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Abstract

As real-world scheduling applications diversify in scope and
grow in complexity, there is an increasing need for domain-
independent languages and reasoning systems that support
their specification and analysis. In this paper we explore Met-
ric Temporal Logic (MTL) as a language to support the spec-
ification of complex scheduling patterns including repeated
and conditional occurrences of activities and rich temporal
relationships among them. We modify the standard MTL se-
mantics to better suit scheduling problems, and explore a se-
ries of natural restrictions to the language to gain tractabil-
ity. In so doing, we provide a standard framework through
which a variety of scheduling problems, from temporal net-
works and job shop scheduling to temporal planning, can be
related and generalized. We also provide an algorithm to find
a schedule specified as an MTL formula, and establish the
equivalence between a fragment of MTL and simple tempo-
ral networks (STNs).

1 Introduction
The need and opportunity for fully automated and mixed-
initiative scheduling has exploded as automation plays an
increasing role in end-to-end business practices, and as so-
phisticated calendaring tools become broadly adopted. The
availability and ease of sharing of computer-interpretable
scheduling constraints and partial schedules enables a broad
array of new scheduling problems that go beyond clas-
sic problems such as job shop scheduling (Fox 1983) to
include sport team rotations, car pooling, and other per-
sonal and commercial applications. With these new prob-
lems come new challenges in the specification and realiza-
tion of scheduling problems.

Scheduling problems have traditionally been specified via
a finite set of activities, temporal constraints, and resource
requirements and capacities. Increasingly, there is a desire
to express richer problems involving repeated patterns of oc-
currence of various activities, some conditional, some quan-
tity bounded (e.g. always schedule nurses four days on fol-
lowed by two days off or check on each patient every two to
three hours). While specialized approaches to some classes
of patterns exist, for example, as global grammar constraints
in constraint-based scheduling (Pesant 2004), there does not
appear to be a formal language with the flexibility to allow
specification of a variety of rich scheduling patterns.

There is also a desire to characterize activities and re-
sources in terms of their properties (e.g. always schedule at
least one Mandarin-speaking nurse on each rotation). Such
properties support ad hoc and implicit groupings of activi-
ties, the specification of constraints by referring to unnamed
activities and resources, and lifted reasoning about groups
rather than explicit individual objects.

Although many advances have been made in efficiently
solving a wide range of specialized scheduling problems,
real-world situations are often too complex to be easily or
accurately represented as instances of such specialized prob-
lems. Burke et al. [2004] present an extensive review of ap-
proaches to the myriad variants of ‘the nurse rostering prob-
lem’, but conclude that “there is a definite gap between much
of the current state of the art in nurse scheduling research
and the demanding and challenging requirements of todays
hospital environments.” A key challenge pointed to is the
ability to specify and reason about the tremendous variety of
constraints encountered in real-world nurse rostering prob-
lems.

In this paper, we adapt Metric Temporal Logic (MTL)
(Koymans 1990), an extension of Linear Temporal Logic
(LTL) used in model-checking and verification of concurrent
and reactive systems, to the scheduling domain. We augment
the syntax and modify the semantics of MTL to more easily
represent rich scheduling patterns and properties of named
and unnamed activities. In Sections 2 and 3 we present the
syntax and altered semantics of MTL. To trade off expres-
siveness for tractability, in Section 4 we explore novel re-
strictions to MTL that are conducive for scheduling. We then
describe an algorithm for finding satisfying schedules under
these restrictions in Section 5. In Section 6 we demonstrate
the utility of the language to express several well-known
scheduling problems and prove a novel equivalence between
a fragment of MTL and simple temporal networks. Finally,
we summarize our complexity results and related work in
Section 7.

2 A Language for Scheduling
First, we define a general template for what we consider to
be a scheduling problem.

Definition 2.1. A scheduling problem is a tuple
〈A,D,R, C, T C〉, where:



• A is a set of durative activities,
• D is a function from activities to their durations,
• R is a relation defining activity resource requirements,
• C is a function from resources to maximum capacities,
• T C is a set of temporal constraints between activities.

Our intention is to create a logical formula that is satis-
fiable iff the corresponding scheduling problem has a solu-
tion, and we prove this approach correct for a few existing
scheduling problems. A solution to a scheduling problem is
a schedule, i.e. an assignment of start and end times to each
activity such that the durations, resource capacities, and tem-
poral constraints are all satisfied. While the activities and
durations are fairly standard across all scheduling problems,
resource and temporal constraints (i.e., R, C, and T C), vary
depending on the type of problem. For example, in job shop
scheduling there are unary capacity, differentiated resources
(a machine can process one job at a time and a job may
require a particular machine) and simple precedence con-
straints between jobs. This paper will demonstrate a method
of modeling unary capacity, differentiated resources, but will
not explore resource constraints beyond that. Instead, we fo-
cus on extending the expressivity of the temporal constraints
to model rich temporal relationships.

To this end, we extend our concept of activities to al-
low them to occur more than once. Our basic object is
the (possibly repeating) activity A ∈ A (denoted by up-
per case), which the schedule maps to a set of instances
{a1 . . . ak} ⊆ I (denoted by lower case), where I is the
set of all instances of A. For example, in the nurse rostering
domain, an activity could refer to a particular nurse’s shifts
over a time horizon, with each instance representing an ac-
tual scheduled shift.

In order to represent these concepts in temporal logic, we
begin with a review of the standard propositional MTL.

Definition 2.2. Let D be a domain (Z or R), and I be an
interval in D∪{−∞,∞}. A Metric Temporal Logic formula
is a well-formed formula in the following grammar:

φ ::= p | ¬φ | φ ∧ φ | φ UIφ
where p is an atomic proposition (Koymans 1990).

We now introduce our own specialization of MTL and fol-
low with an intuitive explanation of the various operators
mentioned; a formal semantics is given in the next section.

Definition 2.3. Let A be a set of activities. A Schedul-
ing MTL formula is a MTL formula such that the set
of atomic predicates consists of propositions of the form
{start(A), end(A),P(A)} for some activity A or property
P from a set of properties P . Additionally, well-formed for-
mulae include those of the form ∀x.φ; if φ is in the scope
of a quantified variable x, atomic predicates also include
start(x), end(x), and P(x) (we omit a formal treatment of
the syntax of quantified variables here).

From the repeating activity A we define the predicates
start(A) and end(A). Their truth value is dependent on the
time the predicate is evaluated: start(A) (resp. end(A)) is
true at a given time if some instance of A starts (resp. ends)
at that time. This notion is formalized below.

We associate properties to activities in order to speak gen-
erally about all activities that share some attribute. A prop-
erty P is defined as a subset of A; the elements of P are
understood to share that property. These properties trans-
late to unary predicates P(A) in the language. Given a set
of activities representing nurses’ shifts, one could define
a subset of them to have the property “trainee” signifying
that the shift is performed by a nurse in training. Then, we
could formulate a Scheduling MTL constraint stating that
if a trainee shift is scheduled, a shift from an experienced
nurse must also be scheduled at the same time. The se-
mantics in the following section will show that the formula
2(∃x.(Trainee(x) ∧ Currently(x)) ⊃ ∃y.(¬Trainee(y) ∧
Currently(y))) captures this rule. Properties may also be
used for specifying the resource that a set of activities re-
quire. One can then represent resource capacity by limiting
the number of activities with the corresponding property that
can occur at any given time.

In order to utilize properties and repeating activities in a
meaningful way, it is useful to quantify over instances of
activities. For example, if we would like to say that every
instance of a checkup activity A takes 10-15 minutes, we
can state that for all instances a of A, the start(a) is fol-
lowed in 10-15 time units by end(a). Quantifiers also allow
us to make statements on events that all share a property,
as illustrated in the trainee shift example above. This is not
provided in exisiting scheduling specification languages but
is seamlessly accommodated in MTL.

Finally, the MTL operator “until” augmented with a time
interval (φ UIψ) states that φ is true from now until some
point within I time units, when ψ becomes true. We also
make liberal use of two operators derived from UI : 3Iφ and
2Iφ, which state that “at some point within interval I after
the current time, φ will be true” and “at every point within
interval I after the current time, φ is true”, respectively.

It is worth noting that in addition to serving as a problem
specification language that can be used as input to a schedul-
ing algorithm, MTL’s logical foundation enables us to rea-
son about properties of a MTL-specified scheduling problem
at the logical level and to answer queries about the schedules
it entails without necessarily calculating specific solutions.
This is critical tool in scheduling requirements engineering
and verification.

3 Semantics
Here, we formally define the notions introduced above.

A schedule T consists of a tuple (Instances, T ) and is
the object we will use to evaluate the truth value of an
Scheduling MTL formula. Instances : A 7→ 2I is a func-
tion that maps an activity to the set of instances of that ac-
tivity that actually occur. T is a function that assigns times
to the start and end of each instance of each activity., i.e.
T : {a | a ∈ {Instances(A) | A ∈ A}} 7→ D×D. Let Ts(a)
and Te(a) return the first and second values of T (a) respec-
tively. A formula φ is satisfied by a schedule T at a time
ti ∈ D, which is written as 〈T , ti〉 |= φ. > (true), ⊥ (false),
and boolean operators are defined in the standard way. The
rest of the operators are defined as follows:



• 〈T , ti〉 |= start(A) (resp. end(A)) iff ∃x ∈ Instances(A)
such that Ts(x) = ti (resp. Te(x) = ti).

• 〈T , ti〉 |= start(a) (resp. end(a)) iff Ts(a) = ti (resp.
Te(a) = ti).

• 〈T , ti〉 |= P(A) iff A ∈ P .
• 〈T , ti〉 |= P(a) iff for some A ∈ A, a ∈ Instances(A)

and A ∈ P .
• 〈T , ti〉 |= ¬ψ iff 〈T , ti〉 6|= ψ.
• 〈T , ti〉 |= ψ ∧ χ iff 〈T , ti〉 |= ψ and 〈T , ti〉 |= χ.
• 〈T , ti〉 |= φ UIψ iff ∃tj such that 〈T , tj〉 |= ψ, tj − ti ∈
I , and ∀tk such that ti ≤ tk ≤ tj (or tj ≤ tk ≤ ti),
〈T , tk〉 |= φ.

• 〈T , ti〉 |= ∀x.φ iff for every activity instance a ∈ I,
〈T , ti〉 |= φx=a, where φx=a is the formula φ with all
occurrences of x replaced with a.

Semantically, a schedule as it is defined here is equiva-
lent (although expressed in a different manner) to the signal
function used to evaluate formulae in the continuous (as op-
posed to pointwise) semantics of MTL (Ouaknine and Wor-
rell 2008).

We can also define other operators from the basic ones:

• ∃, ∨, ⊃ (logical implication), and ≡ (logical equivalency)
are defined as usual.

• The metric-valued “eventually” operator 3Iφ is defined
as > UIφ, and the metric valued “always” operator 2Iφ
is its dual ¬3I¬φ.

• Let φ →I ψ be equivalent to 3(−∞,∞)(φ ∧ 3Iψ). This
is semantically analogous to a simple temporal constraint:
T |= φ→I ψ iff ∃tj , tk such that 〈T, tj〉 |= φ, 〈T, tk〉 |=
ψ, and tk − tj ∈ I . In other words, ψ is true at some time
within interval I after φ is true.

• Precedence constraint predicates Before(φ), After(φ), and
Between(φ, ψ) can be constructed as 3(0,∞)φ, 3(−∞,0)φ,
and After(φ) ∧ Before(ψ), respectively. We also define
Currently(x) as Between(start(x), end(x)); this predicate
signifies that an instance x is currently happening.

• For convenience, we will use 3φ and 2φ without the
subscript to represent the LTL-style unconstrained defi-
nitions, 3[0,∞)φ and 2[0,∞)φ.

• Past-LTL operators are also easy to define. For example,
the past version of 3 (the “once” operator) can be defined
as 3(−∞,0].

• For every activity A, let property PA = {A}, so
only instances of A share this property. Let predicate
InstanceOf(x,A) ≡ PA(x), so that InstanceOf(x,A) is
true iff x is an instance of A.

Note that some of the above operators are already made re-
dundant by others; i.e. 3Iφ ≡ true UIφ, φ∨ψ ≡ ¬φ∧¬ψ,
2Iφ ≡ ¬3I¬φ, and ∃x ∈ P.φ ≡ ¬∀x ∈ P.¬φ. How-
ever, we will be considering fragments of this language that
exclude some of these operators, so the semantics of all of
them are given independently. A schedule T models or sat-
isfies a formula φ, written as T |= φ, iff 〈T , 0〉 |= φ (0 is the
initial time point).

4 Restrictions to Scheduling MTL
We now consider the complexity of this language, which we
will measure by the difficulty of the following problem.
Definition 4.1. The Scheduling MTL satisfiability problem,
or SMTL-SAT, is the task of taking a Scheduling MTL for-
mula φ and finding a schedule T such that T |= φ.

Since Scheduling MTL is an extension of the standard
propositional MTL, the fact that the latter is in EXPSPACE
for integer values (Ouaknine and Worrell 2008) and unde-
cidable for real values (Alur, Feder, and Henzinger 1996)
implies SMTL-SAT is at least as hard. We therefore consider
restrictions on the language to make satisfying Scheduling
MTL formulae more tractable. The first restriction we im-
pose is to bound the number of times an activity can occur.
Definition 4.2. Bounded-instance MTL, or BI-MTL, is
Scheduling MTL with the additional restriction that for ev-
ery A ∈ A, the problem specification includes a bound
∼ kA, where∼ is either = or≤, and kA ∈ N. BI-MTL-SAT
is defined analogously to SMTL-SAT. A satisfying schedule
for a BI-MTL formula must additionally satisfy the bound
|Instances(A)| ∼ kA for all A ∈ A.

Although we lose the ability to specify infinite schedules,
bounded-instance MTL is a useful language that is capa-
ble of expressing many types of constraints. To our knowl-
edge, restricting MTL in this way has never been studied
before, perhaps due to the importance of infinite traces in
most applications of MTL. However, for scheduling, it is
natural to consider only finite numbers of events. By way
of illustration, an =k-bounded activity can be used to repre-
sent the shifts of a nurse stipulated to work k shifts within
the scheduling period. This model can be augmented with
a ≤ j-bounded activity representing j overtime shifts that
this nurse could, but not necessarily, work. A coverage con-
straint requiring at least one nurse to be on shift at any
given time can be represented as 2∃x.Currently(x), and in
an integer domain where each time step is one day, a sim-
ple shift pattern for a nurse A stating that every four days
on shift is followed by two days off can be expressed as
2(2[0,3]start(A) ⊃ 2[4,5]¬start(A)). This formula is eas-
ily adaptable to other x-on/y-off patterns, unique patterns
for each nurse, pattern avoidance (“never schedule isolated
days off”), and patterns that change over the course of the
scheduling horizon. It is important to note that while these
are typical scheduling patterns in nurse rostering, there is
no scheduling language that can collectively encode them, a
deficit that Burke openly laments (Burke et al. 2004).

The complexity of BI-STL-SAT is PSPACE-complete. To
show that it is PSPACE-hard, one can reduce True Quan-
tified Boolean Formula, the canonical PSPACE-complete
problem, to BI-STL satisfiability by keeping the boolean op-
erators and quantifiers as-is, and mapping each proposition
to an activity. A proposition is assigned to be true if and
only if the corresponding activity is assigned a start time
of 0. Each quantified variable corresponds to an activity that
repeats exactly twice, once at time zero and once after, mim-
icking the quantified variable’s domain of true and false. For
a full proof, see Section 9.2 of the appendix. We demon-
strate that it is still in PSPACE by showing that verifying a



schedule satisfies a formula can be computed in polynomial
space, and giving a finite set of possible schedules to search
through that are guaranteed to include a satisfying schedule
if it exists. The full proof can be found in Section 9.6.

Having shown that BI-MTL-SAT is PSPACE-hard and
also in PSPACE, we reach the following result:
Theorem 4.1. BI-MTL satisfiability is PSPACE-complete.

The PSPACE-completeness of satisfying bounded-
instance MTL formulae may prove to be too complex for
some scheduling problems. Analogously to the difference
between TQBF and propositional SAT, removing quantifiers
from our language reduces the complexity from PSPACE to
NP. We define another fragment of our language as follows:
Definition 4.3. Bounded-instance quantifier-free MTL, or
BI-QF-MTL, is the set of BI-MTL formulae in which no sub-
formula has the form ∃x.φ or ∀x.φ.

We can prove that BI-QF-MTL satisfiability is NP-hard
by reducing standard SAT to it in a simplified version of the
reduction mentioned for TQBF above. Additionally, we de-
scribe a polynomial time verification algorithm for BI-QF-
MTL here. Given a BI-QF-MTL formula φ and a schedule
T , this algorithm assigns a set of true times to each subfor-
mula ψ such that for every time t in this set, 〈T , t〉 |= ψ.
The true times of each atomic predicate start(a) and end(a)
are the times the schedule assigns to each of its instances;
then each additional operator combines or modifies these
sets. For example, if T assigns times 5 and 10 to a =2-
bounded activity A, start(A) has true times {5, 10} and
3[0,3]start(A) has true times [2, 5] ∪ [7, 10]. Negation and
conjunction correspond to set complementation and inter-
section, respectively. The algorithm returns true iff the true
times of φ include 0. This process is described in algorithm
BIQFSMTL-Verify. The correctness of this algorithm is
trivial after proving the following statement:

Claim: For any time t, 〈T , t〉 |= φ iff t ∈
trueTimes(T , φ).

Proof: By structural induction over bounded-instance
quantifier-free STL formulae; full proof in Section 9.8.

Now that we have shown that BI-QF-MTL-SAT is NP-
hard and also in NP, we conclude the following result:
Theorem 4.2. BI-QF-MTL satisfiablity is NP-complete.
We discuss applications of BI-QF-MTL in Section 6.

5 Solving BI-MTL-SAT
We now present a brief overview of an algorithm to find a
schedule for a given BI-MTL formula.It proceeds as fol-
lows: first, the formula is transformed into an equivalent
Scheduling MTL formula in which each activity occurs ex-
actly once. Then, this formula is converted into a first-order
logic formula with constants from D and the + and ≤ sym-
bols. Finally, quantifiers are eliminated, resulting in a propo-
sitional formula with linear inequalities as atoms, which can
be solved by an SMT solver.

5.1 Reduction to Exactly-Once Activities
Definition 5.1. An exactly-once STL formula is a BI-STL
formula in which no subformula is of the form ∃x.φ or ∀x.φ,

1 Algorithm: BIQFSMTL-Verify(T, φ)
Input: A schedule T = (Instances, T ), and a bounded,

quantifier-free STL formula φ.
Output: Whether or not T |= φ.

2 begin
3 return true iff 0 ∈ trueTimes(T , φ);
4 end
5 trueTimes(T , φ) :
6 begin
7 if φ = start(A) or end(A) :
8 return

⋃
a∈Instances(A)

Ts(a) or Te(a), respectively

9 else if φ = P (A) :
10 return D if A ∈ P , ∅ if not
11 else if φ = ψ ∧ χ :
12 return trueTimes(T , ψ) ∩ trueTimes(T , χ)
13 else if φ = ¬ψ :
14 return trueTimes(T , ψ)C

15 else if φ = ψ UIχ :
16 return {t− i | i ∈ I , t ∈ trueTimes(T , χ), and

∀tk such that t− i ≤ tk ≤ t (or t ≤ tk ≤ t− i),
tk ∈ trueTimes(T , ψ)}

17 end
18 end

Note: C in line 14 is the set complement operation.

and every activity used has bound =1.

We first transform φ over bounded instance activities to
an equivalent exactly-once formula φ=1.

• For each activity A with exact bound =k, replace it with k
activities B1, . . . , Bk, all with bound =1. In φ, replace all
occurrences of start(A) with

∨
1≤i≤k start(Bi) and sim-

ilarly for end(A). For every property P , if A ∈ P , let
P ′ = P ∪ {B1, . . . , Bk}, and replace all occurrences of
P in φ with P′.

• For each activityAwith upper bound≤k, replace it with k
activities C1, . . . , Ck, all with bound ≤1. In φ, replace all
occurrences of start(A) with

∨
1≤i≤k start(Ci) and sim-

ilarly for end(A). For every property P , if A ∈ P , let
P ′ = P ∪{C1, . . . , Ck}, and replace all occurrences of P
in φ with P′.

• For each subformula of the form ∀x.ψ in φ, replace it
with

∧
Y ∈A(3(−∞,∞)start(Y ) ⊃ ψx=Y ), where ψx=Y

is ψ with all occurrences of x replaced by Y . Note that
at this point, Y is either a =1-bounded activity Bi or a
≤1-bounded activity Ci.

Now, φ has no quantifiers and consists of only =1-bounded
activities and ≤1-bounded activities. Call this formula φ≤1.
We then replace ≤1-bounded activities as follows:

• For each activity C with bound ≤1, replace it with two
activities αC and βC with bound =1.

• Replace every instance of start(C) with start(αC) ∧
start(βC) (similarly for end(C) and P(C)).



• Append by conjunction the formulae 3(start(αC) ∧
start(βC)) ≡ 3(end(αC) ∧ end(βC)) (for every ≤1
bounded C).

This is our φ=1.
Let T = (Instances, T ) be a schedule over the origi-

nal activities in φ, let T ′ = (Instances′, T ′) be a sched-
ule over the ≤1-bounded activities in φ≤1, and let T ′′ =
(Instances′′, T ′′) be a schedule over the =1-bounded activi-
ties in φ=1. We will define T ′ in terms of T ′′ and T in terms
of T ′ as follows. Given T ′′, we define a ≤1-bounded ac-
tivity C to occur in T ′ (i.e. |Instances(C)| = 1) iff T ′′ |=
3(start(αC) ∧ start(βC)) ∧ 3(end(αC) ∧ end(βC)), and
define T ′(C) = (T ′′s (αC), T ′′e (αC)). For =1-bounded activ-
ities, Instances′ and T ′ give the same value as Instances′′

and T ′′. In other words, given a time assignment for the =1-
bounded activities, a ≤1-bounded activity occurs in T ′ iff
the two corresponding =1-bounded activities occur simulta-
neously in T ′′.

Then, for a ∼k-bounded activity A from the original for-
mula, let Instances(A) =

⋃
1≤i≤k

Instances′(Bi) (or Ci, de-

pending on ∼), and the time of each instance be the time
assigned by T ′ to the corresponding Bi (or Ci) instance.

Claim: Let T ′′ be a schedule over the activities of an
exactly-once STL formula φ=1 resulting from reducing a
bounded STL formula φ by the method above, and let T
be the schedule over activities of φ derived from T ′′ as just
defined. Then T ′′ |= φ=1 iff T |= φ.

Proof (sketch): Quantified instances in φ are grounded
over all possible instances and replaced with a conditional
formula that checks if that particular instance actually occurs
(it may not, if it is the instance of a ≤1-bounded activity). A
≤1-bounded activity C in T ′ has either 0 or 1 instances,
which corresponds to whether or not =1-bounded activities
αC and βC occur simulataneously in T ′′. The union of the
instances of k≤1-bounded activities yields a set of instances
whose size is ≤ k, which simulates a ≤k-bounded activity
in T . The rest of the proof follows from the semantics - see
Section 9.3 in the appendix for a full proof.

5.2 Conversion to First-order Logic
The remainder of the algorithm proceeds in a manner simi-
lar to the one used by (Cimatti, Micheli, and Roveri 2012).
In this step, we take the STL formula φ=1 and convert it to
first-order logic via the algorithm SMTL-to-FOL. Note that
since each activity has exactly one instance, we will equate
activities with their instances for the remainder of this sec-
tion.

As an example, recall that end(a)→[2,3] start(b) is short-
hand for the formula 3(−∞,∞)(end(a) ∧ 3[2,3]start(b)).
This formula has an equivalent first-order formula ∃i((i =
end(a)) ∧ ∃j((2 ≤ j) ∧ (j ≤ 3) ∧ (i+ j = start(b)))).

Claim: A schedule T = (Instances, T ) satisfies an
exactly-once SMTL formula φ iff variable assignment T ,
along with the standard interpretation of nonlogical sym-
bols, satisfies ΦFOL.

Proof: By structural induction over well-formed exactly-
once SMTL formulae. See Section 9.4 in the appendix.

1 Algorithm: SMTL-to-FOL(φ)
Input: An exactly-once SMTL formula over activities

A = {a1 . . . an}.
Output: A first-order formula ΦFOL over the language

{+,≤, Ḋ} with free variables in
{start(a), end(a) | a ∈ A}. Ḋ is the set of
constant symbols corresponding to the values
in D.

2 begin
3 return recursiveFOL(φ, 0);
4 end
5 recursiveFOL(φ, x) :
6 begin
7 if φ = start(a) :
8 return start(a) = x
9 else if φ = end(a) :

10 return end(a) = x
11 else if φ = P′(a) :
12 return > if a ∈ P ′, ⊥ if not
13 else if φ = ψ ∧ χ :
14 return

recursiveFOL(ψ, x) ∧ recursiveFOL(χ, x))
15 else if φ = ¬ψ :
16 return ¬recursiveFOL(ψ, x)
17 else if φ = ψ U[l,u]χ :
18 return

∃i(l ≤ i ∧ i ≤ u ∧ recursiveFOL(χ, x+ i)
19 ∧(i ≥ 0 ⊃ ∀k((0 ≤ k ∧ k ≤ i) ⊃

recursiveFOL(ψ, x+ k)))
20 ∧(i < 0 ⊃ ∀k((i ≤ k ∧ k ≤ 0) ⊃

recursiveFOL(ψ, x+ k)))
21 end
22 end

Note: If the interval I in UI is open, strict inequalities
should be used. The equality x = a will actually be re-
alized as a ≤ x ∧ x ≤ a.

The relationship between MTL and first-order logic is
well-studied in Hirshfeld and Rabinovich [2004], and this
conversion is similar to theirs, except the =1 bound on all
activities allows us to replace MTL propositions with vari-
ables rather than monadic predicates.

Note that while there are no quantifiers in φ=1, there are
first-order quantifiers in ΦFOL. At this point, the formula
can be given to any SMT solver that supports such quanti-
fiers, such as Z3 (De Moura and Bjørner 2008). However,
if a standard SMT solver is preferred, quantifier elimination
can be performed to propositionalize ΦFOL. One method of
doing this is to convert all ∀ quantifiers into ¬∃¬, then start-
ing with the innermost quantified subformula, convert it to
DNF, and for each clause perform Fourier-Motzkin elimi-
nation on the quantified variable (Schrijver 1986). This pro-
cedure is repeated until no more quantifiers appear in the
formula. Section 9.5 expands on this topic.

To continue the previous example, performing quantifier
elimination on ∃i((i = end(a)) ∧ ∃j((2 ≤ j) ∧ (j ≤ 3) ∧



(i+ j = start(b)))) returns
(2 ≤ 3)∧(start(b)−3 ≤ start(b)−2)∧(end(a) ≤ start(b)−
2) ∧ (start(b)− 3 ≤ end(a)) ∧ (end(a) ≤ end(a)).
Discarding the trivially true clauses simplifies the formula
to (end(a) ≤ start(b) − 2) ∧ (start(b) − 3 ≤ end(a)), i.e.
2 ≤ start(b)− end(a) ≤ 3, which agrees with the semantics
of the original scheduling MTL formula.

While it is clear that the literals of the final quantifier-
free formula are linear equalities, it is possible to strengthen
the result and show it is a difference logic formula: all the
atomic propositions are inequalities of the form x − y ≤ k
or x − y < k, where x and y are variables and k is a
constant. Now that φ is in the form of a difference logic
formula, a schedule can be found by any standard SMT
solver (with a difference logic or linear arithmetic theory
solver). We note that the entire algorithm uses space expo-
nential in the input although we have proven the problem
is in PSPACE. However, this approach elucidates several
relationships with existing problems and also exploits ad-
vances in SMT. In particular, recent developments in SMT
solvers allow SMT problems to be optimized with respect
to a linear objective function (Sebastiani and Tomasi 2012;
Li et al. 2014). This allows us to optimize a schedule in var-
ious ways (schedule some activities as early as possible and
another as late as possible, minimize makespan, etc.).

6 MTL Applied to Existing Problems
A natural question to ask now is what kind of constraints can
be expressed using only BI-QF-MTL. The most straightfor-
ward uses of this fragment are for constraining events that
happen exactly or at most once. This captures the needs of
many scheduling problems where there is a fixed set of ac-
tivities that need to be scheduled, such as job shop schedul-
ing or temporal network problems. We explore both these
applications in this section.

6.1 Job Shop Scheduling
The job shop scheduling problem (JSP) is one of the most
well-studied scheduling paradigms (Fox 1983). We demon-
strate here that BI-QF-MTL is capable of modeling JSPs in
a straightforward fashion. In a standard JSP, a set of jobs
must be completed on a set of machines, which can process
at most one job at a time. A job may require the use of mul-
tiple machines in a fixed order: job J is associated with a se-
quence of machines S(J, 1) . . . S(J, n) and processing times
on these machines, P (J, 1) . . . P (J, n). The solution to the
problem is an assignment of times to jobs that respects the
processing times of each job, the sequence ordering of the
machines for each job, and the capacity of each machine.

Our formulation consists of a set of BI-QF-MTL formu-
lae Φ over =1-bounded activities for each machine in a job’s
sequence:A = {aJ,i | job J, 1 ≤ i ≤ n}. For each machine
M , define property UM to be shared by all the elements of
all job sequences that use machine M , i.e. UM = {aJ,i |
S(J, i) = M}. For each processing time P (J, i), add con-
straint start(aJ,i)→[P (J,i),P (J,i)] end(aJ,i). In order to pre-
serve the order of each job sequence, for each job J with
job sequence of length n, for 1 ≤ k < n, add constraint

end(aJ,k) →[0,∞) start(aJ,k+1). Finally, to allow only one
job to be processed on a machine at a time, for each machine
M , add the formula

∧
a∈UM ,b∈UM ,a 6=b

2¬(Currently(a) ∧

Currently(b)) to Φ (recall that Currently(a) is defined as
Between(start(a), end(a)), i.e. it is true when activity a is
currently happening). See Section 9.9 for a proof of the cor-
rectness of this reduction.

To pose the decision problem (i.e., does there exist a
schedule within a makespan D), two activities, S and T ,
which require no resources, are created. S is constrained to
execute before the first activity in each job and T is con-
strained to execute after the last. Then, the following con-
straint is posed: start(S) →[0,D] start(T ). Optimization
problems cannot be directly expressed in MTL but must be
handled separately, as in the SMT component of the algo-
rithm in Section 5.

This formulation can also be extended to model variations
of JSP: idle time between jobs, sequence dependent setups,
precedence constraints between jobs, and variable process-
ing times can all be expressed as Scheduling MTL formu-
lae. While specialized methods already exist to solve these
problems, Scheduling MTL provides a unifying language
for expressing these constraints and opens up possibilities
for more complex and expressive ones in the future.

6.2 Temporal Networks
While MTL is a timed temporal logic, its semantics allow it
to model the well-studied class of temporal network prob-
lems simply and directly, using only exactly-once formulae.
We begin with some definitions.

Definition 6.1. Given a set of instantaneous events, a sim-
ple temporal constraint has the form [l, u]xy , where x, y are
times of events and l, u are constant bounds; it represents
the inequality l ≤ y − x ≤ u. A simple temporal network
(STN) is a set of simple temporal constraints, and the sim-
ple temporal problem (STP) is the task of assigning times
to events that satisfy all the constraints in a STN (Dechter,
Meiri, and Pearl 1991).

Definition 6.2. A disjunctive temporal constraint is a dis-
junction of simple temporal constraints. A disjunctive tem-
poral network (DTN) is a set of disjunctive temporal con-
straints, and the disjunctive temporal problem (DTP) is the
task of assigning times to events that satisfy all the con-
straints in a DTN (Stergiou and Koubarakis 1998).

The “network” terminology derives from the fact that
temporal networks are often represented as graphs with
events as nodes and constraints as edges. STP is known
to be NL-complete and DTP is known to be NP-complete
(Planken 2013; Stergiou and Koubarakis 1998).

It is straightforward to model a given DTN with an
exactly-once MTL formula φDTN . As mentioned in Section
3, the derived operator φ →I ψ exactly corresponds to a
simple temporal constraint between φ and ψ when they are
events in a temporal network. Therefore, a STN can be mod-
eled as a conjunction of→I formulae, with one =1-bounded
activity for each event, and a DTN can be expressed as a



conjunction of disjunctions of these formulae. See Section
9.10 for a full proof.

DTNs were originally created with the intent of extend-
ing the expressivity of STNs; many people in turn have aug-
mented DTNs with additional machinery to continue this
extension. We consider two of these extensions and demon-
strate that they can also be modeled as BI-QF-MTL formu-
lae.

A generalized temporal network (GTN) is an extension of
DTNs that allows constraints to be disjunctions of conjunc-
tions of simple temporal constraints, rather than disjunctions
of constraints (Staab 1998). The conversion from DTNs to
MTL formulae in the previous section can be easily modi-
fied to show that GTNs are also expressible as exactly-once
MTL formulae, by adding one additional layer of conjunc-
tions.

A conditional temporal problem (CTP) extends DTPs or
STPs by adding variables whose truth value must be ob-
served at an event, and temporal constraints that only ac-
tivate if a particular set of variables has been observed to
be true (Tsamardinos, Vidal, and Pollack 2003). This prob-
lem has been a subject of recent interest where the observa-
tion variables are treated as fully controllable decision vari-
ables (Yu and Williams 2013). It is possible to model such
a controllable CTP using BI-QF-MTL, with the use of ≤1
bounded activities (activities that either happen or not) to
represent the truth value of observation variables, and tem-
poral constraints that are conditioned on which of these ac-
tivities occur.

The benefits of Scheduling MTL are clear with respect
to these extensions: while entirely new formulations were
developed to handle specific forms of disjunction and condi-
tion for temporal networks, even the BI-QF-MTL fragment
can specify disjunctions and conditions of arbitrary subfor-
mulae.

We now consider the relationship between MTL and
STPs. To do so, we first define the following restriction.

Definition 6.3. For a set of MTL operators O, O-formulae
are the set of MTL formulae using only operators in O. O-
SAT is the satisfiability problem for O-formulae.

We first observe that φDTN is an exactly-once {∧, ∨,
3I}-formula by construction (since →I is composed of ∧
and 3I ). Furthermore, for STNs, the same transformation
results in an exactly-once {∧, 3I} formula, since ∨ is only
used in φDTN for disjoining simple temporal constraints.
While this demonstrates that exactly-once {∧, 3I} formulae
are at least as expressive as STNs, it turns out the converse
is true as well.

To accomplish this for a given exactly-once {∧, 3I} for-
mula φ, an event is created for each start and end predicate,
as well as one for each subformula of φ, which intuitively
represents the time at which that subformula is made true.
We assume no atomic predicates are property predicates, be-
cause without quantifiers we can immediately evaluate the
truth value of P(A) for any property P and activityA and re-
place it with > or ⊥ accordingly. This process is described
in algorithm SMTL-to-STN and demonstrated for a small
example in Figure 1.

1 Algorithm: SMTL-to-STN(φ)
Input: An exactly-once {∧,3I}-formula φ over a set

of activities A
Output: A set of STN constraints on {start(A) | A ∈

A} ∪ {end(A) | A ∈ A} ∪Ψ ∪ START, where
Ψ is the set of all subformulae of φ and
STARTis an event signifying the initial time
point of the schedule.

2 begin
3 return AddExplicitConstraints(φ, [0, 0]START,φ);
4 end
5 AddExplicitConstraints(φ, constraints)
6 begin
7 if φ = start(A) or end(A) :
8 return constraints;
9 else if φ = ψ ∧ χ :

10 return {[0, 0]φ,ψ, [0, 0]φ,χ} ∪
AddExplicitConstraints(ψ, constraints) ∪
AddExplicitConstraints(χ, constraints);

11 else if φ = 3[l,u]ψ :
12 return {[l, u]φ,ψ} ∪

AddExplicitConstraints(ψ, constraints);
13 end
14 end

Figure 1 shows the STN resulting from converting
3(end(A) ∧3[2,3](start(B) ∧ start(C))), which states that
B and C simultaneously begin 2-3 time units after A ends.
Observe that any satisfying schedule must assign φ2, φ3, and
end(A) to the same time due to the [0, 0] constraints between
them; the same holds for φ4, start(B), and start(C). The
constraint [2, 3]φ2,φ3

then forces end(A) to occur 2-3 time
units before start(B) and start(C), which agrees with the
semantics of the original formula. The [0,∞) constraint be-
tween φ1 and φ2 allows this gap to occur at any positive
time.

Note that duplicates of auxiliary nodes may occur if
the same subformula appears multiple times in the same
formula. For example, calling the algorithm on 3(A ∧
Before(C)) ∧ 3(B ∧ Before(C)) will return constraints
on two different nodes both labeled Before(C) because
Before(C) occurs twice in the formula. However, all nodes
corresponding to atomic propositions refer to the same
event.

SMTL-to-STN is easily proven correct after proving the
following claim:
Claim: Let STNφ be the set of constraints returned by Ad-
dExplicitConstraints(φ, ∅), and let T be a variable assign-
ment over the events in STNφ. Define TT = (Instances, T ),
where Instances is the identity function (since all ac-
tivites are =1-bounded). Then, T satisfies the constraints re-
turned by AddExplicitConstraints(φ, ∅) iff 〈T , T (φ)〉 |= φ
(where T (φ) is the time the auxiliary node φ is scheduled).
Proof: By structural induction over {∧,3I}-formulae. A
full proof can be found in Section 9.12.

Since STNs are expressible as exactly-once {∧,3I}-
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Figure 1: The STN equivalent to 3(end(A) ∧
3[2,3](start(B) ∧ start(C))).

formulae and exactly-once {∧,3I}-formulae can be con-
verted to STNs via the above algorithm (both in log-space),
we have the following result:
Theorem 6.1. Exactly-once {∧,3I}-formulae and STNs
are equivalently expressive.

We find it remarkable that this simple syntactic restriction,
combined with the exactly-once bound, results in a temporal
logic expressible as a temporal network. There is a known
relationship between the timed-word model of MTL and
timed automata (Alur, Feder, and Henzinger 1996), but the
continuous semantics of these logics (such as the one used
here) have not previously been known to be expressible with
such a graph-based model. This may also shed some light on
the connection between timed automata and temporal net-
works, a recently explored topic (Cimatti et al. 2014).

The mutual expressibility between STNs and this MTL
fragment also allows us to state its complexity:
Theorem 6.2. Exactly-once {∧,3I}-SAT is in P.

Proof. A {∧,3I}-formulae can be converted to an equiva-
lent STN in linear time via the algorithm described above,
which can then be solved in polynomial time by any stan-
dard STP algorithm (Planken 2013).

7 Related Work and Summary
Few attempts have been made to apply temporal logic to
scheduling. Dorn [1993] is an early example, although its
approach is very different–the temporal logic used is based
on Allen’s interval algebra and resources are handled in an
object-oriented manner.

A common application of temporal logic constraints is for
augmenting an existing problem representation with a tem-
poral logic formula and later compiling the formula into the
language of the model. In scheduling, both LTL and MTL
have been applied to the vehicle routing problem by com-
piling the state-sequence based formula into mixed integer
linear programming (MILP) constraints, which were added
to the existing MILP model (Karaman, Sanfelice, and Fraz-
zoli 2008; Karaman and Frazzoli 2008). This approach has
also been applied to discrete-time nonlinear systems (Wolff,
Topcu, and Murray 2014). Another method of compilation
is to convert an LTL formula into an equivalent finite-state
automaton; this method is used in temporally extended goals
in planning problems (Baier and McIlraith 2006). Similarly,

timed temporal logics can be converted into timed automata
(Ostroff 1989).

While our approach also compiles MTL formulae into an-
other language, it differs in using temporal logic as the na-
tive language to specify the entire problem. This difference
allows Scheduling MTL to be used in formal logical reason-
ing to answer queries about the entire problem, rather than
just the fragment represented in logic. Additionally, the pre-
vious examples all rely on a state sequence model for satisfy-
ing formulae; ours uses a continuous timeline model instead,
which results in a slightly different semantics (Hirshfeld and
Rabinovich 2004).

In general, restrictions of MTL are more common than
extensions in the literature. Most of these have sought to in-
crease tractability through restricting the types of intervals
allowed in the UI operator, such as Bounded MTL, which
restricts all intervals to be of finite length; satisfiability for
this logic in R is EXPSPACE-complete (Bouyer et al. 2008).
The strongest syntactic restriction on MTL intervals that is
still more expressive than LTL results in a satisfiability prob-
lem that is PSPACE-complete (Ouaknine and Worrell 2008).
In contrast, using an approach slightly different from ours,
Bacchus and Kabanza [1998] augmented MTL with first-
order quantifiers to express temporally extended goals in
TLPlan planner.

Combining capacity constraints with LTL was explored
by Dixon, Fisher, and Konev [2007], by limiting the num-
ber of propositions that could be true at any given time.
Metric-valued temporal constraints are not considered, how-
ever, and again the state-sequence model differs from ours.
LTL restricted to finite traces has also been studied (De Gia-
como and Vardi 2013; De Giacomo, De Masellis, and Mon-
tali 2014).

Other extensions to DTPs and STPs have also been previ-
ously studied. Some of these are also expressible in BI-QF-
MTL. For example, Generalized Temporal Networks (Staab
1998) allow constraints composed of disjunctions of con-
junctions of simple temporal constraints. Conditional Tem-
poral Problems (CTPs) extend DTNs by only requiring con-
straints to be satisfied under certain conditions (Tsamardi-
nos, Vidal, and Pollack 2003). The original formulation of
CTPs defines these conditions as uncontrollable, but a con-
trollable version (which is expressible in Scheduling MTL)
has also been examined (Yu and Williams 2013). The ben-
efits of Scheduling MTL are clear here: while entirely new
formulations were developed to handle specific forms of dis-
junction and condition for temporal networks, even the BI-
QF-MTL fragment can specify disjunctions and conditions
of arbitrary subformulae.

8 Concluding Remarks
To summarize our complexity results, Figure 2 illustrates
the complexity of each successive restriction to Scheduling
MTL we have introduced and its expressiveness relative to
other logics and scheduling problems. An arrow from A to
B indicates that problem A is polytime reducible to problem
B. For all the vertical arrows in the diagram, the reduction is
trivial; methods of reduction for the rest of them have been
addressed in this paper. Note that the algorithm described in
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Figure 2: Complexity classes for satisfiability of Schedul-
ing MTL fragments and related problems, in the spirit of
[Planken, 2013]. Arrows represent polytime reductions. “S-
MTL” is Scheduling MTL, and “EO” is exactly-once.

Section 5 converts a BI-MTL formula to a BI-QF-MTL for-
mula, and finally into a SMT formula; however, neither of
these conversions takes polynomial time.

As a proof of concept, we built a Z3-based implementa-
tion of our algorithm that confirms the straightforward na-
ture of the conversion to SMT. Empirical results are not
reported here since we did not do extensive benchmark-
ing. The culture of the scheduling community is to build
problem-specific solvers. Any such solver would demon-
strate superior performance. The value and significance of
an expressive language such as Scheduling MTL lies rather
in the ability to help us specify, understand, compare, and
solve a myriad of scheduling problems with varying com-
plex constraints that are one-off and may not exist in the
scheduling literature.

In conclusion, we have introduced Scheduling Metric
Temporal Logic, an adaptation of MTL for scheduling prob-
lems, and demonstrated the expressive power of several nat-
ural restrictions of the language. In particular, the ability for
BI-QF-MTL to model classic problems such as job shop
scheduling as well as newer developments such as condi-
tional temporal problems suggests that it is a highly versatile
language. We believe the utility of MTL does not only lie in
its capability to specify existing problems, but also to aug-
ment and generalize such problems. Additionally, its logical
basis allows us to reason over constraints to answer queries
about problems.

We have described an algorithm to find a schedule satisfy-
ing a BI-MTL (or BI-QF-MTL) formula, and characterized
the complexity of this problem under various restrictions.
Finally, we have shown that a simple syntactic restriction of
Scheduling MTL is equivalent to simple temporal networks,
providing, for the first time to our knowledge, a connection
between temporal logic and STNs.
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9 Appendix
9.1 MTL ≤ Scheduling MTL
First, we begin with the syntax and semantics of MTL.

MTL formulae are constructed by the following grammar:
φ ::= p | ¬φ | φ ∧ φ | φ UIφ

Where p is an atomic proposition from a set of propostions
P , and UI is defined in the same manner as the SMTL ver-
sion.

Under the continuous semantics of MTL, a signal is a
function f : R+ 7→ 2P , where R+ is the set of nonnegative
real numbers. f maps every time point to the set of atomic
propositions true at that time, and then the truth of a for-
mula at a time point with respect to f is defined inductively
following the standard semantics of the given operators.

Given a MTL formula φMTL over propositions P and a
signal f , we can construct a SMTL formula φSMTL over
activities A and schedule T as follows:

• For each p ∈ P , add activityAp toA, and an uncountably
infinite set of possible instances of Ap, ap,1, . . . to the
instance space Instances.

• Construct φSMTL by replacing each p in φMTL with
start(Ap) ∧ end(Ap) (keep all operators the same).

• Let Timesp be the set of times proposition p is true in
signal f , i.e. Timesp = {t|p ∈ f(t)}. We will have
one instance of activity Ap for each point in this set, i.e.
|Instances(Ap)| = |Timesp|.

• The timing function T of T maps the start and end of
each instance of Ap to a time in Timesp. More foma-
lly, for any proposition p, fix gp to be some isomor-
phism from Instances(Ap) to Timesp, and for every ap ∈
Instances(Ap), define T (ap) = (g(ap), g(ap)).

Claim: ∀t ∈ R, 〈T , t〉 |= φSMTL iff f(t) |= φMTL.
Proof: By structural induction over MTL formulae.

• Base Case: φMTL = p.
f(t) |= p ⇔ p ∈ f(t) ⇔ ∃ap ∈
Instances(Ap) s.t. T (ap) = (t, t) ⇔ 〈T , t〉 |=
start(Ap) ∧ end(Ap)⇔ 〈T , t〉 |= φSMTL .

• Inductive Case: φMTL = ¬ψMTL.
f(t) |= φMTL ⇔ f(t) |= ¬ψMTL ⇔ f(t) 6|= ψMTL ⇔
〈T , t〉 6|= ψSMTL (by inductive hypothesis) ⇔ 〈T , t〉 |=
¬ψSMTL ⇔ 〈T , t〉 |= φSMTL.

• Inductive Case: φMTL = ψMTL ∧ χMTL.
f(t) |= φMTL ⇔ f(t) |= ψMTL ∧
χMTL ⇔ f(t) |= ψMTL and f(t) |=
χMTL ⇔ 〈T , t〉 |= ψSMTL and 〈T , t〉 |=
χSMTL (by inductive hypothesis) ⇔ 〈T , t〉 |=
ψSMTL ∧ χSMTL ⇔ 〈T , t〉 |= φSMTL.

• Inductive Case: φMTL = ψMTL UIχMTL.
f(t) |= φMTL ⇔ f(t) |= ψMTL UIχMTL ⇔ ∃tj s.t.
tj − ti ∈ I , f(tj) |= ψMTL, and ∀tk s.t. t ≤ tk ≤ tj ,



f(tk) |= χMTL ⇔ ∃tj s.t. tj−ti ∈ I , 〈T , tj〉 |= ψSMTL,
and ∀tk s.t. t ≤ tk ≤ tj , 〈T , tk〉 |= χSMTL (by inductive
hypothesis)⇔ 〈T , t〉 |= ψSMTL UIχSMTL ⇔ 〈T , t〉 |=
φSMTL.

Finally, we present the full result:
Claim: T |= φSMTL iff f |= φMTL.
Proof: T |= φSMTL ⇔ 〈T , 0〉 |= φSMTL ⇔ f(0) |=

φMTL (by the above result) ⇔ f |= φMTL.

9.2 QBF ≤ BI-SMTL
We assume the reader is familiar with the syntax and se-
mantics of QBF formulae. We will assume all variables are
bound and the formula is in prenex normal form. Determin-
ing whether such a formula is true is PSPACE-complete; we
will use this fact to show that determining whether a BI-
SMTL formula with no free variables is true is PSPACE-
hard. From this result, we can deduce that finding a schedule
satisfying a BI-SMTL formula is also PSPACE-hard since
doing so requires evaluating the truth of a BI-SMTL for-
mula.

Given a prenex normal form QBF formula φQBF =
∃x1.∀x2.∃x3 . . . Qxn.ψ, where Q is either ∃ or ∀ and ψ is a
boolean formula over x1 . . . xn, let P be the set of all exis-
tentially quantified variables and let Q be the set of all uni-
versally quantified variables. Construct a BI-SMTL formula
φBISMTL as follows:

• For each variable p in the set of all QBF variables, add an
=2-bounded activity Ap to A.

• For every atomic proposition p in φQBF , replace it with
start(p).

• Let χ∃ =
∧
p∈P InstanceOf(p,Ap) and χ∀ =∧

q∈Q InstanceOf(q, Aq). Replace ψ with χ∃∧ (χ∀ ⊃ ψ).

• For every p in the set of all QBF variables, conjoin
φBISMTL with the formula start(Ap) ∧3[1,1]start(Ap).

The intuition of this construction is that a proposition is
true in φQBF iff the corresponding activity in φBISMTL

occurs at time 0. Each activity occurs twice, once at 0 and
once at 1, so each quantified instance ranges over these two
values, which corresponds to quantified variables in φQBF
ranging over the values true and false. The exact time of 1 is
not important; we simply need to fix the second instance to
occur at some time other than 0.

Claim: Let T = (Instances, T ) be defined such that for
all A ∈ A, Instances(A) = {a0, a1}, T (a0) = (0, 0), and
T (a1) = (1, 1). Then φQBF is true iff T |= φBISMTL.

Proof:
Assume φQBF is true. Then there is a winning strategy S
for Player E when φQBF is treated as a formula game (todo:
cite Sipser text); this strategy consists of truth assignments
for every existentially quantified variable for every univer-
sally quantified variable preceding it such that the formula
evaluates to true in all cases. Using this strategy, we can
create a corresponding one S′ for φBISMTL in which the
players take turns assigning times to activities. Whenever S
assigns an existentially quantified variable p to be true, S′

assigns the time of start(ap) to be 0; whenever S assigns
p to be false, S′ assigns start(ap) to be 1 (the end time
is also assigned to the same value to match T as defined
above). Assignments to universally quantified variables fol-
low the same pattern, so that after all quantifiers have had
truth assignments, the propositional formula ψBISMTL in
φBISMTL corresponding to ψ in φQBF is a boolean formula
over predicates start(Ap) for p ∈ P ∪ Q, accompanied by
a time assignment to these start events. By the semantics of
SMTL, for a schedule T , T |= start(Ap) iff Ts(ap) = 0 (i.e.
S′ assigned a time of 0); therefore start(Ap) ≡ > if S as-
signed p to true and start(Ap) ≡ ⊥ if S assigned p to false.
Since the atomic predicates of φBISMTL are always equiv-
alent to the atomic propositions in φQBF , the boolean oper-
ators are semantically identical in both domains. The quan-
tifiers are also forced to behave identically by the additional
constraints in φQBF imposed by the last two bullet points
in the above construction: each quantified variable can only
range of instances of a single activity by the addition of the
InstanceOf formula, and each activity has two instances, one
corresponding to true (0) and one to false (1), so quanti-
fied instances range over exactly the values 0 and 1, which
mirrors the behavior of the quantified variables in φQBF .
Therefore the truth value of φQBF and φBISMTL must be
equal as well. The proof in the other direction (assuming
T |= φBISMTL) is analogous; the strategy for φQBF is con-
structed from φBISMTL by setting p to be true iff start(Ap)
is assigned time 0.

9.3 φ ≡ φ=1

We proceed in two parts; first we prove that T ′′ |= φ=1 iff
T ′ |= φ≤1, and then we prove that T ′ |= φ≤1 iff T |= φ.

Claim: T ′′ |= φ=1 iff T ′ |= φ≤1.
Proof:
Suppose T ′′ |= φ=1. For each ≤1-bounded activity

C in φ≤1, C occurs (|Instances′(C)| = 1) iff T ′′ |=
3(start(αC) ∧ start(βC)) ∧ 3(end(αC) ∧ end(βC)). Say
T ′′ does satisfy this formula. Then T ′′(αC) = T ′′(βC) =
T ′(c), where Instances′(C) = {c}. Therefore, ∀t ∈
D, 〈T ′′, t〉 |= start(αC) ∧ start(βC) iff 〈T ′, t〉 |= start(C)
and similarly for end(αC) ∧ end(βc) and end(C). Since
αC and βC only appear in φ=1 exactly where there was
a start/end predicate for C in φ≤1, they are semantically
equivalent, and the rest of the formula was unchanged, T ′ |=
φ≤1. This proof can be reversed to prove the converse.

Now we consider the case where T ′′ 6|= 3(start(αC) ∧
start(βC)) ∧ 3(end(αC) ∧ end(βC)). Then T ′′ |=
¬(3(start(αC) ∧ start(βC)) ∧ 3(end(αC) ∧ end(βC))),
which is equivalent to T ′′ |= (¬3(start(αC)∧start(βC)))∨
(¬3(end(αC) ∧ end(βC))). Since we know that T ′′ |=
3(start(αC)∧ start(βC)) ≡ 3(end(αC)∧ end(βC)) (since
this formula was conjoined to φ=1 in our construction)
and we know at least one of the two sides is false, both
must be false, i.e. T ′′ |= (¬3(start(αC) ∧ start(βC)))
and T ′′ |= (¬3(end(αC) ∧ end(βC))). This implies that
T ′′s (αC) 6= T ′′s (βC) and T ′′e (αC) 6= T ′′e (βC). By definition
of T ′, C does not occur in φ≤1 i.e. |Instances′(C)| = ∅.
Therefore, ∀t ∈ D, 〈T ′′, t〉 |= start(αC) ∧ start(βC) iff
〈T ′, t〉 |= start(C) and similarly for end(αC)∧end(βc) and



end(C) (because both sides are always false). Since αC and
βC only appear in φ=1 exactly where there was a start/end
predicate forC in φ≤1, they are semantically equivalent, and
the rest of the formula was unchanged, T ′ |= φ≤1. This
proof can be reversed to prove the converse.

Claim: T |= φ iff T ′ |= φ≤1.
Proof: Consider a = k-bounded activity A in φ.

For all t ∈ D, 〈T , t〉 |= start(A) iff ∃x ∈
Instances(A) such that Ts(x) = t. Since Instances(A) =⋃
1≤i≤k

Instances′(Bi), whereB1 . . . Bk are the = 1-bounded

activities A is replaced with in φ≤1, 〈T , t〉 |= start(A)
iff ∃x ∈

⋃
1≤i≤k

Instances′(Bi) such that Ts(x) = t.

This is equivalent to the statement 〈T , t〉 |= start(A) iff∨
1≤i≤k

(Ts(Instances′(Bi)) = t), which is equivalent (by

construction of φ≤1 and T ′) to 〈T ′, t〉 |=
∨

1≤i≤k
start(Bi).

Therefore, for all t ∈ D, 〈T , t〉 |= start(A) iff 〈T ′, t〉 |=∨
1≤i≤k

start(Bi). The same argument can be applied to

end(A) and P(A) for any property P , and also for all ≤ k-
bounded activities in φ.

Now that we have shown the atomic predicates of φ are
correctly represented by φ≤1, it remains to show that the
operators all function identically as well. ∧, ¬, and UI op-
erators are all left unchanged; only quantified formulae are
modified. Consider a subformula of φ of the form ∀x.ψ. For
all t ∈ D, 〈T , t〉 |= ∀x.ψ iff for every activity instance
a ∈ I, 〈T , ti〉 |= φx=a, where φx=a is the formula φ with
all occurrences of x replaced with a. This is equivalent to
the statement 〈T , t〉 |= ∀x.ψ iff 〈T , t〉 |=

∧
a∈I

φx=a (1).

We now show this statement is equivalent to 〈T ′, t〉 |=∧
Y ∈A(3(−∞,∞)start(Y ) ⊃ ψx=Y ) (2). Note that the sub-

script in (2) ranges over all activities in φ≤1 (recall that
these are all = 1 or ≤ 1-bounded), whereas the subscript
in (1) ranges over all instances in φ. We created one ac-
tivity in φ≤1 for every possible instance of an activity in
φ, but the two sets may not be equal if some of the ≤ 1-
bounded activities do not occur - then the set of all in-
stances I is smaller than the set of activities A in φ≤1.
However, observe that 〈T ′, t〉 |= 3(−∞,∞)start(Y ) iff
Instances′(Y ) 6= ∅; this is because as long as Y occurs
(i.e. Instances′(Y ) 6= ∅), there must be some time at which
Y starts, so 3(−∞,∞)start(Y ) must be true. Therefore, if
Instances′(Y ) = ∅, 3(−∞,∞)start(Y ) ⊃ ψx=Y is equiva-
lent to ⊥ ⊃ ψx=Y i.e. >, and if Instances′(Y ) 6= ∅, then
3(−∞,∞)start(Y ) ⊃ ψx=Y is equivalent to > ⊃ ψx=Y
i.e. ψx=Y . Now it is clear that

∧
Y ∈A(3(−∞,∞)start(Y ) ⊃

ψx=Y ) is in fact the conjunction of ψx=Y over all activi-
ties Y that actually occur, which is equivalent by construc-
tion of φ≤1 and T ′ to 〈T , t〉 |=

∧
a∈I

φx=a, which is true iff

〈T , t〉 |= ∀x.ψ from the previous paragraph.
Since the truth value of all atomic predicates at all times is

preserved in the translation from φ to φ≤1 and the behavior
of all operators, including quantifiers, is also preserved, T |=

φ iff T ′ |= φ≤1.

9.4 Correctness of SMTL-to-FOL
Since this proof only concerns exactly-once SMTL formu-
lae, each activity has exactly one instance, so we will treat
the two as equivalent.

Claim: Let T = (Instances, T ) be a schedule and
T ′ be a first-order variable assignment over variables
{start(a), end(a) | a ∈ A} such that T ′(start(a)) = t iff
Ts(a) = t and T ′(end(a)) = t iff Te(a) = t for all a ∈ A.
Then T satisfies an exactly-once SMTL formula φ iff vari-
able assignment T , along with the standard interpretation of
nonlogical symbols, satisfies ΦFOL.

Proof: First we begin by proving a statement about the
helper method, recursiveFOL.

Claim: Let T = (Instances, T ) be a schedule, φ be an
exactly-once SMTL formula, and I be the standard inter-
pretation for the symbols +,≤ and all constants in Ḋ in
first-order logic. For all t ∈ D, 〈T, t〉 |= φ iff 〈I, T ′〉 |=
recursiveFOL(φ, t). Proof: By structural induction over
well-formed exactly-once SMTL formulae.

• Base case: φ = start(a).
Assume 〈T , t〉 |= start(a). Then by definition Ts(a) =
t. recursiveFOL(φ, t) returns the formula start(a) =
t. 〈I, T ′〉 satisfies this formula because Ts(a) = t
as stated, so T ′(start(a)) = t. Therefore 〈I, T ′〉 |=
recursiveFOL(φ, t). The proof can be reversed to prove
the converse.

• Base case: φ = end(a).
Analogous to the start(a) case.

• Inductive Case: φ = ψ ∧ χ.
Assume 〈T , t〉 |= ψ ∧ χ. Then 〈T , t〉 |= ψ, so
〈I, T ′〉 |= recursiveFOL(ψ, t) by the inductive hypothe-
sis. Similarly, 〈I, T ′〉 |= recursiveFOL(χ, t). Therefore,
〈I, T ′〉 |= recursiveFOL(ψ, t) ∧ recursiveFOL(χ, t),
so 〈I, T ′〉 |= recursiveFOL(φ, t). The proof can be re-
versed to prove the converse.

• Inductive Case: φ = ¬ψ.
Assume 〈T , t〉 |= ¬ψ. Then 〈T , t〉 6|= ψ, so 〈I, T ′〉 6|=
recursiveFOL(ψ, t) by the inductive hypothesis. There-
fore, 〈I, T ′〉 |= ¬recursiveFOL(ψ, t), so 〈I, T ′〉 |=
recursiveFOL(φ, t). The proof can be reversed to prove
the converse.

• Inductive Case: φ = ψ UIχ.
Assume 〈T , t〉 |= ψ UIχ. Then by definition there exists
ti such that 〈T , ti〉 |= χ and ti − t ∈ I , and ∀tk such
that t ≤ tk ≤ ti (or ti ≤ tk ≤ t), 〈T , tk〉 |= ψ. Us-
ing the induction hypothesis yields the statement: there
exists ti such that 〈I, T ′〉 |= recursiveFOL(χ, ti) and
ti− t ∈ I , and ∀tk such that t ≤ tk ≤ ti (or ti ≤ tk ≤ t),
〈I, T ′〉 |= recursiveFOL(ψ, tk). Let I = [l, u], i = ti−t,
and k = tk − t. The semantics of FOL combined with
some simple substitutions using the variables just defined
allow us to convert this statement to the formula
∃i(l ≤ i ∧ i ≤ u ∧ recursiveFOL(χ, t+ i)
∧(i ≥ 0 ⊃ ¬∃k(0 ≤ k ∧ k ≤ i ∧



¬recursiveFOL(ψ, t+ k)))
∧(i < 0 ⊃ ¬∃k(i ≤ k ∧ k ≤ 0 ∧

¬recursiveFOL(ψ, t+ k))).
(∀ is replaced with ¬∃¬). Now we can conclude that
〈I, T ′〉 |= recursiveFOL(ψ UIχ, t), so 〈I, T 〉 |=
recursiveFOL(φ, t). The proof can be reversed to prove
the converse.

With this result, we can now easily prove our main state-
ment: T |= φ iff 〈T , 0〉 |= φ, which is true iff 〈I, T ′〉 |=
recursiveFOL(φ, 0) (by the above claim), which is exactly
ΦFOL, so 〈I, T ′〉 |= ΦFOL.

9.5 Fourier-Motzkin Elimination is applicable
Fourier-Motzkin elimination is used to eliminate variables
from a system of linear equalities. We will assume all quanti-
fiers are existential (all subformulae of the form ∀x.ψ can be
replaced with ¬∃x.¬ψ).Observe that the most deeply nested
quantified subformula of ΦFOL consists of a single quanti-
fier over a propositional formula with linear inequalities as
atomic propositions. This formula must have an equivalent
DNF formula; each of these clauses is a conjunction of lin-
ear inequalities (the negation of a linear inequality is also a
linear inequality). Each clause is therefore a system of linear
inequalities, so Fourier-Motzkin elimination can be used in
each clause to eliminate the one quantified variable, which
allows us to drop the quantifier over the entire subformula.
This results in a new most-deeply-nested quantified subfor-
mula with the same format as before (boolean formula of
linear equalities), so the method can be repeated until no
quantifiers remain.

9.6 BI-SMTL-SAT is in PSPACE
We begin with a preliminary result:

Theorem 9.1. Given a BI-SMTL formula φ and a schedule
T , determining whether T |= φ is in PSPACE.

Proof. We base our method on the standard approach for
showing that evaluating the truth value of a fully quanti-
fied QBF formula is in PSPACE. This algorithm simply re-
cursively evaluates the truth of each subformula; for a ∃-
quantified subformula, it takes the disjunction of the truth
value of that subformula with the quantified variable re-
placed with> and the truth value of that subformula with the
quantified variable replaced with⊥; for ∀-quantified subfor-
mulae a conjunction is used instead. This algorithm stores
a value for each nested quantifier, so the total space used is
linear in the length of the formula.

The same approach can be applied to BI-SMTL formu-
lae. The verifying algorithm simpyl recursively evaluates
the truth of each subformula (e.g. Verify(T |= ψ ∧ χ) re-
turns Verify(T |= ψ) ∧ Verify(T |= χ)); on a quantified
subformula the verifier evaluates the subformula with every
instance substituted into the subformula and conjoins (for ∀)
or disjoins (for ∃) the results one at a time. The amount of
space required is linear in the number of operators, which is
linear in the size of the formula, so the entire algorithm runs
in polynomial space.

With this knowledge in hand, one naive method of solving
BI-SMTL-SAT in polynomial space is to simply guess (or
iterate through all) possible schedules, and check if each one
satisfies the given formula. The rest of this section will be
devoted to showing that we only need to search through a
finite set of these, and hence it is possible to determine a
formula is unsatisfiable when the search space is exhausted.

Definition 9.1. Given a schedule T = (Instances, T ), the
makespan of T is the latest time assigned to any instance,
i.e. maxa∈ITe(a).

Given a BI-SMTL formula φ over n activities with bounds
b1 . . . bn, let Bφ =

∑
1≤i≤n

bi. Let UI1 . . . UIk be the set of

all UI operators that appear in φ, where Ii = [li, ui] for all
i. Let mφ =

∑
{ui | ui 6= ∞} + {li | ui = ∞ and li 6=

∞}, i.e.mφ is the sum of all finite upper bounds of intervals
that appear in φ, added to the sum of all finite lower bounds
for intervals where the upper bound is infinite. Finally, let
Mφ = mφḂφ.

We claim that Mφ is an upper bound on the makespan
required to find a satisfying schedule. This idea is formalized
in the following statement.

Theorem 9.2. For every BI-SMTL formula φ, if T |= φ
and the makespan of T is greater than Mφ, there exists a
schedule T ′ such that T ′ |= φ and the makespan of T is less
than or equal to Mφ.

Proof. The intuition behind this statement is that φ can only
constrain the timing of activities within a certain distance
from each other; that distance is governed by all the intervals
used in the temporal operators. If activities are scheduled be-
yond a certain distance, then there is “slack” in the schedule
that can be tightened without changing the truth value of the
formula.

9.7 SAT ≤ BI-QF-SMTL
Given a propositional boolean formula φSAT , construct a
BI-QF-SMTL formula φSMTL as follows:

• For each proposition p in the set of all propositions P in
φSAT , add activity Ap to A with bound =1.

• For each proposition p in φSAT , replace all occurrences
of p with start(p).

• All boolean operators remain unchanged.

This formula is clearly in BI-QF-SMTL since no quanti-
fiers are introduced and all activities have bound =1.

Claim: φSAT is satisfiable iff φSMTL is satisfiable.
Proof:

⇒: Assume φSAT is satisfiable. Then there is a truth as-
signment V : P 7→ {>,⊥} over the propositions in φSAT
that evaluates to true. Define T V = (InstancesV , TV ) as
follows: InstancesV is any 1-to-1 function from activities to
instances (since all activities are =1-bounded). For each ac-
tivityAp with instance ap, let TV (ap) = (0, 2) if V (p) = >
and TV (ap) = (1, 2) if V (p) = ⊥ (the end time 2 is not im-
portant; this is an arbitrary value). We claim T V |= φSMTL.



By the semantics of SMTL, T V |= start(Ap) iff TVs (ap) =
0; therefore start(Ap) ≡ > if V (p) = > and start(Ap) ≡ ⊥
if V (p) = ⊥. Since the atomic predicates of φSMTL under
T V are equivalent to the propositions of φSAT under V , and
the semantics for ∧ and ¬ are identical in both domains, if
V is an assignment that satisfies φSAT , then TV |= φSMTL.
⇐: Given a schedule T = (Instances, T ) such that T |=
φSMTL, construct a truth assignment V T for the proposi-
tions in φSAT as follows: for each proposition p, V T (p) =
> if Ts(ap) = 0 and V T (p) = ⊥ if Ts(ap) 6= 0. The
rest of the proof is the same as above; using the fact that
T |= start(Ap) iff Ts(ap) = 0, it follows that V T (p) = >
iff start(Ap) ≡ >, and the identical boolean operators guar-
antee that if T |= φSMTL, then V T satisfies φSAT .

9.8 Correctness of BIQFSMTL-Verify
Claim: BIQFSMTL-Verify(T , φ) returns true iff T |= φ.

First we begin with a statement about the helper method.
Claim: For any time t ∈ D, 〈T , t〉 |= φ iff t ∈

trueTimes(T , φ).
Proof: By structural induction over BI-QF-SMTL formu-

lae.
• Base Case: φ = start(A).

Then trueTimes(T , φ) returns the set of points {Ts(a) |
a ∈ Instances(A)}. By definition, 〈T, t〉 |= start(A) iff
∃a ∈ Instances(A) such that t = T (a), so this is correct.

• Inductive Case: φ = ψ ∧ χ. 〈T , t〉 |= ψ ∧ χ⇔
〈T , t〉 |= ψ and 〈T , t〉 |= χ⇔
t ∈ trueTimes(T , ψ) and t ∈ trueTimes(T , χ) (by in-
duction hypothesis)⇔
t ∈ trueTimes(T , ψ) ∩ trueTimes(T , χ)⇔
t ∈ trueTimes(T , φ).

• Inductive Case: φ = ¬ψ.
〈T , t〉 |= ¬ψ ⇔
〈T , t〉 6|= ψ ⇔
t 6∈ trueTimes(T , ψ) (by induction hypothesis)⇔
t ∈ trueTimes(T , ψ)C ⇔
t ∈ trueTimes(T ,¬ψ)

• Inductive Case: φ = ψ UIχ. 〈T , t〉 |= ψ UIχ⇔
∃tj such that 〈T , tj〉 |= ψ, tj − t ∈ I , and for all
t ≤ tk ≤ tj (or tj ≤ tk ≤ t), 〈T , tk〉 |= χ⇔
∃tj ∈ trueTimes(T , ψ), tj − t ∈ I , and for all t ≤ tk ≤
tj (or tj ≤ tk ≤ t), tk ∈ trueTimes(T , ψ) (by induction
hypothesis)⇔
t ∈ trueTimes(T , ψ UIχ) (let the i in line 16 of the algo-
rithm be tj − t).
With this result we can then prove the full claim:
BIQFSMTL-Verify(T , φ) returns true⇔

0 ∈ trueTimes(T , φ)⇔
〈T , 0〉 |= φ (by the above lemma)⇔
T |= φ.

9.9 JSP ≤ BI-QF-SMTL
First we repeat the definition of a job shop scheduling prob-
lem (JSP):

A set of jobs must be completed on a set of ma-
chines, which can process at most one job at a time. A

job may require the use of multiple machines in a fixed
order: job J is associated with a sequence of machines
S(J, 1) . . . S(J, n) and processing times on these machines,
P (J, 1) . . . P (J, n). The solution to the problem is an as-
signment of times to jobs that respects the processing times
of each job, the sequence ordering of the machines for each
job, and the capacity of each machine.

Let JSP be an instance of a job shop scheduling problem,
and let ΦJSP be the set of BI-QF-SMTL formula resulting
from the construction given in Section 6.1.
Theorem 9.3. JSP is satisfiable iff ΦJSP is satisfiable.

Proof. Assume JSP is satisfiable. Then there exists an
assignment of times to the machine sequence of each
job that respects the processing times and order of ma-
chines. Construct a schedule T from this assignment by
setting T (aJ,i) = (sJ,i, eJ,i), where sJ,i is the start
time assigned to the ith machine in job J’s sequence,
and eJ,i is its end time. We claim T |= ΦJSP . First,
all the processing time formulae are satisfied: the for-
mula start(aJ,i) →[P (J,i),P (J,i)] end(aJ,i) is equivalent to
3(start(aJ,i) ∧ 3[P (J,i),P (J,i)]end(aJ,i)), which translates
via the semantics to Te(aJ,i)− Ts(aJ,i) ∈ [P (J, i), P (J, i)]
i.e. eJ,i − sJ,i = P (J, i), which is true by the assumption
that the original time assignment satisfies JSP. Therefore
T |= start(aJ,i)→[P (J,i),P (J,i)] end(aJ,i).

The formulae added for preserving the machine sequence
of each job are also satisfied similarly: ΦJSP includes for-
mulae end(aJ,k) →[0,∞) start(aJ,k+1), which are true iff
Ts(J, k + 1) − Te(J, k) ≥ 0; this is true because the so-
lution to JSP respects the machine sequence of each job,
i.e. sJ,k+1 − eJ,k ≥ 0. Therefore T |= end(aJ,k) →[0,∞)

start(aJ,k+1).
Finally, the formula

∧
a∈UM ,b∈UM ,a 6=b

2¬(Currently(a) ∧

Currently(b)) is true iff for every two jobs that require
the same machine in their sequence, 2¬(Currently(a) ∧
Currently(b)) is true, where a is the interval the first job uses
that machine and b is the interval the second job uses the
same machine. This subformula is true iff ∀t, it is not the
case that sa ≤ t ≤ ea and sb ≤ t ≤ eb (where sa, ea are the
start and end times of a and similarly for b). This is equiv-
alent to stating that the intervals [sa, ea] and [sb, eb] do not
overlap for every a and b on the same machine, which is true
because the solution to JSP respects this constraint. There-
fore T |=

∧
a∈UM ,b∈UM ,a 6=b

2¬(Currently(a)∧Currently(b)).

Since all the formulae in ΦJSP are satisfied by T , T |=
ΦJSP . The proof in the other direction is analogous; assum-
ing there is some schedule that satisfies ΦJSP , an assign-
ment of times to jobs in JSP is constructed in a straightfor-
ward manner and the same arguments for each formula in
ΦJSP are applied.

9.10 DTN ≤ BI-QF-SMTL
Given a DTN, we can model it via an exactly-once STL for-
mula φDTN as follows:
• The set of activities of the STL formula corresponds to

the set of events of the STN. They are bounded to occur



exactly once. The events in the STN are instantaneous,
so we include a formula 3(start(A) ∧ end(A)) for each
activity A to force the start and end of an activity to be
simultaneous. We use A in place of start(A) and end(A)
for the remainder of this section for convenience.

• Let the DTN be the set of disjunctive temporal constraints
{D1 . . . Dn}. For each constraint Di = Ci1 ∨ · · · ∨ Cik ,
where each Cij is a simple temporal constraint [l, u]XY ,
let χij = X →[l,u] Y for 1 ≤ j ≤ k.

• Let ψi = χi1 ∨ · · · ∨ χik .

• Let φDTN = ψ1 ∧ · · · ∧ ψn, conjoined with the
instantaneous-activity constraints mentioned above.

Given some assignment of times S to the events in D, de-
fine schedule TS = (InstancesS , TS) as follows: InstancesS
is any isomorphism (recall that the set of activities is identi-
cal to the set of events, and they are all =1-bounded) and for
any event e in D with corresponding activity Ae in φDTN ,
TS(Ae) = (S(e), S(e)) (the start and end are identical be-
cause we are modeling an instantaneous event).

Theorem 9.4. For any DTN D and time assignment S over
the events in D, S satisfies the constraints in D iff TS |=
φDTN .

Proof. ⇐: Let D = {D1 . . . Dn}, where Di is a single
disjunctive temporal constraint. Di is a disjunction of sim-
ple temporal constraints Ci1 ∨ · · · ∨ Cik . If TS |= φDTN ,
〈TS , 0〉 |= φDTN , and by the semantics of ∧, 〈TS , 0〉 |= ψi,
i.e. 〈TS , 0〉 |= χi1 ∨ · · · ∨ χik for every i.
By the semantics of ∨, 〈TS , 0〉 |= χij for some j, where
χij = X →[l,u] Y . X is an activity and technically
should either be start(X) or end(X), but since φDTN |=
3(start(X)∧end(X)), either predicate can be used without
changing the schedule. The same is true for Y .
By the semantics of →I , this means ∃tj , tk > 0 such that
〈TS , tj〉 |= X , 〈TS , tk〉 |= Y , and tk − tj ∈ [l, u].
〈TS , tj〉 |= X iff TS(X) = (tj , tj) and similarly 〈TS , tk〉 |=
Y iff TS(Y ) = (tk, tk). This implies that TS(Y )−TS(X) ∈
[l, u], which mean S(Y ) − S(X) ∈ [l, u], which is the def-
inition of Cij , so constraint Cij is satisfied. Consequently,
Di is satisfied as well. This is true for all 1 ≤ i ≤ n, so TS
satisfies the entire DTN.
⇒: Let S be a valid schedule for the DTN {D1, . . . , Dn}.

Consider Di = Ci1 ∨ · · · ∨ Cik . Since S satisfies Di, it
must satisfy one of Ci1 ∨ · · · ∨Cik ; call this Cij . Let Cij be
the STN constraint [l, u]XY ; then S must have l ≤ S(Y ) −
S(X) ≤ u. This also means that TS(Y ) − TS(X) ∈ [l, u],
so TS |= X →[l,u] Y i.e. TS |= χij . Therefore T |= ψi.
Since this is true for all 1 ≤ i ≤ n, TS |= ψ1 ∧ · · · ∧
ψn, and since the start and end of each activity is identical
in TS , TS |= 3(start(X) ∧ end(X)) for every activity X .
Therefore, TS |= φDTN .

9.11 CTP ≤ BI-QF-SMTL
We define a controllable conditional temporal problem
(CCTP) in the following way (identical to the definition in
(Yu and Williams 2013), but without preferences and relax-
ations):

• P , a set of controllable finite domain discrete variables
(we will additionally assume this domain is a subset of
N).

• V , the set of (instantaneous) events to be scheduled.
• E, the set of (simple or disjunctive) temporal constraints

between events in V .
• Lv : V 7→ Q, a labeling function that assigns a conjunc-

tion of variable assignments in P to an event in V .
• Lp : P 7→ Q, a labeling function that assigns a conjunc-

tion of variable assignments in P to a variable in P .
Given an assignment of values to the variables in P , we

will call a variable p ∈ P activated if all the variables in
Lp(p) are activated, and the assignment satisfies all the as-
signments in Lp(p). Similarly, an event v ∈ V is activated
if all the variables in Lv(v) are activated, and the variable
assignment satisfies all the assignments in Lv(v). Finally, a
constraint c ∈ E is activated if all the events involved in the
constraint are activated. A solution to the CCTP is an assign-
ment of values to the variables in P and times to the events
in V such that the times of all the activated events satisfy all
the activated temporal constraints.

In order to represent a CCTP in BI-QF-SMTL, we will
create one ≤ 1-bounded activity for each event v ∈ V ; call
it Av . Since these events are instantaneous, we will simply
use Av to represent both the start and end of an activity;
this can be formalized by including the formula 2start(a) ⊃
end(a) for each activity a. Additionally, we introduce a≤ 1-
bounded activities for each decision variable in p ∈ P ; call
it Ap (these will also be instantaneous). The time assigned
to this activity corresponds to the value assigned to it; if the
variable is not activated, it will not occur, hence the use of
the ≤ 1 bound.

We now describe a set of BI-QF-SMTL formulae ΦCCTP
to represent the CCTP.
• For each decision variable p ∈ P , let Lp(p) be the vari-

able assignment p1 = k1, p2 = k2, . . . , pn = kn. Add
the formula

∧
1≤i≤n

3[ki,ki]Api ≡ 3Ap to ΦCCTP . This

formula forces variable p to occur (i.e. it is activated) iff
all the variables in its label are activated and are assigned
the appropriate value.

• For each event v ∈ V , let Lv(v) be the variable assign-
ment p1 = k1, p2 = k2, . . . , pn = kn. Add the for-
mula

∧
1≤i≤n

3[ki,ki]Api ≡ 3Av to ΦCCTP . This formula

forces event v to occur (i.e. it is activated) iff all the vari-
ables in its label are activated and are assigned the appro-
priate value.

• For each temporal constraint c ∈ E, let cSMTL be the
SMTL representation of c as described in Section 9.10,
and let Events(c) be the set of all events mentioned in
constraint c. Add the formula (

∧
x∈Events(c)

3x) ⊃ cSMTL

to ΦCCTP , which states that if all the events in a con-
straint are activated, then that constraint must be satisfied.

Theorem 9.5. A CCTP has a solution iff ΦCCTP is satisfi-
able.



Proof. Assume the CCTP has a solution (Sp, Sv) where Sp
is the variable assignment for P and Sv is the time assign-
ment for V . We construct a schedule T = (Instances, T )
using the ≤ 1-bounded activities described above. For each
variable p ∈ P that is activated and is assigned value Sp(p),
let Instances(Ap) = {ap} and T (ap) = (Sp(p), Sp(p)).
For each variable in q ∈ P that is not activated, let
Instances(Ap) = ∅. For each event v ∈ V that is activated
and is assigned value Sv(v), let Instances(Av) = {av} and
T (av) = (Sv(v), Sv(v)). For each variable in w ∈ V that
is not activated, let Instances(Aw) = ∅. Now, we claim that
T |= ΦCCTP . Note that a variable or event x is activated
in the CCTP iff T |= 3Ax, by the formulae in the first two
bullet points. This is because by the semantics of SMTL,
T |= 3[ki,ki]Api iff Instances(Api) = api (i.e. the activity
occurs) and T (api) = (ki, ki), so an activity corresponding
to a decision variable occurs iff all the decision variables in
its label occur and are assigned the values that satisfy the la-
bel. The same is true for events. Finally, the formulae added
by the last bullet point are satisfied when all the constraints
are satisfied in which all the activities corresponding to the
events in the constraint occur (the correctness of converting
c to cSMTL was proved in Section 9.10). This is true iff ev-
ery constraint with all its events activated is satisfied by the
CCTP solution, which it is.

Assuming a schedule T = (Instances, T ) satisfies
ΦCCTP , one can construct a solution to the CCTP in the
same manner as above (an event or variable is activated if
the activity corresponding to it occurs, and its value is the
time assigned to it) and argue the correctness similarly.

Note that the SMTL formulation of CCTP can be easily
expanded to included labels that use ranges of variable as-
signments (e.g. 2 ≤ p ≤ 5) rather than specific values,
as well as continuous decision variables and durative ac-
tions.

9.12 Correctness of SMTL-to-STN
Let φ be an exactly-once {∧,3I}-formula, and STNφ be the
STN returned by SMTL-to-STN(φ); recall that this STN is
over the set of events E = {start(a) | a ∈ A} ∪ {end(a) |
a ∈ A} ∪ {ψ | ψis a subformula ofφ}. Let T be a vari-
able assignment overE that satisfies the constraints in STNφ,
and let T ′ assign times to activities such that T ′s(a) = t iff
T (start(a)) = t and T ′e(a) = t iff T (start(a)) = t for all
a ∈ A. Let T = (Instances, T ′), where Instances is any
isomorphism.
Theorem 9.6. For every exactly-once {∧,3I}-formula φ,
the STN returned by SMTL-to-STN(φ) is consistent iff φ is
satisfiable.

Proof. ⇒: Let STNφ be the STN returned by SMTL-to-
STN(φ); recall that this STN is over the set of events
E = {start(a) | a ∈ A} ∪ {end(a) | a ∈ A} ∪ {ψ |
ψis a subformula ofφ}. Assume STNφ is consistent; then
there exists a variable assignment T over E that satisfies
the constraints in STNφ. Let T = (Instances, T ′), where
Instances is any isomorphism and T ′ assigns times to activ-
ities such that T ′s(a) = t iff T (start(a)) = t and T ′e(a) = t
iff T (start(a)) = t for all a ∈ A. We claim that T |= φ.

In order to prove this, we begin with a claim about the
helper function.

Lemma 9.1. For every subformula α of φ, if time
assignment T satisfies the constraints returned by
AddExplicitConstraints(α, ∅), then there exists a sched-
ule T such that T |= α and for every subformula β of
α,〈T , T (β)〉 |= β.

(T is as defined above; T (β) is the time the auxiliary node
corresponding to β is scheduled.)

Proof: We will proceed by induction of the structure of
well-formed exactly-once {∧,3I}-formulae.

• Base Case: α = start(a).
AddExplicitConstraints(α, ∅) does not return any con-
straints in this case, so any time assignment T will sat-
isfy it; pick some value t and let T (start(a)) = t. Then
T ′s(a) = t, so 〈T , t〉 |= α.

• Base Case: α = end(a).
Analogous to the start(a) case.

• Inductive Case: α = ψ ∧ χ.
By the induction hypothesis, (1)〈T , T (ψ)〉 |= ψ and
(2)〈T , T (χ)〉 |= χ. AddExplicitConstraints(α, ∅) re-
turns constraints {[0, 0]α,ψ, [0, 0]α,χ} (in addition to the
explicit constraints induced by ψ and χ). Therefore,
T (α) = T (ψ) = T (χ). These can be substituted into
(1) and (2) to yield 〈T , T (α)〉 |= ψ and 〈T , T (α)〉 |= χ,
i.e. 〈T , T (α)〉 |= ψ ∧ χ.

• Inductive Case: α = 3Iψ.
By the induction hypothesis, 〈T , T (ψ)〉 |= ψ. AddEx-
plicitConstraints(α, ∅) returns constraint Iα,ψ (among
the rest of the constraints). This implies T (ψ)−T (α) ∈ I .
Therefore, by the definition of 3Iψ (ti from the definition
is T (α) and tj is T (ψ)) , 〈T , T (α)〉 |= φ.

With this claim proven, we can prove one direction of our
main statement. Let T be a solution to the constraints given
by SMTL-to-STN(φ). It is clear from the algorithm that
these constraints are the union of the explicit constraints re-
turned by AddExplicitConstraints(φ, ∅) and the initial con-
straint [0, 0]START,φ. From the above result, we know that
〈T , T (φ)〉 |= φ. T also satisfies the constraint [0, 0]START,φ,
so T (START) = T (φ). Therefore, 〈T , T (START)〉 |= φ i.e.
T |= φ.

Now we prove the other direction.
⇐: Assume φ is satisfiable; let T = (Instances, T ) be

a schedule witnessing this statement. Let TT be a time as-
signment for the STN constraints returned by SMTL-to-
STN(φ) constructed out of T by setting TT (start(a)) = t iff
Ts(a) = t and T (start(a)) = t iff T ′e(a) = t. For each sub-
formula α of φ, TT (α) = t for some t such that 〈T , t〉 |= α
(recall that the STN is defined over the start and end events
of φ as well as all its subformulae). Such a t is guaranteed
to exist because the ¬ is not permitted in φ and thus the se-
mantics of any exactly-once {∧,3I}-formula require all of
its subformulae to be true at some time.

Again, we will prove a statement about the helper func-
tion:



Lemma 9.2. If T |= φ, then time assignment TT satisfies
the constraints returned by AddExplicitConstraints(α, ∅).

Proof: by induction over exactly-once {∧,3I}-formulae.

• Base Case: α = start(a).
Since T |= φ, there is some t such that 〈T , t〉 |= start(a).
AddExplicitConstraints(α, ∅) does not return any con-
straints in this case, so TT will vacuously satisfy it.

• Base Case: α = end(a).
Analogous to the start(a) case.

• Inductive Case: α = ψ ∧ χ.
By the induction hypothesis, TT satisfies the constraints
returned by AddExplicitConstraints(ψ, ∅) and AddEx-
plicitConstraints(χ, ∅), so all that remains is to show that
TT also satisfies [0, 0]α,ψ and [0, 0]α,χ. By assumption,
there exists a time t such that 〈T , t〉 |= α, and since
α = ψ ∧ χ, 〈T , t〉 |= ψ and 〈T , t〉 |= χ as well. This
implies that TT (α) = TT (ψ) = TT (χ), and therefore
[0, 0]α,ψ and [0, 0]α,χ are satisfied by TT as well.

• Inductive Case: α = 3Iψ. By the induction hypothe-
sis, TT satisfies the constraints returned by AddExplicit-
Constraints(ψ, ∅), so all that remains is to show that TT
also satisfies constraint Iα,ψ . By assumption, there exists
a time t such that 〈T , t〉 |= α, and since α = 3Iψ, there
exists a time tj such that 〈T , tj〉 |= ψ and tj − t ∈ I .
Therefore, we can construct TT such that Tsch(α) = t
and TT (ψ) = tj , which allows us to conclude that
TT (ψ) − TT (α) ∈ I , which by definition means that TT
satisfies constraint Iα,ψ .

Now that the lemma has been proven, we can finish
our original claim. If T |= φ, then 〈T , T (START)〉 |=
φ. This means TT (START) = TT (φ), so the constraint
[0, 0]START,φ is satisfied. All the other constraints in the
STN are satisfied by the above lemma, so TT satisfies the
entire STN.
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