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Abstract

Motivation: The methods for analyzing overlap data are distinct from those for analyzing probe data, making
integration of the two forms awkward. Conversion of overlap data to probe-like data elements would facilitate
comparison and uniform integration of overlap data and probe data using software developed for analysis of STS
data.
Results: We show that overlap data can be e�ectively converted to probe-like data elements by extracting maximal
sets of mutually overlapping clones. We call these sets virtual probes, since each set determines a site in the genome
corresponding to the region which is common among the clones of the set. Finding the virtual probes is equivalent to
�nding the maximal cliques of a graph. We modify a known maximal-clique algorithm such that it �nds all virtual
probes in a large dataset within minutes. We illustrate the algorithm by converting �ngerprint and Alu-PCR overlap
data to virtual probes. The virtual probes are then analyzed using double-linkage intersection graphs and structure
graphs to show that methods designed for STS data are also applicable to overlap data represented as virtual
probes. Next we show that virtual probes can produce a uniform integration of di�erent kinds of mapping data,
in particular STS probe data and �ngerprint and Alu-PCR overlap data. The integrated virtual probes produce
longer double-linkage contigs than STS probes alone, and in conjunction with structure graphs they facilitate the
identi�cation and elimination of anomalies. Thus, the virtual-probe technique provides (i) a new way to examine
overlap data, (ii) a basis on which to compare overlap data and probe data using the same systems and standards,
and (iii) a unique and useful way to uniformly integrate overlap data with probe data.

Availability: Freely available on request.
Contact: Eric Harley eharley@cs.toronto.edu



Introduction

Strategies for constructing contig maps of genomes can
be classi�ed as probe-based or overlap-based. In probe-
based methods, typi�ed by STS-content mapping, the
elements being mapped are of two sorts { clones and
probes { and the mapping data indicate which clones
contain which probes. In overlap-based methods, typ-
i�ed by restriction digest �ngerprinting, the only el-
ements being mapped are clones, and the mapping
data simply indicate which pairs of clones overlap.
The techniques for analyzing these two kinds of map-
ping data are quite di�erent. Systems for analyzing
probe data include Mott et al., 1993; Cuticchia et al.,
1993; Wang et al., 1994; Soderlund and Dunham, 1995;
Green and Green, 1991; Magness and Green, 1996;
Nadkarni et al., 1996; Harley et al., 1998. Systems
for overlap data include Soderlund et al., 1997; Gillett
et al., 1996; Fonstein and Haselkorn, 1995; Whittaker
et al., 1993. In projects where probe and overlap data
are combined, they are typically examined separately,
as in the map-assembly methods used by the Cen-
tre d'Etude du Polymorphisme Humain and G�en�ethon
(CEPH/ G�en�ethon) and the Whitehead Institute/MIT
Center for Genome Research (WI/MIT) in their sem-
inal human mapping e�orts (Chumakov et al., 1995;
Hudson et al., 1995; Schuler et al., 1996).

In this paper, we describe a uniform method for an-
alyzing probe-based and overlap-based data using the
concept of virtual probe. A virtual probe is the region
of the genome shared by a maximal set of mutually
overlapping clones. Finding virtual probes is equiva-
lent to �nding the maximal cliques in a graph whose
nodes represent clones and whose edges indicate which
pairs of clones overlap. Clique-�nding is a classic prob-
lem in graph theory. It is well-known that enumeration
of maximal cliques is exponential in the size of the
graph (because a graph may contain an exponential
number of maximal cliques (Moon and Moser, 1965));
the related problem of �nding the largest clique in a
graph is NP-complete (Garey and Johnson, 1979). We
use a variant of the Bron-Kerbosch algorithm for �nd-
ing maximal cliques (Bron and Kerbosch, 1973) which
we adapt to run e�ciently on the large, sparse graphs
that arise in contig mapping.

Our method is intended to help human experts cope
with the numerous errors encountered in typical map-
ping datasets. The method suppresses local detail to
help analysts focus on the global structure of the data.
We create a view of the data in which good data appear
as straight paths, while errors show up as branched
structures. The result is that data can quickly be in-
spected for anomalies before applying algorithms or

software packages whose primary function is to �nd
the most likely order of probes and a corresponding
placement of the clones. We have previously described
these methods for probe data produced through STS-
content mapping (Harley et al., 1998). Here we adapt
the methods for overlap data produced through restric-
tion digest �ngerprinting and similar mapping proce-
dures.
We illustrate the method using data from the

CEPH/ G�en�ethon and WI/MIT mapping projects
mentioned above. We convert the CEPH/ G�en�ethon
�ngerprint and Alu-PCR overlap data into virtual
probes using our variant of the Bron-Kerbosch algo-
rithm. Next we analyze the virtual probe data us-
ing double-linkage intersection graphs and structure
graphs. Double-linkage is a �lter which diminishes the
branching e�ects caused by chimeras and false pos-
itives, while structure graphs tend to suppress local
non-linearities caused by false negatives. These qual-
ity controls were designed for analysis of STS-content
data, but they apply equally well to overlap data that
have been converted into virtual probes. Finally, we in-
tegrate the STS-content data from these projects with
the virtual probe data and show that the combined
dataset produces longer double-linkage contigs than
STS data alone.

System and Methods

Source of data: Our primary source of STS data
is Release 10 (May, 1996) of the WI/MIT dataset
available by anonymous ftp (genome.wi.mit.edu, direc-
tory /pub/ human STS releases/may96). Our source
for �ngerprint and Alu-PCR data along with ad-
ditional STS data is the March 1995 Release of
the CEPH/ G�en�ethon dataset available by anony-
mous ftp (ceph-genethon-map.cephb.fr, /pub/ceph-
genethon-map/STS/ 29MAR95.DAT). These datasets
were used by their respective organizations to con-
struct maps of the human genome (Hudson et al., 1995;
Chumakov et al., 1995; and Schuler et al., 1996).
Though these datasets have been supplanted

for most practical purposes by the more recent
BAC map produced by Washington University
(http://genome.wustl.edu/ gsc/index.shtml), they re-
main invaluable resources for development of map con-
struction methods. Key advantages include: 1) The
earlier datasets are well characterized. 2) They are
large enough to reveal important problems, but are
much smaller than the BAC dataset. 3) They combine
data from multiple mapping methods, with enough
data from each method to allow investigation of meth-
ods individually and in various combinations.



Figure 1: Clique model for analysis of overlap data.

Overlap: For the purposes of this paper, two clones
A and B are inferred to overlap and form an un-
ordered overlap pair based on �ngerprint data when
the CEPH/G�en�ethon �le RELATIONS lists clone B
among the clones overlapping with clone A (and vice
versa). The �ngerprint data give rise to 49,383 over-
lap pairs among 31,392 YACS (yeast arti�cial chromo-
somes). Overlap of clones A and B is also inferred if
one of the two clones, acting as an Alu-PCR probe, hy-
bridizes with the other at a unique address, i.e., the hy-
bridization is scored 'Unique' (U) by CEPH/G�en�ethon.
The CEPH/G�en�ethon data show the results for exper-
iments with 8,785 YACs used as Alu-PCR probes and
24,576 YACs used as targets. These Alu-PCR data
produce 55,891 distinct overlap pairs.

A third method of inferring overlap of clones A and
B is by observing that they both contain the same STS
probe. Using STS probe data from WI/MIT (12,527
STSs and 21,051 YACs) and CEPH/G�en�ethon (7,026
STSs and 18,298 YACs) we derived 364,536 overlap
inferences, comprising 215,397 distinct overlap pairs.
Overlaps inferred from the STS data corroborate 54%
of the overlaps from the �ngerprint data and 37% of
the overlaps from the Alu-PCR data. The number of
distinct overlap pairs in all three forms of data (STS,
�ngerprint, and Alu-PCR) combined is 271,257.

Overlap graph: This is a straightforward representa-
tion of overlap data, where nodes correspond to clones,
and an edge means that the corresponding clones over-
lap. An example of a simple overlap graph is shown
in Figure 1. Part (a) of this Figure shows a chromo-
some which is the source of a library of overlapping

cloned fragments of DNA. Part (b) shows numbered
cloned fragments directly under their region of origin
on the chromosome. We assume that an experiment
determines which fragments overlap. Some of the re-
sulting overlap data are listed in part (c), which shows
pairs of identi�ers representing overlapping clones. For
the purpose of this sketch, we assume that the exper-
iment is perfect, i.e., all of the overlaps in the sketch
result in observed overlap pairs, and there are no false-
positive pairs. In this case, the sketch in (b) implies
a unique set of overlaps in (c), although the converse
is not true. Part (d) represents the overlap data as
an overlap graph. Each edge (a,b) in this graph is in
one-to-one correspondence with an overlap pair (a,b)
in part (c).

Cliques: A clique is de�ned to be a subgraph in
which each pair of nodes is joined by an edge, while
a maximal clique is a clique which is not a proper
subgraph of another clique (Harary, 1969). We will
sometimes use the term clique to mean maximal clique,
where the intended meaning is clear. Figure 1(e) shows
groups of nodes which form maximal cliques in the ex-
ample overlap graph. A number of heuristic algorithms
for �nding maximal cliques have been developed, and
comparative reviews may be found in (Johnston, 1976;
Pardalos and Xue, 1994; and Pardalos et al., 1999).

Experimental comparisons among these algorithms
generally involve only a subset of the published algo-
rithms, and are typically done on random graphs of
less than 1000 nodes. In this work, we want to �nd
all of the cliques in overlap graphs of about 30,000
nodes. Since these graphs are nonrandom and much
larger than the graphs used in published studies com-
paring clique-listing algorithms, we implemented and
compared several of the algorithms: the long-standing
Bron and Kerbosch algorithm (BK) (Bron and Ker-
bosch, 1973), the simpli�ed Bron and Kerbosch algo-
rithm (SBK) (Johnston, 1976), an algorithm based on
�nding maximal independent sets (LTMIS) (Loukakis
and Tsouros, 1981) and an algorithm (CN) with time
complexity O(a(G)m) per clique, where a(G) is the ar-
boricity of the graph G, and m is the number of edges
(Chiba and Nishiszeki, 1985). We �nd that the time
taken by LTMIS or CN grows too quickly with the size
of the overlap graph, making these algorithms inap-
propriate for large sparse graphs of this type. The BK
and SBK algorithms are practical (assuming we use an
adjacency list rather than a square matrix to represent
the graph) but take about an hour (99 and 49 minutes,
respectively) of computation time on an overlap graph
of 25,000 nodes, using a Sun Sparc Station 10. How-
ever, we modify the BK algorithm to the e�ect that the
computation time on a graph of this size is reduced to



29 seconds. In essence, the modi�cation applies the
BK algorithm to �nd the maximal cliques in each sub-
graph Si, (1 <= i <= N ), where Si is composed of
node i and its neighbors, and the maximal cliques in-
volve only vertex i and its neighbors j such that j > i.
(N denotes the number of nodes in the graph). C code
for each of the algorithms mentioned is available from
the authors on request.

Virtual-Probes: Notice that each maximalclique cor-
responds to a region of mutual overlap among its con-
stituent clones, as illustrated by the dotted boxes su-
perimposed on the clones sketched in Figure 1(b). In
turn, each of these regions represents a site in the
genome, as indicated by the placement of the clique
labels on the chromosome in Figure 1(a). We call
these regions virtual probes since (like STS probes)
they mark sites in the genome, but (unlike STS probes)
they are identi�ed indirectly by groups of overlapping
clones rather than by sequence. Each virtual probe
has breadth equal to the width of the region of mutual
overlap. In theory, the genomic region of one virtual
probe cannot overlap with that of another, since this
would imply that one maximal clique was a subset of
another | a contradiction of terms.

Weighted intersection graphs: These are a well-
studied class of graphs (Harary, 1969) where the nodes
correspond to sets, and an edge of weight M between
two nodes means that there are M elements in the
intersection of the corresponding sets. We have pre-
viously discussed probe intersection graphs, where the
node-set represents a group of clones which hybridize
with a common probe (Harley et al., 1998). In this
paper we focus on clique intersection graphs, where
each node-set represents a maximal clique in the over-
lap graph, and a clique de�nes a virtual probe. Figure
1(f) shows the weighted intersection graph using labels
a,b, ..., j for the cliques found in Figure 1(e). For ex-
ample, the edge from node a to node b is shown with
a weight of 2, since cliques a and b have two elements
in common: fragments 4 and 5.

In all subsequent graphs of this paper, edges of unit
weight are excluded to produce a double-linkage inter-
section graph. The double-linkage �lter greatly reduces
the number of edges attributable to false positives and
the e�ects of chimerism (Arratia et al., 1991). An-
other �lter for false positives is the size of cliques. A

clique of size n in the overlap graph represents n(n�1)
2

overlapping pairs of clones, and each overlap corrobo-
rates the other overlaps. Cliques of just two clones of
course lack this internal corroboration, and therefore
we ignore them in order to �lter out potential false
overlaps.

Structure graphs: These provide a skeletal view of

intersection graphs by compressing local complexity to
reveal the underlying structure (Harley et al., 1998).
The structure graph is formed on the basis of two
breadth-�rst search (BFS) traversals of the intersec-
tion graph. The �rst BFS traversal starts at an arbi-
trary node s and identi�es a node x which is any of the
nodes farthest from s. The second BFS traversal starts
at node x and partitions the nodes of the graph into
layers according to their distance from x. Nodes which
form a connected component within a given BFS layer
are de�ned to form a blob, which becomes a node in
the structure graph. Two nodes a; b in the structure
graph, corresponding to blobs A;B in the intersection
graph, are joined by an edge (a; b) if there is an edge
(i; j) in the intersection graph, where i 2 A and j 2 B.

For example, if the �rst BFS starts at node f in the
graph of Figure 1(f), then we obtain x = a, as the node
most distant from f. The second BFS then starts at
node a and divides the graph into layers: l0 = fag; l1 =
fb; cg; l2 = fd; eg; l3 = ffg; l4 = fgg; l5 = fh; i; jg.
Each layer is further subdivided into connected compo-
nents called blobs. In this simple (noise-free) example
each layer forms a single connected component, so that
each layer is a blob: bi = li. We form a structure graph
by creating a node for each blob and an edge between
pairs of blobs if in the intersection graph there is an
edge between an element of one blob and an element of
another. For example, there will be an edge between
b0 and b1, since a 2 b0 is connected to b 2 b1 in Figure
1(f). The structure graph resulting from this example
is shown in Figure 1(g). It is a simple path, as will
be the case whenever the data is perfect (i.e., when
the data can be modeled by a set of overlapping line
segments), according to a theorem in (Harley et al.,
1999). Note that in general, we form structure graphs
from double linkage intersection graph, but for illus-
tration purposes we did not remove the edges of unit
weight in this example.

Graph visualization: We use the Hy+ data visual-
ization system (Consens, 1994) to display intersection
and structure graphs.

Chromosome assignment: We used the following rule
to assign virtual probes to chromosomes: Assign a
virtual probe to Chromosome A if the number of its
clones associated with Chromosome A is at least two
and greater than the number associated with any other
chromosome. A clone is de�ned to be associated with
chromosome c if it hybridizes with an STS assigned to
chromosome c. Reliability and applicability of this rule
were assessed on sets of clones de�ned by hybridization
with STSs, since in that case the chromosome assign-
ment of the STSs can be used as a standard. The
assignment rule was applicable in 90% of the cases and



Figure 2: Alu-PCR virtual probes: (left) Double-
linkage intersection graph (238 nodes, 1,805 edges);
(right) structure graph (35 nodes, 40 edges).

was correct 97% of the time (sample size 15,136).

Results

Alu-PCR data: We briey examine CEPH/G�en�ethon
Alu-PCR data using the virtual-probe method to show
that this method provides a useful and informative
view of Alu-PCR data in isolation. We applied our
modi�ed BK algorithm to extract all of the maximal
cliques from an overlap graph of Alu-PCR data. The
total number of maximal cliques was 34,643, ranging
in size from 2 to 14 YACs. Cliques of size two (20,285)
were subsequently ignored as unreliable and not use-
ful for double-linkage graphs. Cliques were assigned
to chromosomes according to the rule described above.
This resulted in unambiguous assignment of 87.7% of
the cliques, while 3.6% of the cliques could not be as-
signed because they were equally associated with more
than one chromosome, and 8.7% were not assigned be-
cause they did not have at least two YACs associated
with a single chromosome.
We formed an intersection graph from the 14,358

cliques of size three or more. One huge, connected
component comprised 96% of the nodes, an anomaly
common in STS data at this level of analysis (i.e.,
single-linkage). This clearly indicates cross-linkage
among virtual probes belonging to di�erent chromo-
somes. Simple counting reveals that 19% of the unit-
weight edges connect virtual probes assigned to di�er-

Figure 3: Fingerprint virtual probes: (left) Double-
linkage intersection graph (82 nodes, 592 edges);
(right) structure graph (15 nodes, 14 edges).

ent chromosomes (considering only edges between vir-
tual probes that were successfully assigned to chromo-
somes). Only about 1.2% of the nonunit-weight edges
are cross-links of this type, which leads us to examine
only the double-linkage intersection graph.

The largest component of the double-linkage clique-
intersection graph is shown in Figure 2, along with the
corresponding trimmed structure graph. The nodes in
the structure graph are labeled using the chromosome-
assignment rule applied to blobs. Nodes which are not
assigned a chromosome because they are equally as-
sociated with multiple chromosomes are labeled 'M',
while blobs that do not have at least two clones asso-
ciated with a single chromosome are labeled '0'. The
labeled structure graph suggests that this component
is a contig from Chromosome 9, along with some cross
links to parts of chromosome 15 and 22. We do not
analyze this component further, since the point here is
only to show that the virtual probe technique makes
possible new ways to examine overlap data. The in-
formation in this �gure would be di�cult to obtain by
conventional means.

Fingerprint data: In this section, we use virtual
probes to form a new view of the �ngerprint data
from CEPH/G�en�ethon. We �rst extracted all of the
maximal cliques from the overlap graph with the our
modi�ed BK algorithm. The total number of maxi-
mal cliques was 12,710, including 3,718 cliques of size
two which were discarded as potential noise. Using



Figure 4: Structure graph (134 nodes, 165 edges) for
the largest component (1,196 nodes, 5,839 edges) of
the double-linkage intersection graph resulting from
virtual-probe analysis of Chromosome 1. Blobs are la-
beled with genetic positions in cM. A proposed contig
is outlined in bold.

the chromosome-assignment rule, 93% of the remaining
cliques were unambiguously assigned to chromosomes.
We formed an intersection graph based on cliques from
�ngerprint data, and the largest component comprised
66% of the nodes. This indicates considerable cross-
linkage, and in fact 14% of the unit-weight edges link
virtual probes belonging to di�erent chromosomes. On
the other hand, 0.8% of the nonunit-weight edges are
cross-links, leading us as usual to use the double-
linkage �lter. Figure 3, shows the largest component
of the double-linkage intersection graph and the cor-
responding structure graph. Nodes in the structure
graph are labeled using the chromosome-assignment
rule applied to blobs. This component appears to be
a fairly clean and simple contig from Chromosome 4.

Figure 5: (a) Proposed contig extracted from inte-
grated data; (b) corresponding STS contigs.

This example illustrates that the virtual probe tech-
nique makes possible simple noise �ltration and anal-
ysis of �ngerprint overlap data by methods developed
for probe data.

Merged data: In this section we use virtual probes
to integrate STS, Alu-PCR and �ngerprint data. The
STS data was �rst converted to overlap data by as-
suming that the clones hit by a particular STS mu-
tually overlap, and then we combined the STS overlap
data with the `pure' overlap data. The total number of
maximal cliques generated using the our modi�ed BK
algorithm on the integrated overlap data was 40,060,
including 12,378 of size two that were discarded as po-
tential noise. The number of cliques from the merged
data decreases rapidly with clique size, though not as
quickly as in the case of cliques from Alu-PCR or �n-
gerprint data. Cliques of size 12 or more are primarily
based on STS data. Application of the chromosome-
assignment rule to cliques of size three or more resulted
in 95% of the cliques being unambiguously assigned.
The clique intersection graph is largely one component
containing 99.5% of the nodes, indicating abundant
cross-linkage. In fact, 58% of the unit-weight edges
cross-link virtual probes from di�erent chromosomes,
while 2.6% of the nonunit- weight edges are cross-links.



Removing the unit-weight edges, we obtained
a double-linkage clique intersection graph for the
genome-wide data, but even this graph is almost en-
tirely one component, comprising 24,304 of the 27,692
nodes. This reects considerable cross linkage for edges
with weight M � 2, a phenomenon we also see in STS
data alone (Harley et al., 1998). This connected com-
ponent can be broken up according to chromosome by
assigning virtual probes to chromosomes (as explained
in the Methods section) and then �ltering out edges
which link probes belonging to di�erent chromosomes.
This results in a number of connected components for
each chromosome. The structure graph for the largest
connected component formed from virtual probes as-
signed to Chromosome 1 or unassigned is shown in Fig-
ure 4. The corresponding intersection graph is omitted
from this �gure to save space. The structure graph is
branched and looped, indicating that this component
cannot be a single contig.
We have labeled nodes in the structure graph with

genetic positions in order to help visualize where the
contigs lie in this component. (Labeling with radiation
hybrid positions produces similar results). A blob is
given a range of positions as determined by the STSs
that it contains. A blob is considered to contain an
STS if the set of clones in the blob is a superset of the
set of clones hit by the STS. The longest potential con-
tig stretches from about 98 cM to 140 cM. This contig
is shown in Figure 5(a). Figure 5(b) shows that many
double-linkage contigs in STS data alone are required
to cover this range of genetic positions. Similarly,
the WI/MIT STS-based map of the human genome
shows about a dozen double-linkage contigs in the
range 98-140 cM (http://carbon.wi.mit.edu:8000/cgi-
bin/contig/phys map). In the region 80-140 cM of
Chromosome 1, the double-linkage coverage in our in-
tegrated data is similar in extent to that of the single-
linkage STS contigs in the WI/MIT map. Thus, data
integration using virtual probes leads to longer double-
linkage contigs.

Discussion

We have presented a new method to analyze and in-
tegrate overlap data with probe data. The method is
based on the conversion of overlap data to maximal
cliques. The cliques correspond to sites in the genome,
and are therefore called virtual probes. Analysis of the
overlap graph in terms of virtual probes o�ers the fol-
lowing advantages | (1) it provides simple ways to �l-
ter out many false positives and chimeric links: simply
ignore cliques of size two and construct double-linkage
intersection graphs; (2) software systems designed for

analysis of probe data can be applied without modi�ca-
tion to overlap data transformed to virtual probes; and
(3) virtual probes make possible a seamless integration
of numerous forms of overlap and probe data. Sepa-
rate analysis of these two di�erent data types by the
same system presents a unique opportunity for com-
paring probe and overlap results based on a single stan-
dard. Integrated analysis of the two data types by the
same system increases the amount of data available to
the system from which to make inferences, resulting in
larger contigs and possibly more accurate ordering of
probes, cliques and clones.

We converted Alu-PCR and �ngerprint overlap data
(separately) to sets of virtual probes to illustrate that
these forms of pure overlap data can then be ana-
lyzed by methods developed for probe data. Alu-PCR
data is typically considered in conjunction with other
kinds of data, and in a way which makes its contri-
bution secondary. For example WI/MIT uses Alu-
PCR data as auxiliary evidence of connection between
double-linkage STS contigs, and CEPH/G�en�ethon uses
Alu-PCR data along with �ngerprint evidence as one
way to construct overlapping clone paths between STS
markers. In either case, it is not clear to what extent
the Alu-PCR data can be trusted, nor is it clear what
the Alu-PCR data looks like as a whole by itself. The
result in Figure 2 shows that noise �ltration and graph-
ical methods developed for probe data can be applied
to Alu-PCR data to produce new and interesting views
of the data. The results in Figures 2 and 3 together
indicate that analysis based on virtual probes o�ers a
way to compare di�erent types of overlap data by a
common measure.

We used virtual probes to provide a uniform inte-
gration of several types of data (Alu-PCR, �ngerprint
and STS data). Analysis of the integrated data in
one region of Chromosome 1 showed that the resulting
double-linkage contigs were much more extensive than
those obtained using STS data alone. Detailed anal-
ysis (not shown) reveals that STS contigs are some-
times joined via double-linkage through cliques that
are based on a mixture of data types. Thus, contigs
are automatically extended as a consequence of our
general approach, without introducing separate algo-
rithms or rules for this purpose.

Extraction of these contigs from complex graphi-
cal components requires additional positional evidence
such as genetic or radiation hybrid markers. Once con-
tigs are extracted, an ordering algorithm can be ap-
plied to the virtual probes, although this is not done
here. The resulting order should be more accurate
when using virtual probes of integrated data than when
using STS data alone, since more information is associ-



ated with each probe. We postulate that the method of
virtual probes will also be useful in sequence assembly
where the problem of forming contigs based on overlap
data recurs.
We have used structure graphs and their visual

representation to allow rapid inspection of the data.
Branching in the structure graph reveals anomalies
which may be the result of chimeric YACs, repeat re-
gions or other causes. The biologist can isolate the
data representing the few blobs in the region of the
fork, and examine this data separately. It might turn
out that further experimentation is necessary to deter-
mine which YACs or probes involved in the fork are the
source of the anomaly, or it may be possible to make
a deduction based on the graph alone.
Future work: Analysis of simulated data shows that

the ratio of (a) the number of cliques that would result
given a typical rate of false negatives in the observa-
tion of overlaps to (b) the number of cliques that would
result given observations without false negatives grows
exponentially with increasing coverage. We are cur-
rently developing algorithms to counter this e�ect.
Throughout this paper we use only double-linkage

intersection graphs. This ignores a great many edges
that have unit weight, leading one to wonder if we
might be losing useful information. One of the ben-
e�ts of integrating data by using virtual probes is that
good single-linkage data from several sources may com-
bine to form usable double-linkage data. Experiments
(not shown) designed to extract proximity informa-
tion from the remaining unit-weight edges were un-
successful. (However, one can do the reverse | use
known proximity information to extract good single-
YAC links.) This line of research could be explored
more in the future, and might prove fruitful on other
datasets.
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