
Planning to Avoid Side Effects (Technical Appendix)

TECHNICAL REPORT CSRG-641, Department of Computer Science, University of Toronto

Toryn Q. Klassen, Sheila A. McIlraith, Christian Muise, Jarvis Xu

Introduction
This technical report provides additional information for the
AAAI 2022 paper “Planning to Avoid Side Effects.” Ap-
pendix A presents proofs of Theorems 2, 3, and 4, while
Appendix B gives further details on the planning domains
used in the experiments. See https://github.com/tqk/side-
effects-planner for the code for the experiments, which was
written in Python and heavily relies on the Tarski library
(https://github.com/aig-upf/tarski).

A Proofs
This section contains proofs about the correctness of the
fluent-, policy-, and goal-preserving compilations. First we
have some background material.

A.1 Preliminaries
For uniformity with PSE scores and GSE scores, let us de-
fine FSE scores.
Definition 23 (FSE score). The FSE score of a plan is the
number of FSEs it has.

The following lemma will be useful in proving that plan-
ning problems are x-equivalent.
Lemma 1. Let x be one of {fluent, policy, goal}. Suppose we
have a STRIPS problem P = ⟨F, I,

⋃n
i=1 Ai, G⟩ and, if x ∈

{policy, goal}, an appropriate set H and weight function w
for specifying x side effect scores. Suppose that we have a
planning problem P ′ = ⟨F ′, I ′, A′, G′, c⟩ (with action costs
c) and there is a set A′

1 = {a′ : a ∈ A1} ⊆ A′ such that:

A. For any plan π′ ∈ A′∗ for P ′, if the longest prefix of π′

from A′∗
1 is a′1, . . . , a

′
k, then a1, . . . , ak ∈ A∗

1 is a plan
for P with an x side effect score at most the cost of π’.

B. If a1, . . . , ak ∈ A∗
1 is a plan for P , then there is a plan for

P ′ whose longest prefix of actions from A′∗
1 is a′1, . . . , a

′
k,

and with a cost at most the x side effect score of π.

Then P and P ′ are x-equivalent.

Proof. We first show two symmetrical properties:

• If a plan π′ ∈ A′∗ for P ′ is cost-optimal – say with cost
c1 – then by (A) there is a plan π ∈ A∗

1 for P with an
x side effect score of at most c1, let’s say c2. By (B),
there is a plan π′′ ∈ A′∗ for P ′ with cost of at most
c2, let’s say c3. Since π′ was cost-optimal, it follows that
c1 = c2 = c3. So the cost of π′ is equal to the x side
effect score of π.

• The other direction is symmetrical. If a plan π ∈ A∗
1 for

P is x-preserving – say with an x side effect score of c1
– then by (B) there is a plan π′ ∈ A′∗

1 for P ′ that has cost
c2 ≤ c1. Then by (A) there is a plan π ∈ A∗

1 for P with

an x side effect score of c3 ≤ c2. Since π is x-preserving,
c1 = c2 = c3.

It follows that the optimal cost of a plan for P ′ is equal to
the best possible x side effect score for a plan for P , from
which the result follows.

Finally, we will go through some things that will be
needed for the policy-preserving proof.

First, the following will be useful:

Corollary 1. Given a STRIPS problem ⟨F, I,A,G⟩, a state
s ∈ 2F , an action sequence a⃗, and a set of atoms φ ⊆ F ,
δ(s, a⃗) |= φ if and only if s |= R∗(φ, a⃗).

Proof. Apply Theorem 1 to ⟨F, s,A, φ⟩.

Let us also prove the following property we claimed in the
paper:

Proposition 1. Given a STRIPS problem P = ⟨F, I,A,G⟩,
a goal-plan pair h = ⟨Ĝ, π̂⟩ (such that δ(I, π̂) |= Ĝ) where
π̂ = a1, . . . , am, and the policy ρ derived from π̂ (and Ĝ),
we have for any state s ∈ 2F that achievable(Ĝ, ρ, s) just in
case s |= Rk(h) for some k.

Proof. If s ̸|= Rk(h) for any k, then s ̸|= Ĝ and ρ(s) is
undefined, so we have unachievable(Ĝ, ρ, s). The more in-
teresting thing to show is that if s |= Rk(h) for some k, then
achievable(Ĝ, ρ, s)

We can prove the result by (strong) induction on k.

Base case If s |= R0(h), then Ĝ is already true and so ρ
can trivially achieve it.

Inductive step The inductive hypothesis is that (for any
state s) if s |= Rj(h) for some j ≤ k, then
achievable(Ĝ, ρ, s).
Now suppose s |= Rk+1(h). If we also have that s |=
Rj(h) for some j ≤ k, then we have achievable(Ĝ, ρ, s)
and are done. Otherwise, by the construction of ρ, we
have that ρ(s) = am−(k+1)+1. Let s′ = δ(s, ρ(s)).
Since s |= Rk+1(h), by Corollary 1 we have that
δ(s, am−(k+1)+1, . . . , am) |= Ĝ, which can be restated
as δ(s′, am−k+1, . . . , am) |= Ĝ. By Corollary 1 again,
we then get that s′ |= Rk(h). Then by the inductive
hypothesis we have achievable(Ĝ, ρ, s′), and since s′ =

ρ(s), we also have achievable(Ĝ, ρ, s).

A.2 Proof of Theorem 2
Suppose we have a STRIPS problem P = ⟨F, I,A1, G⟩,
and let P ′ = ⟨F ′, I, A′, G′, c⟩ be its fluent-preserving
compilation. We want to show that P and P ′ are fluent-
equivalent. Below we establish two properties that let us ap-
ply Lemma 1.

1. Consider any (not necessarily cost-optimal) plan π′ ∈
A′∗ for P ′, where the longest prefix of π′ from A′∗

1 is
a′1, . . . , a

′
k. Note that after a′k, the next action must be

end (so a′1, . . . , a
′
k must achieve G), and then there must

occur (possibly multiple instances of) exactly one of ✓f

and ×f for each fluent f ∈ F \ G (in order to make
notedf true, as required by the goal). Furthermore, the
number of fluents f for which ×f (with cost 1) appears
in π′ instead of ✓f (with cost 0) is equal to the number
of fluents whose values have been changed by a′1, . . . , a

′
k

from the initial state. Furthermore, observe that each ai ∈
A1 changes the same fluents as a′i ∈ A′

1. Therefore, not
only does a1, . . . , ak achieve G in P (and so is a plan for
P), the cost of π′ must be equal to the number of FSEs
of a1, . . . , ak.

2. Now consider any (not necessarily fluent-preserving)
plan π = a1, . . . , ak ∈ A∗

1 for P . It’s easy to see that
can be converted into a plan for P ′, by starting with the
actions a′1, . . . , a

′
k, end , and then for each f ∈ F \ G,

either adding ✓f or ×f depending on which has its pre-
condition satisfied. Because of the precondition of ×f ,
the cost of that plan will be equal to the number of FSEs
of π.

The result then follows from Lemma 1.

A.3 Proof of Theorem 3
Suppose we have a STRIPS planning problem P =

⟨F, I,
⋃n

i=1 Ai, G⟩, a finite set H of pairs ⟨Ĝ, π̂⟩ where
Ĝ ⊆ F is a goal and π̂ ∈ A∗

i (s.t. δ(I, π̂) |= Ĝ), and a
weight function w : H → R. We want to show that the
policy-preserving compilation P ′ is policy-equivalent to P .

Below we establish two properties that let us apply
Lemma 1.

1. Consider any (not necessarily cost-optimal) plan π′ ∈
A′∗ for P ′, where the longest prefix of π′ from A′∗

1 is
a′1, . . . , a

′
ℓ. Note that after a′ℓ, the next action must be

end (so a′1, . . . , a
′
ℓ must achieve G), and then there must

occur exactly one of ✓k
h (for some k) and ×h for each

fluent h ∈ H (in order to make notedh true, as required
by the goal). The cost of π′ is equal to the sum of the
costs of the ×h actions in it (and the cost of ×h is w(h),
the weight of h).
For each action ✓k

h (let us say that h = ⟨Ĝ, π̂⟩) that is
part of π′, its precondition requires Rk(h), the regres-
sion of Ĝ through the last k actions in π̂. It’s easy to see
if Rk(h) holds when ✓k

h is executed, then it must have
held immediately after a′1, . . . , a

′
ℓ (since the end action

and following actions cannot change fluents from F).
Observe that each ai ∈ A1 changes the same fluents as
a′i ∈ A′

1. Therefore, not only does a1, . . . , aℓ achieve G

in P (and so is a plan for P), but it also achieves Rk(h)

if ✓k
h is in π′. When that’s the case, the policy derived

from π̂ can achieve Ĝ from δ(I, a1, . . . , aℓ) (by Proposi-
tion 1).
Therefore, if h = ⟨Ĝ, π̂⟩ ∈ H is such that the policy
derived from π̂ can not achieve Ĝ from δ(I, a1, . . . , aℓ),
it must be the case that ×h appears in π′. So the PSE
score of a1, . . . , aℓ is at most the cost of π′.

2. Consider any (not necessarily policy-preserving) plan
π = a1, . . . , aℓ ∈ A∗

1 for P . It’s easy to see that π
can be converted into a plan π′ for P ′, by starting with
a′1, . . . , a

′
ℓ, end , and then for each h = ⟨Ĝ, π̂⟩ ∈ H in-

cluding one action as described below:

• If the precondition of ✓k
h holds for some k, include

✓k
h.

• Otherwise, include ×h. Note that for this case to ap-
ply, it must be that the policy derived from π̂ cannot
achieve Ĝ from δ(I, a1, . . . , aℓ) in the original prob-
lem.

So π′ will include the action ×h just in case π has a PSE
w.r.t. the policy derived from π̂ and Ĝ. So the cost of π′

will be equal to the PSE score of π.

The result then follows from Lemma 1.

A.4 Proof of Theorem 4
Suppose we have a STRIPS problem P = ⟨F, I,

⋃n
i=1 Ai,

G⟩, a finite set H of pairs ⟨Ĝ, i⟩ where Ĝ ⊆ F is a goal and
i an agent (such that achievable(Ĝ, i, I)), and a weight func-
tion w : H → R. We want to prove that the goal-preserving
compilation P ′ is goal-equivalent to P

Below we establish two properties that let us apply
Lemma 1.

1. Consider any (not necessarily cost-optimal) plan π′ ∈
A′∗ for P’, where the longest prefix of π′ from A′∗

1 is
a′1, . . . , a

′
ℓ. Note that after a′ℓ, the next action must be

clone (which requires that a′1, . . . , a
′
ℓ must achieve G).

After clone , all the acting i fluents are false. It can be
seen that the preconditions of actions (and the fact that
the goal requires notedh for each h ∈ H) force the re-
mainder of the plan to have this structure:

• For each h ∈ H (in any order)
– First, reset i occurs.
– 0 or more actions each from A′

i occurs (let us name
this sequence of actions from A′∗

i as π′
h).

– One of ×h and ✓h occurs.
• Possibly additional actions occur afterwards, but no

more ×h or ✓h actions can be executed (since notedh

is already true for each h).

The use of the clone and reset i actions ensure that when
π′
h is executed, the state of the fluents from F is the same

as immediately after a′1, . . . , a
′
ℓ. Furthermore, for each

agent i, each action a ∈ A∗
i changes the same fluents

as a′ ∈ A′∗
i . Therefore, it can be shown that for each

h = ⟨Ĝ, i⟩ ∈ H such that ✓h appears in π′, it must be
the case that for the original problem P ,

δ(δ(I, a1, . . . , aℓ), πh) |= Ĝ

where πh ∈ A∗
i consists of the “unprimed” actions corre-

sponding to those in π′
h. Hence when ✓h appears in π′,

we see that a1, . . . , aℓ does not have a GSE on agent i
w.r.t. goal Ĝ. So for a1 . . . , aℓ to have a GSE on agent i
w.r.t. goal Ĝ requires that ×h appear in π′.
We can conclude that a1, . . . , aℓ ∈ A∗

1 is a plan for P
whose GSE score is at most the cost of π′.

2. Consider any (not necessarily goal-preserving) plan π =
a1, . . . , aℓ ∈ A∗

1 for P . We can convert π into a plan
π′ for P ′, by starting with a′1, . . . , a

′
ℓ, clone , and then

for each h = ⟨Ĝ, i⟩ ∈ H (in any order) appending the
sequence of actions described below:

• The first action appended is reset i.
• If unachievable(Ĝ, i, δ(I, π)), the only additional ac-

tion appended is ×h.
• Otherwise, there exists a plan πh ∈ A∗

i such that
δ(δ(I, π), πh) |= Ĝ, and what’s appended is the action
sequence π′

h ∈ A′
i
∗ consisting of “primed” versions of

the actions in πh, followed by ✓h.

It can be shown that that all the actions in π′ will be ex-
ecutable, and the resulting state will satisfy G′. Further-
more, the cost of π′ is equal to the sum of the weights
associated with the pairs h ∈ H such that ×h appears
in π′, which are precisely those pairs corresponding to
GSEs of π. So the cost of π′ is equal to the GSE score of
π.

The result then follows from Lemma 1.

B Domains
This section contains further details on the planning domains
used in the experiments.

Aside from the Canadian wildlife domain described in the
main paper, our experiments used adaptions of the standard
IPC (International Planning Competition) domains storage,4
zenotravel,5 and floortile.6 The PDDL (Planning Domain
Definition Langauge) code for our versions can be found
at https://github.com/tqk/side-effects-planner (the original
versions that we adapted are available at http://planning.
domains).

Below we quote from the description of each domain that
can be found on http://planning.domains:

Zenotravel The zenotravel domain involves transporting
people around in planes, using different modes of move-
ment: fast and slow. ...

Floortile A set of robots use different colors to paint pat-
terns in floor tiles. The robots can move around the floor

4Introduced in IPC5: https://lpg.unibs.it/ipc-5/domains.html
5Introduced in IPC 2002: https://ipc02.icaps-conference.org/
6Introduced in IPC 2011: http://www.plg.inf.uc3m.es/ipc2011-

deterministic/DomainsSequential.html

tiles in four directions (up, down, left and right). Robots
paint with one color at a time, but can change their spray
guns to any available color. However, robots can only
paint the tile that is in front (up) and behind (down) them,
and once a tile has been painted no robot can stand on
it. ...

Storage Moving and storing crates of goods by hoists from
containers to depots with spatial maps.

For each domain we modified it to have separate agents:
• In storage the agents are the hoists.
• In zenotravel the agents are the aircraft.
• In floortile the agents are the painting robots.

We needed a way to mark an action as being from Ai, i.e.
as being an action of the ith agent, in the PDDL files. We
did so without changing the PDDL syntax by introducing
an acting i fluent that we made a precondition of each ac-
tion by agent i (for each i). We specified in the initial state
that only the acting agent’s acting i fluent was true. This no-
tational convention means that if existing planners are ap-
plied to the PDDL files, the plans found will be ones for
the acting agent (the other agent’s actions will never be ex-
ecutable). Note that this means that our implementation of
the goal-preserving compilation did not have to introduce
its own acting i fluents but could use the existing ones.

Additionally, some of the typing for objects was modified
(the original zenotravel did not have types), and action costs
were removed from floortile.

