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Abstract

Motivation: STS-content data for genomic mapping
contain numerous errors and anomalies resulting in
cross-links among distant regions of the genome. Iden-
ti�cation of contigs within the data is an important
and di�cult problem.
Results: This paper introduces a graph algorithm
which creates a simpli�ed view of STS-content data.
The shape of the resulting structure graph provides a
quality check | coherent data produce a straight line,
while anomalous data produce branches and loops. In
the latter case, it is sometimes possible to disentan-
gle the various paths into subsets of the data covering
contiguous regions of the genome, i.e., contigs. These
straight subgraphs can then be analyzed in standard
ways to construct a physical map. A theoretical basis
for the method is presented along with examples of its
application to current STS data from human genome
centers.
Availability: Freely available on request.
Contact: eharley@cs.toronto.edu

Introduction

Two epic e�orts to construct contig maps of the hu-
man genome were begun in the early 1990's, one led
by Daniel Cohen at the Centre d'Etudes du Poly-
morphismeHumain and G�en�ethon (CEPH/G�en�ethon),
and the second led by Eric Lander at the White-
head Institute for Biomedical Research/MIT Center
for Genome Research (WI/MIT). Both groups adopted
a general strategy of combining bottom-up methods
for constructing contigs across modest regions, with
top-down methods for ordering the contigs across en-
tire chromosomes. Both groups used STS-content
mapping as a key bottom-up method, though the
CEPH/G�en�ethon team (which started �rst) initially
used �ngerprint mapping for this purpose. For top-
down ordering of contigs, both groups planned to use
the genetic map (Weissenbach et al., 1992; Gyapay
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et al., 1994; Dib et al., 1996) generated by a sepa-
rate team at CEPH, led by Jean Weissenbach. Fol-
lowing successful demonstrations of radiation hybrid
(RH) mapping (Cox et al., 1990; Walter et al., 1994),
the WI/MIT group undertook extensive RH mapping
to augment the Weissenbach genetic map. The groups
published several partial maps (Cohen et al., 1993;
Chumakov et al., 1995; Hudson et al., 1995), but were
never able to produce a near-complete contig map of
the human genome. Eventually they joined forces with
each other, with several other groups engaged in more
focussed mapping e�orts, and with several groups en-
gaged in EST sequencing projects, and produced a
seminal gene map of the human genome (Schuler et
al., 1996); this map stands as one of the major accom-
plishments of the Human Genome Project to date.

In genome parlance, a map is a collection of spa-
tially related features. A contig is a portion of the
map (or data) that is believed to correspond to a
single continuous section of the genome. The contig
maps in question involve two principal kinds of fea-
tures: sequence-tagged sites (STSs) and yeast arti�-
cial chromosome clones (YACs). For our purposes,
an STS is a short stretch of genome, typically a few
hundred bases in length, and a YAC is a much longer
stretch of genome, typically ranging in size from 500
kilobases (kilobase, or kb = 1000 bases) to as much
as 2 megabases (megabase, or mb = 1,000,000 bases).
The human genome is much larger still, comprising
3 � 109 bases (3,000 mb). The di�erence in scale be-
tween STSs, YACs, and the human genome is so large
that we can reasonably think of the genome as a line,
and STSs and YACs as points and intervals, respec-
tively, along this line.

Contig mapping has proven to be an extremely dif-
�cult task, because of numerous sources of \noise" in
the data. Both the CEPH/G�en�ethon and WI/MIT
teams were successful in collecting large data sets, but
were unable to analyze these data sets to yield compre-
hensive contig maps. This is somewhat surprising in
that the data analysis problem is super�cially simple.
Bottom-up mapping methods produce data indicating
which clones overlap. This information may be viewed
as a graph in which nodes correspond to clones, and
an edge between two nodes represents overlap between
the two clones. In an ideal world, the overlap data
conform to a model where the clones are intervals and
the STSs are points on the real line. In this case the
resulting graph is known as an interval graph, and con-
tigs correspond directly to the connected components.
One can use elementary graph methods to �nd the con-
nected components, and then use interval graph meth-
ods (Booth and Leuker, 1976; Corneil et al., 1998) to



determine the order of the points and intervals (STSs
and clones) contained in each component (contig).

Real mapping data deviates from the ideal in sev-
eral respects: (1) most egregiously, many YACs are
chimeric, meaning they contain DNA found in dis-
parate regions of the genome (Green et al., 1991; Haldi
et al., 1994); (2) many STSs are repetitive, tagging
more than one site in the genome; and (3) the map-
ping procedures generate many false positive and false
negative errors. This noise obscures the underlying
interval nature of the problem, and gives rise to false
contigs that are far too large, and that erroneously con-
nect widely separated parts of the genome. Hence the
need for the top-down methods which serve to sort and
anchor features of the map along the genome, thus pro-
viding guidelines for subdividing components into true
contigs.

There is at present no completely automated way
to construct large maps from STS-content data, but
there are many software packages which do much of the
analysis. These systems typically present preliminary
maps in visually meaningful ways, and the researcher
can then interact with the system, adjusting parame-
ters, throwing out inconsistent data and including new
data. Mott and co-workers, mapping the yeast genome,
developed several programs to order probes and clones
and to display maps (Mott et al., 1993). The program
probeorder uses a maximum-likelihood measure of
separation between pairs of probes and a simulated
annealing algorithm to minimize the path through the
probes. Two other programs, barr and costig, order
probes using noise-reducing heuristics and tree-search
techniques. The heuristics are designed to break up
forks in their maps caused by coligated clones, repet-
itive probes and random false positives. First, probes
are 
agged as possibly repetitive if they are connected
to too many other probes, and the user can interac-
tively make a decision regarding their deletion. Sec-
ond, two probes are considered neighbors only if they
hit more than one clone in common.

The approach taken by CEPH/G�en�ethon for map-
ping the human genome data is embedded in a com-
pact database and navigation tool called QUICKMAP,
developed by P. Rigault and E. Poullier. It consists
of several steps, as follows: (1) construct a frame-
work of genetically mapped STSs; (2) use various forms
of YAC overlap data to assemble reasonable minimal
YAC paths between the mapped markers, where \rea-
sonable" means not using STSs or YACs that belong to
other regions of the map; (3) manually inspect paths
for consistency and absence of cycles; (4) extend or
improve paths by doing speci�c experiments; and (5)
map some YACs that contain genetic markers to the

cytogenetic map using FISH (Fluorescent In Situ Hy-
bridization) data (Chumakov et al., 1995).

The WI/MIT group have developed physical map-
ping software called CONTIGMAKER. Their ap-
proach to analysis of the human genome data consists
of di�erent steps: (1) link together STSs that share
at least two YACs, thus forming double-linked contigs;
(2) place the contigs in the map by using genetic and
radiation-hybrid data; (3) use single linkage where it
joins contigs which are genetically close; (4) order the
STSs within contigs using a simulated annealing algo-
rithm; (5) add in incomplete addresses that can now be
disambiguated; (6) reorder, manually inspect and re-
�ne; and (7) �ll remaining gaps between contigs with
the help of Alu-PCR and �ngerprint data (Hudson et
al., 1995).

A number of systems for analysis of probe-clone data
within a contig have been developed by groups working
on smaller genomes or (portions of) single human chro-
mosomes. Examples of these systems are: ODS: a pro-
gram for quickly ordering random clones into a physi-
cal map (Cuticchia et al., 1993); ODS BOOTSTRAP:
a program for quickly ordering clones and for apply-
ing a statistical tool to assess reliability of the or-
dering (Wang et al., 1994); SAM: a system for itera-
tively building marker maps (Soderlund and Dunham,
1995); SEGMAP: an interactive graphical tool for an-
alyzing and displaying physical mapping data (Green
and Green, 1991; Magness and Green, 1996); CON-
TIG EXPLORER: a package for interactive assembly
of STS-content maps (Nadkarni et al., 1995).

The primary goal of these systems is to �nd a most
likely order of the probes and a corresponding place-
ment of the clones. The data are sometimes converted
to a weighted intersection graph, where nodes corre-
spond to STSs, edges correspond to clones connecting
STSs, and edge weights count the number of clones
contributing to each edge. In some of these systems,
an initial estimate of probe order is obtained by calcu-
lating a maximal spanning tree (MST) of the weighted
intersection graph. The initial order is then re�ned by
a simulated annealing algorithm. Other methods of
physical map assembly use techniques from arti�cial
intelligence, such as constraint propagation (CPROP)
(Letovsky and Berlyn, 1992), and methods based on
temporal logic (Lee et al., 1993; Schmeltzer, 1995).
Karp and co-workers have developed physical mapping
algorithms based on the maximum-likelihood method
and on the Hamming Distance Traveling- Salesman
Problem (Alizadeh et al., 1993).

In this paper we describe an algorithm which can
augment these systems: it provides a preliminary view
of the data that helps in the identi�cation of contigs



Figure 1: Structure-graph algorithm

even in the absence of top-down information. This
view, called a structure graph, produces an outline of
the connected components by compressing local detail
in the intersection graph. If the data are free of cross-
links among contigs, then connected components will
appear as simple, chordless paths, i.e., straight lines.
On the other hand, a connected component which is
rendered as a branching structure very likely contains
several contigs spuriously interconnected. Thus, the
structure graph provides a quality check which can
reduce the chance of mistaking a complex connected
component for a contig. Without this check, one may
unwittingly supply an STS ordering system with data
for a component composed of interlinked contigs or a
contig with spurious self-links. The result would typi-
cally be an incorrect order for the STSs. Besides 
ag-
ging complex connected components, structure graph
analysis can also aid in their subdivision into contigs,
especially when there is top-down information such as
genetic or radiation hybrid positioning of the markers.

System and methods

The STS data were obtained from two sources:
Release 10 (May, 1996) from WI/MIT, available

by anonymous ftp (genome.wi.mit.edu, directory
/pub/human STS releases/may96) and the March
1995 Release from CEPH/ G�en�ethon, also avail-
able by anonymous ftp (ceph-genethon-map.cephb.fr,
/pub/ceph-genethon-map/STS/29MAR95.DAT). We
combined WI/MIT data (12,527 STSs and 21,051
YACs) with CEPH/G�en�ethon data (7,026 STSs and
18,298 YACs) to produce a merged data set of 15,136
STSs and 24,855 YACs. The average number of hy-
bridizations (`hits') per STS in the merged data is 6.2
(standard deviation 4.0).

STS-YAC data can be represented as a weighted in-
tersection graph in which each node is an STS and
an edge of weight M > 0 between two nodes indi-
cates that the corresponding STSs hitM YACs in com-
mon. The weighted intersection graph for the merged
STS data consists of 665 connected components, one
of which contains 94% of all the STS nodes. This
anomalous aggregation of most of the nodes into a
single component is caused by edges which link STSs
belonging to di�erent chromosomes, and it is a well
known e�ect of chimeric YACs. In fact 69% of the unit
weight edges link STSs belonging to di�erent chromo-
somes, and thus do not re
ect proximity in the genome.
This has motivated the double-linkage strategy used by
WI/MIT and discussed in (Arratia et al., 1991), where
one considers only subgraphs for which M � 2.

Double-linkage intersection graphs, however, also
su�er from cross-linkage of STSs from disparate parts
of the genome. As much as 6% of the 38,142 double-
linkage edges cross-link chromosomes. Assuming a ran-
dom chimeric process, we would expect virtually no
chimeric edges with weight greater than two, whereas
the weights of the cross-linking edges can be as high
as M = 15, and about one third of them have weight
M > 2. We suspect that most of the non-unit weight
edges that link STSs on di�erent chromosomes result
from non-unique STSs, i.e., STSs that hit repeat re-
gions in the genome. As a result of these edges,
the double-linkage intersection graph is dominated by
one anomalously huge connected component contain-
ing one third of all STSs and representing every chro-
mosome.

Thus, although edges with weight M � 2 are gener-
ally reliable, many of these strong edges are misleading.
Chimeric addresses, non-unique STSs and false pos-
itives imply incorrect proximities in a genomic map.
False links between chromosomes (when indicated by
the assignment of the STSs involved) are easily de-
tected and removed. False links within a single chro-
mosome are more troublesome. These unwanted edges
arti�cially cross-link widely separated regions of the
genome. The next section describes a method that



Figure 2: (a) Example of intersection graph and (b),(c) two forms of structure graph.

makes the presence of these cross-links easily visible in
many cases, whether they link di�erent chromosomes
or distant sites on the same chromosome.

Algorithm

As the amount of mapping data increases, the inter-
section graphs rapidly become large, unwieldy and ex-
tremely complicated. However, much of the complexity
arises from small-scale details. In contrast, the large-
scale structure of the graph should be relatively simple,
in fact, linear, since the chromosome has a linear ar-
rangement. The presence of strong (M > 1) spurious
edges, however, creates links and loops among what
would otherwise be separate components of the inter-
section graph. As a result, the intersection graph be-
comes a complex web of components that are di�cult
to separate and map. We describe here an algorithm
for graph abstraction which elucidates this large scale
structure.
The simpli�cation is achieved by coalescing nodes

of the double-linkage STS intersection graph into sets
called blobs. Intuitively, a blob is a set of nodes from
a small, localized region of the graph. We have ex-
perimented with di�erent methods of de�ning these
localized regions. The method we �nd to be most in-
sensitive to noise in the data while preserving under-
lying structure is based on breadth �rst search (BFS),
a classical graph traversal algorithm which partitions
nodes into layers L0; L1; : : : ; Li; : : : according to their
distance i from a given starting node (cf. a graph the-

ory text, e.g., (Golumbic, 1980)). We de�ne a blob to
be a connected component within a BFS layer; i:e:, a
set of nodes that belong to the same layer and that
are connected by a path using only nodes in this layer.
A structure graph consists of nodes corresponding to
blobs in the intersection graph, with an edge (bi; bj)
between blobs bi and bj if there is an edge in the inter-
section graph between an STS in blob bi and an STS
in blob bj.

The algorithm for forming a structure graph G0 =
(V 0; E0) from an STS double-linkage intersection graph
G = (V;E) is shown in Figure 1. It consists of a main
procedure and a function, Make-Blob. The main pro-
cedure invokes the breadth-�rst search algorithm BFS
twice | the �rst BFS determines an extremity of the
intersection graph, and the second BFS de�nes new
BFS layers relative to this extremity. We assume that
the number of the layer to which a node y 2 V belongs
according to the most recent BFS is given by layer(y).
The main procedure also calls the function Make-Blob
once for each blob formed, and constructs the edges of
the structure graph. The function Make-Blob(v) deter-
mines which vertices w 2 V belong to the same blob as
v, based on the most recent BFS. It returns the blob
as a set, S, and increments a counter b which identi�es
the corresponding node in the structure graph. Note
also that the Make-Blob function de�nes the associa-
tion blob(w) = b for each vertex w in the blob, i.e., for
each w 2 S.

As an example, we construct the structure graph
for the simple intersection graph shown in Figure 2(a).



Figure 3: A small component of the merged data STS
intersection graph (top) and its corresponding struc-
ture graph (bottom).

Arbitrarily choose starting node u = h in Step 1. The
BFS layers are then L0 = fhg, L1 = fe; f; g; i; j; kg,
L2 = fc; d; l;mg, L3 = fa; b; n; og, and L4 = fp; q; rg.
The last node visited in the BFS could be any of p; q,
or r; let it be x = r. Step 2 forms the �rst blob as
S = blob0 = fp; q; rg. The second BFS layering per-
formed in Step 3, BFS(G,S), starting at the set fp; q; rg
produces L0 = fp; q; rg, L1 = fn; og, L2 = fl;mg,
L3 = fj; kg, L4 = fe; f; g; h; ig, L5 = fc; dg, and
L6 = fa; bg. Each of these layers is internally con-
nected, so the blobs formed in Step 4 are the same as
the layers of Step 3, i.e., blobi = Li; i = 0; 1; : : :; 6. Step
5 forms the edges of the structure graph by connect-
ing blobs which contain adjacent nodes. For example,
(blob0; blob1) is an edge in the structure graph since
(r; o) is an edge in G, and r 2 blob0 and o 2 blob1.
Figure 2(b) shows the resulting structure graph, rep-
resenting the blobs as groups of explicitly listed STSs.
Figure 2(c) shows another representation of structure
graph which displays blobs as simple nodes, while hid-
ing the contents. The latter representation is used in
other �gures of this paper.
Comparing the graphs in Figure 2, one can see that

the structure graph is simpler than the original graph
since it has fewer nodes and edges. More importantly,
it captures the underlying linear structure of intersec-
tion graphs derived from STS data by compressing lo-
cal complexity. The theorem below states that the
structure graph is a simple linear sequence of blobs for

any intersection graph of noise-free STS-YAC data.

Theorem 1 The structure graph derived from a con-
nected component of an STS intersection graph for per-
fect STS-YAC data by the Structure Graph Algorithm
is a simple chordless path.

Proof: We only sketch the proof of this theorem, since
the result follows almost directly from the theory of
unit interval graphs (Corneil et al., 1995). First, a
graph is a unit interval graph if each vertex can be
identi�ed with a unit interval along the real line such
that there is an edge between two vertices if and only
if the corresponding intervals overlap. A theorem of
Roberts (Roberts, 1968) cited in (Corneil et al., 1995)
states that a graph G is a unit interval graph i� there
is an order < on the vertices such that for each vertex
v, the set comprising v and its neighbors in G is con-
secutive with respect to this order. This clearly holds
for a perfect STS intersection graph if we let < be the
genomic order of the STSs. Therefore, the STS inter-
section graph for ideal data is a unit interval graph.
Second, because it is a unit interval graph, Proposi-
tion 2.1(2) and Theorem 2.3 of (Corneil et al., 1995)
(with minor modi�cations) imply that each BFS layer
produced in Step 3 of the Structure Graph Algorithm
applied to the intersection graph for perfect data is
connected (in fact, each layer is a clique). Third, The-
orem 1 follows easily now, since in this case each BFS
layer forms a single blob, and the BFS layers by de�-
nition are joined in sequence.
According to this theorem, deviations in a structure

graph from a simple path similar to that of Figure 2(c)
re
ect deviations from ideal data. The simple path
structure is robust to the extent that it is preserved
by false negatives which do not interrupt connectiv-
ity within a BFS layer. More disruptive false nega-
tives create small branches typically of length 1 or 2,
whereas non-unique STSs and pairs of chimeric YACs
or false positives linking unrelated STSs can produce
long branches. Thus, the main advantage of represent-
ing data as a structure graph is to verify whether or not
the data are reasonably `clean' and free from improper
cross-links among contigs or within a contig.

Results

Figure 3 shows a small connected component from the
double-linkage STS intersection graph for the whole
genome and its corresponding structure graph. The
graphs are displayed using the Hy+ data visualization
system (Consens, 1994). This example is typical in



Figure 4: E�ect of false negatives on structure graph.

that the structure graph has on the order of twenty-
fold fewer edges (20 vs. 534) than the original graph
and three or four-fold fewer nodes (21 vs. 75). This
condensing of nodes and edges simpli�es the represen-
tation of the graph, but more importantly, the shape
of the structure graph says something about the coher-
ence of the data. When the shape is branching, as in
Figure 3, this suggests that the connected component
does not represent a single region of a chromosome, but
rather two or more regions that are arti�cially joined.
To con�rm this inference we have labeled the blobs ac-
cording to the chromosome assignment of the majority
of STSs in each blob. An unlabeled square indicates
a blob for which there is no majority chromosome as-
signment. This connected component appears to be
composed of a segment of chromosome 11 cross-linked
with a segment of chromosome 12. Larger components
have many branches and loops, while most paths be-
tween branch points are homogeneous in chromosome
content. Thus, double-linkage connected components
often appear to be composed of a number of artifac-
tually linked contigs. In the absence of obvious warn-
ing signs like changes in chromosome assignment, a
branching or looping structure-graph is the main indi-
cation of cross-links in the data.
Structure graphs can be further simpli�ed by re-

moval of branches of unit length and small cycles. The
rationale for this simpli�cation is that these deviations
from linearity are most likely caused by false nega-
tives, which are not relevant to structure. Moreover,
some graph layout algorithms exaggerate the length
of edges in short branches or cycles, making them vi-

sually distracting. This simpli�cation is illustrated in
Figure 4. Figure 4(a) presents a model of STS-YAC
data (vertical bars represent STSs; horizontal bars rep-
resent YACs; and uncircled intersections of bars repre-
sent hits) which includes a false negative (the open
circle) for STS S3. This gives rise to a branch of
length one in the structure graph shown under the
model. Figure 4(b) presents a model which includes
false negatives for STS probes S2 and S3. The two
false negatives cause a small cycle in the corresponding
structure graph. (In these two examples, the structure
graphs are isomorphic with the corresponding double-
linkage intersection graphs, so each blob contains a sin-
gle STS.) A simple algorithm (not shown) can be used
to trim away the branches of length one. The struc-
ture algorithm can be modi�ed slightly so that nodes
S2 and S3 form a single blob, thus compressing these
small cycles.

Figure 5 provides an example of trimming unit
length branches and compressing small cycles. From
left to right the graphs in this �gure are: (i) the
largest connected component in the double-linkage in-
tersection graph for STSs assigned to Chromosome 21
or unassigned (263 nodes, 1593 edges); (ii) the corre-
sponding structure graph (49 nodes, 49 edges); (iii) the
result of trimming branches of length one (38 nodes,
39 edges); (iv) the result of compressing small cycles
(36 nodes, 35 edges). This sequence of graphs illus-
trates a progressive reduction of detail leading to a
graph which clearly reveals whether the structure is
branching, complex, or straight. In this case the �nal
graph is a simple path, consistent with the component
being a single contig. (When possible, a linear compo-
nent like this should also be checked using positional
information as discussed below.) Small cycles are less
common than unit length branches, so unless otherwise
speci�ed, we use the unmodi�ed structure algorithm of
Figure 1, and trimming refers only to removal of unit
length branches.

As an example of a complex connected component
from a single chromosome, we show the largest con-
nected component for Chromosome 5 in Figure 6. The
double-linkage intersection graph (134 nodes and 523
edges) for the component appears in top part of this
�gure, and the structure graph (26 nodes and 26 edges)
with branches of length one removed is shown below.
Comparison of these two graphs illustrates the useful-
ness of this technique of graph simpli�cation: there
is a �ve-fold reduction in the number of nodes, a
twenty-fold reduction in the number of edges, and the
branched and looped structure clearly reveals the pres-
ence of several contigs.

To con�rm this inference we have annotated blobs



Figure 5: A component of Chromosome 21: STS in-
tersection graph, structure graph, trimmed structure
graph, trimmed structure graph with small cycles re-
moved

with average genetic positions according to mapped
STSs within blobs. (Average radiation hybrid po-
sitions are omitted for clarity, but support the con-
clusions we derive from genetic positions.) Matching
branches with similar positions, three paths stand out
as potential contigs: P1 = A-B-C-J2-J1-D-E-F-G-H-
I-K; P2 = S-T-U-V-J2-W-X-Y; and P3 = L-M-N-O-
J1-J2-P-Q-R. The path P1 is outlined in bold in the
structure graph.

To decide if a path in a structure graph corresponds
to a contig, one must have su�cient positional informa-
tion to assess (1) whether there is a relatively smooth
and reasonable rate of change of position along the
path, and (2) that there are no other paths (in this or
other components) with positions that fall inside the
range of the path in question. Regarding point (1),
consider the rightmost STS in one blob and the right-
most STS in an adjacent blob, where `rightmost' is
de�ned by position along a chromosome. The separa-
tion of these two STSs is at most the length of a clone.
Thus, for the YAC clones in this data, the average sepa-
ration of blobs should be no more than approximately 1
mb. A length of one megabase corresponds roughly to
a genetic map separation of about 1 centiMorgan (cM)
or a radiation hybrid map separation of about 4 centi-
Rays (cR) (cf: WI/MIT Release 10 README.html),
although the relationship among these measures varies
throughout the genome. Omitting details of the anal-
ysis, path P1 (de�ned above) meets these criteria for

Figure 6: STS intersection graph of one component
of Human Chromosome 5 (top), and structure graph
(bottom).

being a contig, whereas paths P2 and P3 do not.

Analysis of this complex component of Chromosome
5 clearly illustrates three features of structure graphs:
(i) they provide a visual aid in identifying errors and
anomalies in physical mapping data; (ii) they pro-
vide a means to distinguish between connected com-
ponents and contigs; and (iii) they help in extracting
contigs from the much larger and more complex STS-
intersection graphs. Thus, structure graphs simplify
the construction of physical maps, and can improve
their completeness and accuracy.

Discussion

This paper presents a new way to look at physical map-
ping data. The view is immediately informative | a
di�erence in shape as obvious as the di�erence between



a straight line and a branching line tells the observer
whether or not the data are close to ideal. The view
is easy to generate | it consists of two breadth-�rst
search (BFS) traversals of an intersection graph, along
with grouping of nodes which are connected within a
BFS layer. Theorem 1 shows that ideal data from
a linear chromosome is transformed in this way into
a `structure' graph which is linear. The linearity is
robust to false negatives, which typically either have
no e�ect or create very short branches or small cy-
cles. However, false links within or among contigs are
easy to spot in the structure graph, since they typically
cause branches or loops. Paths corresponding to con-
tigs can be identi�ed in the structure graph, with the
help of genetic or radiation hybrid mapping data. The
structure graph method is applicable not only to STS-
YAC data, but also to any form of physical mapping
data which can be translated into intersection graphs.
In (Harley et al., 1996) we present such a translation
for Alu-PCR and �ngerprint data.

For some types of data (e.g., cosmid overlap data),
cross-linkage among contigs may be rare, permitting
the assumption that a connected component in the in-
tersection graph corresponds to a contig. However, for
the STS-YAC data described in this paper, it is often
the case that a connected component in the double-
linkage (or even higher-linkage) intersection graph is
not a contig. In fact, many of the early `double-linkage
contigs' in the WI/MIT human genome physical map
were not true contigs, but rather complex components
of interlinked contigs. They overcame this problem
by collecting extensive radiation hybrid mapping data
(Hudson et al., 1995). Interlinkage of contigs was also
a problem in mapping the yeast genome (Mott et al.,
1993), where components were subdivided into contigs
using heuristics to identify weakly connected regions
and repetitive markers. In this paper we propose struc-
ture graph analysis as another tool for contig identi�ca-
tion, veri�cation and extraction. As a veri�cation step,
the method does not require marker position data, and
unlike ad hoc heuristics it has a �rm theoretical foun-
dation. As the approach is independent of previous
methods, it can be used alone or in conjunction with
them to improve overall e�cacy. The bene�t is that
structure graph analysis reduces the risk of erroneously
identifying a complex connected component as a con-
tig, even in the absence of clues from external position-
ing data. It therefore provides a useful �ltering step to
screen out complex connected components prior to the
application of an STS ordering algorithm.

Contig extraction using structure graphs is not auto-
matic, but rather requires the involvement of a human
expert. It remains to be seen whether the method can

be made su�ciently robust as to be fully automated.
We are frankly dubious that this will be possible: the
data are so noisy that it seems inevitable that human
judgment will be necessary to resolve con
icts in the
data. The solution, of course, is to improve the quality
and quantity of the data. In the meantime, practical
application of our method (or any other map analysis
method) will require the development of software tools
suitable for use by human, mapping experts.
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