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Abstract. Updates are a crucial component of any database program-
ming language. Even the simplest database transactions, such as with-
drawal from a bank account, require updates. Unfortunately, updates are
not accounted for by the classical Horn semantics of logic programs and
deductive databases, which limits their usefulness in real-world applica-
tions. As a short-term practical solution, logic programming languages
have resorted to handling updates using ad hoc operators without a log-
ical semantics. A great many works have been dedicated to developing
logical theories in which the state of the underlying database can evolve
with time. Many of these theories were developed with speci�c applica-
tions in mind, such as reasoning about actions, database transactions,
program veri�cation, etc. As a result, the di�erent approaches have dif-
ferent strengths and weaknesses. In this survey, we review a number of
these works, discuss their application domains, and highlight their strong
and weak points.

1 Introduction

Logic-based approaches to updates can be broadly classi�ed into two categories:
those designed for database or logic programming and those designed for reason-
ing about programs and actions. Prolog [CM81] is an early (and the best-known)
example of the languages in the �rst category. The situation calculus [McC63],
Dynamic Logic [Har79], and Temporal Logic [Pnu77] are, in our view, the fore-
fathers of the modern approaches to reasoning about actions. As we shall see,
both the situation calculus and Dynamic Logic inuenced the design of several
logic-based languages for programming database transactions. Temporal Logic
had a much lesser inuence on the languages for database transactions, and we
shall not discuss it here.1

In the next section, we briey review these two approaches, and in subsequent
sections, we discuss other, more-recent proposals for dealing with state changes
in logic-based systems.

1 Although the concept of time plays an important role in databases, and especially
in temporal databases, these areas have adapted little from the vast knowledge that
exists on Temporal Logic.



This survey is written from the point of view of logic programming and
databases, with an emphasis on languages that have a logical semantics. This
means that we shall focus on languages in which database queries and updates
can be expressed declaratively and can be executed e�ciently. It also means
that we shall emphasize rule-based languages, since there is a tradition of rules
in databases, and they are central to logic programming.

To make the comparison of the various approaches more concrete, we have
chosen Transaction Logic [BK98a,BK96,BK95,BK94,BK93] as a standard with
which other approaches can be easily compared. We �nd this convenient because
Transaction Logic is both a full-blown logic (with a model theory and a proof
theory) and, at the same time, it contains a logic programming language as a
subset. We shall see, for instance, that while many rule-based languages use a
logical syntax, they do not always have a logical semantics, and sometimes both
their syntax and semantics are burdened by a host of ad hoc restrictions.

A pure logical semantics has two main bene�ts. First, it facilitates under-
standing. In particular, the logical semantics of a rule base is independent of
the particular algorithms used to evaluate the rules. It therefore eliminates the
need to understand the intricacies of such algorithms. In fact, many di�erent
algorithms can be used as long as they are consistent with the logical semantics.
The best examples of this are classical logic programs and deductive databases,
which can be evaluated in either a top-down or a bottom-up manner. The second
bene�t of a logical semantics is that it becomes possible to express properties
of programs and to reason about them. For instance, one might be able to in-
fer that a particular database program preserves the integrity constraints of a
database; or that under certain conditions, a transaction program is guaranteed
not to abort.

2 Ancient History

2.1 Prolog

Database transactions can be de�ned in Prolog via the operators assert and
retract. When retract(p) is executed, p is removed from the database; and when
assert(p) is executed, p is inserted into the database. The two examples below
illustrate these operators. They also illustrate two di�erent concerns, one as-
sociated with transaction processing, and the other with Arti�cial Intelligence.
These very di�erent concerns have a�ected the design and evolution of many of
the languages surveyed in this paper. All examples in this paper use the Prolog
convention that logical variables begin in upper case.

Example 1. (Financial Transactions) The rules below form a Prolog program
(with some simplifying syntactic liberties) that de�nes simple banking transac-
tions for depositing and withdrawing funds. In these rules, the balance of a bank
account is represented by the predicate balance(Acct; Amt). The rules de�ne
four database transactions: change(Acct; Bal1; Bal2), which changes the balance
of account Acct from Bal1 to Bal2; withdraw(Amt;Acct), which withdraws an



amount from an account; deposit(Amt;Acct), which deposits an amount into
an account; and transfer(Amt;Acct1; Acct2), which transfers an amount from
account Acct1 to account Acct2.

transfer(Amt;Act; Act0) : � withdraw(Amt;Act) ; deposit(Amt;Act0):

withdraw(Amt;Act) : � balance(Act;B) ; B � Amt ;
change balance(Act;B;B � Amt):

deposit(Amt;Act) : � balance(Act;B) ; change balance(Act;B;B +Amt):

change balance(Act;B;B0) : � retract(balance(Act;B)) ;
assert(balance(Act;B0)):

In addition to executing database transactions, Prolog programs can simulate
actions that take place in the real world. The example below is taken from the
blocks world of Arti�cial Intelligence, in which a robot arm manipulates toy
blocks sitting on a table top.

Example 2. (Robot Actions) The following rules simulate the motion of a
robot arm. In these rules, the predicate on(X;Y ) means that block X is sitting
on block Y , and clear(X) means that nothing is on block X. The rules de�ne
three robot actions: move(X;Y ), which means \move block X on top of block
Y ;" pickup(X), which means \pick up block X;" and putdown(X;Y ), which
means \put down block X on top of block Y ."

move(X;Y ) : � pickup(X) ; putdown(Y ):

pickup(X) : � clear(X) ; on(X;Z) ; retract(on(X;Z)); assert(clear(Z)):

putdown(X;Y ) : � clear(Y ) ; assert(on(X;Y )) ; retract(clear(Y )):

The distinctive features of Prolog as a language for specifying updates are:

1. It is a programming language based on a Horn subset of a full logic.

2. Programs are executed by an SLD-style proof procedure. This is quite unlike
most of the approaches designed for reasoning about actions, where programs
are executed outside the logic by a separate run-time system.

3. Prolog updates are real, not hypothetical. In contrast, many other ap-
proaches do not update the database in the real sense. Instead, they reason
about what would be true if certain actions were carried out.2

4. In the absence of updates (and some other non-logical control features),
Prolog reduces to classical Horn logic.

5. The frame problem (described in Section 2.3) is not an issue, i.e., Prolog
programmers do not need to write down (or even be aware of) frame axioms.

2 This can be seen in the examples of the situation calculus in Section 2.3.



Unfortunately, the assert and retract operators in Prolog are not covered
by an adequate logical theory, so each time a programmer uses them, he moves
further away from declarative programming.

In addition, Prolog does not support a basic feature of database transactions:
atomicity|the appearance that a transaction either executes to completion or
not at all. Atomicity allows a complex program to be treated as an atomic or
elementary operation. In database systems, atomicity is enforced by rolling back
the database to its initial state whenever a transaction fails. Because Prolog lacks
this fundamental feature, the semantics of update programs is heavily dependent
on rule order. It is therefore di�cult to provide a logical semantics for them, and
is di�cult to reason about them. Moreover, they are often the most awkward of
Prolog programs, and the most di�cult to write correctly and to understand.

To illustrate, consider the following Prolog query:

: � transfer(Client; Seller; P rice); transfer(Client; Broker; Commissions):

On the surface, the above query seems like a rather straightforward way of saying
that a buyer must pay broker commissions to complete a transaction. However,
suppose that the client's account has su�cient funds to cover the purchase price,
but not to cover both the price and the commissions. In such a case, a database
management system would abort the transaction and undo the changes done
by the �rst subgoal, transfer(Client; Seller; P rice), after the second subgoal
failed, thereby guaranteeing atomicity. Unfortunately, Prolog does not support
this feature, since the changes done by assert and retract are not undone during
backtracking.

Prolog's lack of atomicity can also be seen in Example 2. In particular,
move(X;Y ) cannot be treated as an atomic action. To see this, suppose that
the database consists of the atoms fclear(b); on(b; c); on(a; d)g. Then the ac-
tion pickup(b) can succeed, but the action putdown(b; d) cannot. Consequently,
if move(b; d) is executed, it will fail; but the database will not be left in its orig-
inal state. Instead, it is left in the state fclear(b); clear(c); on(a; d)g. This is
because the action pickup(b) deleted the atom on(b; c) from the database, and
inserted the atom clear(c). The task of restoring the database to a meaningful
state is left to the Prolog programmer.

The lack of atomicity in Prolog is not just a question of adjusting the oper-
ational semantics. For even if Prolog did support atomicity, a logical semantics
would still be needed to account for it, and for updates. (See Section 3.1 for just
such a semantics.)

Finally, we note that updates in Prolog are not integrated into the host
logical system (i.e., classical logic). It is therefore not clear how assert and re-

tract should interact with other logical operators such as disjunction and nega-
tion. For instance, what does assert(X) _ assert(Y ) mean? or :assert(X)? or
assert(X) retract(Y )? Also, how does one logically account for the fact that
the order of updates is important? None of these questions is addressed by Pro-
log's operational semantics, or by the classical theory of logic programming.



2.2 Dynamic Logic and Process Logic

Dynamic Logic [Har79] and Process Logic [HKP82] allow a user to express prop-
erties of procedural programs and to reason about them.3 Dynamic Logic reasons
about the initial and the �nal states of program execution. For instance, one can
speak about the result of an execution; e:g:, \Variable X assumes value 0 when

the program terminates." Process Logic extends this with the ability to reason
about intermediate states. Thus, one can speak about what happens during exe-
cution; e:g:, \VariableX assumes value 0 at some point during the computation."
The basic syntactic blocks of these logics have the following form: [program]�.
Here, � is a logical formula, and program is an expression in a language of a
completely di�erent nature: it is procedural rather than logical, and contains
the operators of sequential composition, iteration, conditionals, etc. Thus, pro-
grams are used as modal operators, while logical formulas are used as assertions.

In both Process Logic and Dynamic Logic, a model consists of a set of states,
and actions cause transitions from one state to another. In Dynamic Logic, a
formula [program]� is true at a state, s1, if � is true at all states s2 such that
an execution of program transforms s1 into s2. More than one state s2 is pos-
sible since programs in Dynamic Logic may be non-deterministic. In contrast,
in Process Logic, formulas are true on paths rather than on states. A path is
a sequence of states, which is supposed to represent all the intermediate state
changes during program execution. Intuitively, a path, s1; s2; :::; sn, is an execu-
tion path of a program if the program can start executing at state s1, change
it to s2, then to s3, ..., to sn, and terminate at sn. The path semantics of a
�rst-order formula is simple: it is true on a path if it is true at the �rst state of
the path. The semantics of the modal formula [program]� is more complex. It
is true on a path, s1; :::; si, if � is true on every path of the form s1; :::; si; :::; sn,
where si; :::; sn is an execution path of program. As a special case, [program]�
is true on the singleton path s1 if � is true on every execution path of program
beginning with state s1. Although there are many di�erences, this emphasis on
paths is similar to Transaction Logic (Section 3.1).

In a database setting, program statements in Dynamic and Process logics
could be relational algebra operators, tests, and control operators, like while-
loops. For instance, consider the following formula in Dynamic Logic:

[ temp := connection;
flight := ;;
while flight � temp do

flight := temp;
temp := temp [ (temp 1 connection);

od ]
8X;Y; Z flight(X;Y ) ^ flight(Y; Z) ! flight(X;Z)

(1)

3 A number of di�erent process logics have been proposed in the literature, beginning
with Pratt's original work [Pra79]. The version in [HKP82] is most interesting for
the purpose of this survey.



The bracketed part of the formula is a program|a naive procedure that is sup-
posed to �nd the transitive closure of the connection relation. The last line in the
formula is a �rst-order statement that asserts that the flight relation is transi-
tively closed. As a statement in Dynamic Logic, (1) asserts that after executing
the program inside the brackets, the ight relation is transitively closed.

Dynamic Logic can be used to reason about the outcome of a computation,
but it is hard, if not impossible, to make assertions about what happens during
the computation. For instance, suppose we would like to assert (or verify) that
during a computation of the above program, if flight(a; b) and flight(b; c) be-
come true, then flight(a; c) will eventually become true as well. Note that we
are not claiming that flight(a; c) will be true at the end of the computation; so
this property is not implied by the above formula in Dynamic Logic.

To reason about what happens during a computation, Process Logic [HKP82]
has a path-based semantics, where a path is a sequence of states, representing a
program computation. Process Logic includes several non-classical connectives
for making assertions about programs and computations. For instance, the for-
mula � suf  is true on a path if  is true on some proper su�x of the path
and � is true on every larger proper su�x. In the special case in which � and  
are �rst-order formulas, suf corresponds to the until operator of temporal logic.
That is, � suf  is true on a path if  is true on some state of the path (other
than the initial state), and � is true on all preceding states (other than the initial
state).

In Process Logic, the symbol 1 is true on every path. Thus, 1 suf � is true
on a path if � is true on some proper su�x. The formula � _ (1 suf �) is true
if � is true on some su�x (not necessarily a proper one). This latter formula
is abbreviated as some�, and it intuitively means that � eventually becomes
true. Likewise, the formula some(� ^ some ) intuitively means that � even-
tually becomes true, and  becomes true some time later. Likewise, the formula
some(�! some ) means that if � eventually becomes true, then  will be-
come true some time later.

We can use these formulas to express properties of program execution. For
instance, the formula [program] some� intuitively means that during any
execution of program, formula � eventually becomes true. Now, consider the
following formula:

[ temp := connection;
flight := ;;
while flight � temp do

flight := temp;
temp := temp [ (temp 1 connection);

od ]
8X;Y; Z some(flight(X;Y ) ^ flight(Y; Z) ! some flight(X;Z))

(2)

The bracketed part of this formula is the transitive-closure program given earlier
in (1). Now, however, the last line of the formula says that if flight(X;Y )
and flight(Y; Z) become true during program execution, then flight(X;Z) is



guaranteed to become true later in the execution. Note that, unlike formulas in
Dynamic Logic, this formula says that flight(X;Z) will be true at some time
during program execution, but not necessarily at program termination.

Unlike Prolog (and related approaches, such as Transaction Logic), Process
Logic and Dynamic Logic are not logic programming languages. This di�erence
shows up in several ways. First, Process Logic and Dynamic Logic represent
programs procedurally, not as sets of logical rules. Second, they do not have
an SLD-style proof procedure for executing programs. In fact, they were not
intended for executing programs at all, but for reasoning about their properties.
Third, in both Process Logic and Dynamic Logic, the logic itself is used outside

of programs to specify their properties. In contrast, in logic programming, the
logic is the programming language; i:e:, logical formulas represent programs
and specify database queries. Fourth, Process Logic and Dynamic Logic were
not originally designed for database programming [Pra79,HKP82,Har79]. For
instance, unlike the above adaptation of these logics (which we borrowed from
[SWM93,Spr94]), they do not have the notions of database state or database
query. In addition, they do not support de�ned procedures, such as subroutines
and views.

2.3 Situation Calculus

The situation calculus is a methodology for specifying the e�ects of elementary
actions in �rst-order classical logic. It was introduced by McCarthy [McC63]
and then further developed by McCarthy and Hayes [MH69]. Recently, it has
received renewed development by Reiter [Rei92a,Rei92b,Rei91].

Unlike the approaches discussed so far, the emphasis in the situation calculus
is on specifying elementary actions, not on combining them into complex pro-
cedures. As such, the situation calculus does not have a repertoire of built-in
actions, such as assert and retract in Prolog, or variable assignment in Dynamic
Logic. Nor does it have rich control constructs, such as conditionals, iteration
and subroutines. This is because the situation calculus was not designed for
computer programming, but for reasoning about actions in the real world. The
canonical example is the blocks world, in which a robot arm manipulates toy
blocks sitting on a table top, as illustrated in Example 2. A typical problem is
to specify the e�ects of lifting a block, or of putting one block down on top of
another. Such actions may have several di�erent e�ects. For instance, when a
robot picks up a block, the block changes position, the block beneath it becomes
clear, and the robot hand becomes full. Actions may also have pre-conditions on
their execution. For instance, a (one-armed) robot cannot pick up a block if its
hand is already holding something. Specifying all the pre-conditions and all the
e�ects of such actions is a central aim of the situation calculus. Another aim is to
treat them as elementary actions, not as a composition of simpler actions. Thus,
a solution like that given in Example 2, in which the e�ects of an action are
described by composing assert and retract actions, is considered unacceptable.

In the situation calculus, database states and actions are both denoted by
function terms. For instance, the function term pickup(b) might denote the action



of a robot picking up block b. A function term denoting a database state is
called a situation. The constant symbol s0 denotes the initial state, before any
actions have taken place. If s is a situation and a is an action, then the function
term do(a; s) is a situation denoting the state derived from s by applying action
a. Thus, applying the actions a1; a2; a3 to the initial state in that order gives
rise to a state denoted by the situation do(a3; do(a2; do(a1; s0))). Predicates
whose truth depends on the situation are called uents. For instance, the atomic
formula on(b1; b2; s) is a uent. Intuitively, it means that block b1 is on top of
block b2 in situation s. We adopt the convention that the last argument of a
uent is a situation. Uncertainty about database states (e:g:, \block a is on
block b or c") is represented by more complex formulas, such as disjunctions of
uents.

Unlike database states, actions in the situation calculus must not contain
any uncertainty. Thus, the action \pick up block b or block c" is not allowed.
Moreover, for each action, we must say not only what it changes, but also what
it does not change. The need to do this is illustrated in the following example,
which also shows how the robot actions in Example 2 are represented in the
situation calculus.

Example 3. (Robot Actions) Consider a simpli�ed blocks world described by
two uents and one action, as follows:

{ clear(x; s): in state s, there are no blocks on top of block x.
{ on(x; y; s): in state s, block x is on top of block y.
{ move(x; y): move block x on top of block y, provided that x and y are clear.

One might think of axiomatizing the move action by the following rules:

possible(move(X;Y ); S)  clear(X;S) ^ clear(Y; S) ^ X 6= Y

on(X;Y; do(move(X;Y ); S))  possible(move(X;Y ); S)

clear(Z; do(move(X;Y ); S))  possible(move(X;Y ); S) ^ on(X;Z; S)

The �rst rule describes the pre-conditions of the move action. It says that it is
possible to execute move(X;Y ) in situation S if blocks X and Y are clear. The
next two rules describe the e�ects of the action, assuming the action is possible.
The second rule says that after executing move(X;Y ), blockX is on top of block
Y . The third rule says that if block X is on top of block Z in situation S, then
after executing move(X;Y ), block Z is clear.

The above rules are called e�ect axioms, since they describe which facts
are a�ected by the actions. These rules are not su�cient, however, because in
some situations, many other formulas might be true, but they are not logically
implied by the e�ect axioms. To see this, consider a database state described by
the following atomic formulas:

clear(a; s0) clear(b; s0) clear(c; s0) on(a; d; s0) on(b; e; s0) (3)



The situation s0 in these formulas indicates that they refer to the initial

database state. Observe that block c is clear in this situation. Now, suppose
we \execute" the action move(a; b), thus changing the situation from s0 to
do(move(a; b); s0). Is block c still clear in the new situation? Our common sense
says \yes," since c should not be a�ected by moving a onto b. However, the
formula clear(c; do(move(a; b); s0)) is not a logical consequence of the set of
formulas speci�ed so far.

In order to make clear(c; do(move(a; b); s0)) a logical consequence of our
blocks-world speci�cation, we need formulas that say what uents are not

changed by the action move(a; b). These formulas are called frame axioms. In
general, a great many things are not changed by an action, so there will be a
great many frame axioms. For instance, when a robot picks up a block, the color
of the block does not change, the position of other blocks do not change, the
number of blocks does not change, etc. Specifying all the invariants of an action
in a succinct way is known as the frame problem.

Early solutions to this problem required one axiom for each action-uent
pair [Gre69]. For instance, in the example above, the following rule would be a
frame axiom:

clear(Z; do(move(X;Y ); S))  possible(move(X;Y ); S) ^ clear(Z; S) ^Z 6= Y

This rule pairs the action move with the uent clear. It says that if block Z
is clear in situation S, then it is also clear after moving block X onto block Y ,
provided that Z 6= Y . In general, specifying frame axioms in this way requires
O(MN ) rules, where N is the number of actions, andM is the number of uents.

In [Kow79], Kowalski presents a more succinct solution to the frame problem,
which requires only O(M +N ) frame axioms. This solution relies on the Closed
World Assumption (CWA). Other AI researchers continued searching for an
equally simple solution, but one that does not require CWA. Recently, Reiter
has found just such a solution [Rei91]: it also requires only O(M + N ) axioms,
but is based on the Open World Assumption (OWA). We shall describe Reiter's
approach here.

According to Reiter [Rei91], formalizing an action requires one axiom for
each action (to describe its preconditions), and one axiom for each uent (to
describe the e�ect of actions on the uent). In these axioms, all free variables
are universally quanti�ed at the top level. In Example 3, three axioms would be
required. Here is the axiom for the move action, called a pre-condition axiom:

possible(move(X;Y ); S) $ [clear(X;S) ^ clear(Y; S) ^ X 6= Y ]

The following are the axioms for the two uents, on and clear, called successor-

state axioms:



possible(A; S) !
[on(X;Y; do(A; S)) $ [A = move(X;Y ) _

(on(X;Y; S) ^ :9Z A = move(X;Z)) ] ]

possible(A; S) !
[clear(Z; do(A; S)) $ [(9X;Y on(X;Z; S) ^ A = move(X;Y )) _

(clear(Z; S) ^ :9X A = move(X;Z)) ] ]

Successor-state axioms is a cross between the e�ect axioms and the frame axioms,
as they replace both types of axioms.

To this, we must also add the various unique name axioms for actions, such
as the following:

8X1; Y1; X2; Y2 [move(X1 ; Y1) = move(X2 ; Y2) $ X1 = X2 ^ Y1 = Y2]

whose sole purpose is to say that actions that look di�erent syntactically are, in
fact, di�erent actions. There are O(N2) axioms of this type, so strictly speaking,
Reiter's approach requires O(M +N2) axioms, not O(M +N ). However, Reiter
argues that the unique name axioms can be ignored, since their e�ects can be
compiled into a theorem prover [Rei91]. That is, although the theory itself has
size O(M + N2), it is only necessary to write down a fragment of the theory
of size O(M + N ) when doing reasoning. We refer to the former as the \entire
theory," and to the latter as the \abbreviated theory."4

Let Axioms denote Reiter's entire theory for the simple blocks world de-
scribed above plus the description of the initial state (3). From Axioms, we
can use �rst-order classical logic to infer when actions are possible and when
uents are true. For example, from the pre-condition axiom above, it fol-
lows that the action move(a; b) is possible in the initial state, s0. That is,
Axioms j= possible(move(a; b); s0). If we let s1 = do(move(a; b); s0), then using
the two successor-state axioms, we can infer the following facts about situation
s1:

Axioms j= clear(a; s1) ^ clear(d; s1) ^ clear(c; s1) ^ on(a; b; s1) ^ on(b; e; s1)

Observe that only the facts on(a; b; s1) and clear(d; s1) are the direct e�ects of
the action. The remaining facts are \carryovers" from the previous state|the
e�ect achieved by frame axioms.

From the above, it follows that Axioms j= possible(move(a; c); s1), i.e.,
the action move(a; c) is possible in state s1. If we let s2 = do(move(a; c); s1),
then using the two successor-state axioms above, we can infer the following facts
about situation s2:

Axioms j= clear(a; s2) ^ clear(d; s2) ^ clear(b; s2) ^ on(a; c; s2) ^ on(b; e; s2)

4 If we restrict our attention to Herbrand interpretations, then unique names axioms
for actions are not needed. However, in this case, one looses the ability to identify
di�erent syntactic terms. For instance, formulas like president(usa) = clinton and
8P husband(wife(P )) = P are unsatis�able. For this reason, AI researchers often
refuse to use Herbrand interpretations when reasoning about open worlds.



Just as before, clear(b; s2) and on(a; c; s2) are the direct results of the action
move(a; c); the other facts are carryovers from state s1.

3 Declarative Languages for Database Transactions

At a �rst glance, there would seem to be many logics suitable for specifying
database transactions, since many logics reason about updates, time, or action.
However, despite a plethora of action logics, researchers continue to complain
that there is no clear declarative semantics for updates, either in databases or
in logic programming [Bee92,Ban86,PDR91]. In particular, database transaction
languages are not founded on action logics, the way query languages are founded
on classical logic. The main reason, we believe, is that reasoning about action is
not the same thing as declarative programming, especially in a database context.
This di�erence manifests itself in several ways, some of which were mentioned
in Section 2. Here, we generalize and elaborate on these reasons:

(i) Most logics of action were not designed for database programming. In-
stead, they were intended for specifying properties of actions or relationships
between actions, and for reasoning about them. For instance, one might specify
that event A comes before event B, and that B comes before C, and then infer
that A comes before C. Moreover, many such logics are propositional, many have
no notion of database state or database query, and many have no notion of named
procedures (such as views and subroutines). Such logics are poor candidates for
the job of formalizing database programming languages.

(ii) Many logics of action were designed for reasoning about programs. Such
logics typically have two separate languages: a procedural language for repre-
senting programs, and a logical language for reasoning about their properties.
The programs themselves are not declarative or logical at all, but are more akin
to Algol (cf. the programs used in formulas (1) and (2) in Section 2.2). More-
over, logic is not used inside programs to specify database queries, but rather
outside programs to specify program properties. This is the exact opposite of
database languages and logic programs. Here, the goal is to make programming
as declarative as possible, and often logic itself is the programming language, or
a signi�cant part of it. The result is that it is di�cult to integrate action logics
with database query languages and logic programs, since there is an unnatural
\impedance mismatch" between them.

(iii) Logics of action cannot execute programs and update the database.
Instead, the logics are hypothetical. At best, they can infer what would be true if
a program were executed; the database itself is unchanged by such inferences. To
actually execute a program and update the database, a separate run-time system
is needed outside of the logic. This is contrary to the idea of logic programming,
in which the logical proof theory acts as the run-time system, so that programs
are executed by proving theorems.

(iv) Many logics of action get bogged down by the frame problem. As de-
scribed in Section 2.3, this is the problem of logically specifying the large number
of things that are una�ected by an action. If one is to reason about actions, then



these invariants must all be speci�ed as logical axioms (or frame axioms). A
great deal of research has been invested into how to do this concisely. Fortu-
nately, frame axioms are not needed if one simply wants to program and execute

transactions. For instance, C programmers do not need to specify frame axioms,
and the run-time system does not reason with frame axioms when executing C
programs. The same applies to database transactions, if they are expressed in
an appropriate language. Many of the logical languages described in this section
exploit this idea.5

Another fault line that separates the database languages described in this
section is the issue of whether update literals are in the head of the rules or
in the body. The languages in the \updates in the body" camp are well suited
to programming, that is, to combining simple transactions into more complex
transactions. The languages in the \updates in the head" camp are well suited
to specifying bulk updates (which can be used as elementary transactions by
the \updates in the body" languages). However, languages with updates in the
head usually lack a subroutine facility so, by themselves, they do not provide
the theoretical foundations for a full-blown database programming language.

The updates-in-the-body camp is represented in this survey by Transaction
Logic, Dynamic Prolog, LDL, and Ultra. The updates-in-the-head camp includes
the update languages of Abiteboul and Vianu, Chen's update calculus, and Dat-
alog with State. The event calculus of Kowalski and Sergot can also be classi�ed
as an updates-in-the-head language.

3.1 Transaction Logic

Transaction Logic (abbreviated T R) provides a general solution to the afore-
mentioned limitations, both of Prolog and of action logics. The solution actually
consists of two parts: (i) a general logic of state change, with a natural model
theory, and (ii) a Horn-like fragment that supports logic programming. In the
Horn fragment, users specify and execute transaction programs; and in the full
logic, users can express properties of programs and reason about them [BK98b].
Like classical Horn logic, the Horn fragment of T R has an operational semantics
based on an SLD-style proof procedure, in the logic programming tradition. In-
terestingly, even though T R is a logic in which state change is a central feature,
it does not rely on frame axioms when programming and executing transactions.
This situation is quite similar to Prolog, but is quite unlike the situation calculus,
where the frame problem has been a major issue for many years [MH69,Rei91].
Instead, frame axioms are needed in T R only when reasoning about the proper-
ties of actions, and only then does the frame problem become an issue [BK98b].

Historically, there are two versions of T R: sequential
T R [BK98a,BK93,BK95,BK94] and concurrent T R [BK96,Bon97b]. In

5 In addition, some of the languages surveyed here assume a �xed set of elementary
updates, such as the insertion and deletion of tuples in a relational database. In this
case, it is usually easy to �nd a set of frame axioms that is linear in the number of
predicates being updated; so the frame problem does not arise even for reasoning.



both versions, users can specify, execute and reason about logic programs
with updates. In sequential T R, the main method for combining programs is
sequential composition. Concurrent T R extends sequential T R with concurrent
composition. In concurrent T R, concurrent processes can execute in isolation
(like database transactions), or they may interact and communicate (like
concurrent programs). From a database perspective, sequential T R allows users
to specify transaction programs with built-in atomicity and save-points, which
allow partial roll-back of transactions. Concurrent T R allows users to specify
more-general nested transactions with intra-transaction concurrency. Because
of space limitations, the rest of this section focuses on sequential T R, which we
refer to simply as T R.

Syntactically, sequential T R extends �rst-order classical logic with a new
logical operator called serial conjunction, denoted 
. Intuitively, if � and � are
T R formulas representing programs, then the formula �
 � also represents
a program, one that �rst executes � and then executes �. T R also interprets
the connectives of classical logic in terms of action. For instance, the formula
�_ � intuitively means \do � or do �;" and the formula :� intuitively means
\do something other than �." In this way, T R uses logical connectives to build
large programs out of smaller ones. The smallest programs, called elementary

operations, are described below.
Semantically, formulas in T R are evaluated on paths, i.e., on sequences of

states (as in Process Logic). Intuitively, if � is a T R formula representing an
action, then � is true on a path s1, s2, ..., sn if the action can execute on the
path, i:e:, if it can change the database state from s1 to s2 to ... to sn. Note
that unlike Process Logic, T R does not use a separate, procedural language to
specify programs, since programs are speci�ed in the logic itself. T R is thus a
single language that can be used in two ways: to represent programs (i:e:, logic
programs), and to reason about them.

When used for reasoning, properties of programs are expressed as T R formu-
las, and a logical inference system derives properties of complex programs from
those of simple programs [BK98b]. In this way, one can reason, for instance,
about whether a transaction program preserves the integrity constraints of a
database. One can also reason about when a transaction program will produce
a given outcome, when it will abort, and about its e�ect on a database with
null values or with other sources of inde�nite information, such as disjunction.
In addition, one can reason about actions in an AI context. For instance, using
T R, a user can axiomatize the elementary actions of a robot and reason about
them. In AI terminology, this reasoning takes place in open worlds, that is, in
the absence of the closed world assumption. The assumption of open worlds
separates the T R theory of reasoning [BK98b] from the T R theory of logic pro-
gramming [BK98a,BK93,BK95,BK94], which is based on closed worlds. The rest
of this section elaborates on the theory of logic programming.

Transaction Logic Programming. Logic programs in sequential T R are
based on serial goals. These are formulas of the form a1 
 a2 
 :::
 an, where
each ai is an atomic formula. Intuitively, this formula says, \First execute a1,



then execute a2, then a3 ... and �nally an." A serial-Horn rule is a formula of
the form b  , where b is an atomic formula, and  is a serial goal. This
rule has the e�ect of making b a name of program  . Intuitively, it says, \To
execute b, it is su�cient to execute  ." A serial-Horn program (also called a T R
program) is a �nite set of serial-Horn rules, as illustrated in Example 4 below.

Classical Horn logic is a special case of serial-Horn T R. To see this, observe
that a serial-Horn program can be transformed into a classical Horn program
by replacing each occurrence of 
 by ^. This transformation changes the serial-
Horn rule b a1 
 :::
 an into the classical Horn rule b a1 ^ :::^ an. In the
absence of state changes, this transformation is a logical equivalence, and serial-
Horn T R reduces to classical Horn logic. For instance, the following serial-Horn
program

tr(X;Y )  r(X;Y ) tr(X;Y )  r(X;Z) 
 tr(Z; Y )

expresses the same database query as the following classical Horn program:

tr(X;Y )  r(X;Y ) tr(X;Y )  r(X;Z) ^ tr(Z; Y )

i:e:, both programs compute the transitive closure of relation r.

As Example 4 shows, T R programs look very much like Prolog programs
with assert and retract . Operationally, they also behave like Prolog except that
updates are treated as database transactions; i:e:, they are atomic, and are rolled
back whenever a program fails. This one di�erence leads to a simple and natural
model theory for logic programs with destructive updates. It also improves upon
Prolog with assert and retract in several ways. For instance, (i) the semantics
of updating programs is purely logical; (ii) the semantics does not depend on
rule order; (iii) programs are easier to understand, debug and maintain; and
(iv) it extends the logic programming paradigm to a wide range of database
applications, in which updates are transactional.

Specifying and executing T R programs is also similar to Prolog. To specify
programs, the user writes a set of serial-Horn rules. These rules de�ne transac-
tions, including queries, updates, or a combination of both. To execute programs,
the user submits a serial goal to a theorem-proving system, which also acts as a
run-time system. This system executes transactions, updates the database, and
generates query answers, all as a result of proving theorems. Transactional fea-
tures such as abort, rollback, and save-points are also handled by the theorem
prover [Bon97b]. T R programs thus retain all the traditional features of classical
logic programs, while providing a logical semantics for database updates, and an
operational semantics for atomic transactions.



Example 4. (Blocks World Revisited)

stack(N;X)  N > 0 
 move(Y;X) 
 stack(N � 1; Y )

stack(0; X)  

move(X;Y )  pickup(X) 
 putdown(X;Y )

pickup(X)  clear(X) 
 on(X;Y )
 on.del(X;Y )
 clear.ins(Y )

putdown(X;Y )  wider(Y;X) 
 clear(Y )
 on.ins(X;Y )
 clear.del (Y )

Here, stack(N;X), move(Y;X), etc., are atomic formulas just as in classical
logic. However, in T R, atomic formulas can (and in this case do) represent
actions. For instance, move(X;Y ) means, \move block X to the top of block
Y ," and stack(N;X) means, \stack N arbitrary blocks on top of block X." The
rules de�ning these actions combine simple actions into more complex ones. For
instance, the rule de�ningmove(X;Y ) can be read as follows: \First pick up block

X, and then put X down on top of block Y ." The action move(X;Y ) succeeds
if these two sub-actions succeed. In this case, the sub-actions themselves are
de�ned in terms of elementary queries and updates to a relational database. For
instance, the rule de�ning putdown(X;Y ) can be read as follows: \First check
that block Y is wider than block X, then check that block Y is clear, then insert

the atom on(X;Y ) into the database, then delete the atom clear(Y ) from the

database." The action putdown(X;Y ) succeeds if all these elementary operations
succeed.

Observe that the actions pickup and putdown are deterministic, since each
set of argument bindings speci�es only one robot action. In contrast, the action
stack is non-deterministic. To perform this action, the inference system searches
the database for blocks that can be stacked (represented by variable Y in the
�rst rule). If, at any step, several such blocks can be placed on top of the stack,
the system arbitrarily chooses one of them.

Elementary Operations. Example 4 illustrates two kinds of elementary
database operation: the insertion and deletion of atomic formulas. For in-
stance, the expression on.del(x; y) means, \Delete the atom on(x; y) from the
database," and the expression clear.ins(y) means, \Insert the atom clear(y) into
the database." Here, on.del and clear.ins are predicate symbols, and on.del(x; y)
and clear.ins(y) are atomic formulas.

This illustrates how T R might be used to update a relational database. In
general, however, an elementary operation in T R can be any transformation on
any kind of database state. For instance, an elementary operation could perform
row operations on a set of matrices, or it could perform SQL-style bulk updates
on a set of relations, or it could insert or delete a logical formula from a set of
formulas. In some applications, such as workow management, a state may be a
combination of �les and databases, and elementary operations may include any
number of application programs and legacy systems [BSR96,DKRR98]. In all
cases, however, the elementary operations are building blocks from which larger
programs and software systems are built.



T R provides the logical foundations and a logic programming language for
building such systems. To achieve the needed exibility, T R treats a database
as a collection of abstract data types, each with its own special-purpose access
methods. These methods are provided to T R as elementary operations, and they
are combined by T R programs into complex programs. Formally, database states
and elementary operations are described by a pair of oracles, called the state or-

acle and the transition oracle, respectively. Intuitively, the state oracle describes
what must be true at states, while the transition oracle describes how the state is
changed. A number of transition oracles, for tuple updates, for random sampling,
and for SQL-style bulk updates, are described in detail in [BKC94,BK95].

Constraints on Execution. Transaction Logic has two kinds of conjunction:
serial (denoted 
) and \classical" (denoted ^).6 (In addition, concurrent Trans-
actions Logic has a third kind of conjunction, called concurrent conjunction.)

For formulas that do not involve updates, these two types of conjunction are
the same|they both reduce to the usual conjunction of classical logic. However,
when updates are involved, the two types of conjunction in T R part their way
and they extend the classical connective in two distinct ways.

As mentioned earlier, �
 � means that transaction � executes �rst and
transaction � next. In contrast, � ^ � means that both � and � must execute
along the same execution path. In other words, � ^ � executes along a path
hs1; s2; :::; sni i� � (by itself) can cause the state transitions s1; s2; :::; sn and

� (by itself) can also cause the state transitions s1; s2; :::; sn. For instance, �
could be the statement \Build a pyramid" (like the stack transaction de�ned
earlier), while � could be the statement \Spell a word." Assuming that our toy
blocks have letters painted on them, the formula � ^ � represents the (possibly
very non-deterministic) process of building a pyramid that spells a word.

This semantics leads to a natural interpretation of \^" as a mechanism for
applying constraints that prune away any undesirable executions of a nondeter-
ministic transaction. Such constraints are developed to a greater depth in [BK95],
where a rich class of temporal and dynamic constraints is discussed. Some results
on executional constraints also appear in [DKRR98].

Note that it would not be possible to express constraints on transaction ex-
ecution (not to mention reasoning about them) if T R had a semantics based
on pairs of states (like Dynamic Logic) instead of paths. For instance, such ca-
pabilities are beyond the expressive power of a number of languages surveyed
below simply because their semantics is based on Dynamic Logic (see, e.g., Sec-
tions 3.2, 3.3, 3.6). This gain in expressive power due to a path-based semantics
is similar to the bene�ts of Process Logic relative to Dynamic Logic, as discussed
in Section 2.2.

Executional Entailment. T R represents elementary operations by atomic
formulas. Like all formulas in T R, elementary operations can have both a truth

6 The connective \^" is not the same as the corresponding connective in classical logic.
It is called \classical" because of the super�cial similarity between its de�nition in
T R and the corresponding classical de�nition.



value and a side e�ect on the database. This idea is formally represented by
executional entailments. For instance, if p:del represents the deletion of atom p

from the database, then this would be represented by the following entailment:

P;D;D� fpg j= p:del

This statement says that the atomic formula p:del is (the name of) an update
that changes the database from state D to state D� fpg.

More generally, transaction execution is represented as executional entail-
ment over a sequence of database states:

P;D0; D1; : : : ; Dn j=  (4)

Here,  is a T R formula, each Di is a database state, and P is a set of T R
formulas. Intuitively,  is the main procedure of a program, P is a set of subrou-
tine de�nitions, and D0; D1; : : : ; Dn is the database history during program
execution. In the formal semantics, statement (4) means that formula  is true
with respect to the sequence D0; D1; : : : ; Dn. Informally, this means that that
the sequence is an execution path of program  . That is, if the current database
state is D0, and if the user executes program  (by typing ?�  , as in Prolog),
then the database can go from state D0 to state D1, to state D2, etc., until it
�nally reaches state Dn, after which the program terminates. We emphasize the
word \can" because  can be a non-deterministic program. As such, it can have
many execution paths beginning atD0. The proof theory for T R can derive each
of these paths, but in practice, only one of them will be (non-deterministically)
selected as the actual execution path. The �nal state, Dn, of that path then
becomes the new database.

Executional entailment plays an important role in Transaction Logic, as it
ties together the notions of logical truth and program execution. It also pro-
vides the logical foundation for a proof procedure that executes transactions,
updates the database and evaluates queries, all as a result of proving theo-
rems [BK98a,BK96,BK95,BK94].

3.2 Dynamic Prolog

Manchanda and Warren [MW88] developed Dynamic Prolog, a logic program-
ming language for database transactions. Although the authors were greatly in-
uenced by Dynamic Logic in the design of the semantics, their language is very
di�erent from Dynamic Logic. In fact, Dynamic Prolog has many similarities
with Transaction Logic, both in syntax and in spirit. For instance, Transac-
tion Logic and Dynamic Prolog are the only logic programming languages that
account not just for updates, but for transaction abort and rollback as well.
However, the proof theory for Dynamic Prolog is impractical for carrying out
updates, since one must know the �nal database state before inference begins.
This is because its proof theory is a veri�cation system: given an initial state,
a �nal state, and a transaction program, the proof theory veri�es whether the



program causes the transition; but, given just the initial state and the pro-
gram, it cannot compute the �nal state. In other words, the proof theory cannot
execute transaction programs. Realizing this problem, Manchanda and Warren
developed an interpreter whose aimwas to \execute" transactions. However, this
interpreter is incomplete with respect to the model theory, and it is not based
on the proof theory. To a certain extent, it can be said that Manchanda and
Warren have managed to formalize their intuition as a program, but not as an
inference system.

While Dynamic Prolog is only slightly reminiscent of Dynamic Logic, other
researchers explored the potential of this logic for database updates in much
more detail. For instance, in [SWM93,Spr94], Spruit et al. proposed a database
update language that is related to Dynamic Logic not only semantically but also
in its syntax. In fact, this work is an adaptation of Dynamic Logic to database
updates and the sample program (1) in Section 2.2 is inspired by [SWM93,Spr94].

3.3 LDL

Naqvi and Krishnamurthy have extended classical Datalog with update opera-
tors [NK88], which were later incorporated in the LDL language [NT89].

The treatment of updates in LDL is similar to that of Dynamic Prolog and
Transaction Logic. In particular, updates are performed in the body of rules,
and complex update procedures can be de�ned from simpler ones. Thus, like
in T R and Dynamic Prolog, the LDL rule q  prog amounts to a procedure
declaration, where q is the procedure name and prog is the procedure de�nition.
For instance, consider the Transaction Logic program given in Example 4. The
�nal three rules of this program can be written in LDL as follows:

move(X;Y )  pickup(X) ; putdown(X;Y )

pickup(X)  clear(X) ; on(X;Y ) ; �on(X;Y ) ; +clear(Y ):

putdown(X;Y )  wider(Y;X) ; clear(Y ) ; +on(X;Y ) ; �clear (Y ):

Here, \;" denotes sequential composition, and the literals +on, �clear, etc.,
are special predicates that insert and delete tuples from the predicates on and
clear. They are analogous to the elementary transitions on.ins and clear.del in
Transaction Logic.

Syntax. Compared to other proposals reviewed in this survey, the syntax of
LDL is quite complex. LDL distinguishes several kinds of predicate symbols,
including base predicates, query predicates, update predicates, compound pred-
icates, and unfailing predicates. In addition, there are two kinds of update pred-
icate (corresponding to insertion and deletion), and several kinds of compound
predicate (corresponding to iteration, conditionals, sequential composition, etc.).

Finally, a variety of syntactic restrictions are imposed on LDL rulebases,
in order to limit recursion and to achieve a workable semantics. For instance,



recursively de�ned updates are not allowed. Thus, the �rst rule in Example 4 is
meaningless in LDL:

stack(N;X)  N > 0 ; move(Y;X) ; stack(N � 1; Y ):

More generally, recursion is disallowed through all procedural constructs, such
as sequential composition, if-then-else, and do-while.

To limit recursion, LDL programs are strati�ed, which limits the set of legal
programs even further. In fact, many non-recursive programs turn out to be non-
strati�ed, and therefore are not legal. For instance, if a program contains the rule
p r1; r2 then predicate r1 must be fully computed before the computation
of predicate r2 begins. To enforce this, r1 must be de�ned in a strictly lower

stratum than r2. Thus, the following program cannot be strati�ed, even though
it is non-recursive:

p  r1 ; r2 q  r2 ; r1

In addition, LDL requires that each updating procedure be de�ned by only one
rule. Thus, the following two rules cannot coexist in one program:

q  +b q  +c

The implementation of LDL imposes restrictions of its own, essentially to
avoid the possibility of backtracking through updates. For instance, in

q  a ; +b ; c

the query c might fail after inserting b, and the declarative semantics requires
that the update +b be undone. Since this basic transactional feature is not im-
plemented in LDL, the programmer must ensure that all updates in an LDL
program are followed by unfailing predicates [NT89] (predicates that never fail).
Primitive updates are examples of unfailing predicates. Other unfailing predi-
cates can be constructed from the if-then-else and do-while constructs.

Bulk Updates. Since LDL is geared towards database applications, it provides
for bulk updates. As a simple example, consider the following LDL query:

?� p(X) ; +q(X):

The intended meaning of this query is to copy all the tuples of relation p into
relation q; i:e:, �rst retrieve all the tuples in relation p, and then insert them
into relation q.

This treatment of programs with variables brings out a basic di�erence in
the semantics of LDL and Transaction Logic. For instance, consider the above
rules for the predicate move(X;Y ). In T R, the query ?� move(b; Y ) is non-
deterministic: it means, \Move block b on top of some block, Y ." In contrast,
the same query in LDL is deterministic: it says, \Move block b on top of every
block, Y ."



Unfortunately, the declarative semantics of bulk updates in LDL has never
been spelled out clearly. The semantics developed in [NK88,NT89] is highly
propositional, with almost no mention of variables or quanti�ers. Bulk updates
are described operationally in terms of a \mark and update" procedure, but the
declarative semantics focuses entirely on variable-free programs.

Since the semantics of updates in LDL is said to be based on propositional

dynamic logic, it is unclear how it can be extended to deal with variables and bulk
updates. In fact, some of the restrictions mentioned above seem to preclude such
an extension. For instance, the following example, paraphrased from [NT89]:

q(a):
p  q(X); +r(X):
?� p:

inserts a single tuple r(a), and so its semantics is easy to de�ne in propositional
dynamic logic. However, if the database had two facts, q(a) and q(b), then the
ground instantiation of the above rule is a pair of ground rules: p  q(a); +r(a)
and p  q(b); +r(b). But this means that the same predicate (in fact, the
same proposition), p, is de�ned by two rules|in direct violation of the syntactic
restrictions imposed by LDL.

In sum, LDL syntax for updates is highly restrictive, and the implementa-
tion does not always correspond to its declarative semantics. On one hand, the
implementation provides for bulk updates, while the declarative semantics does
not. On the other hand, the declarative semantics accounts for the rollback of
failed update programs, but the implementation does not.

3.4 The Event Calculus

Like the situation calculus, the event calculus is a methodology for encoding
actions in �rst-order predicate logic. It was originally developed by Kowalski
and Sergot for reasoning about time and events in a logic-programming set-
ting [KS86,Kow92] and for overcoming some of the problems of the situation
calculus. A comparison of the event calculus and the situation calculus is devel-
oped in [KS97].

Unlike Transaction Logic and LDL, the event calculus is not a language for
programming database transactions. In fact, like the situation calculus, the event
calculus does not update the database at all. Instead, it is a query language for
historical databases. However, these databases are not temporal databases in
the traditional sense; i:e:, they do not record the state of the world at various
points in time. Instead, they record the events that have taken place, just as a
logical database log records the transactions that have executed. For instance, a
database recording robot actions might include the following information:

On 5.feb.98, Robot Billy picks up Block 1 from the top of Block 2.
Two days later, Billy puts down Block 1 on top of Block 3.
Two more days pass by, and Billy picks up Block 1 again.



One goal of the event calculus is to reason about event descriptions like this.
In this case, \reasoning" amounts to querying the event database, where queries
are formulated as logic programs. To this end, the event calculus includes Prolog-
like rules for inferring the consequences of events. Given a complete database of
events, these rules can derive the state of the world at any point in time. For
instance, they can infer that Block 1 is still on top of Block 3 on February 8,
and that the tops of Blocks 2 and 3 are still clear on February 10.

Several variants of the event calculus have been developed [SK95]. They are
all based on variants of the \Holds" formalism [Kow79], and they all assume that
actions take place instantaneously. The original event calculus [KS86] was the
most complex, partly because its ontology is based on maximal time periods. In
the rest of this section, we describe the so-called simpli�ed event calculus [SK95],
whose ontology is based on time points.

The Simpli�ed Event Calculus. This variant of the event calculus was de-
signed for reasoning about complete event descriptions, i:e:, databases that con-
tain a complete description of all relevant events. It is based on the following
Prolog-like rules, in which negation is interpreted as failure:7

holds(P; T2) initiated(P; T1); T1 < T2; (5)

:terminated(P; T1; T2):

initiated(P; T ) initiates(E;P ); happens(E; T ): (6)

terminated(P; T1; T2) terminates(E;P ); happens(E; T3); (7)

T1 < T3 < T2:

The predicates in these rules have the following intuitive meanings:

{ holds(P; T ) means, \proposition P is true at time T ."
{ initiated(P; T ) means, \proposition P becomes true at time T ."
{ terminated(P; T1; T2) means, \proposition P becomes false at some time

between T1 and T2."
{ happens(E; T ) means, \event E occurred at time T ."
{ initiates(E;P ) means, \event E makes proposition P true."
{ terminates(E;P ) means, \event E makes proposition P false."

Thus, rule (5) says that P is true at time T2 if it becomes true at time T1 and
does not become false between times T1 and T2. Rule (6) says that P becomes
true at time T if event E makes P true, and E happens at time T . Likewise,
rule (7) says that P becomes false at some time between T1 and T2 if event E
makes P false, and E happens at time T3, and T3 is between T1 and T2. The
use of negation-as-failure in rule (5) means that a fact remains true unless it is
explicitly terminated by an event. Observe that explicit frame axioms are not
given, and thus the simpli�ed event calculus solves the frame problem for closed
worlds.

7 The use of negation-as-failure implies that event descriptions must be complete.



In addition to the three rules above, rules are needed to de�ne the predicates
initiates, terminates and <. For the purpose of this section, we de�ne the latter
predicate as follows:

5:feb:98 < 6:feb:98 < 7:feb:98 < 8:feb:98 < 9:feb:98 < 10:feb:98 < 11:feb:98

T1 < T2  T1 < T3; T3 < T1:

The rules for initiates and terminates depend on the kind of events in the
application domain. To illustrate, we consider two kinds of event from the blocks
world:

{ pickup(B1; B2), which means, \pick up block B1 from on top of block B2."
{ putdown(B1; B2), which means, \put down block B1 on top of block B2."

These two actions are axiomatized by the following rules:

initiates(E; on(B1; B2)) act(E; putdown(B1; B2))

terminates(E; on(B1; B2)) act(E; pickup(B1; B2))

initiates(E; clear(B2)) act(E; pickup(B1; B2))

terminates(E; clear(B2)) act(E; putdown(B1; B2))

Here, the predicate act(E;A) intuitively means that event E is an instance of
action A. The �rst rule above therefore says the following: if event E puts block
B1 down on top of block B2, then E makes the atom on(B1; B2) true. By using
the act predicate, di�erent instances of the same action can take place at di�erent
times. For instance, di�erent instances of the actions pickup(block1; block2) and
putdown(block1; block2) can occur at several di�erent times.

Finally, we specify the predicates happens and act as an event database. For
instance,

happens(e1; 5:feb:98) act(e1; pickup(block1; block2))

happens(e2; 7:feb:98) act(e2; putdown(block1; block3))

happens(e3; 9:feb:98) act(e3; pickup(block1; block3))

At this point, we are ready to answer queries about the state of the world.
For instance, using the Prolog interpreter (with negation as failure), it is easy to
derive the facts below. Observe that the �rst event makes block2 clear, and that
it remains clear as other events take place, thus illustrating that frame axioms
are implicit (though not explicit) in the simpli�ed event calculus.

holds(clear(block2); 6:feb:98) holds(clear(block2); 7:feb:98)

holds(on(block1; block3); 8:feb:98) holds(clear(block2); 8:feb:98)

holds(on(block1; block3); 9:feb:98) holds(clear(block2); 9:feb:98)

holds(clear(block3); 10:feb:98) holds(clear(block2); 10:feb:98)

holds(clear(block3); 11:feb:98) holds(clear(block2); 11:feb:98)



As seen from this example, a database in the event calculus is not like those
found in traditional database applications. That is, the event calculus does not
record the current state of the world, updating it whenever a transaction is
executed. Nor is the event calculus like a temporal database system, as mentioned
above. Instead, the event calculus queries a history of instantaneous events (or
database transactions) to infer the state of the world at any given time.

This derivation can be done quite e�ciently because in the simpli�ed event
calculus, all actions are write-only; i:e:, they represent transactions that change
a database without reading it. For instance, the transaction \Set Joe's salary
to $50,000" is write-only, while the transaction \Increase Joe's salary by 3%" is
not, since it requires both a database read (to get the old salary) and a database
write (to set the new salary). This write-only restriction follows from the limited
syntax of the initiates and terminates predicates: since these predicates are
independent of time, the e�ects of an action cannot depend on the state of the
world. At best, limited information about the world can be encoded in the actions
themselves, as in the action pickup(block1; block2), which assumes (but does not
verify) that block1 is sitting on top on block2. All of the actions considered in
this section were carefully designed to be write-only. For such actions, the truth
of a proposition P depends only on the most recent event to a�ect P . In this
case, events can be indexed for fast retrieval, resulting in fast inference [Kow92].

3.5 Chen's Calculus

Chen developed a calculus and an equivalent algebra for constructing database
transactions [Che95]. Like T R, this calculus uses logical operators (including
serial conjunction) to build complex transactions from elementary updates.

One interesting idea in [Che95] is a special semantics for the logical connec-
tive ^, which makes it easy to express bulk updates (assigning the contents of a
database view to a relation). This is achieved by treating formulas of the form
a ^ b as the concurrent composition of actions a and b, so that they are exe-
cuted in parallel. Here is a typical example of the use of concurrent composition
(where universal quanti�cation is treated as an in�nite conjunction of ground
instantiations of the program):

8E; S + employee(E; S � 1:1) ^ �employee(E; S)  employee(E; S) (8)

This rule speci�es the tried-and-true transaction to \raise all employee salaries
by 10%". Here, literals of the form +p or �p are called dynamic predicates. As
in LDL, they represent the insertion and deletion of p, respectively.

Unlike LDL, dynamic predicates are allowed in rule bodies, as well as in rule
heads. In the body, they refer to previously executed updates. That is, when +p
appears in a rule body, it intuitively means, \If p has just been inserted into the
database." Likewise for �p. For instance, the rule q �p means, \If p has
just been deleted from the database, then infer q." In addition, the head of a
rule can be a complex formula and not just a single dynamic literal, as in the



following program:

8X;Y + path(X;Y )  edge(X;Y )

8X;Y; Z + path(X;Y ) ^ �edge(X;Y )  edge(X;Z) ^ +path(Z; Y ) ^ Y 6= Z

This program does two things: (i) it computes the transitive closure of the edge
relation, and (ii) it simultaneously removes edges that do not contribute to the
connectivity of the graph (i:e:, it deletes edge(x; y) if there is another path from
x to y).

The semantics of such programs is determined with respect to pairs of states,
as in Dynamic Logic. In addition, the semantics of concurrent actions requires a
minimality principle, which roughly says that the new state should di�er from
the old state as little as possible. The minimality principle makes the calculus
non-monotonic even in the absence of negation.

As with all \update in the head" languages, Chen's calculus lacks mechanisms
for de�ning subroutines, which makes it unsuitable as a programming language
for database transactions. However, Chen mentions in [Che95] that his calculus
was intended as a language for specifying bulk and other non-trivial updates,
which could then be used as elementary operations by a language like Transaction
Logic.

3.6 Ultra

Wichert and Freitag [WF97] describe an update language, which later received
the name Ultra. Ultra attempts to integrate several of the concepts used in
other update languages, including sequential composition, concurrent composi-
tion, and bulk updates. For instance, like Chen's calculus, Ultra includes facilities
for de�ning bulk updates declaratively; and like T R, Ultra is an \updates in the
body" language, so named subtransactions are possible. The semantics of Ultra
is inspired by Dynamic Prolog.

As an example, here is an Ultra program that raises the salary of all employees
by 10%:

raise(E; S)  #E; S employee(E; S) �
[DELemployee(E; S) : INS employee(E; S � 1:1)]

The expression #E; S employee(E; S) � in the rule body is bulk quanti�ca-

tion, which is interpreted as a (possibly in�nite) concurrent composition. This
means that the expression following � is executed for every tuple (E; S) in the
employee relation. The connective \:" denotes sequential composition; so in this
example, DELemployee(E; S) is executed before INS employee(E; S � 1:1).
(Of course, we could have used concurrent composition instead.)

Bulk quanti�cation and concurrent composition are implemented by exe-
cuting all the participating transactions hypothetically, and accumulating their
individual update requests (which, as in Chen's calculus, requires a minimality
principle). If these requests do not conict with each other (i:e:, if they do not
ask to insert and delete the same fact), then the updates are applied to the
database. If they do conict, then the transaction is aborted.



3.7 Datalog with State

A number of researchers have worked on adding the notion of state to Data-
log programs [Zan93,LHL95]. In these works, states are represented through a
special, distinct argument that is added to each updatable predicate. Updates
are then modeled as state transitions. The approach contains elements reminis-
cent of both the situation calculus and the event calculus. For instance, like the
situation calculus, states are identi�ed with function terms; and like the event
calculus, action instances (and action requests) can be stored in the database as
atomic formulas. To illustrate these ideas, we sketch the approach of [LHL95],
adapting it for the purpose of our presentation.

States are identi�ed by positive integers (represented as function terms).
For instance, the atom on(b; c; 3) means that block b is on block c in state 3.
The e�ects of actions are speci�ed by Datalog-style rules. Each action begins at
some state, s, and ends at some future state, s+k. For instance, we could de�ne
insert on(X;Y; S) to be an action that starts at state S, ends at state S + 1,
and inserts into the database the fact that block X is on block Y . Likewise,
delete on(X;Y; S) could delete the fact that X is on Y . These actions would be
de�ned by the following rules:

on(X;Y; S + 1)  insert on(X;Y; S)

on(X;Y; S + 1)  on(X;Y; S); :delete on(X;Y; S)

The �rst rule says that X is on Y if this fact has just been inserted into the
database. The second rule is a frame axiom. It says that X is on Y in a state if
X was on Y in the previous state and this fact has not been deleted from the
database by an action at state S.

To some extent, complex actions can be de�ned in terms of simpler actions.
For instance, the following rules de�ne the action move in terms of the simpler
actions delete on, delete clear, insert on, insert clear:

possible move(X;Y; S)  clear(X); clear(Y ); X 6= Y

delete clear(Y; S)  possible move(X;Y; S); move(X;Y; S)

insert on(X;Y; S)  possible move(X;Y; S); move(X;Y; S)

delete on(X;Z; S)  possible move(X;Y; S); on(X;Z; S); move(X;Y; S)

insert clear(Z; S)  possible move(X;Y; S); on(X;Z; S); move(X;Y; S)

The �rst rule says that it is possible to move block X onto block Y if both
blocks are clear and if they are di�erent blocks. The remaining rules all assume
that the move action is possible. Notice that even if move(x; y; s) is true, block
x will not be moved onto block y unless the move action is possible in state s.
This illustrates that the atom move(x; y; s) is not a statement that the move
action has occurred at state s; instead, it is a request to execute the move
action at state s. Thus, in each of the last four rules, the premise requires that
move(X;Y; S) be possible and that it be requested. Only then will the action
actually take place. In this case, the request for action move(X;Y; S) e�ectively



triggers requests for four other actions: insert clear(Y; S), insert on(X;Y; S),
delete on(X;Z; S), and delete clear(Z; S). These four actions will all be executed
concurrently. The ability to trigger actions in this way forms the basis of a theory
of active databases [LHL95].

Although actions like move can be de�ned in terms of simpler actions, the
ability of Datalog with State to combine actions is limited in comparison with
languages like Transaction Logic. For instance, Datalog with State has no no-
tion of sequential composition, and no notion of subroutine. Because of this, the
applications of Datalog with State to database programming are limited. Rec-
ognizing this problem, the authors have extended Datalog with State to include
nested transactions and procedures [LML96]. The extended language includes a
form of sequential composition modeled on the connective of serial conjunction
in Transaction Logic.

Finally, it is instructive to compare Datalog with State to Golog [LRL+97]
and to Reiter's theory of database evolution [Rei95], described in Section 4.4.
One important di�erence is that Datalog with State relies on a small, �xed set
of elementary updates, so only a small, �xed set of frame axioms is needed. An-
other di�erence is that Datalog with State uses a form of closed-world semantics
(XY-strati�cation [Zan93] or state-strati�cation [LHL95]), which is closer to the
database tradition. Consequently, unlike Reiter's theory, Datalog with State has
no problem in representing database views, recursive or otherwise. On the other
hand, it is hard to see how Datalog with State might be used for reasoning about
the e�ects of actions, which was the main result of Reiter's work.

3.8 Abiteboul-Vianu's Update Languages

Abiteboul and Vianu developed a family of Datalog-style update lan-
guages [AV91,Abi88], including comprehensive results on complexity and ex-
pressibility. Unlike Transaction Logic, these languages are not part of a com-
prehensive logic: arbitrary logical formulas cannot be constructed, and although
there is an operational semantics, there is no corresponding model theory and no
logical inference system. These languages have much in common with Datalog
with State, although they do not use state variables. Instead, each rule execution
changes the database state by either inserting or deleting tuples speci�ed in the
rule head.

Like Datalog with State, the update languages of [AV91,Abi88] assume that
databases are relational, and they do not support subtransactions, save-points,
or partial abort and rollback. Furthermore, there is no support for subroutines.
This can be seen most clearly in the procedural languages de�ned in [AV90],
where the lack of subroutines is reected in the PSPACE data complexity of
some of the languages, since subroutines would lead to alternating PSPACE,
that is, EXPTIME [Bon97a].

To illustrate this approach, we adapt the program (8) previously considered
in connection with Chen's calculus.

employee(E; S � 1:1) ^ :employee(E; S)  employee(E; S)



The negation sign in the rule head indicates that the corresponding atom
is to be deleted; on the other hand, non-negated atoms in the rule heads are
inserted into the database. If an employee-tuple, hjohn; 10Ki, is in the database,
the above rule �res up and replaces this tuple with hjohn; 11Ki. However, the
evaluation process does not stop here. The semantics of this update language is
based on �xpoint computation, so the above rule is to be continuously �red up
until a �xpoint is reached. So, John's salary will keep increasing inde�nitely.

In general, writing update programs in such a language is not a simple mat-
ter. Abiteboul and Vianu suggest that, to be useful, update programs must be
augmented with explicit control over iteration [AV91]. For instance, to prevent
John from getting a raise that might dwarf the national debt, a control structure
can e�ectively be added by using two rules, as follows:

employee(E; S � 1:1) ^ :employee(E; S)  employee(E; S) ^ compute

:compute  compute

Here, the proposition compute controls the execution of the salary raise rule.
When the atom compute is inserted into the database, both rules can �re (pro-
vided that the employee relation is non-empty). Firing the �rst rule increases
salaries, while �ring the second deletes compute from the database, thereby dis-
abling both rules.

The actual outcome of this process depends on the details of the operational
semantics. For instance, if each enabled rule can �re non-deterministically, then
John may not get any raise at all (if the second rule �res �rst), or he could
become very rich, if the �rst rule is allowed to �re many times before the second
rule interrupts this process.

Under a di�erent semantics, the enabled rules �re all at once and then the
corresponding changes are applied to the database, provided that di�erent rules
do not make conicting changes, such as adding and deleting the same fact
(this idea is also used in Ultra [WF97], as discussed in Section 3.6). Under this
semantics, John gets the raise precisely once, after which both of the above rules
are disabled.

4 Logics for Reasoning about Programs

4.1 Action Logic and Related Proposals

Pratt [Pra90] develops a logic, called Action Logic, that is super�cially similar
to Transaction Logic, but is di�erent from it in essential ways. Like T R, Action
Logic does not distinguish between actions and propositions: actions are simply
propositions that hold on intervals. However, the semantics and the intent of the
two formalisms are very di�erent. First, Action Logic is not a language for up-
dating databases or de�ning transactions. In fact, it has no notion of database,
no analogue of T R's transition oracle, and no counterpart to executional entail-
ment. Instead, Action Logic is an extension of regular expressions, and as such,
it can be viewed as a formalism for de�ning languages. Second, in contrast to



T R's semantics, which is based on sequences of states, Pratt develops a seman-
tics based on action algebras. The proof theory for Action Logic is a (�nite) set
of equations for reasoning about these algebras.

Nevertheless, Action Logic is super�cially similar to T R. For instance, it has
operators similar to 
, _, state, and :path in T R;8 and it has an iteration
operator, which can be expressed in T R using recursion. What makes the com-
parison seem especially close, is a pair of connectives, denoted  and ! in
Pratt's notation, that look very similar to T R's connectives for serial implica-
tion.9 Semantically, however, these connectives are very di�erent. For instance,
the following equation is an axiom of Action Logic:

a(a! b) + b = b (9)

Here, + denotes ordinary disjunction, and concatenation denotes sequential com-
position. This equation is therefore a sequential version of modus ponens: it says
that if a(a ! b) is true, then b is also true. The same is not true in T R. The
analogue of equation (9) in T R is the following statement:

(a 
 (a) b) _ b) $ b

However, this statement is not a theorem of T R. The intuitive reason is that
the two occurrences of a in this statement do not refer to the same action. In
fact, the second occurrence of a can begin only when the �rst occurrence ends.
Hence, the truth of a
 (a) b) does not imply the truth of b.

There is one more di�erence worth noting. Transaction Logic has two kinds
of conjunction, classical (^) and serial (
). Combined with negation, they lead
to two kinds of disjunction, and two kinds of implication, in a natural way.
In contrast, Action Logic has one type of conjunction (serial conjunction), as
pointed out in [Pra90]. Action algebras have a lattice-like \meet" operator that
might form the model-theoretic basis for another kind of conjunction, but the
meet operation is not always de�ned.

In [vB91], van Benthem outlines a number of logical approaches to dynamic
information processing. In these approaches, actions are represented as propo-
sitions. One of these approaches is based on a dynamic interpretation of clas-
sical predicate logic. A dynamic interpretation associates a pair of states to
each proposition, which resembles Dynamic Prolog of Manchanda and Warren
[MW88]. However, the states associated to propositions by dynamic interpre-
tations of [vB91] are not database states but rather variable assignments. van
Benthem also discusses an algebraic approach to the logic of dynamic systems,
which is akin to the action logic of Pratt [Pra90].

8 state is a proposition that is true precisely on paths of the form hsi, where s is
a state. In other words, state is true precisely at states. In contrast, path is a
proposition that is true on every paths.

9 In Transaction Logic, the connective of serial conjunction, 
, leads naturally to
a dual connective of serial disjunction, �, where �� � = :(:�
:�). This in
turn leads naturally to the notions of left and right serial implication: �( � =
��:� and �) � = :�� �. Using serial implication, one can express a wide
variety of dynamic and temporal constraints in T R [BK95].



4.2 McCarty and Van der Meyden

In [MvdM92], McCarty and Van der Meyden develop a theory for reasoning
about \inde�nite" actions. However, [MvdM92] does not address action execu-
tion or the updating of databases. To give an idea of what [MvdM92] is about,
consider a set consisting of exactly the following two rules in Transaction Logic:10

a c1
 c2
 c3 b c2
 c3

Here, a and b are complex actions de�ned in terms of the elementary actions
c1; c2; c3. In T R, the e�ects of the elementary actions are speci�ed by an oracle,
which is invoked to execute them. In contrast, [MvdM92] has no mechanism
for specifying the e�ects of elementary actions. Instead, their work focuses on
inferences of the following form:

If we are told that action a has occurred, then we infer, abductively,

that action c1 
 c2 
 c3 has occurred, so action c2 
 c3 has occurred,

so action b has occurred. Thus, an occurrence of action a implies an

occurrence of action b.

In earlier work, McCarty outlined a logic of action as part of a larger pro-
posal for reasoning about deontic concepts [McC83]. His proposal contains three
distinct layers, each with its own logic: �rst-order predicate logic, a logic of
action, and a logic of permission and obligation. In some ways, the �rst two
layers are similar to T R, especially since the action layer uses logical operators
to construct complex actions from elementary actions. Because of his interest
in deontic concepts, McCarty de�nes two notions of satisfaction. In one notion,
called \strict satisfaction," the conjunction ^ corresponds to concurrent action,
as it does in Chen's work [Che95]. In the other notion, called \satisfaction," the
same symbol corresponds to constraints on action execution, as it does in T R.
However, the development of such constraints was never considered, and this
promising avenue of study was not developed in detail. For instance, although
a model theory based on sequences of partial states is presented, there is no
sound-and-complete proof theory, and no mechanism is presented for executing
actions or updating the database.

4.3 Reiter's Theory of Database Evolution

Although the \main stream" of AI treated the situation calculus as a mere cu-
riosity for almost 30 years, it has recently received renewed development by
Reiter. In particular, Reiter has developed an approach to the frame problem
that does not su�er from the usual blow-up in the number of frame axioms, as
described in Section 2.3. Also, unlike the original situation calculus, which was
entirely �rst-order [McC63,MH69], Reiter's development includes an induction

10 Here we use the syntax of T R, which can be translated into the original syntax
of [MvdM92].



axiom speci�ed in second-order logic, for reasoning about sequences of transac-
tions. Applying this approach, Reiter has developed a logical theory of database
evolution [Rei95].

From the perspective of database theory [AHV95,Ull88], Reiter's approach
is quite unusual. For instance, a database state is usually modeled as set of
relations or logical formulas; but in Reiter's theory, a state is identi�ed with a
sequence of actions. Thus, di�erent transactions always terminate at di�erent
states, even if they have the same e�ect on the database. For example, the state
resulting from the action \insert a, then insert b" is formally di�erent from the
state resulting from \insert b, then insert a."

In addition, the theory adopts the view that databases are never actually up-
dated and transactions are never executed. Instead, the initial database state is
preserved forever, and the history of database transactions is recorded in a kind
of log. Thus, the current database state is not materialized, but is virtual. In this
framework, queries to the current state are answered by querying the log and
reasoning backwards through it to the initial state [Rei95]. Unfortunately, this
means that simple operations, like retrieving a single tuple from the database,
can turn into long and complicated reasoning processes. Since database logs are
typically large (perhaps millions of transaction records long), reasoning back-
wards through them is unacceptably expensive. Recognizing this problem, Re-
iter and his colleagues have looked at ways of materializing the current database
state [Rei95,LR94,LLL+94]. However, no theory has been presented showing how
the materialization can be carried out within a logical framework.

Finally, Reiter's theory does not apply to logic programs and deductive
databases. There are two reasons for this. First, the theory does not pro-
vide a minimal model semantics for database states. Thus, in Reiter's theory,
databases do not have the semantics of logic programs. Instead, the theory re-
quires databases to have a purely �rst-order classical semantics. Unfortunately,
this means that much of the familiar database and logic programming method-
ology does not apply. For instance, although transitive closure is trivial to ex-
press in a deductive database, it cannot be expressed by the databases of Re-
iter's theory, since transitive closure is not �rst-order de�nable [AU79]. The lack
of a minimal-model semantics also complicates the representation of relational
databases. Instead of representing them as sets of ground atomic formulas in the
usual way, the theory uses Clark's completion [Llo87,Rei84], which, in the case of
databases, requires very large �rst-order formulas. In AI terminology, these com-
plications arise because Reiter's theory is about open worlds, whereas databases
are closed worlds. Unfortunately, updating open worlds is an intractable problem
in general, since the result of an update may not have a �nite representation in
�rst-order logic [LR94].

Second, the theory does not protect deductive rules from database updates.
In particular, updates can damage and destroy rules. For example, suppose that
a deductive database consists of the single rule p(X)  q(X), and suppose
that the atom q(b) is inserted into this database. If this update is formalized in
Reiter's theory, then the updated database would be equivalent to the following



two formulas:11

q(b) p(X)  q(X) ^X 6= b

The point here is that the rule has changed as a result of inserting q(b). This
change is a direct result of Reiter's approach to the frame problem [Rei91], briey
described earlier in this survey (Section 2.3). Indeed, since the atom p(b) was
not true in the initial database, it must not be true in the �nal database; so the
rule premise must be modi�ed to ensure that X 6= b. Of course, this dictum is
completely contrary to the idea of database views, in which virtual data depends
on base data and can change as an indirect e�ect of database updates. In AI
terminology, this is an example of the rami�cation problem [Fin86,Rei95].

To account for views, Reiter treats view de�nitions as integrity constraints
that must be maintained by the transaction system. In this approach, views
are not de�ned by Horn rules. Instead, the axioms of the transaction system
are modi�ed to treat views as stored data. For instance, in the above example,
whenever a transaction inserts (or deletes) the atom q(b) from the database,
the modi�ed axioms would insert (or delete) the atom p(b) as well [Rei95]. In
this way, the system behaves as if the database contained the deductive rule
p(X) q(X) (with a minimal model semantics). Unfortunately, in this ap-
proach, view de�nitions depend on transaction de�nitions. Thus, each time a
transaction is modi�ed or de�ned, the change must be propagated to all the
view de�nitions. In addition, the approach requires that all views be de�ned
directly in terms of base predicates. Thus, views cannot be recursive, and views
cannot be de�ned in terms of other views.

In sum, the notion of database state in Reiter's theory does not allow for the
fundamental features of deductive databases and logic programs, namely recur-
sion, view composition, and minimal-model semantics. Consequently, the theory
does not provide a logical account of how to query or update such databases.

4.4 Golog

Levesque et al. have recently developed Golog, a procedural language for pro-
gramming complex actions, including database transactions [LRL+97]. Syntac-
tically, Golog is similar to the procedural database language QL developed by
Chandra and Harel [CH80] extended with subroutines and non-deterministic
choice. Semantically, however, Golog is much more complex, since the meaning
of elementary actions is speci�ed in the situation calculus, and the meaning of
larger programs is speci�ed by formulas of second-order logic. Because of this
logical semantics, it is possible to express properties of Golog programs and to
reason about them (to some extent).

Unfortunately, despite the claims of its developers, Golog is not a logic pro-
gramming language. This is because having a logical semantics is not the same

11 In both the initial and �nal database, we have suppressed the so-called \situation
argument." Situation arguments identify a database state in the situation calculus,
but are unnecessary for describing the formulas that are true in a state.



thing as programming in logic. Certainly, formalizing the semantics of Fortran in
logic would not make Fortran a logic programming language (although it would
make it possible to reason about Fortran programs). In fact, in many ways,
Golog is the opposite of logic programming. Most obviously Golog programs are
not de�ned by sets of Horn-like rules, but by procedural statements in an Algol-
like language. Golog also does not come with an SLD-style proof procedure that
executes programs and updates databases as it proves theorems. Finally, Golog
does not include classical logic programming as a special case. That is, classical
logic programs and deductive databases are not Golog programs.

In addition, Golog programs cannot be combined with classical logic pro-
grams, and they cannot query or update deductive databases. This is because
Golog is based on Reiter's theory of database evolution, which, as described
above, does not apply to logic programs and deductive databases. Even if the
initial database state is described by classical Horn rules, Golog does not treat
these rules as a logic program. For instance, suppose the initial state is described
by the following two rules:

tr(X;Y )  r(X;Y ) tr(X;Z)  r(X;Y ) ^ tr(Y; Z)

In a deductive database, these rules specify the transitive closure of relation r,
but in Golog they do not. This is because transitive closure requires the minimal
model semantics of deductive databases, which Golog eschews. In addition, Golog
does not protect these rules from database updates; so, as described above, the
rules are progressively damaged and destroyed as relation r is updated. Tran-
sitive closure can be de�ned in Golog, but not by deductive rules. Instead, the
user must write an Algol-like procedure, as illustrated in [LRL+97]. In this way,
Golog sacri�ces the declarativeness of deductive databases for the procedurality
of Algol. For the same reason, Golog has di�culty in specifying database views,
especially recursive views [Rei95]. These di�culties all arise because Golog aban-
dons the logic-programming paradigm.

Golog has numerous other characteristics that should also be mentioned. For
instance, Golog subroutines are not logical entities, but are macros speci�ed
outside the logic. Thus, one cannot refer to them in the logic, and in particular,
one cannot quantify over them or reason about them [LRL+97]. In addition,
like many logics of action, updates in Golog are hypothetical, not real. This is
because Golog uses the situation calculus to reason about what would be true
if an action took place. The actual execution of actions requires a separate run-
time system, outside of Golog. Finally, because it is based on Reiter's theory of
database evolution, there are many kinds of states that Golog cannot represent,
including Prolog programs with negation-as-failure. Likewise, there are many
kinds of updates that Golog cannot represent, including the insertion of rules into
deductive databases, and the insertion of disjunctions into disjunctive databases.

5 Conclusion

In this paper, we reviewed a number of approaches to state changes in databases
and logic programming. Our thesis is that they can all be traced, to various



degree, to three inuential ideas proposed over twenty years ago: the situation
calculus, Prolog, and Dynamic Logic. We have therefore tried to classify the
works surveyed here into one or more of these three categories. In the process,
we compared the approaches with each other and highlighted their di�erences.

Of course, there is a vast literature on time, change and action that could not
be addressed in this short survey. In particular, we have excluded works based
on various temporal logics, since they have had minimal inuence on databases
and logic programming. (Some discussion of these works appears in [BK95].)
Likewise, we did not discuss proposals based on Linear Logic (such as [AP91])
or Rewriting Logic (e.g., [Mes92a,Mes92b]). Nevertheless, some comparison of
these approaches with Concurrent Transaction Logic can be found in [BK96].
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