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Abstract

Plan Recognition is the problem of inferring the goals and
plans of an agent given a set of observations. In Multi-Agent
Plan Recognition (MAPR) the task is extended to inferring
the goals and plans of multiple agents. Previous MAPR ap-
proaches have largely focused on recognizing team structures
and behaviors, given perfect and complete observations of the
actions of individual agents. However, in many real-world
applications of MAPR, observations are unreliable, i.e., un-
explainable or missing; they are often over properties of the
world rather than actions, and the observations that are made
may not be explainable by the agents’ goals and plans. More-
over, the actions of the agents could be temporal or concur-
rent. In this paper, we address the problem of MAPR with
temporal actions and with observations that can be unreliable.
To this end, we propose a multi-step compilation technique
that enables the use of AI planning for the computation of
the probability distributions of plans and goals, given obser-
vations. In addition, we propose a set of novel benchmarks
that enable a standard evaluation of solutions that address the
MAPR problem with temporal actions and such observations.
We present results of an experimental evaluation on this set
of benchmarks, using several temporal and diverse planners.

1 Introduction
Plan recognition (PR) – the ability to recognize the plans
and goals of agents from observations – is useful in a myr-
iad of applications including intelligent user interfaces, con-
versational agents, intrusion detection, video surveillance,
and now increasingly in support of human-robot and robot-
robot interactions (e.g., (Carberry 2001)). Originally con-
ceived in the context of single agent plan recognition (e.g.,
(Cohen et al. 1981), (Schmidt et al. 1978), (Kautz and
Allen 1986), (Charniak and Goldman 1993)), recent work
has turned to the more complex task of Multi-Agent Plan
Recognition (MAPR). In MAPR, the goals and/or plans of
multiple agents are hypothesized, based upon observations
of the agents, providing a richer paradigm for addressing
many of the applications noted above. Early work in this
area (e.g., (Banerjee et al. 2010)) limited observations to
activity-sequences, and focused the recognition task on the
identification of dynamic team structures and team behav-
iors, relative to a predefined plan library.
∗The work was performed during an internship at IBM

While this formulation is effective for certain classes of
problems, it does not capture important nuances that are ev-
ident in many real-world MAPR tasks. To this end, we pro-
vide in this paper an enriched characterization of MAPR that
provides support for a richer representation of the capabili-
ties of agents and the nature of observations. In particular,
we support (1) differing skills and capabilities of individ-
ual agents; (2) agent skills and actions that are durative or
temporal in nature (e.g., washing dishes or other durative
processes (cf. (Fox and Long 2003))); (3) observations with
respect to the state of the system; such observations range
over fluents rather than over actions as actions may not be
directly observable but rather inferred via the changes they
manifest; (4) observations that are missing or unexplainable
(i.e. cannot be accounted for by agents’ actions).

Our approach to addressing this problem is to conceive
the computational core of MAPR as a planning task, follow-
ing in the spirit of the single-agent characterization of plan
recognition as planning proposed by Ramı́rez and Geffner
2009. This contrasts with much of the previous work on
MAPR which requires explicit plan libraries; and while the
work done by Zhuo et al. 2012 replaces explicit plan li-
braries with sets of action models, it does not make use
of AI planning. In our work, the conception of MAPR as
planning enables the leveraging of recent advances in multi-
agent planning as exemplified by the planners that partic-
ipated in the 2015 Competition of Distributed and Mul-
tiagent Planners (CoDMAP) (e.g., (Crosby et al. 2014;
Muise et al. 2015b)), as well as advances in temporal plan-
ning (e.g., (Benton et al. 2012), and in the generation of di-
verse plans (e.g., (Nguyen et al. 2012)). Furthermore, the
use of AI planning enables us to capture both the possible
interaction between the different agents, and the temporal
aspects of a domain. Importantly, the use of AI planning en-
ables not only the recognition of goals given observations,
but also the recognition of plans given observations.

To realize MAPR as planning, we propose a two-step
compilation process that takes a MAPR problem as input.
We first compile away the multi-agent aspect of the prob-
lem and then we compile away the observations. The result-
ing planning problem is temporal, has temporal actions and
temporal constraints; hence, temporal or makespan-sensitive
planners can be applied to generate plans that are then post-
processed to yield a solution to the original MAPR problem.



We propose three different approaches to generating high-
quality MAPR results, evaluating them experimentally. Us-
ing these approaches, we are able to compute the probability
distributions of plans and goals, given observations. Our ap-
proach also enables us to zoom in on a particular subset of
agents and recognize their goals, thus offering a greater res-
olution when solving the MAPR problem.

The main contributions of this paper are: (i) a formal-
ization of the MAPR problem with unreliable observations
over fluents, and actions that are temporal or durative in na-
ture; (ii) characterization of MAPR as planning via a two-
step compilation technique that enables the use of tempo-
ral AI planning on the transformed planning problem; (iii)
three approaches to computing the probability distributions
of goals and plans given the observations; (iv) a set of novel
benchmarks that will allow for a standard evaluation of so-
lutions to the MAPR problem; (v) experimental evaluation
and comparison of our proposed techniques on this set of
benchmarks using several temporal and diverse planners.

2 Problem Definition
In this section, we review basic definitions, and introduce
the multi-agent plan recognition problem with temporal
actions and its solution. We begin with an example that will
serve to illustrate different concepts throughout the paper.

Running Example: Let us consider an example, illustrated
in Figure 1, taken from the International Planning Compe-
tition (IPC) Depots domain; in this domain, there are two
different types of agents: hoist operators and truck drivers.
Each agent may have their own goal, yet a common goal
might be shared by the agents and distributed amongst them;
in some cases, it is not possible to solve the planning prob-
lem of each agent separately since resources are shared
between agents and their activities are interdependent and
complementary. For example, a truck driver must wait for
a hoist operator to load a crate onto the truck, before being
able to drive it to its designated location. The goal of the
agents is moving a set of crates between different locations.

Given a MAPR problem where (1) actions are temporal
and may occur concurrently (e.g., two truck driver agents
driving at the same time); (2) agents have different skill sets
(e.g., truck driver agents drive and hoist operator agents lift);
and (3) observations could be unreliable (e.g., a faulty sen-
sor might give an incorrect location of a truck), the task is to
recognize the goals and the plans of the agents given the ob-
servations (for example, the dashed and solid red lines repre-
sent the hypothesized plans of the red truck, given the obser-
vations). This requires taking into consideration all manner
of interaction between agents, in addition to the temporal
aspects of the domain, and cannot be achieved by break-
ing apart the MAPR problem into many single agent plan
recognition problems. Instead, our approach transforms the
MAPR problem into a temporal planning problem whose
plans and makespans approximate the probability distribu-
tions of goals and plans given the observations.

We consider a planning problem, a tuple P c =
(F,A, I,G), where F is a finite set of fluent symbols, A
is a set of actions, I ⊆ F defines the initial state, and

G ⊆ F defines the goal state. Each action a ∈ A is as-
sociated with a precondition, pre(a), add effects, add(a),
and delete effects, del(a). A state, s, is a set of fluents that
are true. An action a ∈ A is executable in a state s if
pre(a) ⊆ s. The successor state is defined as δ(a, s) =((s\
del(a)) ∪ add(a)) for the executable actions. The sequence
of actions π = [a1, ..., an] is executable in s if the state
s′ = δ(an, δ(an−1, . . . , δ(a1, s))) is defined. Moreover, π
is the solution to the planning problem P c if it is executable
from I and G ⊆ δ(an, δ(an−1, . . . , δ(a1, I))). Next, we
modify the above definition, to include temporal actions as
defined in (Fox and Long 2003).

A planning problem with temporal actions is a tuple P t
= (F, A, I,G), where F , I , and G are defined as before,
and A is a set of temporal actions. Each a ∈ A is associ-
ated with a duration, d(a), precondition at start, pres(a), pre-
condition over all, preo(a), precondition at end, pree(a), add
effects at start, adds(a), add effects at end, adde(a), delete
effects at start, dels(a), and delete effects at end, dele(a).
The semantics of a temporal action is often given using two
non-temporal actions “start” and “end”. Here we provide a
similar semantics that instead uses “start” and “end” states.
A temporal action a ∈ A is executable in a state sstart,
ending in state send if pres(a) ⊆ sstart and pree(a) ⊆ send.
The resulting states sstart′ and send′ are defined as sstart′ =
((sstart \ dels(a)) ∪ adds(a)) and send′ = ((send \ dele(a))
∪ adde(a)). Note that send comes after sstart′ . Addition-
ally, the overall precondition, preo(a) must hold in every
state between sstart′ and send. The solution to P t is a set
of action-time pairs, allowing actions to occur concurrently,
where each action is executable, and the goal G holds in the
final state. The makespan of the solution is the total time
that elapses between the beginning of the first action and the
end of the final action. Also as is mentioned, it is possible
for two actions to occur concurrently. Next, we extend the
multi-agent planning problem with temporal actions.

Definition 1 (MAPP with Temporal Actions) A Multi-
Agent Planning Problem (MAPP) with temporal actions is
a tuple Pm = (F, {Ai}Ni=1, I, G), where F , I are defined as
before, G is the goal of the multi-agent problem, achieved
by N agents, each with their own set of temporal action
descriptions, Ai, 1 ≤ i ≤ N .

Note that the notion of concurrency amongst actions is
modeled via temporal actions. This stands in contrast to
much past research (e.g., (Brafman and Domshlak 2008;
Crosby et al. 2014)) which used joint actions and defined
concurrency constraints over them. The use of joint actions
to model concurrent actions performed by multiple agents
is restricting in that a single agent cannot perform two ac-
tions concurrently. Use of temporal actions allows concur-
rency of a single agent’s actions as well as actions of differ-
ent agents. Note that in this work we assume that all agents
know and operate over one (completely specified) state of
the world, with identical knowledge about it; this allows
for the straightforward encoding of the multi-agent plan-
ning problem as a single-agent temporal planning problem.
However, in general, where agents have differing, incom-
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Figure 1: A timeline illustrating a 45-minute timeframe for the Depots domain, with 2 trucks drivers and 3 hoist operators. The
y-axis is the three depot locations; the x-axis is the time line. The white areas indicate the observations. The lines represent
alternative possible sequences of actions given the observations (color image).

plete knowledge of the world, and perhaps different levels of
rationality, establishing the correspondence between single-
agent and multi-agent planning is more challenging, and this
is left for future work.

Next, we define the plan recognition problem with tem-
poral actions, as well as unexplainable and missing observa-
tions, adapting the definitions of Sohrabi et al. 2016, where
quality as measured by cost is used instead of action dura-
tions to approximate the probability values.

Definition 2 (PR Problem with Temporal Actions) A
plan recognition problem with temporal actions is a tuple
P r = (F,A, I,O,G, PROB), where F , I , are defined as
before, A is a set of temporal actions as defined earlier,
O = [o1, ..., om] is the sequence of observations, where
ok = (fk, tk), 1 ≤ k ≤ m, fk ∈ F is the observed fluent,
tk is the time fk was observed, and ∀oi, oj , if i < j then
ti < tj . G is the set of possible goals G, G ⊆ F , and PROB
is the probability of a goal, P (G), or the goal priors.

Definition 3 (Unexplainable/Missing Observations)
Given an observation sequence O and a plan π for a
particular goal G, an observation o = (f, t) in O is said to
be unexplainable (aka noisy), if f is a fluent that does not
arise as the consequence of any of the actions ai from the
plan π for G. In contrast, an observation o′ = (f ′, t′) is
said to be missing from O, if o′ is not in the sequence O and
f ′ is added by at least one of the executed actions ai ∈ π.

In this paper, we consider sequences of observations
where each observation oi ∈ O is an observable fluent, with
a timestamp that indicates when that fluent was observed.
We focus on observations that range over fluents rather than
over actions, as actions may not be directly observable but
rather inferred via the changes they manifest. If two observ-
able fluents are observed at the same time, we increase the
timestamp of one by an arbitrarily small duration. Note, we
assume that the act of observing an observation is instan-
taneous and adheres to the order in which the observable

fluent appears in O. To illustrate, in Figure 1, ((at redTruck
depot1), 08:00) is a possible observation in O.

Also note that both missing and unexplainable observa-
tions belong to the class of unreliable observations. To ad-
dress the unexplainable observations, Sohrabi et al. 2016
modifies the definition of satisfaction of an observation se-
quence by an action sequence introduced in (Ramı́rez and
Geffner 2010) to allow for observations to be left unex-
plained. Given an execution trace and an action sequence,
an observation sequence is said to be satisfied by an action
sequence and its execution trace if there is a non-decreasing
function that maps the observation indices into the state in-
dices as either explained or discarded. Hence, observations
are all considered, while some can be left unexplained. The
solution to the plan recognition problem, P r, is two prob-
ability distributions, the probability of plans given observa-
tions, P (π|O), and the probability of goals given observa-
tions, P (G|O).

Next, we put everything together and define the problem
we address in this paper.

Definition 4 (MAPR Problem with Temporal Actions)
The Multi-Agent Plan Recognition (MAPR) problem with
temporal actions is described as a tuple P = (F, {Ai}Ni=1,
I, O, Z,G, PROB), where F is a finite set of fluents, Ai is
a set of temporal actions for agent i, 1 ≤ i ≤ N , I ⊆ F
defines the initial state, O = [o1, ..., om] is the sequence of
observations, where ok = (fk, tk), 1 ≤ k ≤ m, fk ∈ F
is the observed fluent, tk is the time fk was observed, Z is
a set of agents (each element in Z corresponds to an index
between 1 and N ), 1 ≤ |Z| ≤ N , G is the set of possible
goals, G ∈ G, pertaining to the set of agents Z, G ⊆ F ,
PROB is the prior probability of a goal, P (G).

Given a MAPR problem with temporal actions, P , a so-
lution to P is in the form of two probability distributions.
The first is the probability of plans given the observations,
P (π|O), where each π is a plan that achieves a goal G ∈ G,
satisfies the observation sequence, O, and involves at least
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Figure 2: A pipeline showing our proposed compilation approach: transforming the original MAPR problem with temporal ac-
tions and unreliable observations into a plan recognition problem (1), a transformation step that compiles away the observations
(2), allowing the use of temporal planning to compute a solution to the MAPR problem (3).

one action performed by an agent in Z. The second dis-
tribution is the probability of goals given the observations,
P (G|O), where each G assigned a non-zero probability is a
goal achieved by a plan in the first distribution. To illustrate,
consider a scenario where Ann, Bob, and Carol (A, B, C)
are cooking dinner (agent names represent agent indices).
C is working exclusively on dessert and has no interaction
withA andB.A is making pasta sauce (which requires veg-
etables) and cooking the pasta and B is preparing the salad.
B cuts all the vegetables and in so doing contributes to A’s
making of the sauce. In the case where Z = {A,B,C},
the goals might include made-dessert, made-salad, cooked-
pasta, made-sauce. In the case where Z = {A,B}, we
only keep goals that A or B could contribute to (i.e., re-
move made-dessert); where Z = {A}, we remove made-
salad, and where Z = {B}, we remove cooked-pasta but
not made-sauce from the set of goals.

In the case where Z includes all agents, the goals assigned
a non-zero probability are those achieved by actions carried
out by any agent; in the case where Z is restricted to a sub-
set of agents, the attributed goals are only those achieved by
plans which involve an agent in Z. Note, given a particular
set of agents, Z, the solution characterizes the goals of the
collective and does not distinguish goals of individuals. Our
MAPR solution is generous in its attribution of a goal to
individual agents, attributing to them not only goals solely
achieved by them, but also goals they have contributed to;
further, if Z contains a collection of agents, then goals are
attributed to the collective in Z without further refinement
to individual agents. In addition, each goal G ∈ G is a set
of fluents that must hold in the final state. Our MAPR for-
malization allows us to zoom in on a particular set of agents,
Z, and recognize the goals pursued by that set of agents.
Thus, this formalization offers greater resolution given mul-
tiple instances of an MAPR problem, P , that only differ in
Z, by way of enabling the recognition of goals and plans of
different sets of agents. Note that while the agents may or
may not be working cooperatively towards shared or inde-
pendent goals, our formalization of the MAPR problem, in
the current work, makes no assumptions about the coopera-
tive nature of agents.

3 Transformation
In this section, we describe a two-step compilation tech-
nique that allows the use of temporal planning on the MAPR

problem. That is, we first transform the given MAPR prob-
lem as defined in Definition 4 into a plan recognition prob-
lem with temporal actions; second, we transform the plan
recognition problem into a temporal planning problem; fi-
nally, we use temporal planning to compute the solution to
the MAPR problem, namely the probability distributions of
plans and goals given observations, in keeping with the pre-
vious plan-recognition-as-planning approaches. The compi-
lation pipeline is shown in Figure 2.

3.1 Transformation to Plan Recognition Problem
To transform the original MAPR problem with temporal ac-
tions to a single agent plan recognition problem with tempo-
ral actions, we compile away the multi-agent information by
using special predicates that keep track of an agent’s access
to fluents and objects; every object o and agent i in the do-
main are assigned a corresponding fluent. For an agent i to
be allowed to execute an action on object o, a precondition
must be met, in which the corresponding fluent holds. To ad-
dress the temporal aspect, the introduced action precondition
is defined such that it meets the specifications of a temporal
action; action durations are left unchanged. This approach
is similar to that of Muise et al. 2015a, which maps multi-
agent planning problems to single agent planning problems,
thus enabling the use of single agent classical planners.

3.2 Transformation to Temporal Planning
Next, we compile away the observations, so that the
plan recognition problem can be solved using the plan-
recognition-as-planning approaches. These approaches view
the plan recognition problem as an inverse planning prob-
lem, in that the goals and plans of the agents are not known
to the system, and the goal of the transformed planning prob-
lem becomes explaining the given observations. There are
several ways to compile away the observations, depending
on the nature of the given observations. For example, if the
observations are actions then one can take the approach de-
scribed by Ramı́rez and Geffner 2009. Observations can also
be compiled away following Haslum and Grastien 2011 us-
ing the “advance” action that ensures the observation order
is preserved; another paper that addresses the compilation of
observations is (Keren et al. 2016), where a goal recognition
design problem is compiled into a classical planning prob-
lem and observations, which are over the agent’s actions, are
compiled into the transformed planning problem. In this pa-



per, however, observations are defined over the fluents, so we
will follow the technique proposed in (Sohrabi et al. 2016),
which extends Ramı́rez and Geffner’s approach by address-
ing unexplainable and missing observations. To incorporate
a temporal aspect into the compilation process, our work re-
places the notion of cost with that of duration, and compiles
the observations into temporal actions that are part of the
transformed temporal planning domain.

The transformation compiles away observations, using
special predicates for each fluent in the observation sequence
O, while ensuring that their order is preserved. The transfor-
mation ensures that observation o1 with timestamp t1 will
be considered (explained or discarded) before observation
o2 with timestamp t2, where t1 < t2; o1, as explained pre-
viously, will appear before o2 in the observation sequence
O. To address the unexplainable observations, the set of ac-
tions, A, is augmented with a set of “discard” and “explain”
actions for each observation oi in the observation sequence,
O, with a penalty for the discard action. We set the penalty
by defining a high duration to the “discard” action, whereas
in Sohrabi et al. 2016 the penalty was set by defining a high
cost to the “discard” action. This penalty serves to encour-
age the planner to explain as many observations as possi-
ble. We also update the duration of the original actions, by
adding a constant duration to each action; this is the penalty
for the possible missing observations, which encourages the
planner to use as few unobserved actions as possible. While
these penalties artificially inflate the makespan of the plans,
we are able to post-process these plans by removing the extra
actions and updating the durations of the actions. To ensure
that at least one of the given goals G ∈ G is achieved, and
allow the use of a diverse planner that finds a set of plans,
a special predicate “done” in addition to the corresponding
predicate for the final fluent in the observation sequence are
added to the goal of this transformed planning problem. In
addition, we add an action for each goal G ∈ G with pre-
condition g (the fluents corresponding to goal G), and add
effect “done” to the set of actions. Hence, the goal of the
transformed planning problem is set such that all observa-
tions are considered and achieve at least one of the goals
G ∈ G is achieved.

Note, after solving the transformed single agent temporal
planning problem, we are able to straightforwardly rewrite
the solution, a single-agent temporal plan, as a multi-agent
temporal plan, such that we can attribute the different ac-
tions in the plan to the corresponding agents. By so doing,
we are able to hypothesize about the plan of any given set of
agents, given the observations. For example, the blue truck’s
hypothesized plan, given the observations, is represented by
the blue line in Figure 1. In order to apply the approach pro-
posed in (Ramı́rez and Geffner 2010), as well as our pro-
posed hybrid approach, we modify the transformation dis-
cussed above to not include the “done” predicate, as a new
planning problem will be generated for each goal separately.
In addition, the “discard” actions are removed for our pro-
posed approach that is based on (Ramı́rez and Geffner 2010)
as this approach does not address the unexplainable obser-
vations by discarding them.

Theorem 1 Given a MAPR problem with temporal actions,
P = (F, {Ai}Ni=1, I, O, Z,G, PROB), as defined in Defini-
tion 4, where |Z| = N (Z, here, is the set of all agents),
and the corresponding transformed temporal planning prob-
lem P ′ = (F ′, A′, I ′, G′) as described above, for all G ∈
G, if π is a plan for the planning domain (F, {Ai}Ni=1, I)
and goal G, then there exists a plan π′ for the correspond-
ing planning problem, P ′, such that the plan π can be con-
structed straightforwardly from π′ by associating the ac-
tions in π′ with the corresponding agents, removing the
extra actions (i.e., discard, explain, and goal actions) and
updating the duration of the remaining actions such that
d(π′) = d(π)+M+(b2 ·D), where d(π) is the makespan of
the plan π, M is the cumulative incurred penalty for miss-
ing observations, b1 ≤ M ≤ b1 · |π′| (M = 0 if |π′| = 0),
|π′| is the number of actions in π′, D is the number of dis-
card actions in π′, and b1 and b2 are positive coefficients
that express weights to the importance of missing and unex-
plainable observations, respectively.

Proof is based on the fact that the extra actions (i.e., ex-
plain, discard, and goal) only preserve the ordering amongst
the observations and do not change the state of the world.
The duration of the actions in the transformed planning
problem, P ′, incorporates the objective function that in-
cludes the original duration of the actions, as well as the
penalty incurred for the missing and unexplainable obser-
vations. We add b1 to the duration of all original actions,
to account for missing observations; b2 is the duration of the
discard action, for the unexplainable observations. The dura-
tion of the explain and goal actions is 0. As will be explained
in section 4, the makespans of plans in the transformed plan-
ning problem map to V (π), which is used to approximate
P (O|π)P (π|G); thus, the probability distributions, P (G|O)
and P (π|O), can be computed using these makespans.

4 Computation
In this section, we lay out our approaches to computing a
solution to the MAPR problem, as described in Definition
4, namely the probability distributions of plans and goals,
given observations. We begin by presenting our three ap-
proaches to computing the probability distribution of goals
given the transformed planning problem, as described in
the previous section, involving all N agents (|Z| = N ).
We then present an approach to computing the probabil-
ity distribution of goals, involving a subset of the agents
(1 ≤ |Z| < N ); this approach first pre-processes the MAPR
problem, so that one of the three aforementioned approaches
may be applied to the modified problem.

4.1 Computing P (G|O), G ∈ G, |Z| = N

The first approach (Delta) is based on finding, for each of
the different goals, the delta between the costs of two plans,
one that explains the observations and one that does not; this
method is a modification of the goal recognition approach,
proposed in (Ramı́rez and Geffner 2010). The second ap-
proach (Diverse) computes the probability distribution of
goals by finding a set of diverse plans, that serves as a repre-
sentative approximation of the distribution of plans that sat-



isfy the observations and achieve one of the possible goals
(P (π|O)); it is a modification of the proposed approach in
(Sohrabi et al. 2016). The third approach (Hybrid) is a com-
bination of the two previous approaches, in that it computes
a set of plans for each of the goals. Note that the Diverse and
Hybrid approaches both compute the probability distribution
of plans given observations in order to compute P (G|O),
while the Delta approach is not capable of doing so.

Approach 1 : Delta Given the transformed temporal plan-
ning problem, this approach computes the probability distri-
bution of goals given observations, P (G|O), by running the
planner twice for each goal, once with the observations, and
once without. More formally, P (G|O) is computed using
Bayes’ Rule as:

P (G|O) = αP (O|G)P (G) (1)
where α is a normalization constant and P (G) is PROB or
the goal priors. The cost (or makespan) difference, or ∆, is
defined as the difference in the makespan of the optimal plan
that achievesG andO, and the makespan of the optimal plan
that achieves G but not O. Assuming a Boltzmann distribu-
tion, P (O|G) is defined as:

P (O|G) ≈ e−β∆

1 + e−β∆
(2)

where β is a positive constant. This approach assumes that
the agent pursing goal G is more likely to follow cheaper
plans and that the probability that the agent is pursing a plan
for goal G is dominated by the probability that the agent is
pursing one of the most likely plans for goal G; hence, it
only computes one plan for each setting of the problem.

Approach 2 : Diverse Given the transformed temporal
planning problem, this approach computes an approxima-
tion to the probability distribution of plans as well as goals,
given the observation, by running a diverse temporal planner
on the transformed temporal planning problem. In particular,
it first computes P (π|O) as follows:

P (π|O) = βP (O|π)P (π)

= βP (O|π)
∑
G

P (π|G)P (G)

= βP (O|π)P (π|G)P (G)

(3)

where β is a normalizing constant that depends on P (O)
only, and P (G) is PROB(G). Note, we assume that only one
goal is being pursued and P (π|G) is 0 for the action se-
quences π that are not plans for G. P (O|π)P (π|G) is ap-
proximated as follows:

P (O|π) · P (π|G) ≈ 1− β′ V (π)∑
π′′∈Π

V (π′′)
(4)

where β′ is a positive constant, Π is a sampled set of plans
that satisfy the observations and achieve at least one of the
goals G ∈ G; V (π), which respects the objective function
as mentioned in section 3, is the makespan of the plan that
is the solution to the transformed planning problem and is
equal to the sum of the original duration of the actions plus

M plus b2 times D. Coefficients b1 (incorporated in M ) and
b2 are used to give weights to the importance of the original
actions together with the potential of having missing obser-
vations and unexplainable observations, respectively. D is
the number of “discard” actions in π and b1 ≤M ≤ b1 ·|(π)|
(see Theorem 1).

Using Bayes rule, the probability distribution of goals
given observations is then computed by a summation over
all values of P (π|O) for the sampled set of plans, Π, that
achieve G and satisfy O, and a subsequent normalization of
the summation values (more details in (Sohrabi et al. 2016)).

P (G|O) =
∑
π∈Π

P (π|O) (5)

The set of plans Π is computed using diverse planning,
where the objective is to find a set of plans m that are at
least d distance away from each other. The solution to the di-
verse planning problem, (m, d), is a set of plans Π, such that
|Π| = m and minπ,π′∈Π δ(π, π′) ≥ d, where δ(π, π′) mea-
sures the distance between plans. Several techniques exist
for computing the set of diverse plans (e.g., (Bryce 2014;
Roberts et al. 2014; Srivastava et al. 2007; Coman and
Muñoz-Avila 2011)); in this paper, we use LPG-d (Nguyen
et al. 2012), the diverse extension of a local search-based
planner LPG (Gerevini et al. 2003). Note that there is a large
space of plans that achieve G and satisfy O and computing
all of them is not practical; diverse planning is used as a
means to approximate the probability distribution over these
plans, by sampling a set of plans from this space.

The set of sampled plans is found by instructing the di-
verse planner to find m plans for the transformed temporal
planning problem that satisfy the observation sequence and
achieve at least one of the goals G ∈ G.

Approach 3: Hybrid In order to take advantage of both
previous approaches, we propose a hybrid approach in
which we use a temporal planner to compute a smaller set of
plans for each of the different goals. After merging the sets
of plans, we are able to compute the probability distribution
of goals, just as we did in the second approach. However,
the Hybrid approach forces the planner to compute a set of
plans for each of the goals, rather than allowing it to choose
the goal that is shortest to reach. Thus, each of the possible
goals is assigned at least one representative plan when com-
puting the probability distribution over the different goals.

4.2 Computing P (G|O), G ∈ G, 1 ≤ |Z| < N

In the previous section, we considered three approaches to
computing the probability distribution of goals given obser-
vations, involving all agents. In Algorithm 1, we propose an
algorithm that allows us to use the same approaches when
Z is restricted a subset of the agents. In step 1, P (π|O) is
computed by instructing the planner to find a set of plans
that satisfy O and achieve at least one of the goals G ∈ G
(see Section 4.1). In step 2, we remove actions from π that
are not related to agents in Z; we use the same notion of in-
teraction as defined in (Brafman and Domshlak 2008) (i.e.,
two agents are interacting if one agent’s actions affect the



Algorithm 1: Computing the probability distribution of
goals given observations, involving a set of agents Z
Input: MAPR problem P = (F, {Ai}Ni=1, I, O, Z,G, PROB)
Output: Probability distribution over G ∈ G, P (G|O)

1: For P , find a plan π with the highest posterior probability,
P (π|O), by applying the compilation process to P and using
Equations 3 and 4.

2: Let πZ be a partial plan based on π such that each action a ∈
πZ is either associated with at least one of the agents in Z or
is associated with an agent that is interacting with an agent in
Z as defined in (Brafman and Domshlak 2008).

3: Let OZ be the sequence of observations based on πZ (the ef-
fects of each action a ∈ πz serve as observations in OZ ).

4: Let P ′ = (F,A′, I, OZ , Z,G, PROB) such that A′ =
{Ai}Zi=1 ∪ {a | a ∈ πZ}.

5: Apply the compilation process to P ′ and follow one of the
approaches described in Section 4.1 to compute P (G|O), ap-
proximated as P (G|OZ), for each G ∈ G.

functionality of the other agent). In the final step of the al-
gorithm, we apply one of our three proposed approaches to
P ′ and compute the probability distribution of goals involv-
ing all agents, relative to P ′; the correctness of the algorithm
follows from Theorem 1, where a correspondence is shown
between an MAPR problem, where |Z| = N , and the trans-
formed planning problem, allowing us to compute the prob-
ability distributions of goals and plans.

5 Experimental Evaluation
In this section, we present the results of our experimental
evaluation; first, we evaluate the goal recognition capabil-
ities of our three proposed computational approaches, in-
volving all agents, where |Z| = N ; second, we evaluate the
recognition of individual goals, where |Z| = 1, using Algo-
rithm 1; finally, we discuss the plan recognition capabilities
of our MAPR approach.

To evaluate our MAPR approach, we used a temporal
planner, LPG-TD (Gerevini et al. 2004), for the delta ap-
proach, the hybrid approach and to compute the joint plan in
step 1 of Algorithm 1, and a diverse planner, LPG-d (Nguyen
et al. 2012), for the diverse approach. We chose these plan-
ners as we were able to run them successfully, using the
transformed planning problem as input. The other planners
we have tested, (e.g., POPF2 (Coles et al. 2010), OPTIC
(Benton et al. 2012)), either timed out on most problem in-
stances, or did not accept the transformed planning problem
as input. Note, the results for the diverse approach were ob-
tained by running LPG-d once for each problem. LPG-TD
was run once for each goal, i.e. |G| times, for the hybrid ap-
proach, 2×|G| times for the delta approach and once in step
1 of Algorithm 1, to find P (π|O). We used a timeout of 30
minutes and ran our experiments on dual 16-core 2.70 GHz
Intel(R) Xeon(R) E5-2680 processor with 256 GB RAM.
For the LPG-d planner we used a (10, 0.2) setting of (m, d),
since this setting performed best; 10 plans that are at least
0.2 distance away from each other. For the coefficients, we
set b1 to be the maximum of all action durations in the do-
main, and b2 to be ten times b1; thus, discarded observations

Appr Depots Zeno Rovers Satellites
R U R U R U R U

Delta 15/20 81/220 9/18 83/198 2/19 52/209 18/19 198/209
Diverse 15/20 146/220 8/18 90/198 11/19 154/209 14/19 173/209
Hybrid 15/20 160/220 14/18 152/198 19/19 207/209 19/19 204/209

Table 1: Comparison of the number of problems solved by
our three proposed approaches, where |Z| = N .

are penalized more heavily than missing observations. The
ratio between b1 and b2 was set based on experimentation.

In this paper, we address a combination of elements that
has not been addressed by previous research; hence, we
create, for evaluation purposes, a set of novel benchmarks,
based on the International Planning Competition (IPC) do-
mains and the Competition of Distributed and Multiagent
Planners (CoDMAP), namely Rovers (a collection of rovers
navigate a planet surface, finding samples and communicat-
ing them back to a lander), Depots (trucks transport crates
between depots and then the crates must be stacked onto pal-
lets at their destinations by hoist operators), Satellites (a col-
lection of observation tasks carried out by multiple satellites,
each equipped differently), and ZenoTravel (transportation
of people between cities in planes, using different modes of
movement). The original domains each have separate tem-
poral and multi-agent versions and are not plan recogni-
tion problems. We modify the domains to create benchmark
problems for the MAPR problem with temporal actions.

To construct the MAPR problems, we compute a plan
that is a solution to the original planning problem. From
this plan, we sample actions in order to construct O, the se-
quence of observations, while keeping track of the goal used
in the original planning problem (i.e., ground truth goal).
The effects of these actions then serve as the fluents in O.
Additional goals were created manually for each problem
instance to populate the set of possible goals; the goals were
created with approximately equal prior likelihoods. Overall,
the set of possible goals for each problem in the benchmarks
consisted of 4 goals, involving all agents (|Z| = N ). For
each generated problem in the benchmarks, we created up
to 3 sub-problems where |Z| = 1, in which we recognize
the goals of individual agents, each consisting of 4 manu-
ally generated possible goals and where each sub-problem
focuses on a different agent. The ground truth goal of each
agent was determined based on the solution to the original
planning problem, given the actions of the individual agent
in the plan. In order to introduce missing observations, we
created several variations of each problem that did not in-
clude the full observation sequence, by randomly selecting
10%, 40%, 70% and 100% of the observations in O.

Figure 3 shows the summary of the results when evaluat-
ing our three proposed MAPR approaches on goal recogni-
tion. Approach 1 is the delta approach, approach 2 is the
diverse approach and approach 3 is the hybrid approach.
Each domain consists of 16-20 problems; the problems vary
in difficulty, thus the more difficult problems are computa-
tionally more complex. In addition, we have experimented
by adding a number of extra observations, i.e., introduced
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Figure 3: Comparison of our proposed approaches for recognizing a goal: (1) Delta, (2) Diverse, and (3) Hybrid, where |Z| = N .

noise; there are two levels of noise, one of which adds 12%
extra, possibly unexplainable observations relative to the
number of original observations, while the other adds the
same percentage of noise, only this time relative to the size
of the ground truth plan. The figure presents the results for
each of the four domains, with and without the introduction
of unreliable observations. U signifies that the results are an
average over all cases where unreliable observations were
introduced in a specific domain. We average over instances
which were successfully solved before the timeout.

To evaluate the coverage and accuracy of the different ap-
proaches, we compute the average percentage of instances
in which the ground truth goal was deemed Most and Less
likely, i.e., whether or not the ground truth goal was as-
signed the highest posterior probability given the observa-
tions. These values, M and L, are shown respectively in the
lower (solid black) and upper portions of the bars in the fig-
ure. The overall value of M and L, sum of the most and less
likely percentages, indicates the goal recognition coverage
for that method, and is expressed by the total height of each
bar. The most likely goals are chosen relative to that partic-
ular approach (i.e., goals with the highest posterior proba-
bility) and the less likely goals are those goals with greater
than 0.03 posterior probability.

The results in Figure 3 pertain to the |Z| = N case (i.e.
involving all agents) and show that approach 1, on average,
does best (i.e., highest M value) across all domains when
observations are reliable and no noise is introduced. The re-
sults also show that on average, approach 3 achieves the best
coverage, i.e., the total height of the bars, across all domains,
and also manages to successfully solve more problems than
the other approaches. The total number of problems solved
by each approach is shown in Table 1; U, as before, sig-
nifies cases where unreliable observations were introduced,
whereas R signifies cases where they were not.

Note that the sheer amount of observations caused some
problem instances to become computationally challenging,
and often led to the system timing out; this can explain why

the results are, in some cases, worse when less unreliable ob-
servations are introduced (i.e. less missing observations and
hence larger observation sequences). Additionally, since the
extra observations are added randomly, in some cases the ob-
servations are unexplainable, while in other cases, it is possi-
ble for the system to explain the extra observations by com-
puting very long plans. This, combined with the the ground
truth plans being sub-optimal, can account for some of the
unexpected results, for example in cases where introduced
noise does not hurt performance. The nature of the domains,
e.g., interchangeable objects or inconsequential order of ac-
tion execution also account for the different results.

We have also experimented with MAPR problems where
|Z| = 1 (i.e. recognizing the goals of individual agents),
using Algorithm 1 and the Delta approach. With no unreli-
able observations, our approach assigned the highest proba-
bility to the ground truth goal in the Depots domain in 93%
of problem instances; ZenoTravel - 92%; Rovers - 100%
and Satellites - 97%. Further experimental evaluation has
shown that we cannot apply our three proposed approaches
directly to MAPR problems where 1 ≤ |Z| < N ; Algo-
rithm 1, as explained in section 4.2, crucially pre-processes
the MAPR problem before applying one of the three pro-
posed computational approaches.

Finally, our approach, by conceiving the computational
core of MAPR as a planning task, also allows us to recog-
nize the plans of the agents. Since the problem addressed in
the paper incorporates a temporal element, we are able to hy-
pothesize about each agent’s actions at any point along some
timeline, given the observations. This plan recognition capa-
bility, utilized in Algorithm 1 in order to compute π in step
1, contributed to the promising results of the individual goal
recognition experimentation, as described above. We plan to
conduct further experimentation, testing both the robustness
and scalability of our approach.



6 Related Work and Discussion
There exists a body of work on multi-agent systems. How-
ever, they often do not address temporal actions (e.g., (Ko-
minis and Geffner 2015; Muise et al. 2015b; Bisson et al.
2015)). The closest to our work is the work of (Crosby et al.
2014), however, they do not model durations and the con-
currency constraints are over objects. They also do not ad-
dress the plan recognition problem. As for the plan recog-
nition problem, it has been addressed, in many forms, by
previous work (e.g., (Banerjee et al. 2015; Zhuo et al. 2012;
Kominis and Geffner 2015; Sukthankar et al. 2014)). How-
ever, the focus and the problem addressed are different. In
particular, they either do not address temporal actions, or do
not make use of AI planning. In (Argenta and Doyle 2017),
an approach to the MAPR problem is proposed which also
makes use of AI planning; however, they focus on observa-
tions which are over actions rather than fluents and do not
address temporal actions or unexplainable observations.

In this paper, we address the problem of MAPR with tem-
poral actions and unreliable observations. To this end, we
provide a formal characterization of the MAPR problem
with temporal actions, and then propose a multi-step com-
pilation technique that enables the use of AI planning for
the computation of the probability distributions of goals and
plans, given observations. In addition, we propose a set of
novel benchmarks that allow for a standard evaluation of so-
lutions that address the MAPR problem. We present results
of an experimental evaluation of our approach on this set
of benchmarks, using several temporal and diverse planners;
the experimentation addresses both the recognition of goals
involving all agents, and the recognition of goals of individ-
ual agents. To the best of our knowledge, we are the first
to propose this problem and provide a solution for it. The
merit of this paper is that it provides a way to solve an im-
portant class of MAPR problems that could not previously
be addressed. It does so by leveraging and augmenting a
combination of ideas from single agent plan recognition and
multi-agent planning. Solving this variation of the MAPR
problem, with unreliable observations and temporal actions,
is paramount to the applicability of a MAPR approach to
many real-world instantiations of the MAPR problem. Fur-
thermore, our approach allows for much needed expressiv-
ity in the MAPR domain, while also providing the founda-
tion for incorporation of various important and interesting
aspects of MAPR, including, for example, agents with vary-
ing and limited knowledge of the state of the world and with
differing physical and even cognitive capabilities. Finally,
by enabling us to zoom in on a particular subset of agents
and recognize their goals, our proposed formalization offers
greater resolution when solving the MAPR problem.

Our work addresses different elements, namely temporal
actions, a multi-agent setting and unreliable observations;
this offers greater depth to our inferences regarding the goals
and plans of agents. However, this also makes the problem
addressed in this paper quite complex, rendering its com-
putational solution expensive. Recent work (E-Martı́n et al.
2015) suggests an approach that propagates cost and in-
teraction information in a plan graph, which are then used
to estimate probabilities of goals. This proposed method

might be enhanced and exploited here to reduce computation
time. Further, we have attempted to apply the techniques in
(Jiménez et al. 2015) so as to compile away the temporal
aspect of the problem, thus transforming it to a single agent
classical planning problem. However, this approach did not
scale well, causing many of our experiments to time out. Fi-
nally, our work enables the application of a MAPR approach
to previously unaddressed problems, by modeling them in
planning domains. By enabling the use of existing temporal
planners, one can choose the planner that works best for their
domain and compute a solution to their MAPR problem.
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