up being used by the classifier to construct
the tree. Note that we included these lists of ‘relevant attributes’ to the graph titles in Figure 16.

We make several observations from Figure 16. First, we find that CART performs better than MLR in
predicting job failures, with approximately 99% precisionand 90–95% recall. Next, we observe that most of
the attributes used by CART to classify a job successfully were in common between batch jobs and production
jobs; in particular, we find that CART used the following fields: the amount of memory requested by a job, the
number of tasks in a job with successful/unsuccessful attempts, and the total time spent by a job in the cluster.
The two additional attributes used by production jobs were user ID and the variability in memory usage over time.

The above results point us to which attributes are more significant to a job’s terminal status than others

Technical Report CSRG-627 (University of Toronto)

precision recall spec accuracy
0

0.2

0.4

0.6

0.8

1

Predict PROD Job FAIL (ALL input vars)
CART:<cpuMin, memCoV, req−mem, #completedtasks,

#failed−task−attempts, #killed−task−attempts, totalTime, user>

MLR
CART

(a) Google Production Jobs.

precision recall spec accuracy
0

0.2

0.4

0.6

0.8

1

Predict BATCH Job FAIL (ALL input vars)
CART:<#completedtasks, #fail−task−attempts,

#killed−task−attempts,req−memavg,totalTaskMinutes>

MLR
CART

(b) Google Batch Jobs.

Fig. 16. Evaluation of predicting job failures in the Googlecluster when usingall input data as predictors.

whenever all job attributes and counters are considered. Next, instead of assuming knowledge of all attributes,
we ask the question of whether we can predict a job’s status based on the job’s configuration parameters and
resource requests that are known to the user before the job isexecuted.

b) Predicting a job’s status based on config parameters.We now consider the attributes under the category
‘Job Config’ in Table III which are known to the user prior to a job’s execution: the user and application IDs,
the job’s priority and scheduling class, the number of tasksin the job, the amount of requested resources by a
job, and whether or not there is an anti-affinity constraint for the job’s tasks.

Figure 17 shows the prediction results when using these pre-run job attributes and constraints. We find that
using configuration parameters alone dropped our recall percentage significantly to 20–30%; i.e. 20% to 30%
of failed jobs were correctly predicted by our CART classifier. Precision remained significant (99%) for batch
jobs but dropped to 60% in production jobs. Interestingly, we find that for batch jobs this high precision was
achieved while using only one attribute for classifying jobs: the amount of requested disk space. The attributes
used for classifying production jobs, on the other hand, were different and included the requested CPU and
memory capacity, the application name, the scheduling class of the job, and the user ID.

We next investigate whether these predictions can be improved if we consider the status oftasksthat make
failed attempts during the lifetime of a job.

c) Predicting a job’s status based on config parameters and a task-failure flag. One of the observations
we make in Section III-E is that a single task failure event isa strong indicator of both the task and the job
eventually failing. This observation motivated us to studyif we can predict a job’s final status accurately as
soon as one of its tasks makes a failed attempt to execute. To study this question, we include in our input data
to the classifiers a single flag that is set to true if at least one task attempt failed (didTaskFail).

We plot the results of our predictions when using this flag (inaddition to the pre-run job configuration
attributes), in Figure 18. We observe that including thedidTaskFail flag improved our prediction results
significantly, compared to when only config parameters were considered. We find that for both production
and batch jobs more than 80% of job failures are predicted successfully, and the precision of our predictor
exceeds 85%. We conclude that a single task failure attempt is a strong predictor of a job’s final status and can
be used in conjunction with job configuration parameters to predict a job’s failure probability with high accuracy.

Technical Report CSRG-627 (University of Toronto)

precision recall spec accuracy
0

0.2

0.4

0.6

0.8

1

Predict PROD Job FAIL (Pre−Run vars)
CART:<jobID, avg−req−cpu, avg−req−mem

application, schedclass, user>

MLR
CART

(a) Google Production Jobs.

precision recall spec accuracy
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predict BATCH Job FAIL (Pre−Run vars)
CART:<req−disk−avg>

MLR
CART

(b) Google Batch Jobs.

Fig. 17. Evaluation of predicting job failures in the Googlecluster when using job configuration and constraints attributes only as predictors.

precision recall spec accuracy
0

0.2

0.4

0.6

0.8

1

Predict PROD Job FAIL (Pre−Run + TaskFail flag)
CART:<didtaskfail, jobID, avg−req−cpu, avg−req−mem

application, schedclass, user>

MLR
CART

(a) Google Production Jobs.

precision recall spec accuracy
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predict BATCH Job FAIL (Pre−Run + DidTaskFail)
CART:<didTaskFail, numtasks,req−disk−avg, req−mem−avg>

MLR
CART

(b) Google Batch Jobs.

Fig. 18. Evaluation of predicting job failures in the Googlecluster when adding a flag for at least one failed task attemptas a predictor
in addition to job config parameters.

2- CMU OpenCloud cluster:We now repeat our job failure classification and prediction analysis on the
workload traces provided by CMU’s OpenCloud cluster. TableIV in the next page summarizes the job attributes
available for the OpenCloud cluster jobs.

Similar to our job failure prediction analysis for the Google jobs, we ran our MLR and CART classifiers
on the OpenCloud data to classify and predict job failure events, first while including all the possible input
variables describing a job, then by including variables that are known only at job configuration time (i.e. before
job execution starts), and finally, we tested our predictorswhen considering adidTaskFail flag as a predictor
variable in addition to the job config attributes. Figure 19 shows the results for our different prediction attempts.

We observe from the graphs in Figure 19 that once again CART performs better in classifying job failures
than MLR. When including all job attributes, CART is able to successfully classify 100% of all the job failures
that happened in the OpenCloud cluster, with 80% precision (i.e. 20% of the jobs classified as failures were
false negatives). The attributes used by CART were the totalcounts of failed task attempts made by mappers
and by reducers, the number of reducers that completed successfully, and the number of mappers and reducers
with at least one failed attempt.

When considering only job config parameters, the recall percentage of job failures drops significantly to 12%,
but when adding thedidTaskFail flag indicating that at least one task attempt has failed in a job it increases
to 55%, and the amount of requested memory for reducer tasks is considered by the classification tree.

Observation: For the clusters in our dataset, job status classification and prediction can be achieved using
classification and regression trees (CART). Knowledge of atleast one failed task attempt, in addition to job
config parameters, was a strong predictor of a job failing. Additionally, the amount of requested resources by a
job, especially memory capacity, was used by our classifierswhen predicting job failure events across different
clusters.

Technical Report CSRG-627 (University of Toronto)

Trace Variable Category Description

job_status Response The outcome we are interested in predicting. A job’s status can either be
FINISHED, FAILED, or KILLED.

Input Variables (Predictors)

OpenCloud

userID Job Config The ID of the user that submitted this job (CMU researcher).
JobTrackerID Job Config This is the ID generated when a Hadoop JobTracker object is booted. A

JobTracker launches jobs and assigns IDs to them.
JobID Job Config The combination of a JobTrackerID and a JobID is a unique identifier of a

job.
num_maps Job Config The number of mapper tasks in a job.
num_reduces Job Config The number of reducer tasks in a job.
max_attempts_map Job Config The maximum number of attempts a map task can make before the framework

gives up on it.
max_attempts_reduce Job Config The maximum number of attempts a reduce task can make before the

framework gives up on it.
skip_attempts Job Config The number of task attempts after which ‘skip’ mode will be kicked off. Skip

mode means a task reports the records it will process next so that on failures
the framework would know which data records are possibly badrecords.

map_speculate Job Config If true, then multiple instances of some map tasks may be executed in parallel.
red_speculate Job Config If true, then multiple instances of some reduce tasks may be executed in

parallel.
requested_memory_map Job Config The size of VM requested for a single map task.
requested_memory_red Job Config The size of VM requested for a single reduce task.
finMaps Job Stats Number of completed map tasks in the job.
finReduces Job Stats Number of completed reduce tasks in the job.
failMaps Job Stats Total number of unsuccessful attempts by mapper tasks in thejob.
failReduces Job Stats Total number of unsuccessful attempts by reducer tasks in the job.
maps_atleast_1fail Job Stats Number of map tasks with at least one failed attempt.
red_atleast_1fail Job Stats Number of reduce tasks with at least one failed attempt.
maps_atleast_1kill Job Stats Number of map tasks with at least one killed attempt.
red_atleast_1kill Job Stats Number of reduce tasks with at least one killed attempt.
job_duration Job Stats The total amount of task-minutes spent by a job.
submitTime Job Stats The timestamp for the time a job was submitted to the cluster.
launchTime Job Stats The timestamp for the time a job was launched.
finishTime Job Stats The timestamp for the time a job finished running.

TABLE IV
SUMMARY OF JOB STATUS CLASSIFICATION AND PREDICTION VARIABLES FOR THECMU OPENCLOUD CLUSTER.

precisionrecall spec accuracy
0

0.2

0.4

0.6

0.8

1

Predict OpenCloud Job FAIL (ALL input vars)
CART:<#failMaps,#failReduces,#finReduces

#MapsAtleastF,#ReducesAtleastF

MLR
CART

precision recall spec accuracy
0

0.2

0.4

0.6

0.8

1

Predict OpenCloud Job FAIL (Pre−Run vars)
CART:<JobTrackerID, numMaps, numReduces

submitTime, user>

precision recall spec accuracy
0

0.2

0.4

0.6

0.8

1

 (Pre−Run + DidTaskFail)
CART:<didTaskFail, numMaps, req−mem−R

submitTime>

Fig. 19. Evaluation of predicting job failures in the Googlecluster when usingall input data as predictors.

V. CONCLUSION

In this technical report, we analyzed workload traces collected at multiple large-scale clusters to study the
question of how reliable are jobs that are executed on large,parallel clusters, and what makes these jobs prone
to failures (i.e. crashes) or abortions.

We first characterized unsuccessful jobs in our dataset by studying how different job attributes are distributed
in the traces across jobs that finish successfully, fail, or get killed. We investigated the effect of various factors
on a job’s terminal status, including the degree of parallelization of a job (i.e. the number of parallel tasks the
job spans), job duration, job scheduling attributes such aspriority and scheduling class, resource constraints and

Technical Report CSRG-627 (University of Toronto)

requests, resource utilization (e.g. CPU, memory, and I/O usage), and task reliability. Our results show strong
correlations between the number of parallel tasks a job spans and the amount of resources requested or used
by the job’s tasks.

We then utilized this knowledge in building a prediction model using classification and regression trees with
the goal of predicting job failure events. Our results show that job failures can be predicted with high accuracy
just by knowing whether a single task attempt failed or not, in conjunction with knowledge of job configuration
attributes (e.g. the amount of memory requested by a job or the number of tasks the job spans, etc).

REFERENCES

[1] Apache’s Hadoop DFS. http://hadoop.apache.org/.
[2] CMU Parallel Data Lab Project. http://www.pdl.cmu.edu/HLA/index.shtml.
[3] OpenCloud Hadoop cluster trace: format and schema. http://ftp.pdl.cmu.edu/pub/datasets/hla/dataset.html.
[4] Operational Data to Support and Enable Computer ScienceResearch, Los Alamos National Laboratory.

http://institute.lanl.gov/data/fdata/.
[5] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M.Snir. Toward exascale resilience: 2014 update.Supercomputing frontiers

and innovations, 1(1), 2014.
[6] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell. Detection and correction of silent data corruption for

large-scale high-performance computing. InProceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 78:1–78:12, Los Alamitos, CA, USA, 2012. IEEEComputer Society Press.

[7] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace
analysis. InProceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12, pages 7:1–7:13, New York, NY, USA, 2012.
ACM.

[8] B. Schroeder and G. A. Gibson. Disk failures in the real world: what does an mttf of 1,000,000 hours mean to you? InProc. of the
5th USENIX conference on File and Storage Technologies, Berkeley, CA, USA, 2007. USENIX Association.

[9] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson, A.A. Chien,
P. Coteus, N. A. Debardeleben, P. Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson, S. Krishnamoorthy,
S. Leyffer, D. Liberty, S. Mitra, T. S. Munson, R. Schreiber,J. Stearley, and E. V. Hensbergen. Addressing failures in exascale
computing. 2013.

[10] J. Wilkes. More Google cluster data. Google research blog, Nov. 2011. Posted at URL
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.

