
Decision-Making with Non-Markovian Rewards:
Guiding search via automata-based reward shaping∗

Alberto Camacho†, Oscar Chen‡†, Scott Sanner?, Sheila A. McIlraith†
†Department of Computer Science, University of Toronto

?Department of Mechanical & Industrial Engineering, University of Toronto
‡Department of Engineering, University of Cambridge

†{acamacho,sheila}@cs.toronto.edu, ‡ozhc2@cam.ac.uk, ?ssanner@mie.utoronto.ca

Abstract

Markov Decision Processes (MDPs) are a popular framework
for decision making under uncertainty. In an MDP, the agent
attempts to maximize the expected cumulative reward under
the assumption that rewards and environment dynamics sat-
isfy the so-called Markovian property – namely, that they
depend on the agent’s current state and not on the past his-
tory. Our concern in this paper is with both the specification
and effective exploitation of Non-Markovian reward in the
context of Markov Decision Processes (NMRDPs). Previous
approaches for NMRDPs transfom the problem into a stan-
dard MDP that can be solved by standard search-based MDP
planners. While MDP planners based on heuristic-search and
UCT-based techniques now dominate the state of the art,
these planners struggle with non-Markovian rewards which
often provide little guidance to the relatively myopic looka-
head of these solvers. Here we explore the use of reward
shaping to automatically transform Non-Markovian rewards
– specified in Linear Temporal Logic – into automata with
reshaped rewards. Once in this form, automata-based reward
transformations can be exploited by off-the-shelf MDP plan-
ners to guide search, while crucially preserving policy opti-
mality guarantees. We augment benchmark domains from the
International Probabilistic Planning Competition with non-
Markovian rewards and evaluate our technique using state-
of-the-art MDP solvers. Our experiments demonstrate signif-
icantly improved performance, achieved by the exploitation
of our techniques. The work presented here reflects the use
of Linear Temporal Logic to specify non-Markovian reward,
but our approach will work for any formal language for which
there is a corresponding automata representation.

1 Introduction
In Markov Decision Processes agents typically receive pos-
itive or negative reward in response to their current state.
Nevertheless, agents may also realize reward in response to
more complex behaviour that is reflected over a sequence of
states. For example, an autonomous electric vehicle may ac-
quire reward for always recharging its battery after a trip.

∗This technical report extends work presented at SoCS17 and
RLDM17. The reference for this work is: Camacho, O. Chen, S.
Sanner, and S. A. McIlraith. Non-Markovian Rewards Expressed in
LTL: Guiding search via reward shaping. 2017. At SoCS.To appear.
†Work performed while the author was at University of Toronto.

Similarly, a personal robot may acquire reward by open-
ing the refrigerator, removing a prescribed item, and clos-
ing the refrigerator immediately thereafter. Such reward is
commonly referred to as non-Markovian reward because it
is predicated on the state history rather than solely on the
current state. Our concern in this paper is with both the
specification and effective exploitation of non-Markovian
reward in Markov Decision Processes (MDPs). Here we use
Linear Temporal Logic to specify non-Markovian rewards.
Notwithstanding, our approach is applicable to other formal
languages for which there exist corresponding automata rep-
resentations.

Current state-of-the-art MDP planners are based on
heuristic search and variants of UCT techniques (Kocsis
and Szepesvári 2006). UCT policies tend to make greedy
and myopic decisions. As such, these planners struggle with
non-Markovian rewards since there is little guidance for
their relatively myopic lookahead. The impact of this my-
opic guidance can be seen in state-of-the-art MDP planner
PROST (Keller and Eyerich 2012), a UCT-based planner
that generates high-quality solutions for moderately sized
MDPs, but whose performance suffers in large problems that
require significant lookahead.

In this paper we explore transformation of the reward
function through reward shaping (Ng, Harada, and Russell
1999) as a means of mitigating for the myopic lookahead
of UCT-based methods.To this end, we propose an approach
to solving non-Markovian Reward Decision Problems (NM-
RDPs) by transforming our reward-worthy non-Markovian
behaviour into corresponding deterministic finite state au-
tomata. The accepting conditions of these automata sig-
nify satisfaction of the reward-inducing behaviour in a man-
ner that is solvable with off-the-shelf MDP planners, cru-
cially preserving optimality guarantees. Moreover, we use
reward shaping with these automata-based reward encod-
ings in order to induce non-sparse, myopic-friendly rewards.
This helps guide the accrual of non-Markovian reward. We
evaluate our approach to solving NMRDPs via experimen-
tation with off-the-shelf state-of-the-art heuristic and UCT-
based MDP planners. Experiments with a set of Interna-
tional Probabilistic Planning Competition (IPPC) domains
augmented with non-Markovian rewards show significantly
improved performance using our automata representation to-
gether with reward shaping.

2 Background
2.1 Decision-Theoretic Planning
Markov Decision Processes: Markov Decision Processes
(MDPs) (Puterman 1994) are popular models for decision-
theoretic planning problems (Boutilier, Dean, and Hanks
1999). An MDP is a tuple M = 〈S,A, P,R, T, γ, s0〉,
where: S is a finite set of states; A is a finite set of actions;
Pa(s, s′) is the probability of reaching the state s′ ∈ S after
applying action a in state s ∈ S; R : S ×A× S → R is the
reward function (sometimes R : S ×A→ R); T ∈ N is the
horizon; γ ∈ (0, 1] is the discount factor; and s0 ∈ S is the
initial state of the MDP.

Solutions to an MDP are a sequence of step-dependent
policies Π = (π0, . . . , πT−1) that map states s ∈ S at step
k (0 ≤ k < T) to actions πk(s) ∈ A. The value of a
policy Π in state s at step k, VΠ,k(s), is the expected dis-
counted cumulative reward over the horizon T − k follow-
ing Π. Formally, VΠ,k(s) = EΠ{ΣT−1

i=k γ
iRi}, where Rt de-

notes the immediate reward obtained at step i if the agent
follows policy Π from s. An optimal policy sequence Π∗

for an MDP over horizon T with initial state s0 satisfies
Π∗ = argmaxΠ VΠ,0(s0).

MDPs are commonly described using factored representa-
tions of the states and dynamics. In particular, RDDL (San-
ner 2010) is a modelling language that allows for a lifted,
compact representation of factored MDPs. States are given
by assignments to all ground state fluents of the RDDL spec-
ification, and transition dynamics are described by condi-
tional probabilities that can be expressed as a stochastic form
of successor state axioms (Reiter 1991). Intuitively, the up-
dates on the truth of each ground fluent are described with
respect to what holds in the current state and the actions that
are performed. Modern algorithms for MDPs are typically
based on UCT-search techniques that sacrifice optimality
in favor of scalability. The current state-of-the-art solution
method for MDPs is PROST (Keller and Eyerich 2012), a
Monte-Carlo sampling algorithm based on UCT and heuris-
tic search for finite-horizon MDPs. Whereas PROST gener-
ates good-quality solutions to moderate-sized MDPs, its per-
formance suffers in large problems that require a significant
look-ahead. In such cases, the Monte-Carlo roll-outs cannot
sufficiently capture the structures inherent in the problem,
which leads to greedy/myopic search behavior.

Non-Markovian Reward Decision Processes: Bacchus,
Boutilier, and Grove (1996) generalized the MDP model
by allowing for reward functions to take into account the
trajectory of visited-states at time step t. Formally, a Non-
Markovian Reward Decision Process (NMRDP) is a tuple
M = 〈S,A, P,R, T, γ, s0〉, where S, A, P , T , γ , and s0

are as defined in MDPs. Unlike MDPs, the domain of the re-
ward function R is the set of finite sequences of states over
S, which we denote as S?. More precisely, the reward asso-
ciated to a finite state trajectory Γ = s0, s1, . . . , sn is R(Γ).
The optimality criteria of solutions remains the same as in
MDPs, with the exception of the history-dependent reward
function.

Thiébaux et al. (2006) is, to the best of our knowledge, the
most recent translation-based approach to NMRDPs. Their

approach translated NMRDPs into MDPs that can be solved
(possibly sub-optimally) using anytime state-based heuris-
tic search methods (Thiébaux, Kabanza, and Slaney 2002).
In addition to their translation, the authors contributed with
NMRDPP (Gretton et al. 2003), a framework for solving
NMRDPs that made it possible to have experimental re-
sults for the first time, and a comparison of their method
with previous translation-based approaches (Gretton, Price,
and Thiébaux 2003). Previous translation-based methods to
solving NMRDPs suffered from state-space explosion when
keeping track of the history trajectory (Bacchus, Boutilier,
and Grove 1996) or were only amenable to structural policy
construction methods (Bacchus, Boutilier, and Grove 1997).

Reward shaping is a common technique in MDPs which
aims to improve search by transforming the reward function.
Such reward transformations have the form R′(s, a, s′) =
R(s, a, s′)+F (s, a, s′), whereR is the original reward func-
tion and F is a shaping reward function. The intuition be-
hind reward shaping is that by increasing (resp. decreasing)
the reward in states that lead to other high-value states or
trajectories (resp. low-value states or trajectories), we can in-
crease the effectiveness of search and the quality of solutions
found, while reducing search memory and run times. Unfor-
tunately, reward shaping with an arbitrary F (s, a, s′) may
lead to an optimal policy that is suboptimal w.r.t. the orig-
inal unshaped reward. However, as noted by (Ng, Harada,
and Russell 1999), if F (s, a, s′) is chosen from a restricted
class of potential-based reward shaping functions defined as
F (s, a, s′) = γφ(s′) − φ(s) (for some real-valued function
φ), then this guarantees preservation of optimal and near-
optimal policies with respect to the original unshaped MDP.
Preservation of near-optimality is desirable since it provides
guarantees for suboptimal solutions obtained by state-of-
the-art heuristic search approximate methods.

Theorem 1 ((Ng, Harada, and Russell 1999)). Potential-
based MDP reward shaping preserve optimal, and near-
optimal solutions.

2.2 Linear Temporal Logic and Automata
Linear Temporal Logic (LTL) is a compelling language for
expressing temporal properties over (infinite) sequences of
states. First developed for program verification in (Pnueli
1977), the syntax of LTL includes the logical connectives (∧,
∨, ¬), unary modal operators next (), and binary modal
operator until (U). Other operators, such as eventually
(α ≡ > U α) and always (α ≡ ¬¬α) are defined
using these basic operators. The truth of an LTL formula ϕ
is evaluated over infinite sequences of states π = s1, s2,
We say that π satisfies ϕ (π |= ϕ, for short) iff π, 1 |= ϕ,
where for every natural number i ≥ 1:

• π, i |= p, for a propositional variable p, iff si |= p

• π, i |= ¬ψ iff it is not the case that π, i |= ψ

• π, i |= (ψ ∧ χ) iff π, i |= ψ and π, i |= χ

• π, i |= ϕ iff i < |π| and π, i+ 1 |= ϕ

• π, i |= (ϕ1 U ϕ2) iff for some j in {i, . . . , |π|}, it holds
that π, j |= ϕ2 and for all k ∈ {i, . . . , j − 1}, π, k |= ϕ1

LTL has been widely used by the planning community to
express temporally extended goals (e.g., (Baier and McIl-
raith 2006)), preferences (e.g., (Baier, Bacchus, and McIl-
raith 2009; Li et al. 2015)), and non-Markovian rewards
(e.g., (Bacchus and Kabanza 1998)). In the context of this
paper, LTL formulae are evaluated over sequences of propo-
sitional states that are execution traces of an NMRDP or
MDP. LTL allows compact description of temporal prop-
erties of state trajectories, such as “always have money”
((have(money))).

LTL Interpreted Over Finite Traces The use of LTL in-
terpreted over finite traces for planning goes back at least to
1996 with the work of Bacchus et al. (Bacchus, Boutilier,
and Grove 1996). In their work, they exploited Past LTL
(PLTL) — a version of LTL whose semantics interpret
the truth of a formula in a given state with respect of
its past history — using it to express non-Markovian re-
wards in NMRDPs (Bacchus, Boutilier, and Grove 1996;
1997). PLTL has also been used to describe preferred ex-
planations in the context of dynamical diagnosis (Sohrabi,
Baier, and McIlraith 2011).

Other works have exploited finite trace interpretations
with the more common subset of LTL that uses future modal-
ities. Exploitation of this variant of LTL again dates back at
least as far as Bacchus and Kabanza (1998) who used LTL
to describe domain control knowledge to control search in
automated plan generation. This resulted in a planning tool,
TLPlan, later extended to exploit heuristic search (Baier and
McIlraith 2006) and preferences (Baier, Bacchus, and McIl-
raith 2007). Thiébaux et al. (2006) introduced $FLTL— a
variant of LTL augmented with a predicate $ to indicate re-
ceipt of reward — and an approach to NMRDPs based on
progression of $FLTL formulae.

In this work, we use the variant of future LTL inter-
preted over finite traces formalized by De Giacomo and
Vardi (2013), and named LTLf . LTLf is used in different ap-
plications, including fair and unfair plan synthesis (e.g. (Ca-
macho et al. 2017; De Giacomo and Vardi 2016)), business
process modeling (e.g. (De Giacomo and Vardi 2013)), and
diagnosis (e.g. Bienvenu, Fritz, and McIlraith (2006)). LTLf
extends the synthax of LTL with the modality final ≡ ¬>
and operator weak next (), where α ≡ α ∨ final in-
dicates that either α holds in the next state, or there is no
next state. The main difference between LTLf and PLTL
is that the former semantics evaluate a finite state trajec-
tory Γ = s0, s1, . . . , sm by looking into the future from s0,
whereas the semantics of the latter evaluate Γ by looking
into the past from sm.

LTLf and Deterministic Finite-State Automata A De-
terministic Finite-State Automaton (DFA) is a tuple
〈Q,Σ, δ, q0, QFin〉, where Q is a finite set of states, Σ is the
alphabet of the automaton, δ : Q × Σ → Q is a transition
function, q0 ∈ Q is the initial state, and QFin ⊆ Q is a set
of accepting states. The transition dynamics of a DFA is de-
fined over finite words, or sequences w = s0, s1, . . . , sn of
elements in Σ. In the scope of this paper, Σ are the states of
an MDP. At every stage i, the automaton makes a determin-
istic transition from state qi to state qi+1 = δ(qi, si). The

q0start

q1

q2

¬ingested(lunch) ∧
¬ingested(medication)

ingested(lunch) ∧
¬ingested(medication)

ingested(lunch) ∧
ingested(medication)

1

ingested(medication)

¬ingested(medication)

Figure 1: DFA corresponding to LTLf
formula (ingested(medication)) ∧
(¬ingested(medication) U ingested(lunch)).

guard of a transition from q to q′, denoted by guard(q →
q′), is a propositional formula so that q′ = δ(q, s) iff
s |= guard(q → q′). We say that A accepts w if qn ∈ QFin.
We say that M accepts w if qn+1 ∈ QFin.

Given LTLf formula ϕ, one can construct a correspond-
ing DFA Aϕ that accepts a word π iff it satisfies ϕ (e.g. (De
Giacomo and Vardi 2015)). Other versions of LTL can be
transformed into DFA. In particular, Sohrabi, Baier, and
McIlraith (2011) showed a method to transform ϕ into an
NBA (that can also be determinized), and all basic tem-
poral operators in PDDL3 have automaton representations
(cf. (Gerevini et al. 2009)).

Running example: Figure 1 depicts a DFA
corresponding to LTLf formula ϕ := ϕ1 ∧ ϕ2,
where ϕ1 := ingested(medication) indicates
that the medication is taken at some point, and
ϕ2 := (¬ingested(medication) U ingested(lunch)
indicates that the medication should not be taken before
having had lunch. Automaton states are represented by
nodes, and transitions are represented by arcs. Transition
labels describe the guards. Finally, accepting states are de-
picted by double-ringed nodes. The word π = {s0, s1, s2}
with s1 |= {¬ingested(lunch) ∧ ¬ingested(medication)},
s2 |= {ingested(lunch) ∧ ¬ingested(medication)}, and
s3 |= {ingested(lunch) ∧ ingested(medication)} induces
one and only one run in the automaton, {q0, q0, q1, q2}.
As this run finishes in an accepting state, it follows that π
satisfies the LTLf formula.

3 Problem: NMRDPs with
temporally-extended reward formulae

As noted in Section 1, state-of-the-art MDP planners based
on heuristic search and UCT struggle with non-Markovian
rewards. In the rest of this paper we propose a novel method
to effectively address this shortcoming. Following Bacchus,
Boutilier, and Grove (1996), we specify rewards in an NM-
RDP as a temporally extended reward function (TERF). This
TERF is realized by a set of reward behaviours, ϕi, specified
here in LTLf , together with a set of mappings to rewards ri,
denoted ϕi : ri. Reward ri is realized upon satisfaction of
ϕi. Formally, a TERF R is defined by R(Γ) = Σmi=1Ri(Γ),
where Ri(Γ) = ri if Γ |= ϕi, and Ri(Γ) = 0 otherwise.
For simplicity, we sometimes abuse notation and confuse the
TERF R with the set {R1, . . . , Rm}.
Definition 1. (adapted from (Bacchus, Boutilier, and Grove
1996)) A TERF for an NMRDP is described by a finite set

of mappings ϕi : ri, where here ϕi are LTLf formulae, and
ri ∈ R. A TERF R is evaluated over a finite state trajectory
Γ by R(Γ) = Σmi=1Ri(Γ), where Ri(Γ) = ri if Γ |= ϕi, and
Ri(Γ) = 0 otherwise.

Previous approaches to NMRDPs used PLTL (Bacchus,
Boutilier, and Grove 1996; 1997) and $FLTL (Thiébaux et
al. 2006) to describe reward formulae. Throghout the paper,
we express reward formulae in LTLf , although our approach
is extendable to any language that can be compiled to DFA –
in particular, PLTL and the temporally extended goals com-
pliant with the PDDL3 standard (Gerevini et al. 2009).

Running Example (cont.): Returning to our previ-
ous example, we can define a TERF with the map-
ping ϕ : 100, that gives a positive reward of 100
to agent behavior ϕ := (ingest(medication)) ∧
(¬ingest(medication) U ingest(lunch)). Note that ϕ :
100 rewards all sequences of states for which there is
a prefix that satisfies ϕ. To only reward the first oc-
currence of the behaviour within a sequence of states,
one could modify the above LTLf formula as follows:
(¬ingest(medication) U (ingest(medication) ∧ ¬>))∧
(¬ingest(medication) U ingest(lunch)).

4 Approach: Automata-based compilations
from NMRDPs to MDPs

To solve an NMRDPM with TERFR, we compile the prob-
lem into an MDP M ′ with a Markovian reward R′ that can
be solved with a conventional off-the-shelf MDP solver. Our
approach is realized in three steps: (i) for each ϕ : r in
R, ϕ is transformed into a corresponding DFA Aϕ; (ii) an
MDP M ′ is constructed from M by augmenting state vari-
ables and transitions to reflect the state and progress of each
Aϕ towards its accepting condition. The Markovian reward
function R′ is associated with being in the accepting con-
ditions of each Aϕ, denoting satisfaction of reward-worthy
behaviour ϕ; and (iii) M ′ is solved using an off-the-shelf
MDP planner, thus obtaining a solution that can be converted
straightforward into a solution toM . For the purposes of this
paper, we limit our explication to finite-horizon NMRDPs.
Notwithstanding, our approach can be extended to infinite-
horizon NMRDPs.

4.1 Compiling TERFs Away
Elaborating on step (ii), M ′ augments M with extra fluents
and actions that integrate the dynamics of the DFAs within
the MDP, making it possible for the reward function to be
Markovian. The dynamics of M ′ expand each time step into
three modes: world, sync, and reward. In world mode, an
action from the NMRDP is applied. In sync mode, the au-
tomata states are synchronized according to the observed
state. Intuitively, the automata states simulate the runs of the
automata given the observed world state trajectories. The
assignment of reward is delayed to reward mode and is per-
formed upon satisfaction of each of the LTLf reward formu-
lae in the TERF. This is detected when an automaton reaches
an accepting state. Table 1 contains technical details of the
compilation. We provide a detailed description of the dy-
namics of the compilation below.

M ′ has the same fluents as M , plus the auxiliary fluents
described below. The fluents world, sync, reward control
the dynamics of the problem, forcing an alternation between
three different modes: world mode, sync mode, and reward
mode. For each automatonAϕ, and for each automaton state
q ∈ Aϕ, M ′ has fluents fq . Intuitively, each fluent fq simu-
lates an automaton state q. The set of actions in M ′ contains
the set of actions A in M . For simplicity, and without loss
of generality, we assume A contains an action no-op – de-
noting that the agent performs no explicit action – and an
action oend that the agent is required to execute at the end of
the search horizon.

In world mode, execution of actions from A emulate the
stochastic transition model of the actions in the original NM-
RDP. After an action is applied in world mode, the dynamics
of the MDP switches to sync mode. In sync mode, the truth
of the automaton state fluents fq are updated to simulate the
state transition of each automaton Aφ with respect to the
current state of the MDP. After an action is applied in sync
mode, the dynamics of the MDP switches to reward mode.
In reward mode, the agent collects reward upon satisfaction
of each of the LTLf reward formulae in the simulated NM-
RDP. More precisely, for each mapping ϕ : r in the TERF,
a reward r is given to the agent in state s when fq holds in
s for some accepting automaton state q ∈ Aϕ. The result-
ing reward is Markovian, and is formalized by R′ in Table
1. Without loss of generality, we assume that the agent is
forced to perform oend in the last reward mode (that is, in
the last turn) before reaching the search horizon, T ′.

The horizon in M ′, T ′, is three times the horizon T in
the original NMRDP M . This is because each step in M
has three counterparts in M ′, corresponding to the world,
sync, and reward modes. Likewise, the discount factor of
M ′ is γ′ = γ1/3. Finally, the initial state s′0 of M ′ has all
the fluents in the initial state s0 of M , plus fluents fq for the
initial automaton state q of each automaton Aϕ, and fluent
sync that forces the agent to start in sync mode.

The compilation described above transforms a finite-
horizon NMRDP M into a finite-horizon MDP M ′ that pre-
serves optimal, and near-optimal solutions. A key aspect
to understand this property is to realize that the stochas-
tic transition model in M ′ in world mode simulates the
transitions in M , whereas automata transitions simulated in
sync mode are deterministic. As such, there exists a corre-
spondence between finite state-action trajectories in M and
M ′. For a state-action trajectory Γ = s0, a1, s1, a2, . . . , sn
in M one can construct a state-action trajectory in M ′ by
interleaving synchronization and reward state-actions be-
tween each ai. Conversely, for each state-action trajectory
Γ′ in M ′ one can construct Γ by removing synchroniza-
tion and reward state-actions from Γ′. The association de-
scribed above defines a correspondence between policies Π
in M and policies Π′ in M ′. It is straightforward to see that
VΠ,0(s0) = VΠ′,0(s′0) − R(s0). In consequence, the com-
pilation from NMRDP into MDPs preserves optimal, and
near-optimal solutions.
Theorem 2. The automata-based compilation from NM-
RDPs into MDPs preserves optimal and near-optimal so-
lutions.

Original NMRDP Compiled MDP

Initial state s0 s′0 = s0 ∪
⋃

(ϕ:r)∈R{fq | q initial state of Aϕ} ∪ {sync}

Successor state axioms p′ ↔ (φ+
p) ∨ (p ∧ ¬φ−p) p′ ↔ (φ+

p ∧world) ∨ (p ∧ (¬world ∨ (¬φ−p ∧world))
world′ ↔ reward
sync′ ↔ world
reward′ ↔ sync
fq ↔ (sync ∧ φ+

q) ∨ (fq ∧ ¬sync)
Reward function R = {(ϕi : ri)}i=1..m ∀s such that s |= reward,

R′(s) =
∑

(ϕ:r)∈R
∑

q∈Aϕ, q accepting ri1fq (s)

Discound factor γ γ′ = γ1/3

Horizon T T ′ = 3T

Table 1: Dynamics of the compiled MDP in terms of the dynamics of the original NMRDP. Here, p ∈ F are propositional
variables and q ∈ Aϕ are automaton states for each pair (ϕ : r) in R. The successor state axioms for a predicate fluent p are
described in the form p′ ↔ φ, where φ are the conditions that make p true at time t + 1 as a function of the values of fluents
at time t. The function φ+

p (resp. φ−p) is a propositional formula that describes the conditions under which p is made true (resp.
false). Likewise, φ+

q =
∨
q′∈Aϕ

guard(q′ → q) ∧ Fq′ describes the conditions under which fq is made true. In the definition of
R′, 1fq (s) is the indicator function that evaluates to 1 when fq holds in s, and 0 otherwise.

Proof sketch. Follows from the observation above, establish-
ing the correspondence between state-action sequences in
M and M ′. �

Running Example (cont.): Returning to our as-
sisting robot example with TERF defined by ϕ : 100,
suppose the agent performs actions ingest(lunch)
followed by ingest(medication), which induce the
state trajectory (only relevant subset of state shown):
π = {¬ingested(lunch), ¬ingested(medication);
ingested(lunch),¬ingested(medication); ingested(lunch),
ingested(medication)}. The dynamics in the compiled
MDP start by processing the initial state, and self-
transitioning from the automaton state q0 to itself. In
reward mode, no reward is given. Then, in world mode the
action ingest(lunch) is performed, leading to a state s1 in
which {¬ingested(medication), ingested(lunch)} holds.
The following sync mode synchronizes the automaton
state to q1, and so on until reaching world state s2, where
{ingested(medication), ingested(lunch)} holds. At this
point, the automaton synchronizes to state q3, that is
accepting. In reward mode, a reward of 100 is given.

The following results establish the size of the compiled
MDP is polynomially bounded in the size of the DFAs from
the TERF. The compilation of PLTL and LTLf formulae into
automata is worst-case double-exponential in the size of the
formulae.

Theorem 3. The size of the compiled MDP is polynomi-
ally larger in the size of the DFAs, and worst-case double-
exponential in the size of the LTLf formulae.

Proof sketch. The set of ground fluents in the compiled MDP
is augmented with automaton state fluents fq and f cq , one for
each automaton state. It is well-known that the size of a DFA
is worst-case double-exponential in the size of the PLTL and
LTLf formula. Other fluents and parametrized actions in the
compiled MDP are bounded in size. �

5 Improving Performance via Reward
Shaping

The above approach to solving NMRDPs preserves optimal-
ity (cf. Theorem 2). Here we augment our approach with
reward shaping in an effort to mitigate for the sparse reward
inherent in our non-Markovian rewards, that aggravates the
weak guidance and lookahead of state-of-the-art UCT-based
MDP planners.

In particular, state-of-the-art MDP planner
PROST (Keller and Eyerich 2012) suffers from this
myopic issue. PROST expands a search tree by favoring
the branches that achieve the most immediate reward.
An estimation of the expected reward is computed in
a leaf node by either (i) throwing a Monte-Carlo (MC)
roll-out, (ii) running iterative deepening search (IDS) with
a bounded horizon, or (iii) running depth-first search (DFS)
with a bounded horizon. When the rewards are sparse,
neither of the methods below provide good guidance. MC
roll-outs make random moves that can hardly collect any
non-Markovian reward. IDS does not collect reward most of
the time, and it does not scale with long look ahead horizon.
Finally, DFS is blindly guided most of the time.

5.1 Automata-based Potentials
Reward shaping can be applied to the compiled MDP, as
with regular MDPs, with the aim to provide better guid-
ance to MDP solvers. The particular structure of the com-
piled MDPs, where automata fluents capture relevant his-
torical information, suggest that we can exploit automata to
design a class of shaping rewards that provide effective guid-
ance by exploiting automata. In this section, we introduce a
class of automata-based shaping reward functions that is, by
construction, potential based. In Section 6, we evaluate pre-
liminary tests to test the guidance of this class of potentials.

We augment the construction of the MDP with additional
fluents, f cq , one for each automaton fluent fq . These fluents

keep track of the previous configuration of the automata, and
its value is updated in sync mode according to the successor
state exioms:

f cq
′ ↔ (sync ∧ fq) ∨ (f cq ∧ ¬sync)

Formally, our shaping reward function is defined over
states s in reward mode (i.e. s |= reward) as follows:

F (s, a) = γ
∑
fq

φ(fq)−
∑
fc
q

φ(f cq)

for all actions a ∈ A \ {oend}, and fq and f cq that hold in s.
Unlike Ng, Harada, and Russell (1999)’s method, our shap-
ing function F does not depend on two consecutive states
in the MDP, but on the two states visited in the last two
world modes. Intuitively, F emulates a potential-based re-
ward transformation of the form F (s, a, s′) = γφ(s′)−φ(s)
(i.e., as defined by Ng, Harada, and Russell) in the original
NMRDP. The important thing to notice here is that, in the
compiled MDP, the application of F is delayed to the re-
ward mode. This is because many off-the-shelf MDP plan-
ners employ reward functions of the form R(s, a), rather
than the more general R(s, a, s′).

The potential function φ(s) decomposes into a sum of
potential functions evaluated on the automaton states that
hold true in state s. More precisely, the potential function
has the form φ(s) =

∑
fq∈s φ(fq). Automaton state copies

f cq make it possible to evaluate the potential in the previ-
ous world mode state. In order to preserve optimality (and
near-optimality) of solutions to finite-horizon NMRDPs, we
need to substract the shaping rewards at the end of each fi-
nite execution trace. This is performed upon application of
oend action in reward mode, by extending the domain of F
to states s |= reward as follows:

F (s, oend) = −
∑
fc
q

φ(f cq)

for all f cq that hold in s.
Theorem 4. Automata-based reward shaping preserves op-
timal, and near-optimal solutions.

Running Example (cont.): In the assistive robot exam-
ple, we may want to provide some guidance by assigning
potentials φ(q0) = 0, φ(q1) = 50, and φ(q2) = 100. Intu-
itively, these potentials assign positive reward for transition-
ing from q0 to q1, with the rationale that state trajectories
that yield such transitions make progress towards achieve-
ment of an accepting state.

In what follows, we introduce different criteria to engineer
potential functions. It is not our purpose to give an exhaus-
tive list, nor to study theoretical guarantees. Rather, our pur-
pose is to inspire the reader about the number of ways that
reward shaping can be used to improve guidance in NM-
RDPs. In Section 6, we prove empirically that even naive
potential functions can successfully guide search and result
in significant improvements in terms of the quality of the
solutions found by approximate methods.

Liveness Preservation: It is possible to incentive explo-
ration of those states for which satisfaction of the reward

formula ϕ is, in principle, still reachable. This is the case
of non-Markovian liveness behaviors. In this case, we can
assign φ(fq) = 0 to non-accepting sink automaton states
q ∈ Aϕ, and φ(fq) = c otherwise, where c ∈ R+ is a con-
stant

Heuristic Guidance: In order to incentive the search pro-
cess towards satisfication of the TERFs — and, therefore,
collect reward —, we can distribute the potentials φ(fq) in a
way that they increase monotonically w.r.t. the inverse of a
distance measure between q and the set of accepting states
inAϕ. For example, the potentials can be distributed propor-
tionally according to the graph distance in the directed graph
representation of Aϕ.

Attenuation Factor: Similar to the discount factor in
infinite-horizon MDPS, an attenuation factor can be applied
to the potentials in order to incentive early achievement
of rewards. Unlike the discount factor, the attenuation fac-
tor does not need to be uniform over all behaviours in the
TERF. For example, we can attenuate potentials by a fac-
tor T − k/T , where k is the steps counter in the current
state and T is the horizon limit. Whereas the potentials with
this technique are not constant over time, it has been shown
that optimality, and near-optimality guarantees are equally
preserved in dynamic reward shaping (Devlin and Kudenko
2012).

Given the linearity of the shaping function, linear combi-
nations of the methods presented above preserve optimality
guarantees. Similarly, the technique to attenuate the poten-
tials is orthogonal to the liveness preservation and heuristic
guidance techniques presented above.

6 Empirical Evaluation
We conducted experiments with the purpose of evaluating
the impact of different reward shaping techniques in the
quality of the solutions obtained to MDP compilations of
NMRDPs. We conducted our experiments in a selection
of MDP problems described in RDDL from previous In-
ternational Probabilistic Planning Competitions (IPPCs), in
which we replaced the Markovian rewards by TERFs. We
used different configurations of PROST as the MDP plan-
ner. Namely, the current state-of-the-art UCT?, the configu-
rations that won the IPPC 2011 and IPPC 2014, and a con-
figuration of PROST that behaves like the basic UCT algo-
rithm by Kocsis and Szepesvári (2006). For UCT?, we test
two different heuristic evaluation functions based in iterative
deepening search (IDS), and depth-first search (DFS).

6.1 Guiding Towards Long-term TERFs
In our first set of experiments, we evaluated the impact of re-
ward shaping to guide search for long-term non-Markovian
rewards. We conducted our tests in a modification of the
academic-advising domain. In these problems, the agent can
take courses. Courses have prerequisites — e.g. second-year
courses have as prerequisite all first-year courses, and so on
—, that affect the probability to pass a course. The agent
is given a (non-Markovian) reward upon completion of all
courses, if these were taken in an order that satisfies all
prerequisites. In LTLf , the reward formula is the conjunc-

MDP Planner Compilation p
3

3
p

4
2

p
4

3
p

4
4

PROST UCT?(IDS) MDP 30 30 0 0
PROST UCT?(DFS) MDP 30 30 0 0
PROST IPPC-2014 MDP 2 30 0 0
PROST IPPC-2011 MDP 27 30 2 0
UCT MDP 0 0 0 0

PROST UCT?(IDS) MDP + RS 30 30 30 30
PROST UCT?(DFS) MDP + RS 30 30 30 30
PROST IPPC-2014 MDP + RS 30 30 30 30
PROST IPPC-2011 MDP + RS 30 30 30 30
UCT (3 steps look ahead) MDP + RS 29 30 29 30

Table 2: Number of runs (over 30 trials) that achieved the
non-Markovian reward in the academic-advising problems.
Different MDP planners were used to solve the compiled
MDP problem, with and without reward shaping (RS).

tion of two families of subfomulae. The first family asks the
agent to pass all courses, and is captured by the formulae
(passed(c)), one for each course c. The second family
asks the agent to take courses in an order that satisfies the
prerequisites, that is, if c′ is a prerequisite of c, then c should
not be taken until c′ is passed. This is captured by the for-
mulae(

∧
c′((taken(c) ∧ prereq(c′, c))→ passed(c′)).

Table 2 shows the summary of the results of our tests on
different academic-advising problems. Each problem p Y C
has the TERF described above, where Y is the number of
academic years, and C is the number of courses per aca-
demic year. We compiled each NMRDP problem into an
MDP, with and without reward shaping. Finally, we evalu-
ated the quality of the solutions to our compilations using
different configurations of PROST.

As predicted, state-of-the-art anytime planners are short-
sighted and struggle to find good long-term strategies in
MDP compilations to NMRDPs. To improve the look ahead,
we modified the MDP compilation to have only one mode,
world mode, in which the automata is also progressed. The
results of these tuned experiments are reported in Table
2 as MDP compilation. We distinguish a very abrupt de-
crease in performance in larger problem instances. This is
because the look ahead performed by PROST in presence
of sparse non-Markovian rewards is highly uninformed (i.e.
nearly blind search), and for sufficiently larger instances the
look ahead cannot provide any information. If this occurs,
PROST makes early random moves that prevent the agent
from collecting any long-term reward. On the other hand,
when the MDP compilations are complemented with reward
shaping, the search performance improves significantly. In
our tests with reward shaping, the potentials are distributed
uniformly with the number of courses passed — i.e. in-
versely proportional to the distance to the accepting automa-
ton states as described in Section 5.1 —, and go down to zero
when the prerequisites are violated. State-of-the-art config-
urations of PROST achieved the TERF in all trials. Remark-
ably, reward shaping boosted the performance of the basic
UCT algorithm from zero to achieving the non-Markovian
reward in almost all trials.

MDP Planner No RS RS

PROST UCT?(IDS) mem 617
PROST UCT?(DFS) mem 627
PROST IPPC-2014 mem 620
PROST IPPC-2011 mem 637
UCT (3 steps look ahead) 423 527
no actions taken 263 263

Table 3: Average reward achieved (over 30 trials) in a wild-
fire problem with desired behaviours, for each cell c: never
have fire in c for more than two turns in a row. Different
MDP planners were used to solve the compiled MDP prob-
lem, with and without reward shaping (RS).

6.2 Guiding Towards Tradeoff Liveness
In our second set of experiments, we evaluated the practi-
cality of our approach in problems where the stochasticity
of the domain may make it infeasible to accomplish all the
desired behaviors. We used a modification of the wildfire do-
main. In the wildfire domain, some places in a grid field are
originally burning. Fire can propagate to neighboring cells
with certain probability. The agent can attempt to extinguish
such fire, one cell at a time. We consider a wildfire problem
in a 3 × 3 grid with desired behaviours, one for each cell c:
never have fire in c for more than two turns in a row. We
assign each one reward r = 100 if, at the end of an execu-
tion trace of length 10, the behaviour is satisfied. We exper-
imented with different configurations of PROST, UCT, and
a naive planner that takes no action. The results are summa-
rized in Table 3. In these experiments, we notice that reward
shaping is beneficial in the quality of the plans. Moreover,
PROST easily runs out of memory (512MB) if no reward
shaping is applied. This is because the sparsity of rewards
forces it to expand a large search tree. Limiting the mem-
ory usage in PROST resulted in policies of lower quality
than those obtained with reward shaping. On the other hand,
naive reward shaping (φ(Fq) = r in accepting states, zero
otherwise) successfully guides search, with a significant re-
duction in memory, and demonstrating improved scalability.

7 Summary and Discussion
NMRDPs provide a powerful framework for modelling
decision-making problems with behaviour-based rewards. In
this paper we use LTLf to specify rich non-Markovian re-
wards and present a technique for solving NMRDPs through
a compilation to MDPs that can be solved with off-the-
shelf MDP planners. Our approach integrates automata rep-
resentations of the LTLf formulae into the compiled MDP.
We leverage reward shaping to help guide search, mitigat-
ing for the sparseness of non-Markovian rewards and the
poor lookahead of some state-of-the-art UCT-based meth-
ods. Our experiments demonstrate that automata-based re-
ward shaping is an effective method to enhance search and
obtain solutions of superior quality. While non-Markovian
rewards were specified here in LTLf , the proposed approach
will work for rewards specified in any formal language
for which there is a corresponding automata representation
(e.g., (Baier et al. 2008)).

References
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Bacchus, F.; Boutilier, C.; and Grove, A. J. 1996. Reward-
ing behaviors. In Proc. of the 13th National Conference on
Artificial Intelligence (AAAI), 1160–1167.
Bacchus, F.; Boutilier, C.; and Grove, A. J. 1997. Structured
solution methods for non-markovian decision processes. In
Proc. of the 14th National Conference on Artificial Intelli-
gence (AAAI), 112–117.
Baier, J. A., and McIlraith, S. A. 2006. Planning with tem-
porally extended goals using heuristic search. In Proc. of the
16th Intl. Conference on Automated Planning and Schedul-
ing (ICAPS), 342–345.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2007. A
heuristic search approach to planning with temporally ex-
tended preferences. In Proc. of the 20th Intl. Joint Confer-
ence on Artificial Intelligence (IJCAI), 1808–1815.
Baier, J. A.; Bacchus, F.; and McIlraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence 173(5-6):593–
618.
Baier, J. A.; Fritz, C.; Bienvenu, M.; and McIlraith, S. 2008.
Beyond classical planning: Procedural control knowledge
and preferences in state-of-the-art planners. In Proceed-
ings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI), Nectar Track, 1509–1512.
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Planning
with qualitative temporal preferences. In Proc. of the 10th
Intl. Conference on Knowledge Representation and Reason-
ing (KR), 134–144.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research
(JAIR) 11:1–94.
Camacho, A.; Triantafillou, E.; Muise, C. J.; Baier, J. A.; and
McIlraith, S. A. 2017. Non-deterministic planning with tem-
porally extended goals: LTL over finite and infinite traces. In
Proc. of the 31st AAAI Conference on Artificial Intelligence
(AAAI), 3716–3724.
De Giacomo, G., and Vardi, M. Y. 2013. Linear tempo-
ral logic and linear dynamic logic on finite traces. In Proc.
of the 23rd Intl. Joint Conference on Artificial Intelligence
(IJCAI), 854–860.
De Giacomo, G., and Vardi, M. Y. 2015. Synthesis for LTL
and LDL on finite traces. In Proc. of the 24th Intl. Joint
Conference on Artificial Intelligence (IJCAI), 1558–1564.
De Giacomo, G., and Vardi, M. Y. 2016. LTLf and
LDLf synthesis under partial observability. In Proc. of the
25th Intl. Joint Conference on Artificial Intelligence (IJCAI),
1044–1050.
Devlin, S., and Kudenko, D. 2012. Dynamic potential-based
reward shaping. In Proc. of the 11th Intl. Joint Conference
on Autonomous Agents and Multi Agent Systems (AAMAS),
433–440.

Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth
international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Gretton, C.; Price, D.; Thiébaux, S.; et al. 2003. NMRDPP: a
system for decision-theoretic planning with non-Markovian
rewards. In Proceedings of the Workshop on Planning under
Uncertainty and Incomplete Information at ICAPS, 48–56.
Gretton, C.; Price, D.; and Thiébaux, S. 2003. Implemen-
tation and comparison of solution methods for decision pro-
cesses with non-Markovian rewards. In Proc. of the 19th
Annual Conference on Uncertainty in Artificial Intelligence
(UAI), 289–296.
Keller, T., and Eyerich, P. 2012. PROST: probabilistic plan-
ning based on UCT. In Proc. of the 22nd Intl. Conference
on Automated Planning and Scheduling (ICAPS).
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In Proc. of the 17th European Conference
on Machine Learning (ECML), 282–293.
Li, M.; She, Z.; Turrini, A.; and Zhang, L. 2015. Preference
planning for markov decision processes. In Proc. of the 29th
AAAI Conference on Artificial Intelligence (AAAI), 3313–
3319.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations : Theory and application
to reward shaping. In Proc. of the 16th Intl. Conference on
Machine Learning (ICML), volume 3, 278–287.
Pnueli, A. 1977. The temporal logic of programs. In Proc.
of the 18th IEEE Symposium on Foundations of Computer
Science (FOCS), 46–57.
Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete Stochastic Dynamic Programming. New York, NY,
USA: John Wiley & Sons, Inc.
Reiter, R. 1991. The Frame Problem in the Situation Cal-
culus: A Simple Solution (sometimes) and a completeness
result for goal regression. Artificial Intelligence and Math-
ematical Theory of Computation: Papers in Honor of John
McCarthy. San Diego, CA: Academic Press. 359–380.
Sanner, S. 2010. Relational dynamic influence di-
agram language (RDDL): Language description.
http://users.cecs.anu.edu.au/˜ssanner/IPPC 2011/RDDL.pdf.
Sohrabi, S.; Baier, J. A.; and McIlraith, S. A. 2011. Pre-
ferred explanations: Theory and generation via planning. In
Proc. of the 25th AAAI Conference on Artificial Intelligence
(AAAI), 261–267.
Thiébaux, S.; Gretton, C.; Slaney, J. K.; Price, D.; Kabanza,
F.; et al. 2006. Decision-theoretic planning with non-
markovian rewards. Journal of Artificial Intelligence Re-
search (JAIR) 25:17–74.
Thiébaux, S.; Kabanza, F.; and Slaney, J. K. 2002. Any-
time state-based solution methods for decision processes
with non-Markovian rewards. In Proc. of the 18th Annual
Conference on Uncertainty in Artificial Intelligence (UAI),
501–510.

