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Abstract—Frameworks for large-scale distributed data pro-
cessing, such as the Hadoop ecosystem, are at the core of the
big data revolution we have experienced over the last decade.
In this paper, we conduct an extensive study of the Hadoop
Distributed File System (HDFS)’s code evolution. Our study is
based on the reports and patch files (patches) available from
the official Apache issue tracker (JIRA) and our goal was to
make complete use of the entire history of HDFS at the time
and the richness of the available data. The purpose of our
study is to assist developers in improving the design of similar
systems and implementing more solid systems in general. In
contrast to prior work, our study covers all reports that have
been submitted over HDFS’s lifetime, rather than a sampled
subset. Additionally, we include all associated patch files that
have been verified by the developers of the system and classify
the root causes of issues at a finer granularity than prior work,
by manually inspecting all 3302 reports over the first nine years,
based on a two-level classification scheme that we developed. This
allows us to present a different perspective of HDFS, including
a focus on the system’s evolution over time, as well as a detailed
analysis of characteristics that have not been previously studied
in detail. These include, for example, the scope and complexity
of issues in terms of the size of the patch that fixes it and
number of files it affects, the time it takes before an issue is
exposed, the time it takes to resolve an issue and how these
vary over time. Our results indicate that bug reports constitute
the most dominant type, having a continuously increasing rate
over time. Moreover, the overall scope and complexity of reports
and patch files remain surprisingly stable throughout HDFS’
lifetime, despite the significant growth the code base experiences
over time. Finally, as part of our work, we created a detailed
database that includes all reports and patches, along with the
key characteristics we extracted.

Index Terms—Distributed File Systems, Open-Source, Code
Evolution, System Analysis, Hadoop File System (HDFS)

I. INTRODUCTION

Frameworks for large-scale distributed data processing, such
as the Hadoop ecosystem [1], are the key enabling technology
for the big data revolution of the last decade. In the 10
years since its creation as an open source project, Hadoop
has developed into probably the most widespread software
framework for distributed data storage and processing: more
than half of the Fortune 50 companies use it [2]. One of
the core components of such frameworks is the underlying
distributed file system, which is responsible for storing the data
for fast and reliable distributed access [3]. As a result, a large
body of work has been devoted to the various design choices
and features of distributed file systems, including for example

cache consistency, correctness properties, load balancing, fault
detection and reliability, and detailed experimental evaluations
of different choices [4], [5], [6], [7], [8].

In this paper, we take a different view of distributed file
systems. Rather than focusing on individual features and char-
acteristics, we are more generally interested in the software
development process and specifically, how large open-source
projects that experience a rapid growth in popularity develop
over time and what the main challenges in their development
are. The purpose of our study is to provide insight into the
evolution of distributed file systems and assist developers in
improving the design of similar systems.

Our work focuses on the Hadoop Distributed File System
(HDFS) [9], [10] and provides an extensive study of its code
evolution. We choose to conduct our study on HDFS, because
it is an open-source project, is largely deployed in real-world
systems and finally, is under constant development. Our study
is based on the reports and patch files available from the
official Apache issue tracker (JIRA) instance associated with
HDFS. In contrast to existing studies, our goal was to make
complete use of the entire history of HDFS and the richness
of the data that is available. In this study, we make use of all
reports that have been submitted over the first nine years of
HDFS’s lifetime rather than a sampled subset, along with their
associated patch files that have been verified by the developers
of the system. Additionally, we classify the root causes of
issues at a finer granularity than prior work, using a two-level
classification scheme that we developed. This allows us to
present a different perspective of HDFS, including a focus on
the system’s evolution over time, as well as a detailed analysis
of characteristics that have not been previously studied, such
as the scope and complexity of issues in terms of the size of
the patch that fixes it and number of files it affects, the time
it takes before an issue is exposed, the time it takes to resolve
an issue and how these vary over time.

To facilitate our study, a significant amount of work
was required in inspecting and manually labelling all 3302
closed and resolved reports and their corresponding patch
files (patches) from the JIRA instance associated with HDFS,
covering every released version over the first nine years
(2008-2016)1. We have stored the results into a database,
called HDFS-DB, which contains our classification categories

1We exclude year 2007 from our results because it contains only one report.



and sub-categories for all 3302 analyzed reports, along with
several graph utilities. HDFS-DB can assist existing bug
finding and testing tools, by filtering reports based on their
assigned categories, enabling different types of additional
analyses and empirical studies, such as natural language text
classification [11], [12].

The analysis of the data in our HDFS-DB database led to a
number of interesting findings:

• Bug reports are the most dominant type among all reports,
accounting for more than 50%, followed by Improvement
reports, which make up about a quarter of all reports and
aim to enhance HDFS with additional features.

• The rate of bug reports continuously increases over time;
this contradicts the traditional bathtub model for software
reliability [13], which assumes relatively stable rates of
detected bugs, except for some initial infant mortality and
occasional spikes after new releases. We attribute this
observation to the highly dynamic, constantly evolving
nature of HDFS, whose size and user base have grown
tremendously over a relatively short period of time,
compared to traditional software projects.

• Compared to previous work, we find a significantly
smaller fraction of bugs attributed to memory. For HDFS,
7.2% of all bugs are related to memory, probably in-
dicating that bug detection tools are becoming better at
identifying these issues and/or that developers are making
heavier use of them.

• We observe that the absolute frequency of concurrency
bugs is increasing over time, which is different from
what prior work [11] observed for two other open source
projects (Mozilla and Apache Web Server). The reason
might be that HDFS is being deployed in large, highly-
distributed installations, whose scale is continuously in-
creasing over time, thereby creating a stream of new
concurrency challenges.

• When looking at the bugs that are detected during an
alpha or beta release versus a stable release, we see
significant differences. For example, while 60% of all
bugs related to incorrect or missing error codes are
detected while still in alpha/beta release, only 16% of
null pointer issues and 19% of performance issues are
identified in alpha/beta releases.

• The size of a patch (in kilobytes) and the number of
files affected are highly variable, with most patches being
small in size, but the largest ones exceeding typical sizes
by orders of magnitudes, touching on hundreds of files.

II. METHODOLOGY

In this section, we first explain our rationale for choos-
ing to perform our study on HDFS, then we describe our
methodology in detail, including information about the official
issue repository and our database, and finally, we present our
classification scheme in detail.

A. Why the Hadoop Distributed File System (HDFS)

The evolution of distributed processing over the years has
provided applications the ability to store and process large data
sets in a very efficient way. To this end we, first of all, choose
to focus our study on HDFS because it is a great example of
a state-of-the-art distributed system, which is widely deployed
and used by several different applications to store large data
sets. Second, HDFS provides the necessary infrastructure
to support the implementation of many other systems. For
instance, MapReduce [14], the computation platform of the
Hadoop [1] framework, is build on top of HDFS and exploits
the functionality provided by the file system. HBase [15] is an
open-source, distributed database that runs on top of HDFS,
providing the ability to host very large tables. Finally, HDFS
has been under constant development and maintenance for
more than a decade. The developers of the system continue
to resolve emerging bugs and also, to expand the system with
new functionality. As a result, the system matures over the
years, improving its stability and reliability properties.

B. Data Set Description

The current analysis is based on the HDFS instance of
the JIRA [16] issue tracker web repository and covers all
55 initial versions, starting from version ‘0.20.1’ released on
Sep. 1st, 2009, until version ‘2.6.5’ released on Oct. 08, 2016.
The complete release cycle for Apache Hadoop can be found
in [17]. For each individual version, we manually process its
corresponding released reports. Out of all released reports, we
study a total of 3302 reports marked either as closed, or as
resolved and also contain at least one patch file. The complete
change-log for HDFS can be found in [18].

Based on the provided web repository, for each report, we
automatically extract and store its name, title, type, priority
level, affected components and versions, total patches, com-
mits, and comments, creation date, time to resolve, assigned
developer and finally, its URL. In addition, we automatically
track and download all patch files associated with each indi-
vidual report. As older versions may be included for one patch
in the same report, we choose to download and store only its
latest version, together with its size (in bytes). To track the
latest version, we make use of the information provided by
JIRA, which provides the option to mark previous uploaded
patch files as obsolete. However, this option is not always
accurate, since there are reports where the corresponding
developers do not make use of the aforementioned option. We
discuss this limitation in detail in Section IV. Once the source
code of a patch file is downloaded, we calculate its size (in
bytes). The total number of downloaded patch files equals to
8280.

In order to facilitate further research in this area, we have
stored the results into a a PostgreSQL [19] database, called
HDFS-DB, which contains our classification categories and
sub-categories, along with several graph utilities. HDFS-DB
can assist existing bug finding and testing tools, by filtering
reports based on their assigned categories, enabling different
types of additional analyses and empirical studies, such as



natural language text classification [11], [12]. Furthermore, our
database can be used in order to perform both quantitative and
qualitative analyses of HDFS-related issues. Finally, as future
work, we plan to complete our classification of the remaining
released versions, automate the classification procedure and
also expand it to other Apache sub-systems.

C. Classification Scheme Description

In JIRA, by default, each downloaded report is assigned
two distinct labels, which denote the report’s type and pri-
ority respectively. Based on their type, reports are by default
classified into seven different categories, namely Bug (issues
causing unexpected behaviour), Improvement (new features
for increased performance, code maintenance, etc.), Sub-task
(minor tasks related to other reports), Task (minor issues to
be resolved), New Feature (new features that have yet to be
developed), Test (unit or system tests), and Wish.

Based on their priority, reports are by default classified
into five different categories, namely Major (important issues
related to the system’s functionality), Minor (minor loss of
functionality), Blocker (must be resolved immediately), Crit-
ical (crashes, data loss, memory leaks), and Trivial (mostly
related to misspelled words, or misaligned text).

In addition to the default categorization provided by JIRA,
we also develop a two-level classification scheme, where we
manually inspect and group reports together into different
categories, based on the different root causes that triggered
them. Our first-level classification procedure makes use of
different categories per type to capture the nature of all the
different issues that may arise during the development of
HDFS. During our second-level classification procedure, we
manually assign an additional sub-category to each report,
which highlights a particular problem associated with the first-
level category. For instance, a bug report can involve an issue
related to improper memory management (category) caused
by a resource leak (sub-category). We describe the results of
our two-level classification scheme in Sections V and VI.

D. Threats to Validity

Our study focuses on one particular system and it is
unclear whether our results and observations generalize to
other systems. Moreover, the file system used in our study
(HDFS) is open-source and thus, our results are not necessarily
representative of commercial file systems.

To minimize the possibility of errors during the manual
classification, each issue is reviewed twice. In case an issue is
complicated or an ambiguity arises, the final classification is
performed in such a way until consensus is reached.

For every report in our dataset, JIRA only provides its
creation and resolve date; however, developers tend to work on
each patch over a possibly discontinuous time interval. Thus,
our results do not contain any trends about the work patterns
of development within each interval.

Finally, in JIRA, a report contains multiple patch files
when the issue affects more than one development or released
branches. In this case, individual patches are uploaded for each
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Fig. 1: Temporal trends of some basic HDFS characteristics.

branch. Moreover, many reports could not be resolved by the
first attempted patch; either the issue was not fully resolved
or the patch was rejected. A patch file is rejected when it
does not comply with the build rules of HDFS (generates
documentation warnings or errors in test cases). In case a patch
is rejected, the developer continues uploading new versions,
until the patch is finally accepted. However, in several reports,
the assigned developer does not take advantage of a feature
provided by JIRA to mark any previous versions as obsolete.
As a result, our dataset also contains older patch versions for
some reports, since we cannot automatically detect obsolete
versions. Fortunately, this limitation bias our current aggregate
results only by a small factor, since the differences between
patch versions are minor and the number of such reports is
small.

III. FREQUENCY AND TYPES OF ISSUES

In this section, we present some high-level findings across
the entire database of reports. Specifically, in Section III-A
we examine how the number of reports changes over time. In
Sections III-B and III-C, we describe the classification results
of the default scheme provided by JIRA, based on the specified
type and priority. Finally, Section III-D distinguishes between
alpha/beta and stable releases, examining what fraction of
issues is reported in each release.

A. Frequency of issues over time

We begin by looking at the overall frequency of issues over
time. Figure 1 shows the total number of reports that were
entered into JIRA’s HDFS archive per year (red line) since the
first release in 2008. We note a steep increase in the number
of reports over time, beginning with only around 200 reports
in 2009 to more than 800 reports in 2015. In addition to all
reports, we also look at only those reports related to bugs
(dashed green line) where we see a similar trend.

We observe that this continuously increasing number of bug
reports differs from the traditional bathtub model commonly
cited in software reliability, which assumes a relatively stable
bug frequency over time, with the exception of some infant



mortality in the beginning and occasional spikes after new
releases [13].

There are several possible reasons for this non-traditional
increasing trend, most of them related to the highly dynamic
nature of the Hadoop ecosystem. As HDFS has developed over
the years, its code base has significantly increased in size,
from merely 24,035 lines of code (LOC) in 2009 to more
than 300,000 LOC in 2016 (blue line), increasing the code
complexity and also likely, the bug propensity2. Furthermore,
over the same time period, the user base and hence the number
of HDFS installations continuously increased. While we were
not able to obtain exact numbers on the count of HDFS
installations, we used as an alternative measure the level of
interest in HDFS, as observed by the number of times HDFS
appeared in Google searches (cyan line) [21]. The trends we
observe likely indicate that for large-scale distributed systems,
many bugs do not become exposed until the software is
deployed at large scale across many users [22]. Finally, our
observations might also be a manifestation of the “release
early, release often” philosophy employed by many open-
source developers and definitely by the HDFS community,
with an average time between releases of less than 62 days,
where developers rely on early customer feedback and bugs
being exposed in the field, rather than lengthy testing before
release.

B. Types of issues

As described in Section II-C, JIRA [16] provides a default
classification scheme, which categorizes reports based on their
type and their priority. Initially, we present the classification
results based on the specified default type. In this paper, we
consider the most significant types that constitute the 93.67%
of all closed and resolved reports. We chose to exclude some
types from our study, because the provided description and
developer comments were inconclusive; the missing categories
are New Feature, Test, and Wish, comprising a total of 223
(6.33%) resolved reports. Figure 2a shows a timeline of the
breakdown of all reports in the JIRA database by their type.

We observe that consistently over time, bug-related reports
constitute the most common type of reports, making up 57%
of all reports, and that their relative share of all reports
keeps increasing over time. They involve issues related to the
core implementation of HDFS, such as algorithmic errors and
wrong configurations. This observation differs from the results
of Antoniol et al. [23], which suggest that open-source systems
may contain a larger fraction of non-bug issues.

The second largest category is reports related to Improve-
ments. They make up (25.90%) of all reports, although their
relative share has been slightly decreasing over time. They
involve issues related to the system’s performance and avail-
ability, along with implementation of new features.

Finally, the remaining categories comprise 22.61% of all
reports. Depending on the description of the reported issue,

2We use the SLOCCount program [20] to count the lines of code and
consider only Java source files in our statistics.
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Fig. 2: Breakdown results based on the default type (2a) and
priority (2b).

Task and Sub-task reports are eventually considered either as
Bug or Improvement reports under our classification scheme.

C. Priorities of issues

Figure 2b shows a timeline of the breakdown of all reports in
the JIRA database by their priority. Consistently over time, the
most frequent category is Major issues, comprising 61.64% of
all reports. These reports indicate significant loss of function-
ality and involve issues related to unexpected runtime failures,
job failures, etc. The second most common category is Minor
issues (21.33%), which involves minor loss of functionality
and problems that can be easily resolved. We observe that
their portion is non-negligible and therefore, we do not exclude
them from our study (compared to Gunawi et al. [24]).

The most worrisome issues are those classified as Blocker
(6.91%) and Critical (5.85%). Blocker reports must be re-
solved immediately, otherwise the development and testing
procedures cannot make progress. Critical issues involve prob-
lems related to system crashes, loss of data, and memory leaks,
which can have a significant impact on the system’s reliability.
We observe that the frequency of Critical issues increases over
time. Finally, Trivial (4.27%) issues are the easiest to fix and
their frequency remains relatively stable over the years.

D. Stable releases versus alpha/beta releases

HDFS follows a “release early, release often” strategy,
with a significant number of alpha and beta releases, besides
stable releases. We look at how effective this strategy is in
detecting issues early, before they can make their way into
a stable release. Towards this end, we consider what fraction
of issues is being reported for alpha and beta releases versus
stable releases. This percentage is reported for all classification
categories described throughout the paper in Tables I and V.
We observe that more than a third (33.71%) of all reported
issues were reported for an alpha/beta release. Depending on
the type of the issue, this rate can be significantly higher, such
as 80% and 39% for issues related to maintenance and error
codes respectively, or lower, as in the case for memory issues
related to null pointers, or issues related to improper thread
synchronization (17% and 19%, respectively). On the positive



side, issues that are classified as Critical have a good (34%)
chance of being detected during an alpha/beta release (as do
Minor and Trivial issues), while unfortunately Blocker issues
are less likely to be detected during alpha/beta releases (18%).

IV. COMPLEXITY OF ISSUES

In this section, we are interested in the complexity of issues,
which we study from three different angles, namely the size
of an issue’s scope, the amount of time it takes to detect an
issue, and the time required to resolve it.

A. Scope of issues

One measure of an issue’s complexity is how large its scope
is. More precisely, we look at the size of the patch that is
required to fix an issue, and how many files are affected by
that patch.
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Figure 3a shows the average and the median size (in
kilobytes) of patches over time. We find that the median size
of a patch is 8.2 KB and, despite the continuous increase in the
overall size of the code base, the size of patches remains stable
over the years, after a small decrease in value after the first
year of development. The mean (25 KB) is significantly larger
and inspection of the corresponding full CDF (see Figure 3b)
reveals a long tailed distribution with the largest 1% of patches
comprising more than 256 KB.

We also study how many files inside the code repository
each patch modifies (see Figure 4a). We make use of the
diffstat program [25] to calculate the number of affected files
by a single patch. Again, we find surprising stability over time
(past 2008), with a median of 3 and an average of 6.7 files
affected by a patch, along with a long tail in its distribution
(see Figure 4b); the largest 1% of patches affects more than
15 files.

Furthermore, we also explore how many lines were inserted
and deleted by a patch (Figures 5a and 6a). The results remain
stable after 2008, with a median of 72 and an average of
274.37 inserted lines, as well as a median of 13 and an
average of 118.70 deleted lines by a patch. The corresponding
distributions (Figures 5b and 6b) indicate that the largest 10%
of patches insert and delete more than 540 and 190 lines of
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code, with a maximum value of 47, 045 and 39, 479 lines
respectively.

Finally, in Figure 7a, we report the number of patches
included in a single report. A report contains multiple patch
files when the corresponding issue affects more than one
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development or release branches. We observe a median of 2
and a mean of 2.62 patches per report. The largest 10% of
reports involve more than 5 patches, with a maximum value
of 35 patch files in a single report. The corresponding report
(HDFS-347) took developers many years to implement and
contains multiple different patch versions.

In summary, our results indicate vast differences in the
complexity of issues, some of which are easier to tackle, while
the most complex ones affect large parts of the code base.
Also, the median size of patches seems to be higher in the
first year of development and then, drop.

B. Time to detect issues

An interesting question is for how long an issue remains
latent, i.e., it goes unnoticed until it is finally detected. To
answer this question, we look at the creation timestamp of an
issue in the JIRA archive and then, we look at the different
released versions that are affected by this issue. We then take
the timestamp of the release date of the oldest version affected
by the issue and look at the difference between it and the time
the issue was reported.
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Fig. 9: The time (in days) to detect an issue, i.e., the time
between code being released and an issue being reported per
type (Figure 9a) and priority (Figure 9b).

As we are interested in the system’s evolution over time,
Figure 8a shows the average and median time to detection over
time3. We find that while on average an issue is detected within
136.74 days (median 71.8 days), the time to detect an issue
has been growing continuously over the years. We also broke
down detection time by type and priority (Figures 9a and 9b
respectively). We find that while detection time is similar for
Bug and Improvement issues, there is a significant discrepancy
in the detection time depending on the priority; Critical and
Blocker spend 30-50% longer time in the field before they are
detected, compared to Trivial and Minor issues. Finally, 20%
of Critical and Blocker issues are detected more than 1 year
after the code they affect was released.

C. Time to resolve issues

The next question we ask is how long it takes to resolve an
issue once it has been detected. We find that half of all reports
are resolved within less than 6.91 days, while the average is
at 52.3 days significantly higher than that. The discrepancy
between median and mean indicates a long-tailed distribution,
where most reports can be resolved very quickly, while some
take a very long time. We also find that the difference in time
to resolve a Bug versus an Improvement issue is small, while
there is a significant difference depending on the priority of
an issue; the median time to resolve a Trivial or Minor issue is
only 1.5 and 4.8 days respectively, while for resolving Critical,
Major and Blocker issues, it ranges from 7 to 9.6 days.

Interestingly, we observe that the time to resolve an is-
sue has decreased significantly over the years, as shown in
Figure 8b, despite the fact that the complexity of issues has
not decreased (recall Section IV-A). One possible explanation
is that the number of developers involved in fixing issues
has increased over time (see purple line in Figure 1)4. This
explanation is supported by our observation that also the
time it takes until someone starts working on an issue,
once it has been reported, continuously decreases over time,

3We omit years 2009-2011 as for these years, only very few reports have
information on which versions were affected by each report.

4We omit year 2008 because it involves only a few initial releases.



from around 30 days in 2010 to less than 5 days in 2015.
However, we also observe that the growth in size of the
HDFS code base outstrips the growth in number of active
developers. We therefore examine whether the reduction in
time to resolve an issue is due to a combination of a more
engaged group of developers, as well as developers becoming
more experienced and hence, faster at resolving issues. We
measure the experience of a developer by calculating the
number of previously fixed bugs, along with their experience
in days, i.e., the number of days elapsed from the first fixed
report to the current report’s resolve date. The corresponding
figures (see Figures 10a and 10b) indicate that up to 2014,
developers become more and more experienced, reaching a
maximum median value of 32 fixed reports and 598.27 days
of experience. After that, the corresponding values decrease by
almost a half. Finally, in Tables I and V, we include detailed
statistics regarding the experience of the assigned developers
per classification category.
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Fig. 10: The experience (in days) of HDFS developers (Fig-
ure 10a) and the total number of fixed reports (Figure 10b)
per year.

V. A CLOSER LOOK AT BUG REPORTS

In this section, we initially present our mechanism for
classifying Bug reports into different sub-categories, and then
we describe in detail the three most important sub-categories.

A. Breaking down Bug Reports

As Bug reports constitute the most dominant category in
HDFS, we ask what is the most common source of errors
among them. Figure 11a and Table I present the breakdown
of all bug reports into the sub-categories of our two-level
hierarchy. We manually inspected and classified each indi-
vidual report, by taking into consideration the corresponding
description, comments, and provided patch files.

We find that Semantic bugs are responsible for more than
half of all bug reports (53.79%) and that their relative
frequency is slowly increasing over time. The bugs of this
category are directly related to the core functionality of the file
system. The procedure to detect and repair these bugs requires
low-level knowledge about the system itself, since Semantic
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Fig. 11: Breakdown of Bug reports based on their classifica-
tion type (11a) and its largest sub-category, Semantic reports
(11b).

bugs involve algorithmic errors, incorrect assumptions about
the system’s state, invalid configurations, etc. As a result, it
comes as no surprise that this category contains the highest
number of assigned developers (192).

The next most common category is Maintenance (17.66%).
This category involves API changes, elimination of warnings,
updates in test methods, documentation issues, along with
other modifications that do not necessarily affect the core
functionality of the file system itself.

The remaining reports are split somewhat equally into Mem-
ory, Concurrency, Network, Build, and Error Code. Memory
reports (7.19%) contain issues related to memory allocation
and handling. Concurrency reports (5.79%) include common
issues related to multi threaded programming and is the
category of bugs that takes the longest time to detect and to
resolve. Network reports (5.49%) involve errors related to data
transmission and network authentication. They are generally
assigned to experienced developers that have a median value
of 476.71 days of experience and 24.5 previously fixed bugs,
possibly due to their complex nature and their difficulty to
reproduce.

Build reports (6.99%) contain errors related to the system’s
setup, deployment and execution, such as errors in execution
scripts and XML files. Build bugs seem to be a relatively
benign category in that, it is the one that contains issues with
the shortest time to detect and resolve (possibly due to its
importance to deployment), a high fraction of its issues are
detected during alpha/beta releases rather than stable releases,
and its rate is decreasing over time. Finally, Error Code reports
(3.09%) aim to improve the system’s error propagation by
fixing the error codes returned during various function calls
and adding missing return statements.

B. Semantic Bugs

This subsection takes a closer look at Semantic bugs, as they
constitute more than half of all HDFS bugs. The complete list
of all distinct classification sub-categories related to Semantic
reports is shown in Table II, while Figure 11b shows a
breakdown over time.



Name Description Percentage Alpha/Beta Resolve Time Detection Time Assigned Developers
(Total - Experience Days - Fixed Bugs)

Build Project build bugs, such as missing
scripts and compilation errors.

6.99% 38.71% 43 − 4.12 87.35 − 45.62 66 311.99−159.83 22.28 − 6.5

Concurrency Bugs related to concurrency, such
as atomicity, synchronization, etc.

5.79% 25.86% 77.57− 12.42 179.79−80.05 53 520.15−430.03 36.89−15.5

Error Code Wrong or missing error codes. 3.09% 24.86% 66.88 − 9.21 146.63−74.23 33 489.53−234.28 46.32 − 21
Maintenance Maintenance of documentation and

test code (files, APIs, etc.).
17.66% 19.9% 49.36 − 5.17 108.82−58.76 106 419.35−247.93 32.08 − 14

Memory Issues regarding memory alloca-
tion, handling and release.

7.19% 30.90% 50.66 − 6.06 150.44−62.93 65 510.16−383.99 37.63 − 18

Network Bugs related to network protocols;
issues related to authentication.

5.49% 24.29% 33.67 − 6.84 112.9 − 75.13 46 568.42−476.71 38.53−24.5

Semantic Bugs in the core implementation of
the file system.

53.79% 32.19% 53.03 − 6.72 137.78−81.97 192 502.06−400.57 37.61 − 20

TABLE I: The classification categories of Bug reports, along with the corresponding resolve and detection times (in days).
For those columns that contain two values, these values represent average and median respectively.

Name Description Percentage Resolve Time
(Avg - Median)

Configuration Wrong, missing, or inconsis-
tent configurations.

12.71% 61.78 − 6.12

Generic Fixing typos, minor mistakes
and minor changes in code.

25.05% 47.72 − 2.49

I/O Issues related to read, write,
open, close calls for files.

9.09% 63.52 − 12.39

Logic Wrong implementation and
general errors in algorithms.

51.30% 51.44 − 8.83

No Imple-
mentation

Lack of implementation. 1.39% 46.01 − 3.08

Wrong As-
sertion

Errors thrown by wrong asser-
tions.

0.46% 92.18 − 1.35

TABLE II: The classification sub-categories of Semantic re-
ports, along with the corresponding time to resolve (in days).
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Fig. 12: Breakdown of Memory reports (12a) and Concur-
rency reports (12b).

We observe that Logic is the most common sub-category,
occupying over half of the Semantic bugs (51.30%) and that
its frequency is growing over time. This sub-category includes
bugs related to wrong assumptions about the file system in
general, wrong implementation of algorithms, and bad design
choices. An example involves the wrong update of a file’s
modification time when a particular class is reloaded (HDFS-
1138). In this sub-category, the developer’s experience is
critical while resolving the corresponding bugs.

Furthermore, Generic errors comprise a large percentage
of Semantic bugs (25.05%), followed by Configuration bugs
(12.71%). In their majority, Generic reports comprise of
minor errors that can be resolved without requiring much
effort and domain knowledge. They are usually caused by

Name Description Percentage Resolve Time
(Avg - Median)

Buffer Overflow Exceed a buffer’s size. 2.08% 11.4 − 9
Illegal
Access

Array index out of bounds. 5.56% 12.11 − 5.39

Null Pointer Dereference of null pointers. 58.33% 63.47 − 7.14
Out of
Memory

Memory exhaustion. 9.72% 15.22 − 3.27

Resource Leak Memory release/GC errors. 24.31% 46.27 − 6.08

TABLE III: The classification sub-categories of Memory re-
ports, along with the corresponding time to resolve (in days).

a programmer’s negligence, such as the wrong invocation of
a method due to similar method names. Configuration bugs
involve issues related to wrong usage or wrong initialization
of configuration parameters. Such parameters typically reside
in the “configuration” package of the HDFS source code
repository.

Finally, 9.09% of Semantic bugs are related to read and
write file operations and are classified as I/O bugs. These also
include issues related to open and close operations on files.
The bugs of this sub-category include I/O malfunctions of the
file system itself, as well as, problematic I/O operations and
configurations for other components and functions, such as
read configurations.

In summary, Logic reports, which constitute the most dom-
inant sub-category among Semantic bugs and require experi-
enced developers to resolve, grow in frequency over time. On
the other hand, Generic errors can be resolved more easily,
and therefore, experience a decrease in frequency over time.

C. Memory Bugs

This subsection takes a closer look at Memory bugs, as
they are the second largest bug category and the one with
the second longest time to detect. Memory bugs occur due to
a number of reasons. Buffer overflows are caused by improper
copy operations that exceed the maximum size of a buffer. The
dereference of a null pointer can result in a system crash. Our
categorization is highly based on the consequences imposed
by such bugs and therefore, the classification procedure is
straightforward. The complete list of all distinct classification
sub-categories related to Memory reports is shown in Table III,
while Figure 12a shows a breakdown over time.



Name Description Percentage Resolve Time
(Avg - Median)

Atomicity The atomicity property for
thread access is violated.

18.10% 130.63 −
23.88

Duplication Remove redundant
processes.

4.30% 10.58− 10.15

Join Failure Not joined threads; incor-
rectly terminated processes.

2.59% 4.3 − 1.86

Lock/Deadlock Wrong usage of locks. 28.45% 34.26− 10.22
Release Obtained locks are not re-

leased properly.
2.59% 5.92 − 2.03

Synchronization Improper synchronization. 36.21% 90.62− 11.96
Termination Incorrectly killed processes,

or processes that should be
killed but are not.

7.76% 137.15 −
21.17

TABLE IV: The classification sub-categories of Concurrency
reports, along with the corresponding time to resolve (in days).

We observe that Null Pointer bugs are the most common
among all Memory bugs (58.33%). A missing initialization,
or a wrong assumption about the return value of a function
can often lead to a null pointer exception being thrown by the
Java Virtual Machine (JVM).

Additionally, there is a fair number of Resource Leak errors
(24.31%) for which we observe that their frequency is increas-
ing over time. Similar to traditional file systems, resource leaks
in HDFS often refer to unreleased allocated blocks that are no
longer used by the file system itself. Furthermore, improper
handling of memory allocations can lead to memory leaks as
well. For example, a process may neglect to deallocate unused
portions of memory or close unused sockets.

The remaining three sub-categories are relatively rare. Java
itself reports Out of Memory bugs (9.72%) by throwing the
corresponding exception. In such cases, the running process
has exhausted the available portion of memory and has even-
tually terminated. Furthermore, Illegal Access bugs (5.56%)
contain mostly exceptions thrown to indicate that an index is
out of range. The index may be related to an array, a Java
string, etc. Finally, Buffer Overflow bugs (2.08%) are caused
by improper copy operations that exceed the maximum size
of a buffer.

In summary, we conclude that Null Pointer errors are
the dominant type of memory related bugs, emphasizing the
importance of code analysis tools (either static or dynamic)
that detect such kind of errors. Moreover, the frequency
of Resource Leak errors continuously increases over time,
indicating the difficulty of proper memory management in a
continuously growing code base.

D. Concurrency Bugs

This subsection takes a closer look at Concurrency bugs, as
they are the third-largest category of Bug reports and the one
that takes the longest time to detect and resolve. We partition
all Concurrency bugs into several sub-categories based on
the provided description, comments and patch files for each
individual report. The complete list of all distinct classification
sub-categories related to Concurrency reports is shown in
Table IV, while Figure 12b shows a breakdown over time.

The two most dominant sub-categories among the HDFS
Concurrency bugs are Synchronization and Lock/Deadlock,

with 36.21% and 28.45% of the total Concurrency reports
respectively. Synchronization reports include join failures, in-
appropriate heartbeat timeouts, and deprecated ordering of
multiple accesses. Lock/Deadlock reports involve examples
where a process uses the wrong lock, or a process fails/misses
to release an acquired lock, or a deadlock is caused by
inconsistent ordering of locks across threads.

The Atomicity category (18.10%) captures violation of
thread safety, which can lead to incorrect return values or
possible race conditions. These bugs are among the ones that
take on average the longest time to resolve (130 days on
average) among all Concurrency bugs. In general, Synchro-
nization, Lock/Deadlock and Atomicity bugs are hard to detect.
For this reason, developers tend to implement special unit
tests to simulate a failure situation and to verify the system’s
correctness under extreme scenarios.

Termination (7.76%) and Duplication (4.30%) reports in-
clude management issues at a thread granularity. Termination
reports include examples where active threads are not termi-
nated properly, while Duplication reports include examples
where duplicate threads are created to perform the same task.
The percentage of Termination errors remains stable over time,
indicating the need for better testing and cleanup procedures.

Finally, there are a few Join Failure (2.59%) and Release
(2.59%) reports, where terminating threads are not joined
properly and running threads do not release the allocated
resources respectively.

In summary, Synchronization and Lock/Deadlock errors
dominate Concurrency bugs. However, other types of Con-
currency bugs, in particular Atomicity, Termination and Du-
plication bugs, also consistently appear over the years and
all contribute to the long time of detection and resolution of
Concurrency bugs.

VI. A CLOSER LOOK AT IMPROVEMENT REPORTS

In this section, we focus on Improvement reports. We begin
by classifying them into different sub-categories, and then we
describe in detail the four most important sub-categories.

A. Breaking down Improvement Reports

Improvement reports can be associated with different aspects
of HDFS. Figure 13a and Table V show a breakdown of such
reports into the different categories we have identified.

We observe that the most dominant category is Programma-
bility (35.70%), which includes reports that aim to imple-
ment and provide new features, extract more information
from the system, re-structure the source code and finally,
provide support for new mechanisms. More than a third of
Programmability issues can be identified during alpha/beta
releases, rather than later for stable releases. This category
also contains the highest number and the most experienced
developers among all Improvement reports.

The next most common targets of improvement are Reli-
ability, Tracking/Debugging and Performance, each of which
accounts for around 16% of all Improvement reports. Reliabil-
ity reports aim to enhance the system’s security and robustness



Name Description Percentage Alpha/Beta Resolve Time Detection Time Assigned Developers
(Total - Experience Days - Fixed Bugs)

Environment Modifications in XML, build and
shell files.

4.09% 15.09% 47.38− 14.99 132.43−120.38 28 304.38 − 95.95 21.09 − 6

Maintenance Both code and documentation. 10.95% 23.94% 71.09 − 7.65 157.54−106.24 58 450.92−214.08 30.96−16
Performance Optimized algorithms, I/O strate-

gies and scheduling.
15.88% 19.90% 94.94− 14.99 215.15 − 69.01 68 501.73−405.08 41.82−23

Programmability New mechanisms, API develop-
ment, code refactoring.

35.70% 34.77% 64.35 − 7.51 110.39 − 59.35 92 577.29−551.89 48.35−34

Reliability Improvements in the file system’s
robustness and availability.

16.65% 24.54% 28.91 − 3.88 113.75 − 56.87 54 534.96−461.59 48.54−35

Tracking/Debugging Enhancements in logs and the web
interface, extended error reports.

16.73% 22.12% 88.65− 12.72 169.82 − 55.09 81 399.19−229.92 29.59−16

TABLE V: The classification categories of Improvement reports, along with the corresponding resolve and detection times (in
days). For those columns that contain two values, these values represent average and median respectively.
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Fig. 13: Breakdown of Improvement reports based on their
classification type (13a) and its largest sub-category, Pro-
grammability reports (13b).

properties by i) removing unused code, ii) implementing new
mechanisms to detect failures among the system’s components,
and iii) improving the availability of the system in extreme
scenarios of execution. The developers of this category are
more experienced, having a median value of 35 previously
solved reports.

The Tracking/Debugging category (16.73%) contains re-
ports related to the system’s logging infrastructure. They
aim to clarify the displayed information by specifying how
descriptive and analytical the logs should be. It is important
to tune the frequency of log operations, since logs can become
quite big and can significantly affect the system’s performance
by issuing multiple I/O requests. Moreover, this category
makes up a significant share of all Improvement reports for
every single year in the HDFS lifecycle and it is among the two
sub-categories with the largest time to detect and to resolve.

Reports in the Performance category (15.88%) aim to
increase the performance of HDFS by modifying the current
core implementation, by removing unnecessary operations, by
performing smarter scheduling, and by adopting a parallel
model of execution when possible. Issues in this category are
the ones that on average take the longest to detect (215 days)
and the longest to resolve (95 days) among all Improvement
reports.

Maintenance reports (10.95%) involve minor changes in
the system’s source code repository. They are related to

enhanced documentation, renaming of variables and methods
for improved readability, and more thorough testing. Finally,
Environment reports (4.09%) tackle issues related to build
files, execution scripts, and XML configuration files, requiring
only a few developers without significant experience.

In summary, Programmability reports constitute the most
dominant Improvement category, occupying more than a quar-
ter of such reports, while improvements related to Track-
ing/Debugging and Performance are the ones that on average
take the longest time to identify and to resolve, potentially
because these issues mostly manifest and become most chal-
lenging once installations reach a large-scale.

B. Improvements of Programmability

This subsection takes a closer look at Programmability
reports, whose main goals are first, to enhance the development
procedure and second, to provide the developers and users
of the system with additional mechanisms and features. The
complete list of all distinct classification sub-categories related
to Programmability reports is shown in Table VI, while
Figure 13b shows a breakdown over time.

Many reports involve the implementation of a new feature;
however, this may require the development of additional
minor mechanisms in order for HDFS to fully support the
new feature. Furthermore, this category aims to provide new
APIs and methods to extract information from the underlying
infrastructure, such as additional metrics, etc. The additional
information can be used for debugging purposes and also,
for more accurate analysis and evaluation of the system. We
carefully study all Programmability reports and further classify
them into specific sub-categories.

Name Description Percentage Resolve Time
(Avg - Median)

Accessibility New APIs to extract addi-
tional information.

8.64% 34.21 − 11.16

Configuration Make hard-coded parameters
configurable.

14.04% 106.33 − 5.88

Extension Mechanisms and methods to
improve usability.

22.68% 76.7 − 18.83

Refactoring Refactoring of code for better
structure and organization.

24.84% 29.01 − 4.12

Support Provide support for other
mechanisms, consistency with
existing semantics.

29.81% 73.38 − 10.1

TABLE VI: The classification sub-categories of Programma-
bility reports, along with the corresponding time to resolve (in
days).



We observe that the most Programmability improvement re-
ports are related to Refactoring (24.84%), Extension (22.68%)
and Support (29.81%). Extension reports introduce new mech-
anisms and methods to improve usability. Refactoring reports
aim to restructure the code to improve the general organiza-
tion, while Support reports provide support for other mecha-
nisms and improve the system’s consistency with respect to
existing semantics.

To a smaller degree, Programmability reports also aim to
improve support for Configuration (14.04%), for instance, by
making hard coded parameters configurable. Finally, Acces-
sibility features aim to provide an API to extract additional
information from the underlying infrastructure, such as metrics
and statistics.

In conclusion, we observe that a significant portion of
the development procedure is dedicated to i) the system’s
expansion with new mechanisms and ii) the refactoring of
operations to improve the code structure in general.

C. Improvements of Reliability

Reliability reports aim to enhance the system’s availability,
security and robustness properties. The complete list of all dis-
tinct classification sub-categories related to Reliability reports
is shown in Table VII, while Figure 14a shows a breakdown
over time.

Name Description Percentage Resolve Time
(Avg - Median)

Alternate
Utilities

Invoke different methods that
provide the same utility.

11.11% 45.58 − 2.42

Availability Improve system availability. 6.48% 57.74 − 26.11
Cleanup Removal of unused or unnec-

essary functionality.
38.43% 22.43 − 1.62

Dependencies Alter the dependencies among
packages.

30.09% 19.78 − 5.2

Detection Mechanisms to detect failures. 8.80% 28.89 − 21.01
Inheritance Issues related to public, pro-

tected, private identifiers.
5.09% 58.71 − 2.16

TABLE VII: The classification sub-categories of Reliability
reports, along with the corresponding time to resolve (in days).
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Fig. 14: Breakdown of Reliability reports (14a) and Track-
ing/Debugging reports (14b).

We observe that, by a wide margin, the largest categories
are Cleanup (38.43%) reports, which remove unnecessary
methods and code segments from the HDFS code repository

or move files to different packages in order to provide a safer
and more robust environment, and Dependencies (30.09%),
which restructure the code repository to avoid unnecessary
dependencies among packages.

The smaller categories are Alternate Utilities reports
(11.11%), which change the code to invoke different meth-
ods that provide the same utility, Detection reports, which
implement new mechanisms for detecting failures, Availability
reports (6.48%), which aim to improve system availability, and
Inheritance reports, which deal with issues related to public,
protected and private identifiers.

We notice that the frequency of reliability reports, and their
breakdown, do not significantly change over time, indicating
that continuous efforts are necessary in order to keep a large
code base reliable.

D. Improvements of Tracking/Debugging

This section takes a closer look at Tracking/Debugging
reports, which mostly involve reports related to the system’s
logging infrastructure. The complete list of all distinct clas-
sification sub-categories related to these reports is shown in
Table VIII, while Figure 14b shows a breakdown over time.

Name Description Percentage Resolve Time
(Avg - Median)

Error Report-
ing

Modifications in error codes
and exception messages.

17.51% 69.27 − 9.76

Logging Issues related to logs. Display
additional information.

47.93% 79.14 − 6.44

Monitoring Issues related to real-time
monitoring, consoles, and
standard output streams.

14.29% 70.72 − 18.02

Web Interface Issues related to the web in-
terface. Display additional in-
formation.

20.28% 140.48 − 18.59

TABLE VIII: The classification sub-categories of Track-
ing/Debugging reports, along with the corresponding time to
resolve (in days).

Nearly half of all reports in this category are concerned with
the Logging (47.93%) of operations and messages, in order to
assist programmers during the debugging procedure and users
during system operation. The remaining three sub-categories
contain approximately the same number of reports, namely
reports related to the Web Interface (20.28%) and its display
of additional information, reports improving Error Reporting
(17.51%) through additions and modifications related to error
codes and exception messages, and Monitoring (14.29%)
reports, which aim to provide administrators with real-time
monitoring of the system.

In summary, we conclude that the need to display additional
information in the system’s logs and in the system’s web
interface is constantly increasing over the years. On the other
hand though, the number of issues related to error codes
and exception messages has been decreasing over the years,
indicating that the developers of HDFS are trying hard to
provide correct and detailed information to the users of the
system.
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Fig. 15: Breakdown of Performance reports.

E. Improvements in Performance

This section focuses on Performance reports, which involve
modifications in the core functionality of HDFS and in the ex-
isting implementations of algorithms. As we observed earlier,
the issues of this sub-category tend to be among the ones that
take the longest to identify and to resolve. The complete list of
all distinct classification sub-categories related to these reports
is shown in Table IX, while Figure 15 shows a breakdown over
time.

Name Description Percentage Resolve Time
(Avg - Median)

Access
Optimization

Smart data and I/O access
strategies.

16.99% 169.92 − 42.91

Logic Modifications in the existing
implementations.

34.47% 81.77 − 23.52

Parallelism Parallel execution for perfor-
mance and scalability.

6.80% 104.11 − 52.54

Scheduling Thread synchronization, star-
vation, and priority issues.

9.71% 151.7 − 18.65

Simplification Remove complicated logic. 32.04% 50.4 − 4.04

TABLE IX: The classification sub-categories of Performance
reports, along with the corresponding time to resolve (in days).

About a third of the reports target Simplification (32.04%) of
existing code, often by removing unnecessary operations and
method invocations that affect the performance of the system,
and roughly another third, Logic (34.47%) reports strive to
increase performance by improving existing implementations
of algorithms in the core functionality of HDFS. The re-
maining reports in the Performance category optimize data
access and I/O strategies (Access Optimization, 16.99%), try to
exploit the parallel execution of threads for better performance
(Parallelism, 6.80%), along with enhanced tuning of thread
priorities and synchronization (Scheduling, 9.71%).

VII. RELATED WORK

While there has been a long-standing interest in the software
engineering community to mine code repositories, we are
aware of only two prior studies involving the Hadoop File
System. Gunawi et al. [24] perform a comprehensive study
of development issues of six well-known cloud systems,
including HDFS. Their analysis is focused on 3655 “vital”
issues across the six systems (with HDFS being the only file

system in the study). They present a wide range of bugs unique
to distributed cloud systems, such as scalability, topology, and
killer bugs. Huang et al. [26] present a study of issues in
the HDFS and in the MapReduce platforms of the Hadoop
framework. They examine a number of different issues, with
a focus on correlations, consequences, impacts, and reactions.
Our work is complementary since we also focus on HDFS, but
with a different focus. We provide a more fine-grained classi-
fication scheme for issue reports and also, study the complete
history of the system including all released versions, reports
and patch files. Moreover, we provide a detailed analysis of
characteristics that have not been previously presented in detail
for distributed file systems, such as the scope and complexity
of issues in terms of the size of the patch that fixes it and the
number of files it affects, the time it takes before an issue is
exposed, and issues detected during alpha/beta releases versus
stable releases, among others.

In [27], Lu et al. present their quantitative study of 5079
patches across six Linux file systems. They focus on open-
source local file systems and they examine every file system
patch in the Linux 2.6 series. Their results indicate that nearly
half of the patches are maintenance patches, while the next
dominant category is bugs. Our study is complementary since
we also analyze patches, but instead, we focus on HDFS and
examine its evolution over time.

In [28], Yuan et al. present an in-depth analysis of 198
user-reported failures in some widely used distributed sys-
tems. They focus on understanding the failure manifestation
sequences and how errors evolve into component failures and
service-wide catastrophic failures. Unlike our work, which
involves an open-source distributed system, [28] does not
cover HDFS or any other file system at all. Moreover, instead
of considering only bug reports, we study the entire history
and evolution of HDFS, examining all reports and patches in
detail.

There are also studies that have been performed for various
other systems, other than file systems. Chou et al. present a
study of operating system errors found by automatic static
analysis applied to the Linux and OpenBSD kernels [29]. Lu
et al. perform a comprehensive study of 105 randomly selected
real world concurrency bugs from 4 server and client open-
source applications [30]. Yin et al. present their real-world
study that involves 546 misconfigurations from a commercial
storage system and 4 open-source systems [31].

Finally, large software systems and their fault character-
istics have been extensively studied in contexts, other than
HDFS [11], [12], [29], [30], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48],
[49], [50], [51]. These studies provide important results and
insights for tool designers and software system developers.
Closest to our work is the one by Lin et al. [11], [12], which
presents a study on bug characteristics in three large open-
source software projects, namely Mozilla, Apache, and Linux
kernel. Unlike ours, their work is focused on bugs only and
also differs in some of the findings; we find a significantly
smaller fraction of bugs to be either semantic or memory bugs.



Moreover, Zaman et al. [52] also use Mozilla Firefox as their
case study to discover how different types of bugs differ from
each other in terms of time to resolve, number of developers,
and number of affected source code files. In our study, we also
take into account the number of affected source code files per
patch, the number of developers per year, and the total time
required to solve an issue. However, we focus on a distributed
file system rather than a large application.

VIII. CONCLUSIONS

We performed a comprehensive study of 3302 reports and
a total of 8280 patches across all released versions of the
Hadoop Distributed File System (HDFS) over its first nine
years. Our analysis includes those reports that are marked
either as closed or resolved and contain at least one patch. The
purpose of this study is to assist developers in improving the
design of similar file systems and in implementing more solid
and robust systems. Our results indicate that bug reports are the
most dominant type and that they steadily increase over time,
while the overall scope and complexity of reports and patches
remain stable throughout HDFS’ lifetime. We believe that our
results and observations presented throughout the paper can
provide insight into the evolution of distributed file systems
and hope that they will spur further research in this area.
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