Proactive Robotic Assistance via Theory of Mind
(Technical Appendix)

In this technical appendix, we provide technical background for readers coming from various disciplines, as well as
additional details on our approach and experiments. To provide structure for this document, we enumerate the different
appendices below:

o Appendix I: we provide details on the KD45, logic.

o Appendix II: we provide background on PEKBs and RMLs.

o Appendix III: we provide details on RP-MEP’s progression operator.

o Appendix IV: we specify the modified goal given to the classical planner in the discrepancy resolution algorithm.

o Appendix V: we provide additional details on the implementation of our approach within a robotic system.

o Appendix VI: we provide a detailed account of our kitchen example from Section III and its encoding in PDKBDDL.
o Appendix VII: we provide a PDDL encoding of the kitchen domain that inspired the encoding of our example.

o Appendix VIII: we present detailed results from our study.

o Appendix IX: we describe the various domains used in our evaluation (Section VI) of the robot’s helpfulness.

» Appendix X: we discuss additional results from the helpfulness evaluation (Section VI) and the runtime of Algorithm 1.
o Appendix XI: we present a comprehensive survey of extant related work.

APPENDIX I
THE MULTI-AGENT MODAL LoGic KD45,,

We discuss the multi-agent modal logic KD45,, [21] which we appeal to in this work. Let Ag and &2 be finite sets of
agents and atoms, respectively. ¢ and y are used to represent formulae. T and _L represent true and false, respectively. The
language .Z of multi-agent modal logic is generated by the following BNF:

$u=pl=0|pNng"| B¢

where pe &, i€ Ag, ¢ € Z and B;¢ means that “agent i believes ¢.” The semantics for formulae in . is given by Kripke
models [21] which are triplets, M = (W, R, V), containing a set of worlds, accessibility relations between the worlds for each
of the agents (R = {R;|i € Ag}), and a valuation map, V: W — 2F. The set of worlds an agent i (at world w € W) considers
possible is given by M and the accessibility relations in R; pertaining to w. R; is a binary relation on W and is a subset of
W xW. A formula ¢ is true in a world w of a Kripke model M = (W,R,V), written M,w |= ¢, under these conditions:

M,w = p for an atom p, iff p € V(w),
M,w ': ¢, iff M,w l# 9,
M,wE= ¢ Ay, iff both M;w = ¢ and M,w = v,
M,wE B¢, iff MW E¢ YW €W s.t. Ri(w,w/)
¢ is satisfiable if there is a Kripke model M and a world w of M s.t. M,w = ¢. ¢ is said to entail y, written ¢ = v, if
for any Kripke model M, M,w |= ¢ entails M,w = .
The KD45,, logic is characterized by a particular set of properties of belief and assumes a number of constraints on Kripke
models to achieve this [21]. In particular, Kripke models in the KD45,, logic are

Serial - Yw3vR(w,v)
Transitive - R(w,v) AR(v,u) = R(w,u)
Euclidean - R(w,v) AR(w,u) = R(v,u)

with the resulting properties of belief:

Bi¢ AB;(¢ = v) = B;y (K - Distribution)
B¢ = —B;=¢ (D - Consistency)

Bi¢ = B;B;¢ (4 - Positive Introspection)
-B;¢ = B;—B;¢ (5 - Negative Introspection)

Importantly, the KD45,, system is defined by these properties of belief. In contrast, systems such as S5 logic involve a
different set of axioms and therefore cannot facilitate reasoning about agents’ beliefs, only their knowledge (i.e., justified
true belief). Consequently, S5 logic cannot reason over agents’ false beliefs. Previous work that has augmented robots
with ToM reasoning and utilized epistemic planning [25] has leveraged an epistemic planning that appeals to S5 and could
therefore only reason about agents’ knowledge. By appealing to the epistemic planner RP-MEP [34] that enforces the KD45,
axioms, our approach to proactive robotic assistance supports reasoning about agents’ (possibly incorrect) beliefs.



APPENDIX II
PROPER EPISTEMIC KNOWLEDGE BASES (PEKBS)

A proper epistemic knowledge base (PEKB) is a set of restricted formulae, called restricted modal literals (RMLs) [37].
An RML is obtained from the following grammar:

¢ :=p|Bi¢ |9

where p € &2 and i € Ag. & and Ag are sets of atoms and agents, respectively, as defined in Section II. The maximum
number of nested belief modalities determines the depth of an RML. For instance, B;¢ has a depth of 1 in addition to the
depth of ¢, where ¢ may hold additional belief modalities. Formally, the depth of an RML is defined [20] as: depth(p) =0
for p € P, depth(—¢) = depth(¢) and depth(B;¢) = 1+ depth(¢). In addition, a conjunction of RMLs is defined as a set
of RMLs, where the set of all RMLs with bounded depth d for a group of agents Ag is denoted as f;ﬁf . The state of the
world is represented by some set of RMLs.

APPENDIX III
RP-MEP PROGRESSION

Definition 5 (Progression (from [34])) Given a PEKB state ¢ and an action a = (Pre,{(vi,€1),..., Y- &)}), T =
{(n,€1),---s (W, &)}, where Pre and each 7y; are PEKBs and each € is an RML, the progression of ¢ wrt action a, a
PEKB state labelled PROG(a, @), is

PROG(a,9) = (¢ #(RUU))OQ
0= U {vlrnCoadery}

(%.&)er

R= |J {v|7nC¢andelvy}
(%7"81')61—‘

U= |J {~vI7N¢=0and —& -y}
(v.&)€r

where P is the PEKB that contains the negation of every RML in some PEKB P. % and {) are belief erasure and belief
update operators, respectively. Belief update and erasure for PEKBs have been defined and shown to be polynomial time
operations>. In case the action a is not executable in @, i.e. Pre € ¢, PROG(a, ) is undefined. Finally, Q defines the set of
literals to be added, R defines the set of literals to be deleted, and U defines the set of uncertain firing literals to be deleted.
Uncertain firing occurs when an agent is unsure whether a conditional effect is true and should therefore not believe the
effect but must also not believe the opposite.

For additional details on RP-MEP’s progression, we refer readers to [34].

APPENDIX IV
MODIFIED GOAL G’ GIVEN TO THE CLASSICAL PLANNER IN THE MODIFIED DISCREPANCY RESOLUTION ALGORITHM

In Section III, we discussed how we modify Shvo et al.’s [38] discrepancy resolution algorithm to handle discpreancy
resolution over a set of plans IT, rather than a single plan 7 as is the case in Shvo et al.’s work. To this end, we modify the
epistemic goal corresponding to the discrepancy resolution task:

/\ ( (BrBuVALID(T;, Gr) A BRVALID(;, Gy ) )V
mell
(BrBy—VALID(;, Gy) A BR—~VALID(7;,Gpr)) )

To reflect the modified discrepancy resolution epistemic goal, we modify G/, the goal given to the classical planner in Line 6
of Shvo et al’s Algorithm 1 [38]. In Line 3 of Shvo et al.’s Algorithm 1, the domain, plan and goal are classically encoded
by RP-MEP. 7. and G, are then the classically encoded plan and goal corresponding to the plan and goal 7 and G given to
the discrepancy resolution algorithm . In our modified version of the algorithm, we use an implementation® of the regression

SMiller, T., & Muise, C. J. (2016, July). Belief Update for Proper Epistemic Knowledge Bases. In IJCAT (pp. 1209-1215).
6J. Rintanen, “Regression for classical and nondeterministic planning,” in ECAI 2008. IOS Press, 2008, pp. 568-572.



operator REG for classical planning with conditional effects, and compute ¢; = VALID(7;., G;.) for every plan m; in I1. The
goal G’ given to the classical planner is then

/\ V ( A %(BRBH@(¢dC))A%(BR@((PdC)))\/

;€1 %4€PNF(9) \bac€9

V < A %(BRBHQ(%c))/\%(BRQ(WC))),

94EDNF(=¢;) \Qac€9y

where € () and 2() are mapping functions from RMLs in the domain to propositional fluents in the classically encoded
domain (and vice versa). More details are in [38].

Finally, recall our kitchen example discussed in Section III. A valid discrepancy resolving plan would be for Pepper
to inform Alice that the bowl is not in Cabinet]l and to move the bowl from Cabinet]l to some other location, such that
the assistive solution generated in Line 8 is no longer valid. This is a valid discrepancy resolving plan since following its
execution, Pepper will not perceive discrepancies between its beliefs and Alice’s beliefs, pertaining to the validity of plans
in I1. This solution to the problem is, however, undesirable since Alice in this case will not know how to achieve her goal
(that is, she will have to replan and search for the bowl).

Shvo et al. [38] discuss this issue that arises due to the generality of their formulation. As a solution, they propose to
constrain plan generation appropriately. In our case, we modify the discrepancy resolution goal G’ further to ensure that at
least one plan 7; in the set of plans II is believed by the robot R to be valid, and moreover that the robot believes that the
human H believes that 7; is valid. To this end we add the following conjunct to the goal G’ given to the classical planner:

V ( A %(BRBH@((pdC))A%(BR@((pdc)))

ﬂien(pdeDNF(q)i) 0dc €Dy

That is, we require that at least one plan 7; € IT is believed to be valid both by the robot and by the human (from the
robot’s perspective). Returning to our example, this ensures that Pepper will either (1) inform Alice that the bowl is no
longer in Cabinetl but rather in Cabinet2; or (2) move the bowl from Cabinet2 to Cabinetl. Importantly, the aforementioned
undesirable discrepancy resolving plan (involving Pepper making Alice’s presumed plan, as well as the assistive solution,
invalid) no longer achieves G'.

APPENDIX V
IMPLEMENTATION DETAILS

In this section we present additional details regarding the implementation of our approach within a semi-humanoid robot.

A. Line 3 — Perception Module

To interface the epistemic planner with Pepper’s hardware we first cross-compile ROS, Naoqi driver, and their dependencies
so that it can be run directly on Pepper’s onboard computer. The machine connected to Pepper via LAN subscribes to
compressed RGB streams which are processed by the perception module. To run our experiments, we use a 6GB GTX1650
Ti Nvidia GPU and a 9th gen Intel i7 processor.

As discussed in Section IV, we use MonoLoco [49] (a lightweight pre-trained neural network) to detect a person’s
3D position and orientation from Pepper’s RGB camera. MonoLoco is a deep learning based model that takes as input 2D
keypoint detections from OpenPifPaf’ and outputs 2D bounding-box pixel coordinates, 3D position and orientation estimates
along with their uncertainties. The estimated uncertainties can further be used to perform tracking of a particular person. For
every frame of RGB data received, the perception module runs MonoLoco to get detections of people. For every instance
of people detected in the image, we compute AlignedReID features. These features are compared between all people in the
current frame, and also with features extracted from previous frame in order to associate instances of the same people and
differentiate between different people.

Event detection: As discussed in Section IV, we map the processed observations (obtained from the various perception
algorithms) to agents from the set of agents Ag (e.g., Alice), atoms in & (e.g., Soupl), and one of 7 possible events: pick
up, put down, open (close) cabinet, enter (leave) room, and shift gaze. We then map these to an action in the set of actions
@/ (e.g., pickUp(Alice, Soupl)).

We wrote a simple logic that returns one of these 7 events based on (1) a change in the proximity of a person to objects
and locations in the room. Our logic is scenario-specific. For instance, in our ‘charger’ scenario (see Appendix IX-D), our
logic detects that a person is picking up the phone charger if that person is close enough to the charger; (2) whether a person
is detected by Pepper’s camera or not (and whether that person was previously (not) detected by Pepper’s camera); and (3)

7S. Kreiss, L. Bertoni, and A. Alahi, “OpenPifPaf: Composite fields for semantic keypoint detection and spatio-temporal association.” IEEE, 2021.



a change in the orientation estimation of a person given by MonoLoco. That is, if a person’s predicted orientation changes
we then estimate a person’s gaze direction and send a shift gaze action to RP-MEP. This allows Pepper to perform visual
perspective taking — the ability to see the world from another person’s perspective [50]. See Figure 1 for a sample output of
MonoLoco where the person is looking in 3 different directions. See Appendix IX-D for details on how visual perspective
taking is implemented in RP-MEP.

Fig. 1. Sample output from MonoLoco’s orientation estimation. In each image, the person is gazing in a different direction and the orientation estimation
changes accordingly.

B. Lines 4-10 — ToM Reasoning

1) Line 4 - Progression: In Line 4, the state S is progressed using RP-MEP’s plan validation feature that accepts as input
a plan, a goal, a domain, and a state, and determines whether the plan achieves the goal, while also returning the final state
following the execution of the plan.

2) Line 6 - Plan recognition: In Line 6, Shvo et al.’s epistemic plan recognition algorithm is implemented as described
in [45]. In particular, to compute the A with RP-MEP in Line 4 of their algorithm, we provide the Fast Downward classical
planner [57] with the encoded PDDL files and run the planner, twice for each goal in ¢, with a satisficing configuration to
improve runtime.

3) Line 8 - Generating an assistive solution: In Line 8, RP-MEP is used to solve the MEP problem ((%?, </ ,Ag),S,BrGy)
and generate an assistive solution for the human’s presumed goal, Gy. Fast Downward is used with an admissible heuristic,
to ensure optimal plans are computed.

4) Line 10 - Discrepancy resolution: In Line 10, Shvo et al.’s modified discrepancy resolution algorithm is implemented
as described in [38] and in Section III. In Line 3 of the modified algorithm, RP-MEP is given PDKBDDL files and outputs
classically encoded PDDL files, and in Line 6 Fast Downward is given the encoded PDDL files and called with an admissible
heuristic that supports conditional effects and disjunctive goals, to ensure optimal plans are computed. Like Shvo et al., we
also make use of the SymPy® Python library to convert regression formulae to DNF and to compute their negation.

C. Line 11 — Plan Execution by Pepper

In this work, Pepper is able to: (1) navigate to different places in the scene by leveraging the map built using RTAB-Map,
Pepper’s depth sensors, and ROS’s navigation stack; (2) interact with objects — since robotic object manipulation is a research
problem in and of itself, for the purposes of the video recordings in our study we hardcoded Pepper’s limb movement so
that it appears as though Pepper is successfully manipulating objects (e.g., closing a door or picking up a phone charger);
(3) communicate (e.g., Pepper informing Alice of the bowl’s location in our example). To realize this, the content of an
action is processed using a number of simple natural language templates. Then, the text is given to Pepper’s text-to-speech
module and/or displayed on Pepper’s tablet.

1) Executing world-altering actions: As discussed in Section IV, since real-world object manipulation is a research
problem in and of itself (as well as Pepper having extremely limited dexterity), for the purposes of our work and the video
recordings used in our study, we hardcoded Pepper’s limb movement so that it appears as though Pepper is successfully
manipulating objects.

For instance, in our ‘charger’ scenario (see Appendix IX-D) Pepper — as part of the execution of the automatically generated
discrepancy resolving plan — is meant to pick up a phone charger that is connected to a power outlet. To record the video,
we hardcoded Pepper’s movement so that it leans closer to the power outlet and lifts its arm. Then, the recording was paused
and resumed after we placed the charger in Pepper’s hand. Moreover, in the ‘corridor’ scenario Pepper is meant to close a
door in order to resolve the human’s discrepancy. Similarly to the charger scenario, we hardcoded Pepper’s movement so
that it leans close to the door and lifts its arm. Then, we closed the door ourselves and had Pepper return to its neutral body
position.

Shttp://sympy.org/



2) Executing communication actions: As discussed in Section IV, Pepper can communicate with other agents (e.g., Pepper
informing Alice of the bowl’s location in our example). If a discrepancy resolving plan generated in Line 10 of Algorithm 1
contains communication actions then their content is processed using a number of simple natural language templates. For
instance, recall the inform action from the discrepancy resolving plan 7’ in our kitchen example:

[inform(Pepper, Alice, —~in(Bowll,Cabinetl) A
in(Bowl1,Cabinet2))].

This action is processed and converted to the English sentence: “If you’re looking for Bowll, it’s in Cabinet2, not in Cabinet1”.
In our study we produced video recordings of Pepper implementing Algorithm 1. However, due to incredibly poor acoustics
in the filming location, we recorded our own voice (and distorted it) instead of recording Pepper’s text-to-speech module.

APPENDIX VI
ENCODING THE KITCHEN EXAMPLE FROM SECTION III IN PDKBDDL

Here we detail how our kitchen example described in Section III (and used in our evaluation in Section VI) was encoded
using the PDKBDDL format used by the epistemic planner RP-MEP. We moreover offer a more concrete view of the
workings of Algorithm 1. For the sake of readability, the domain seen here is partial and contains a subset of the actions
found in the full domain. Moreover, to better illustrate the PDKBDDL format, some actions are grounded versions of the
actions used in our experiments.

As defined in Section II, a MEP problem comprises a domain, an initial state, and a goal condition. Correspondingly, the
epistemic planner RP-MEP (as is typically the case in automated planning) accepts two components — a domain file and a
problem file, both encoded in PDKBDDL. The former contains definitions of the agents, actions, predicates, and types of
objects in the environment. The latter specifies the initial state of the world and the goal condition.

domain-kitchen.pdkbddl

(define (domain kitchen)

; This specifies the agents in the set of agents Ag
(:agents alice bob)

(:types room thing cabinet)

(:predicates
(at ?2ag - agent ?r - room)
in ?obj - thing ?cab - cabinet)

(
(holding ?ag - agent ?0bj - thing)
(atRobot ?r - room)

(:action takeObjOutOfCabinet

:derive-condition (at Sagent$ kitchen)

:parameters (?ag - agent ?0bj - thing ?cab - cabinet)
:precondition (and (in ?obj ?cab) (open ?cab))

reffect (and

(not (in ?0obj ?cab))

(holding ?ag ?20bj)

(raction informObjLocation

:derive-condition always
:parameters (?al - agent ?0bj - thing ?cab - cabinet)
:precondition (and (in ?obj ?cab))

reffect (and



[?al] (in ?0bj ?cab))

(:action informObjNotInLocation

:derive-condition always
:parameters (?al - agent ?0bj - thing ?cab - cabinet)
:precondition (and (not (in ?obj ?2cab)))
ceffect (and
[?al] (!in 20b3j ?cab))

Since planning in RP-MEP is from the perspective of a single agent (called the root agent by Muise et al. [20], [34]), all
fluents are implicitly preceded by the beliefs of that agent. In our kitchen example, Pepper resolves all discrepancies and
so planning in RP-MEP is done from its perspective. For instance, in the informObjLocation action, the effect [?al](in 7obj
?cab) is implicitly preceded by [Pepper] such that the effect of the action is that Pepper believes that agent al believes that
the object obj is in cabinet cab.

The other component of a MEP problem specified in PDKBDDL and given to RP-MEP is the problem file. The problem
file specifies the different objects, the initial state of the world, and the goal.

problem-kitchen.pdkbddl
{include:domain-kitchen.pdkbddl}

(define (problem probl)
(:domain kitchen)
(:objects kitchen - room
soupl bowll - thing
cabinetl cabinet2 cabinet3 - cabinet
)
:projection )
:depth 1)
:task valid_generation)
:init-type complete)

—~ o~ o~ —~

(:init

(!lat alice kitchen)

(at bob kitchen)

(in soupl cabinet3)

(in bowll cabinetl)
[alice] (in bowll cabinetl)
[bob] (in bowll cabinetl)
[alice] (in soupl cabinet3)
[bob] (in soupl cabinet3)

Recall that in our example, Pepper (via the perception module) observed Alice place a bowl (Bowll) in a certain cabinet
(Cabinetl) and leave the room. The problem file shown above specifies the state of the world after Alice’s actions. We can



see that the state of the world (from Pepper’s perspective) is such that everyone believes that the bowl is in Cabinetl and
the can of soup (Soupl) is in Cabinet3. Moreover, Pepper believes that Alice is not in the kitchen and that Bob is in the
kitchen.

After Bob is observed opening Cabinetl, taking Bowll, placing Bowl1 in Cabinet2, and leaving the kitchen, we call RP-
MEP’s plan validation feature that accepts as input a plan, a goal, a domain, and a state, and determines whether the plan
achieves the goal, while also returning the final state following the execution of the plan. The plan given to the validation
feature comprises Bob’s observed actions. The resulting state returned by the validation feature is the following:

problem-kitchen.pdkbddl

(:init
('at alice kitchen)
('at bob kitchen)
(in soupl cabinet3)
(in bowll cabinet2)
[alice] (in bowll cabinetl)
[bob] (in bowll cabinet?2)
[alice] (in soupl cabinet3)
[bob] (in soupl cabinet3)

As discussed in Section III, after observing Bob’s actions, Pepper believes that Alice holds a false belief pertaining to the
bowl’s location — whereas Pepper believes that Alice believes it is still in Cabinetl, Pepper believes that it is in Cabinet2.
As discussed in Section III, Pepper’s reasoning is done automatically by RP-MEP using the conditioned mutual awareness
mechanism [34].

Going back to domain-kitchen.pdkbddl, note the value of derive-condition in the takeObjOutOfCabinet action — (at $agent$
kitchen). (at $agent$ kitchen) specifies the condition for mutual awareness. In this case, agents believe the effects of the
takeObjOutOfCabinet action if they are in the kitchen, where this grounded® action is performed. As discussed in Section III,
conditioned mutual awareness can handle both first- as well as higher-order ToM reasoning. This depends on the depth of
nested belief that RP-MEP is configured to reason with (the depth of nested belief is specified in the PDKBDDL problem file
(discussed below)). In the kitchen example, if the specified depth of nested belief in the problem file is 1, then if Alice and
Bob are in the kitchen and Bob picks up Bowll from Cabinetl, then Alice will believe the bowl is no longer in Cabinetl.
However, in our example Alice is not in the kitchen and therefore will still believe that the bowl is in Cabinetl even after
Bob takes the bowl out of Cabinetl. Since all reasoning is done from Pepper’s perspective and since Pepper believes that
Alice was not in the room when Bob moved the bowl, Pepper will believe after observing Bob’s action that Alice’s beliefs
about the bowl’s location did not change.

In Line 6 our algorithm performs plan recognition. As discussed in Section III, the partial set of possible goals the human
H may be pursuing is ¢ = {made_soup, made_coffee, ...}. Our domain and set of possible goals are inspired by the popular
Kitchen domain'®, often used as a goal recognition benchmark [43]. See the full encoding of the classical planning domain
in PDDL in Appendix VIL. ¢ in our case includes the ‘soup making’ goal (which is achieved if the agent picks up a bowl
and a can of soup) and a ‘coffee making’ goal (which is achieved if the agent picks up coffee, creamer, sugar, and a mug).
After observing Alice returning to the kitchen and taking the can of soup from Cabinet3, Shvo et al.’s [45] plan recognition
algorithm (using RP-MEP) returns the plan 7y:

Alice’s presumed plan
1. openCabinet_alice_cabinetl
2. takeObjoutOfCabinet_alice_bowll_cabinetl

The plan recognition algorithm also returns the human’s presumed goal Gy = made_soup. This is because the sequence
of observations O includes enterRoom(Alice), open(Alice, Cabinet3), and pickUp(Alice, Soupl), and Shvo et al.’s [45]

9For the lifted action, the derive-condition would be (at $agent$ ?r), where r is the room where the action is performed.
10wy, J., Osuntogun, A., Choudhury, T., Philipose, M., & Rehg, J. M. (2007, October). A scalable approach to activity recognition based on object use.
In 2007 IEEE 11th international conference on computer vision (pp. 1-8). IEEE.



algorithm forces the planner to generate plans that satisfy O. That is, achieving made_soup while satisfying the sequence
of observations is ‘cheaper’ than achieving made_coffee while satisfying the observations (since a plan that satisfies O and
achieves made_coffee would include the action of picking up the can of soup that is redundant since it does not contribute
towards the optimal achievement of made_coffee).

As discussed in Section III, 7z conforms with the sequence of observations and achieves the goal from the perspective of
the observed agent, Alice in our case. Since Alice holds a false belief about the location of Bowll, her plan to make soup
involves obtaining the bowl from Cabinetl (rather than Cabinet2). Her plan will of course fail because of her false belief.

To obtain an assistive solution in Line 8, RP-MEP is tasked with solving the MEP problem ((#,</,Ag),S,BrGy) by
generating a plan 7, that comprises only actions performed by the human H. Importantly, Pepper believes that 7,y
achieves the human’s goal made_soup. The goal in the PDKBDDL problem file is

made_soup

Recall that made_soup is implicitly preceded by [Pepper]. The assistive solution 7., generated by RP-MEP is then

Assisstive solution for Alice’s presumed goal
1. openCabinet_alice_cabinet?2
2. takeObjoOutOfCabinet_alice_bowll_cabinet2

Since Pepper believes that Bowll is in Cabinet2, 7, involves Alice taking the bowl from Cabinet2, rather than Cabinetl.

Finally, in Line 10 IT is populated with 7wy and 7, and given (along with Gg) to Shvo et al.’s modified discrepancy
resolution algorithm [38]. To generate the communicative discrepancy resolving plan 7" shown in Section III, we allow
Pepper to only communicate with other agents, without altering the environment. Shvo et al.’s modified discrepancy resolution
algorithm, using RP-MEP, therefore generates the following discrepancy resolving plan

Discrepancy resolving plan
1. informObjNotInLocation_alice_bowll_cabinetl
2. informObjInLocation_alice_bowll_cabinet?2

That is, the discrepancy resolving plan involves Pepper informing Alice about the location of Bowll which resolves both
discrepancies perceived by Pepper between its beliefs and Alice’s beliefs — VALID(7ty, Gy) and VALID(T,5, Gh ).

APPENDIX VII
CLASSICAL PLANNING KITCHEN DOMAIN

We include the full PDDL encoding of the kitchen domain that inspired the encoding of our kitchen domain and set of
possible goals.

Kitchen domain
(domain kitchen)
(:requirements :strips :typing :action-costs)
(:types object useable container )
(:constants

water_Jjug kettle cloth tea_bag bowl milk

cereal creamer cup sugar coffee cheese plate

bread butter knife peanut_butter spoon

juice dressing salad_tosser lunch_bag - object

toaster - useable

foodcupboard equipmentcupboard fridge draw - container)
(:predicates

(taken 2?0 - object)
(used 2?0 — useable)
(in 20 - object 7?c - container)
(is_open ?c - container)
(water_boiled)
(made_tea)
(
(
(
(
(

(define

made_cereals)
made_coffee)
made_cheese_sandwich)
made_toast)
made_buttered_toast)




)

(:

)
(

)
(

)
(

)
(

)
(

(made_peanut_butter_sandwich)
(lunch_packed)
(made_breakfast)

(made_salad)

(made_ dlnner)

(

functions
(total-cost) - number

raction OPEN

:parameters (?c - container )
:precondition (and
(not (is_open ?c) )
)
ceffect ( and
(is_open ?c)

(increase (total-cost)
)
raction CLOSE
:parameters (?c - container )
:precondition (and
(is_open ?c)
)
reffect ( and
(not (is_open ?c))
(increase (total-cost)
)
raction TAKE
:parameters (?obj - object )
:precondition (and (dummy)
(not

7)

1)

(exists

(and (in ?0obj 2c))

))

ceffect ( and
(taken 20bj)
(increase (total-cost)

raction TAKE

1)

:parameters (?0bj - object ?c - container)

:precondition (and (dummy)

(in ?2obj 2c)

(is_ope
)
ceffect ( and
(taken ?0ob3j)
(not (in ?0bj ?2c))
(increase (total-cost)

raction USE

:parameters (?0bj - useable )
:precondition (and (dummy)

n ?c)

1)

(?c — container)




)

(:action

)

(:action

)

(:action

)

(:action

:effect

:parameters
:precondition

(and

(used 7?0bj)

(increase

ACTIVITY-Boil-Water

:parameters ()
:precondition

:effect

ACTIVITY-Make-Tea

:parameters ( )
:precondition

ceffect

ACTIVITY-Make-Tea
()

:effect

ACTIVITY-Make-Tea

:parameters ( )
:precondition

ceffect

(total-cost) 1)

(and
(taken water_juqg)
(taken kettle)
(taken cloth)

(and
(water_boiled)
(increase (total-cost)

(and
(taken
(taken
(taken
(water

tea_bag)

cup)

sugar)
_boiled)

(and
(made_tea)

(increase (total-cost)

(and
taken
taken

( tea_bag)
(

(taken
(

(

cup)

sugar)

milk)
_boiled)

taken
water

(and
(made_tea)

(increase (total-cost)

(and
(taken tea_bag)
(taken cup)
(water_boiled)

(and
(made_tea)

(increase (total-cost)

1)

1)

1)

1)




(:action ACTIVITY-Make-Cereals

:parameters ()
:precondition (and
(taken bowl)
(taken cereal)
(taken milk)
)
reffect (and

(made_cereals)
(increase (total-cost) 1)

)
(:action ACTIVITY-Make-Coffee

:parameters ()

:precondition (and
(taken cup)
(taken coffee)
(taken creamer)
(taken sugar)
(water_boiled)

)
ceffect (and

(made_coffee)
(increase (total-cost) 1)

)
(:action ACTIVITY-Make-Coffee

:parameters ()

:precondition (and
(taken cup)
(taken coffee)
(taken milk)
(taken sugar)
(water_boiled)

)
reffect (and

(made_coffee)
(increase (total-cost) 1)

)
(:action ACTIVITY-Make—-Cheese-Sandwich

:parameters ()
:precondition (and
(taken bread)
(taken cheese)
(taken plate)
)
reffect (and

(made_cheese_sandwich)
(increase (total-cost) 1)

)
(:action ACTIVITY-Make-Toast
:parameters ( )
:precondition (and
(taken bread)
(used toaster)




)

(:action

)

(:action

)

(:action

)

(:action

)

(:action

:effect (and

(made_toast)
(increase (total-cost) 1)

ACTIVITY-Make—-Buttered-Toast

:parameters ( )
:precondition (and
(made_toast)
(taken butter)
(taken knife)
)
reffect (and

(made_buttered_toast)
(increase (total-cost) 1)

ACTIVITY-Make-Peanut—-Butter—-Sandwich

:parameters ()
:precondition (and

(taken bread)
(taken peanut_butter)
(taken knife)
(taken plate)

ceffect (and

(made_peanut_butter_sandwich)
(increase (total-cost) 1)

ACTIVITY-Pack-Lunch

:parameters ( )
:precondition (and
(taken lunch_bag)
(made_cheese_sandwich)
)
ceffect (and

(lunch_packed)
(increase (total-cost) 1)

ACTIVITY-Pack-Lunch

:parameters ()
:precondition (and
(taken lunch_bag)
(made_peanut_butter_sandwich)
)
ceffect (and

(lunch_packed)
(increase (total-cost) 1)

ACTIVITY-Make-Breakfast

:parameters ( )
:precondition (and

(made_tea)




(taken spoon)
(made_cereals)
(made_buttered_toast)

ceffect (and
(made_breakfast)
(increase (total-cost) 1)

)
(:action ACTIVITY-Make-Breakfast

:parameters ( )

:precondition (and
(made_coffee)
(taken spoon)
(made_cereals)
(made_buttered_toast)

)
reffect (and

(made_breakfast)
(increase (total-cost) 1)

)
(:action ACTIVITY-Make-Salad

:parameters ( )
:precondition (and
(taken bowl)
(taken plate)
(taken dressing)
(taken salad_tosser)
)
reffect (and

(made_salad)
(increase (total-cost) 1)

)
(:action ACTIVITY-Make-Salad

:parameters ( )
:precondition (and
(taken bowl)
(taken plate)
(taken salad_tosser)
)
reffect (and

(made_salad)
(increase (total-cost) 1)

)
(:action ACTIVITY-Make-Dinner

:parameters ()
:precondition (and
(made_salad)
)
ceffect (and

(made_dinner)
(increase (total-cost) 1)




(:action ACTIVITY-Make-Dinner

:parameters ( )
:precondition (and
(made_cheese_sandwich)
)
ceffect (and

(made_dinner)
(increase (total-cost) 1)
)

)
(:action ACTIVITY-Make-Dinner

:parameters ()
:precondition (and
(made_salad)
(made_cheese_sandwich)
)
reffect (and

(made_dinner)
(increase (total-cost) 1)

APPENDIX VIII
USER STUDY - RESULTS

In this section we present detailed results from our study. We separate the section into 1 subsection for internal consistency
results and 3 additional subsections, one for each scenario used in our study — charger, kitchen, and corridor. For more details
on these domains, see Appendix IX-D. For each scenario, we report the results for the different PSI scales used in the study
- RC, PC, AC, and HLP.

A. Internal Consistency

The PSI scales we used in the study were tested for reliability. All scales consisted of four questions [58]. All scales had
internal consistency, as determined by Cronbach’s alpha: AC (a = 0.744), RC (a = 0.919), PC (o = 0.946) and HLP (& =
0.945).

B. Charger scenario

1) Recognizes Human Cognitions (RC): Shapiro-Wilk tests showed a significance departure from the normality (p < .05)
for both conditions. Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being
able to recognize the cognition of humans was different depending on condition. The differences between conditions were
statistically significant with the ToM condition (mean rank = 51.45) being higher than the ToM-Def condition (mean rank
= 30.09), U = 372.500, p < .001.

2) Predicts Human Cognitions (PC): Shapiro-Wilk tests showed a significance departure from the normality (p < .05)
for both conditions. Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being able to
predict the cognition of humans was different depending on condition. The differences between conditions were statistically
significant with the ToM condition (mean rank = 49.81) being higher than the ToM-Def condition (mean rank = 31.65), U
= 436.500, p < .001.

3) Adapts to Human Cognitions (AC): Shapiro-Wilk tests showed a significance departure from the normality (p < .05)
for both conditions. Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being able to
adapt to the cognition of humans was different depending on condition. The differences between conditions were statistically
significant with the ToM condition (mean rank = 54.00) being higher than the ToM-Def condition (mean rank = 27.66), U
= 273.000, p < .001.

4) Helpful (HLP): Shapiro-Wilk tests showed a significance departure from the normality (p < .05) for both conditions.
Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being helpful was different
depending on condition. The differences between conditions were statistically significant with the ToM condition (mean
rank = 52.68) being higher than the ToM-Def condition (mean rank = 28.91), U = 324.500, p < .001.
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Fig. 2. Charger scenario - RC scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).
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Fig. 3. Charger scenario - PC scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).

AC Scores
~ w IS w

-

)

ToM-Def ToM
Condition

Fig. 4. Charger scenario - AC scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).

C. Kitchen scenario

1) Recognizes Human Cognitions (RC): Shapiro-Wilk tests showed a significance departure from the normality (p < .05)
for both conditions. Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being
able to recognize the cognition of humans was different depending on condition. The differences between conditions were
statistically significant with the ToM condition (mean rank = 53.13) being higher than the ToM-Def condition (mean rank
= 28.49), U = 307.000, p < .001.

2) Predicts Human Cognitions (PC): Shapiro-Wilk tests showed a significance departure from the normality (p < .05)
for both conditions. Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being able to
predict the cognition of humans was different depending on condition. The differences between conditions were statistically
significant with the ToM condition (mean rank = 50.33) being higher than the ToM-Def condition (mean rank = 31.15), U
= 416.000, p < .001.

3) Adapts to Human Cognitions (AC): Shapiro-Wilk tests showed a significance departure from the normality (p < .05)
for both conditions. Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being able to



HLP Scores

6
5 *
4
3
2
1
0

ToM-Def ToM
Condition

Fig. 5. Charger scenario - HLP scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).
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Fig. 6. Kitchen scenario - RC scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).

PC Scores
w

ToM-Def ToM
Condition

Fig. 7. Kitchen scenario - PC scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).

adapt to the cognition of humans was different depending on condition. The differences between conditions were statistically
significant with the ToM condition (mean rank = 53.64) being higher than the ToM-Def condition (mean rank = 28.00), U
= 287.000, p < .001.

4) Helpful (HLP): Shapiro-Wilk tests showed a significance departure from the normality (p < .05) for both conditions.
Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being helpful was different
depending on condition. The differences between conditions were statistically significant with the ToM condition (mean
rank = 55.37) being higher than the ToM-Def condition (mean rank = 26.35), U = 219.500, p < .001.
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Fig. 8. Kitchen scenario - AC scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).
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Fig. 9. Kitchen scenario - HLP scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).

D. Corridor scenario

1) Recognizes Human Cognitions (RC): Shapiro-Wilk tests showed a significance departure from the normality (p < .05)
for both conditions. Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being
able to recognize the cognition of humans was different depending on condition. The differences between conditions were
statistically significant with the ToM condition (mean rank = 52.23) being higher than the ToM-Def condition (mean rank
=29.34), U = 342.000, p < .001.
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Fig. 10. Corridor scenario - RC scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).

2) Predicts Human Cognitions (PC): Shapiro-Wilk tests showed a significance departure from the normality (p < .05)
for both conditions. Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being able to
predict the cognition of humans was different depending on condition. The differences between conditions were statistically
significant with the ToM condition (mean rank = 51.23) being higher than the ToM-Def condition (mean rank = 30.29), U
= 381.000, p < .001.
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Fig. 11. Corridor scenario - PC scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).

3) Adapts to Human Cognitions (AC): Shapiro-Wilk tests showed a significance departure from the normality (p < .05)
for both conditions. Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being able to
adapt to the cognition of humans was different depending on condition. The differences between conditions were statistically
significant with the ToM condition (mean rank = 52.63) being higher than the ToM-Def condition (mean rank = 28.96), U
= 326.500, p < .001.
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Fig. 12. Corridor scenario - AC scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).

4) Helpful (HLP): Shapiro-Wilk tests showed a significance departure from the normality (p < .05) for both conditions.
Therefore, we conducted a Mann-Whitney U test to determine if the perception of a robot being helpful was different
depending on condition. The differences between conditions were statistically significant with the ToM condition (mean
rank = 52.13) being higher than the ToM-Def condition (mean rank = 29.44), U = 346.000, p < .001.
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Fig. 13. Corridor scenario - HLP scores in the ToM condition were significantly higher than the ToM-Def condition (p < .001).



APPENDIX IX
DOMAIN DESCRIPTIONS

In what follows, we describe the various domains used in our evaluation of the robot’s helpfulness discussed in Section VI.

A. BW4T

Johnson et al. [59] presented a multi-agent simulation platform, BlocksWorld for Teams (BW4T), which is an abstraction
of a myriad of application domains such as search & rescue. Typically in this domain, there are a number of rooms and a
drop zone, where each room contains a number of colored blocks. In the application domains, blocks may represent survivors
of a disaster or medical kits, and the various agents may be humans or robots with different roles and capabilities. We cast
blocks as medical kits.

Similarly to Shvo et al. [38], we modelled various instances of the BW4T domain by varying the number of rooms,
medical kits, and types of medical kits, totalling 15 unique problem instances. The common theme to all problem instances
is the following: there are two agents in the environment (Pepper and Bob); all discrepancies are perceived by Pepper and
resolved by it; and all plans (except for the discrepancy resolving plans) are executed by Bob. Pepper can (truthfully) inform
Bob of the whereabouts of various medical kits. Moreover, Bob can move medical kits between different locations in the
environment. In all cases, Bob’s goal is to get a particular medical kit to the drop zone. Bob’s plan involves him going to
the room in which he believes the medical kit to be. Pepper believes that Bob holds a false belief pertaining to the location
of the medical kit. Recall that in the “ToM + false beliefs’ condition, Pepper holds false beliefs itself and may therefore
provide Bob with incorrect information that will prolong Bob’s plan.

Similarly to Shvo et al. [38], our BWA4T domain was adapted from the BW4T domain in the RP-MEP repository!! by
reducing the number of actions found in the original domain.

Human replanning in our helpfulness experiments: In our helpfulness evaluation discussed in Section VI, following
the execution of the discrepancy resolving plan in Line 11 of Algorithm 1, the simulated human agent’s plan is executed.
If it does not achieve the human’s goal then RP-MEP generates a new plan for the human which involves sensing the
environment until the goal is achieved. In the BW4T domain, this means that Bob searches all ‘areas’ of the room he is in
and then proceeds to the closest room and searches all of its ‘areas’ and so on, until the medical kit is found. If Pepper
provides Bob with information and changes his beliefs about the location of the medical kit, RP-MEP will generate a plan
for Bob that involves heading to the location provided by Pepper.

B. Corridor (Epistemic Planning Benchmark)

In our modified'? version of the Corridor domain, there are n agents in various rooms connected to a long corridor. A
single acting agent, Bob, holds a secret and can move along the corridor, enter different rooms, and announce his secret.
When announcing the secret, all agents in the room with Bob, as well as all agents in the adjacent rooms (when the door
between the rooms is open), now believe the secret. The encoding of the shareSecret action in PDKBDDL is as follows:

domain-corridor.pdkbddl

(define (domain corridor)

; This specifies the agents in the set of agents Ag
(:agents a b ¢)

(:types loc door)

(:predicates
secret ?agent)

(

(at ?agent - agent ?1 - loc)
(connected 211 2?12 - 1loc)
(door_open ?d - door)
(dummy)

(:action shareSecret
:derive-condition (at $Sagent$ 11)
:parameters (?a ?as — agent)

https://github.com/QuMulab/pdkb-planning/tree/ef396e686147bd3e2e392ffadebcefd07998£45f /examples/
planning/bwédt

12The unmodified corridor domain can be found in https://github.com/QuMulab/pdkb-planning/tree/
ef396e686147bd3e2e392ffadebcefd07998f45f/examples/planning/corridor.



:precondition (and (at ?a 11) [?a] (secret ?as))
reffect (and
(forall ?a2 - agent
(when (and (door_open dl112) (at 2a2 12))
[?a2] (secret ?as))

)

(forall ?a3 - agent
(when (and (at 2a3 11))
[?7a3] (secret ?as))

)

In our version of the corridor domain, Bob has the epistemic goal of selectively spreading his secret to the other agents
in the environment. For example, let us assume that there are two agents in the environment in addition to Bob (k and /)
and that Bob’s epistemic goal is Bi(BobSecret) A —=B;(BobSecret). That is, Bob wants agent k to believe his secret, but does
not wish for agent / to believe it. We create 15 instances of this domain by varying the number of rooms, agents, and false
beliefs held by Bob about the locations of each agent, and whether or not the doors between the different rooms are open
or closed. For each of the generated instances, a tuple is created and given to Algorithm 1 where agent R is Pepper and
agent H is Bob. Pepper can inform Bob of agents’ locations and can also open and close doors in the environment.

We are interested in discrepancies pertaining to the validity of Bob’s plan, as perceived by Pepper. Pepper will believe
that Bob’s plan is not valid while believing that Bob believes it is valid for the following reason:

« Bob only wants agent k to believe his secret without agent / believing it (i.e., By(BobSecret) A ~B;(BobSecret)). Pepper
believes that Bob falsely believes that agent [ is (1) neither in the adjacent rooms to the room in which agent k is
located or (2) correctly believes that / is in an adjacent room but falsely believes that the door between the rooms is
closed. Therefore, Bob will plan to go to the room in which he believes k to be and share his secret with her. However,
this plan will fail to achieve Bob’s goal since agent / will come to believe Bob’s secret since the door between the
rooms is actually open and [/ is in the adjacent room.

Human replanning in our helpfulness experiments: In our helpfulness evaluation, following the execution of the
discrepancy resolving plan in Line 11 of Algorithm 1, the simulated human agent’s plan is executed. If Pepper does not
intervene and resolves the discrepancy it perceives between its beliefs and Bob’s beliefs, then Bob’s epistemic goal becomes
irrevocably unachievable. This is because Bob will share his secret with agent k£ but will inadvertently also share it with
agent [, because of his false belief. Consequently, B;(BobSecret) A B;(BobSecret) will hold following Bob’s plan and there
is no action that can negate B;(BobSecret). Therefore, Bob’s epistemic goal cannot be achieved and so replanning will yield
an empty plan.

C. IPC Domains

Inspired by 2 TIPC domains!? — Depots, Driverlog — we modelled 2 MEP domains with agents Pepper and Bob. In total,
we generated 30 problem instances (15 from each domain) by creating false beliefs for Bob (e.g., causing Bob to hold a
false belief about the location of an object in the Driverlog domain) and varying the domain parameters (e.g., number of
objects in the domain). As before, Bob is the acting agent and Pepper is the discrepancy resolving agent.

In each IPC domain, Pepper has at its avail appropriate communicative actions. For example, in the Driverlog domain
Pepper can inform Bob that he holds a false belief about the location of an object.

Human replanning in our helpfulness experiments: In our helpfulness evaluation, following the execution of the
discrepancy resolving plan in Line 11 of Algorithm 1, the simulated human agent’s plan is executed. If it does not achieve
the human’s goal then RP-MEP generates a new plan for the human which involves sensing the environment until the goal
is achieved. In the IPC domains, this means that Bob searches all ‘areas’ of the location he is in and then proceeds to the
closest location and searches all of its ‘areas’ and so on, until either the package (in the Driverlog domain) or the crate (in
the Depots domain) is found, depending on the domain. If Pepper provides Bob with information and changes his beliefs
about the location of the crate or package, RP-MEP will generate a plan for Bob that involves heading to the location
provided by Pepper.

3IPC domains from multiple iterations of the competition can be found in http://editor.planning.domains/



D. Home (domains used in our user study)

In our study, we recorded videos involving a Pepper robot and a human(s) in a number of realistic scenarios: (1) a slight
variation'* of the kitchen scenario described in Section III, (2) a ‘phone charger’ scenario, and (3) a simplified corridor
scenario (described earlier in Appendix IX-B). We also use these domains in our evaluation of the robot’s helpfulness. In
this section we elaborate on the phone charger scenario and the simplified corridor scenario.

1) Phone charger scenario: In the phone charger scenario, we place focus on visual perspective taking [50],'>'® which
is the ability to see the world from another person’s perspective. In particular, we use gaze detection to recognize the
direction in which each agent’s gaze is facing. Recall that we use MonoLoco’s orientation estimation and predict that a
person has shifted their gaze if the predicted orientation changes. Previous work!” has formalized visual perspective taking
using epistemic logic and inspired by this formalization, we implemented a simplified visual perspective taking mechanism
in RP-MEP [34].

Recall RP-MEP’s conditioned mutual awareness mechanism that models and enforces conditions for agents’ ‘awareness’
of the effects of an action. For instance, in our kitchen scenario agents are ‘aware’ that an action has been performed if
they are in the same location in which the action was performed. To model visual perspective taking, we encode actions
such that agents are ‘aware’ that an action has been performed only if their gaze is facing the ‘appropriate’ direction. For
instance, if Bob is picking up an object in a certain corner of the room and Alice is facing the corner opposite to it, then
Alice will not believe that Bob is now holding that object. With that in mind, we describe the ‘phone charger’ scenario and
relate it to visual perspective taking:

Alice and Pepper the robot are in the living room. The scenario begins by Alice connecting her phone to a phone
charger and immediately disconnecting it when she suddenly receives a call. Alice answers the call and proceeds
to sit down at the table (with her back to the phone charger). As Alice begins her phone call, Bob walks into the
living room, unplugs the charger, and leaves the room with it.

After observing Alice connecting her phone to the charger, Algorithm 1’s plan recognition component recognizes that
Alice’s goal is to charge her phone (and this goal persists even when Alice takes the phone call and sits down at the table).
Algorithm 1’s plan recognition component also recognizes that Alice’s plan is to charge her phone using the charger.

As discussed in Section IV, the perception module in this case — upon observing that Alice sat down with her back
to the charger — will produce the (informally'® specified) observation shiftGaze(Alice, awayFromCharger). In Line 4 of
Algorithm 1, the state S is progressed with the shiftGaze action, after which Pepper believes that Alice is not facing in the
direction of the charger.

After observing that Bob has entered the room, unplugged the charger, and left the room, Pepper reasons that the charger
is no longer there. However, via visual perspective taking, Pepper reasons that Alice — whose gaze is facing away from the
phone charger — does not update her beliefs about the location of the charger.

Pepper now believes that Alice holds a false belief about the location of the charger (i.e., Pepper believes that the charger
is no longer there while believing that Alice believes that it is still there) and therefore perceives a discrepancy between its
beliefs and Alice’s pertaining to her plan of charging her phone. Given that Pepper believes that there is another charger in
the bedroom, in Line 8 an assistive solution 7, is generated which involves Alice obtaining the charger from the bedroom.
To resolve the discrepancies pertaining to the validity of Alice’s plan and the assistive solution, Pepper can do one of two
things:

(1) Pepper goes to the bedroom, picks up the spare phone charger, and brings it back to the living room to replace
the charger that was taken by Bob.

or

(2) Pepper informs Alice that the charger is no longer in the living room and that there is another charger in the
bedroom.

In our study, participants were shown the former discrepancy resolving plan executed by Pepper. The video can be found
in https://youtu.be/ICSKmchZIWS.

Human replanning in our helpfulness experiments: In our helpfulness evaluation, following the execution of the
discrepancy resolving plan in Line 11 of Algorithm 1, the simulated human agent’s plan is executed. If it does not achieve
the human’s goal then RP-MEP generates a new plan for the human which involves sensing the environment until the goal

14due to the limitations of the perception system, we used a large bag chips instead of a can of soup and updated the PDKBDDL encoding, as well as
the set of possible goal accordingly.

I5] akatos, G., Wood, L. J., Syrdal, D. S., Robins, B., Zaraki, A., & Dautenhahn, K. (2021). Robot-mediated intervention can assist children with autism
to develop visual perspective taking skills. Paladyn, Journal of Behavioral Robotics, 12(1), 87-101.

'GGzesh, S. M., & Surber, C. F. (1985). Visual perspective-taking skills in children. Child development, 1204-1213.

17Gasquet, O., Goranko, V., & Schwarzentruber, F. (2016). Big brother logic: visual-epistemic reasoning in stationary multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 30(5), 793-825.

8More formally, the room was split into 4 quadrants and awayFromCharger specifies one of these quadrants.



is achieved. In the phone charger domain, this means Alice searches all ‘areas’ of the room she is in and then proceeds
to the closest room and searches all of its ‘areas’ and so on. If Pepper provides Bob with information and changes his
beliefs about the location of the phone charger, RP-MEP will generate a plan for Alice that involves heading to the location
provided by Pepper.

2) (Simplified) corridor scenario: As mentioned, this is a simplified version of the corridor domain. In particular, the
scenario is as follows:

Alice, Bob and Pepper are in the living room. Alice and Bob are sitting at the table with Pepper nearby, discussing
work matters. Eve walks by and says goodbye to Alice and Bob. Bob whispers to Alice (with pepper within earshot):
“I gotta tell you something about Eve’s birthday party but Eve can’t find out!”. From Pepper’s vantage point, it
notices that Eve left the room but is right by the door (looking for something in her bag), within earshot but out
of sight of Alice and Bob.

As in the phone charger scenario, this scenario involves an element of visual perspective taking since Pepper believes that

Alice and Bob’s gaze is facing a direction such that they cannot see that Eve is right outside the door. As such, Pepper

believes that Bob holds a false belief about Eve’s location and therefore Pepper perceives a discrepancy pertaining to Bob’s

plan of sharing his secret with Bob. Pepper believes that if Bob shares his secret with Alice while Eve is just outside the

door, Eve will come to learn the secret and Bob’s epistemic goal will therefore not be achieved (and worse, Bob’s goal will

become irrevocably unachievable). The shareSecret action shown earlier in this section is slightly altered to model this.
To resolve this discrepancy, Pepper can either

(1) Send a message to Bob, informing him that Eve is standing just outside the door,
or
(2) close the door.

In our study, participants were shown the latter discrepancy resolving plan executed by Pepper. The video can be found in
https://youtu.be/VLxceOkYM-A. In the video, Tara (playing the role of Bob) whispers to Ruthrash (playing the
role of Alice) that she has to tell him about Maayan’s (Eve’s) birthday party but Maayan can’t find out. In this work we do
not address the interesting natural language understanding task of inferring Tara’s epistemic goal from her utterance. Instead,
Tara’s goal is already known (and reflected in Gp) and given to Algorithm 1 — Bryrash (Maayan_birthday_party_secret) A
—BMaayan (Maayan_birthday_party_secret).

APPENDIX X
ADDITIONAL RESULTS — HELPFULNESS EVALUATION

A. An Infinitely Helpful Robot

In the last row of Table I, the cost of the plan 7y is always oo since the human’s false beliefs cause her to generate an
invalid plan that makes her epistemic goal irrevocably unachievable (e.g., Alice sharing her secret with Bob while Eve is,
unbeknownst to Alice, behind the door eavesdropping). In contrast, the robot can assist by, for instance, informing Alice that
Eve is behind the door, which causes Alice to replan and achieve her epistemic goal. The cost of the plan 7y is therefore
a finite number and, per [33], the robot’s helpfulness in such cases is oo.

B. Runtime results for Algorithm 1

While the focus of this work was not to evaluate the scalability of Algorithm 1, we discuss the runtime results from our
helpfulness experiments (discussed in Section VI). The runtime and scalability of RP-MEP in conjunction with the epistemic
planning-based techniques we leverage in this work have been evaluated by previous work [38], [45]. It has been shown that
the runtime and scalability bottleneck is the depth of nested belief and number of agents in the MEP problem. These results
are consistent with the findings of RP-MEP’s developers [34] who discussed how RP-MEP’s classical encoding of a MEP
problem generates an exponential number of fluents which significantly impacts the runtime as the depth of nested belief
and number of agents grow [20], [34]. In what follows we discuss runtime results for each RP-MEP-based component of
Algorithm 1.

1) Epistemic plan recognition runtime: Shvo et al. [45] showed that when using RP-MEP in conjunction with a classical
planner configured to generate satisficing (rather than optimal) plans, the runtime of their plan recognition algorithm remained
low as long as the number of agents and depth of belief remained low as well. In Line 6 of our Algorithm 1, Shvo et al.’s
plan recognition algorithm is called. The runtime results for our small domains (i.e., BW4T, Home, and Corridor) were
similar to Shvo et al.’s [45] results — the human’s presumed plan and goal were returned in under 1.5 seconds for all problem
instances. This is due to the fairly small number of actions in the domain, small number of observations (due to short plans),
and small number of agents. In contrast, the IPC domains Depots and Driverlog are more complex and plans generated to
achieve goals in these domains are considerably longer than in our other domains. As shown in Shvo et al.’s Table 1 [45],
runtime can reach minutes. Indeed, in our helpfulness evaluation we observed similar runtimes for the two IPC domains
used.



2) Discrepancy resolution runtime: Shvo et al. [38] observed runtime results for their discrepancy resolution algorithm
that align with those observed by Shvo et al. [45]. That is, as the number of agents and depth of belief grow, so does the
runtime. Shvo et al. [38] even showed how, when the depth of nested belief was sufficiently high, the planner ran out of
memory in some of the problem instances.

In Line 10 of our algorithm, we call a modified version of Shvo et al.’s discrepancy resolution algorithm. For the Home,
Corridor, and BW4T domains, the discrepancy resolution algorithm returned a discrepancy resolving plan in under 2.5
seconds for all problem instances.

Similarly to the plan recognition runtime results reported earlier, in the IPC domains the runtime was considerably higher
on average, with Line 10 taking up to 5 minutes to return a discrepancy resolving plan in some cases.

3) Real-time execution of Algorithm 1 in our user study video recordings: We note that RP-MEP’s runtime can remain
low when the number of agents and depth of nested belief stay low. This is observed in our simpler domains, as discussed in
the previous subsections. Muise et al. [34] moreover mention that most interesting use cases of epistemic planning involve
relatively low nested belief.

Indeed, our study included 3 fairly realistic scenarios that involve complex ToM reasoning. In our study, domains were
simplified such that each iteration of Algorithm 1’s while loop took less than a second. It was therefore possible to run the
algorithm in real time and in conjunction with the perception module (i.e., the various perceptual detectors used).

4) Takeaway: While we were able to run Algorithm 1 in real time in our simplified domains, it is clear that in order
to run Algorithm 1 in more complex domain and in real time, significant runtime improvements will have to be made.
Fortunately, epistemic planning is an active research field and planner runtime will surely improve over time, as is the case
for research on automated planning more generally.

APPENDIX XI
RELATED WORK

The related work section can be found in https://bit.ly/3Ebbltc.



