
Good Maps are Straight�

Eric Harley
University of Toronto

Dept. of Computer Science
Toronto, Ont, Canada M5S 3G4

eharley@db.toronto.edu

Anthony J. Bonner
University of Toronto

Dept. of Computer Science
Toronto, Ont, Canada M5S 3G4

bonner@db.toronto.edu

Nathan Goodman
Whitehead Institute/MIT

Center for Genome Research
Cambridge, MA 02139, USA
nat@genome.wi.mit.edu

Abstract

This paper proposes a simpli�ed approach to the
assembly of large physical genome maps. The
approach focuses on two key problems: (i) the
integration of diverse forms of data from numer-
ous sources, and (ii) the detection and removal
of errors and anomalies in the data. The ap-
proach simpli�es map assembly by dividing it
into three phases|overlap, linkage and order-
ing. In the �rst phase, all forms of overlap
data are integrated into a simple abstract struc-
ture, called clusters, where each cluster is a set
of mutually-overlapping DNA segments. This
phase �lters out many questionable overlaps in
the mapping data. In the second phase, clusters
are linked together into a weighted intersection
graph. False links between widely separated re-
gions of the genome show up as crooked, branch-
ing structures in the graph. Removing these false
links produces graphs that are straight, reect-
ing the linear structure of chromosomes. From
these straight graphs, the third phase constructs
a physical map. Graph algorithms and graph vi-
sualization play key roles in implementing the ap-
proach. At present, the approach is at an early
stage of development: it has been tested on real
and simulated mapping data, and the results look
promising. This paper describes the �rst two
phases of the approach in detail, and reports on
our progress to date.

Introduction
A major goal of the Human Genome Project is to con-
struct detailed physical maps of the human genome
and the genomes of other organisms. A physical map
gives the position on a genome of numerous small
fragments of DNA, called clones. Most genomic ex-
periments do not determine clone positions directly.
Instead, they determine spatial relationships between
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them, such as whether two clones overlap. Inferring
clone position from the experimental data is calledmap
assembly. Assembling complete and detailed maps of
large genomes requires the integration of many forms
of experimental data from many sources. The resulting
maps are said to integrate the data.

Algorithms for assembling integrated physical maps
face several challenges. First, they must handle the
increasingly large volumes of mapping data now be-
ing generated. Second, they must be exible enough
to accommodate new forms of data as they become
available. Third, they must deal e�ectively with the
complexities of the data, e:g:, with anomalies, inconsis-
tencies and imprecision, and with subtle relationships
between the di�erent forms of data. Unfortunately,
this last point complicates the map-assembly process
enormously, limiting the e�ectiveness and exibility of
many map-assembly algorithms. To address this prob-
lem, we propose to simplify map assembly by dividing
it into three phases|overlap, linkage and ordering.

The �rst phase integrates all forms of overlap data
into a simple abstract structure, called clusters. A clus-
ter is any set of mutually overlapping clones. Because
they mutually overlap, the clones in a cluster must
have at least one point in common; so the cluster can
be thought of as a point on the genome. In addition,
clustering �lters out many false overlaps, because each
overlap in a cluster is corroborated by many others. In
this paper, all clusters have at least three clones. The
section on overlap describes an algorithm for generat-
ing clusters.

After clusters are generated, the second phase links
them together into a weighted intersection graph. In-
tersection graphs are a well-studied class of graphs in
which each node is a set, and an edge means that two
sets intersect. In our case, each node is a cluster, and
an edge of weight M means that two clusters have M
clones in common. Intuitively, an edge is evidence that
two clusters are close together on the genome, and the
weight is the strength of that evidence. In this paper,
we only consider edges of weight at least 2. This �lters
out many false links between widely separated regions
of the genome (caused by an experimental anomaly



called chimerism), generalizing the notion of double
linkage (Arratia et al. 1991).
If the experimental data were perfect, then the link-

age graph would be straight, i:e:, long, thin and nearly
linear, reecting the linear structure of chromosomes.1

However, errors and anomalies in the data distort the
graph. We can identify many distortions using algo-
rithms that examine graph structure and by exploiting
graph visualization techniques. We can also remove
large-scale distortions by exploiting large-scale map-
ping data, such as genetic maps. The result is a set of
straight graphs, each representing a contiguous region
of the genome, or contig. The remaining distortions are
small and local, and are due largely to false negatives.
From these graphs, the ordering phase constructs a

physical map. The �rst step is to determine a genomic
order for the nodes in the graphs. As in genetic maps,
we assign nodes to an ordered set of \bins." Within a
bin, the relative order of nodes is unknown; but with
high probability, all nodes in one bin precede all nodes
in the next. A novelty of our approach is that if a node
cannot be con�dently assigned to a single bin, then it is
assigned to several bins, to represent the uncertainty
in its position. Finally, from these bin assignments,
we construct a physical genome map, estimating the
position and error of each clone.
Implementing the above approach involves develop-

ing numerous graph algorithms. For example, cluster
formation is an NP-complete problem that reduces to
�nding all the maximal cliques in a graph. We have
adapted the Bron-Kerbosch maximal clique algorithm
(Bron & Kerbosch 1971) to exploit the sparsity of the
graphs for overlap data. It generates all of the clus-
ters for human genome data|40,000 of them|in 3
minutes. Other algorithms identify large-scale non-
linearities in our graphs, and others extract nearly-
linear subgraphs from them. Graph layout and visu-
alization algorithms are also an important part of the
approach.
At present, the above approach to map assembly

is at an early stage of development, and the results
are promising. Algorithms developed for the �rst two
phases have been extensively tested on real mapping
data covering the entire Human genome and on data
for selected genomic regions. Algorithms for the third
phase have been tested on simulated data, and on data
covering small regions of Human Chromosome 7. This
paper reports on our progress, focusing on the �rst
two phases|overlap and linkage, including contig ex-
traction. Due to space limitations, the paper does not
elaborate on the third phase|ordering|which will be
described in a forthcoming work. The paper includes
numerous examples from our on-going project to inte-
grate the mapping data from two large genome cen-
ters, namely the Whitehead Institute/MIT Center for

1Formally, it would be an interval graph (Golumbic
1980). See (Corneil, Olariu & Stewart 1995) for a theory
of linear structure in graphs.

Genome Research, and the Centre d'Etude du Poly-
morphisme Humain (CEPH) and G�en�ethon.

Background and Related Work

Constructing a complete physical map of the human
genome requires an indexed library of clones of short,
contiguous sections of DNA comprising the entire hu-
man genome. This library serves as a reservoir of
genomic fragments for subsequent study of sequence,
function and malfunction of genes. The index, or phys-
ical map, assigns each clone to its location on the
genome. The map together with the library provides
direct access to speci�c locations in the genome, thus
facilitating the isolation of disease genes and the as-
sembly of sequence data.
Substantial progress towards this goal has been

made. A library of megabase sized genomic fragments
cloned in yeast (yeast arti�cial chromosomes, or YACs)
was created and made available to the genome com-
munity by CEPH/Genethon (Chumakov et al. 1995).
Whitehead/MIT has assembled an STS-based map of
the human genome consisting of 15,000 STSs screened
against the CEPH YAC library (Hudson et al. 1995).
The map is estimated to cover 95% of the genome. A
clone based map from CEPH estimated to be about
75% complete (Chumakov et al. 1995) along with de-
tailed \second-generation" physical maps of several hu-
man chromosomes by other labs have been published
in the Genome Directory (cf: Genome Directory 1995).
Despite this progress, the assembly of physical maps

remains a complicated process because of a number of
biological phenomena and experimental artifacts, such
as chimerism, homologous regions, unclonable regions,
unstable clones, distribution biases of repeats and ge-
netic markers, non-uniform e�ciency of probe screen-
ing, and experimental errors (Cohen, Chumakov, &
Weissenbach 1993). These problems necessitate the
use of several forms of data, such as polymerase chain
reaction (PCR)-based ampli�cation of polymorphic se-
quenced tagged sites (STSs), hybridization to clones of
probes composed of inter-Alu sections ampli�ed using
the polymerase chain reaction (PCR), restriction en-
zyme �ngerprinting of clones, radiation-hybrid data,
genetic mapping of STSs, and uorescent in-situ hy-
bridization (FISH) of clones to metaphase chromo-
somes. The �rst three of these sources of data indi-
cate which pairs of clones overlap, while the last three
localize clones or probes to particular regions of the
chromosome.
As yet there is no completely automated method

that converts the above forms of data into a phys-
ical map. The approach taken by CEPH/Genethon
consists of several steps, as follows: (1) construct a
framework of genetically mapped STSs; (2) use various
forms of YAC overlap data to assemble reasonable min-
imal YAC paths between the mapped markers, where
\reasonable" means not using STSs or YACs that be-
long to other regions of the map; (3) manually inspect



paths for consistency and absence of cycles; (4) ex-
tend or improve paths by doing speci�c experiments;
and (5) map some YACs that contain genetic mark-
ers to the cytogenetic map using FISH. The approach
taken by Whitehead/MIT consists of di�erent steps:
(1) link together STSs that share at least two YACs,
thus forming doubly-linked contigs; (2) place the con-
tigs in the map by using genetic and radiation-hybrid
data; (3) �ll the gaps between contigs with the help
of Alu-PCR and �ngerprint data and single-linkage
STS data; and (4) order the STSs within contigs using
a simulated annealing algorithm. Other methods of
physical map assembly include Letovsky's method of
constraint propagation (CPROP) (Letovsky & Berlyn
1992), and methods based on temporal logic (Lee et
al. 1993; Schmeltzer 1995).

Structure of STS Graphs

As described in the Introduction, the essence of our
approach is to construct graphs that mimic the maps
we are assembling. The bene�t is that problems with
the map reveal themselves as defects in the graph: bad
maps are crooked and branched, while good maps are
straight. This section illustrates this idea on a par-
ticular form of mapping data|STS content data. We
examine this form of data �rst because it is naturally
represented as a graph (Harley & Bonner 1994) and
is convenient for introducing some of our graph-based
techniques. The main techniques are graph simpli�ca-
tion and visualization. The idea is to abstract or com-
press the detailed structure of a large and unwieldy
graph, to give a much smaller and simpler graph, one
that reveals the overall structure of the larger graph.
The abstracted graph can be automatically laid out
and displayed on a screen, from which we can see large-
scale anomalies in the mapping data. We have found
this technique to be particularly well-suited to graphs
generated from genome mapping data. All graphs in
this paper were laid out and displayed using the Hy+
data visualization system (Consens 1994).
An STS, or sequence-tagged site, is a known se-

quence of about 300 base pairs (bp), whose presence on
a clone can be assayed by the polymerase chain reac-
tion (PCR). STS probes serve two purposes: they mark
a unique site in the genome, and they indicate which
YACs overlap. Current mapping methods rely heavily
on STS screening of the YACs in the library. The STS
data analyzed in this paper were obtained from the fol-
lowing two sources: Release 8 (Sept. 1995) from the
Human Physical Mapping Project at the Whitehead
Institute/MIT Genome Center (available by anony-
mous ftp to genome.wi.mit.edu), and the March
1995 Release from CEPH (available by anonymous ftp
to ceph-genethon-map.cephb.fr). The number of
STSs and YACs in the two data sets and some average
statistics are summarized in Table 1. The fact that the
average number of YACs hit per STS is about 6 implies
a 25-40% rate of false negatives, since the portion of

Whitehead CEPH Merge
YACs 19,939 18,298 24,448

hits/YAC 3:5� 2:6 2:0� 1:8 3:6� 3:1
STSs 11,990 7,588 14,888

hits/STS 5:9� 4:1 4:9� 4:0 5:9� 4:0

Table 1: Statistical characterization of STS data.

This table characterizes the STS data from White-
head Release 7; CEPH release Mar, 1995; and the
merge of the two databases. We include both def-
inite and disambiguated addresses in the White-
head data. The YAC count includes only YACs
positive for at least one STS. Average YAC length
was 1000� 500 kb.

the library screened by Whitehead has 8-fold coverage
(Hudson et al. 1995), and the portion screened in the
merged data set has 10-fold coverage (Chumakov et al.
1995).

STS Intersection Graphs

One way to represent STS data is with a weighted
intersection graph (Harley & Bonner 1994). In this
graph, each node is an STS (or equivalently, the set
of YACs hit by the STS). There is an edge of weight
M > 0 between two nodes if the corresponding STSs
hit M YACs in common. Figure 1 shows a schematic
representation of noise-free STS-YAC data and the re-
sulting STS intersection graph. The weight of each
edge is given by the number of YACs bridging the two
endpoint STSs. For example, the weight of the edge
between STSs a and b is two, and that between STSs
b and c is one.
STSs which are adjacent in the intersection graph

are expected to be close together in the genome. For
this to be true, we must suppress edges with weight
M = 1, since there is a good chance that such edges are
artifacts caused by chimeras or random false positives
in the assay. For example, in the intersection graph
for the merged Whitehead and CEPH STS data, 53%
of the edges connect pairs of STSs for which the chro-
mosome location of each endpoint is known. Of these,
67% of the unit weight edges (M = 1) and only 6%
of the non-unit weight edges (M > 1) connect STSs
that are on di�erent chromosomes. Thus, we will only
consider intersection graphs for which M � 2, which
we call double linkage intersection graphs.
Double linkage is a good method for eliminating

spurious connections caused by chimeras, since it is
very unlikely that two chimeric YACs will happen to
link the same unrelated STSs (Arratia et al. 1991).
However, it provides no defense against spurious links
caused by repeat regions. It appears that most of
the non-unit weight edges that link STSs on di�er-
ent chromosomes are caused by non-unique STSs, i.e.,
STSs that hit repeat regions. This appears likely for



Figure 2: STS intersection graph and structure graph of the human genome.

(a) On the left is shown one component (441 nodes, 1,540 edges) of the STS double-linkage intersection graph
for the whole genome. (b) On the right is the corresponding structure graph (144 nodes, 145 edges). Icons in
the structure graph represent the chromosome assigned to the majority of STSs within each blob.

Figure 1: Schematic and graph of STS-YAC data

In the drawing at the top, YACs are represented
as horizontal lines. The presence of an STS on a
YAC (a hit) is indicated by a vertical bar cross-
ing the YAC. The corresponding STS intersection
graph is shown below.

two reasons. First, the number of such edges (905)
is at least ten-fold higher than one would expect on
the basis of chimerism alone. Second, the number of
YACs involved (the weight of the edge) ranges from 2
to 10, whereas there should be virtually no chimeric
links with weight greater than 2.
One of the larger components of the double-linkage

intersection graph for the merged STS data of the
whole genome is shown in Figure 2(a). Chromosome
assignments of the 441 STSs in this component are
spread over 16 chromosomes, including 78 assignments
to Chromosome 7, 64 to Chromosome 15, 57 to Chro-

mosome 4, etc. Thus, edges caused by nonunique STSs
and double chimeras connect widely-separated regions
of the genome in this component. The next section
describes a method that makes the presence of these
\cross-links" easily visible in many cases, whether they
link di�erent chromosomes or distant sites on the same
chromosome.

Graph Simpli�cation

As the amount of mapping data increases, the inter-
section graphs rapidly become large, unwieldy and im-
possible to visualize. This is already apparent in Fig-
ure 2(a), which is a relatively small graph. However,
much of the complexity arises from small-scale details.
In contrast, the large-scale structure of the graph is
relatively simple, and reveals large-scale problems with
the developing genome map. To elucidate this struc-
ture, we have developed several algorithms for graph
abstraction. This section describes one of them.
We de�ne a simpli�cation of a graph G, called a

structure graph G0. The simpli�cation is achieved by
coalescing nodes of G into sets called blobs. Intuitively,
a blob is a set of nodes from a small, localized region
of the graph. We have experimented with di�erent
methods of de�ning these localized regions, and the
method we found to be most insensitive to noise in the
data while preserving underlying structure is based on
breadth �rst search, a classical graph traversal algo-
rithm.
Breadth �rst search (BFS) divides a graph G into

layers, where the nodes in layer Li are a minimal dis-
tance of i edges from a given starting node or from
the nearest node in a set of starting nodes S. A blob
is de�ned to be a connected component within a BFS
layer; i:e:, a set of nodes that belong to the same layer



and that are connected by a path using only nodes in
this layer. We form a structure graph from an STS
intersection graph G by the following �ve steps:

Step 1 Do a BFS traversal of G starting at an arbi-
trary node. This serves to de�ne BFS layers relative
to the starting node.

Step 2 Choose any node x in the last BFS layer Ln

and form a blob S containing that node; i.e., S con-
tains x and the neighbours of x that are in layer Ln

and the neighbours of those neighbours that are in
Ln, and so on.

Step 3 Do a second BFS traversal of G starting from
set S. This de�nes a new BFS layering of G to be
used when constructing the rest of the blobs.

Step 4 Create the rest of the blobs of the structure
graph as follows: for each node of G not yet in a
blob, construct a blob (as was done for x in Step 2).

Step 5 Create the edges of the structure graph as fol-
lows: for each edge hv1; v2i in the original graph G,
where v1 2 blob1, v2 2 blob2 and blob1 6= blob2, con-
struct edge hblob1; blob2i of the structure graph (un-
less that edge is already made).

As an example, we will construct the structure graph
for the hypothetical data of Figure 1. The starting
node in Step 1 is, say, h. The BFS layers are then
L0 = fhg, L1 = fi; j; k; g; f; eg, L2 = fd; cg, and L3 =
fa; bg. A node most distant from h is a, from which
the �rst blob b0 = S = fa; bg is formed in Step 2.
The second layering of Step 3 produces L0 = fa; bg,
L1 = fc; dg, L2 = fe; f; gg, L3 = fh; ig, and L4 =
fj; kg. Each of these layers happens to be internally
connected, so the blobs formed in Step 4 are the same
as the layers of Step 3, i.e., bi = Li; i = 1; : : : ; 4. Step
�ve connects blobs which contain adjacent nodes. For
example hb0; b1i is an edge in the structure graph since
ha; ci is an edge in G and a 2 b0 and c 2 b1. Figure 3
shows two representations of the resulting structure
graph.

Figure 3: Structure graph

The structure graph corresponding to the intersec-
tion graph of Figure 1. The top view shows the
contents of the blobs; the lower view hides blob
contents. See text for details of construction.

The structure graph is simpler than the original
graph since it has fewer nodes and edges. More im-

portantly, it captures the underlying linear structure of
intersection graphs derived from STS data. The follow-
ing theorem states that the structure graph is a simple
linear sequence of blobs for any intersection graph of
noise-free STS-YAC data. The proof is straightforward
and therefore omitted.

Theorem 1 Let G = (V;E) be a connected intersec-
tion graph for a set V of STSs such that the under-
lying STS-YAC data is perfect, i:e:, noise-free. Then
the structure graph G0 derived from G by the structure
graph algorithm is a chordless path.

According to this theorem, deviations in a structure
graph from a simple path similar to that of Figure 3 re-
ect deviations from ideal data. The simple path struc-
ture is robust to the extent that it is preserved by false
negatives which do not interrupt connectivity within
a BFS layer. More disruptive false negatives create
\hair" on the structure graph, i.e., small branches typ-
ically of length 1 or 2. Non-unique STSs and chimeras
can produce long branches, while the branches them-
selves remain simple or \hairy" paths.
The structure graph corresponding to the STS graph

in Figure 2(a) is shown in Figure 2(b). The struc-
ture graph has ten-fold fewer edges than the original
graph (145 compared to 1,540), and about three-fold
fewer nodes (144 compared to 441). It is tree-like, with
many hairy branches. The blobs are labeled with chro-
mosome numbers to show that much of the branching
occurs at the junctures of chromosomes. The icon for
each node represents the chromosome to which the ma-
jority of the STSs in the blob are assigned. The icon
\0" indicates that there is no majority chromosome
assignment for that blob, either because most STSs in
the blob are unassigned or because they are assigned
to a variety of chromosomes. Blobs for a single chro-
mosome tend to form simple or hairy paths, but not
always|those for Chromosome 4 form a loop.
The structure graph of Figure 2(b) makes evident

the composite but underlying piecewise-linear nature
of the graph in Figure 2(a). Clearly this connected
component consists of a collection of contigs from a
number of chromosomes tied together by repeats or
double chimeras. Restricting attention to a single chro-
mosome, however, does not guarantee good contigs, as
the loop for Chromosome 4 demonstrates. We will dis-
cuss extraction of contigs from structure graphs in the
section on linkage, after we generalize the above no-
tions to clusters.

Data Integration Using Clusters

This section extends the graph-based approach devel-
oped above for STS data to other forms of mapping
data. We illustrate the approach on three common
forms of physical mapping data|STS, �ngerprint, and
Alu-PCR data. These three forms of data are typically
examined separately, as in the map-assembly methods
described for CEPH and Whitehead. In contrast, the



approach described here integrates the di�erent forms
of data by treating each as a source of YAC overlap
information.
The main idea is to convert all forms of overlap data

to a common denominator, called clusters, which at
once unify the data and weed out some false positives.
Each cluster is a maximal set of mutually overlapping
YACs. The center of a cluster is the area on the
genome which is shared by all YACs in the cluster. If
an STS were at the center of a cluster, then the probe
would (barring false negatives) hit all of the YACs. In
this sense, a cluster is analogous to an STS. We form
cluster intersection graphs and structure graphs just
as we did for STS data. The main di�erence is that in
cluster graphs, we use more data and should therefore
obtain larger contigs than from STS data alone. As
described in the Introduction, the approach is divided
into three phases|overlap, linkage and ordering. This
section describes the �rst two phases in detail, and
comments briey on the third phase.

Overlap

This phase extracts overlap information from the ex-
perimental data, and converts it into clusters. For the
examples in this section, we obtained Alu-PCR data
and �ngerprint overlap information from the CEPH
releases of March 1995 and May 1994, respectively.
The CEPH �le RELATIONS provides overlaps for 31,392
YACs based on �ngerprint data. The Alu-PCR screen-
ing de�nes overlaps for 8,785 Alu-PCR YAC probes
against 24,576 YAC targets. We merged 198,157 over-
lap pairs implicit in the STS data of Section 2 with the
Alu-PCR and �ngerprint overlaps, to obtain a total of
255,615 di�erent pairs of overlapping YACs.
Converting this overlap data into clusters corre-

sponds to the classical NP-complete problem of �nd-
ing all maximal cliques in a graph. In this case, the
nodes of the graph are YACs, and there is an edge be-
tween two nodes if the corresponding YACs overlap.2

If a YAC Y overlaps with n other YACs, then there
are 2n subsets of these neighbors, any or all of which
could form a clique with Y, depending on which neigh-
bors overlap with each other. In general each of these
subsets must be examined. The merged data contains
overlap data for 30,598 YACs, and the largest number
of neighbors is 125. Since 2125 is an astronomically
large number, and since we cannot expect to �nd a
better-than-exponential algorithm for an NP-complete
problem, we need heuristics to speed up the search.
The branch and bound heuristic of (Bron & Ker-

bosch 1971) is an e�ective method to reduce the search
space for maximal cliques. We modi�ed the Bron-
Kerbosch algorithm in the following way. Since our
graphs are large and sparse, we represented edges by
adjacency lists rather than as a two-dimensional ar-
ray. An initial step in the Bron-Kerbosch algorithm

2This YAC-overlap graph should not be confused with
the intersection graphs developed in previous sections.

requires time quadratic in the number of nodes. This
step is exorbitant for a graph of 30,000 nodes. By
adapting the algorithm to work on one small subgraph
at a time, where each subgraph is that induced by a
YAC and its neighbours, the running time is reduced
from hours to minutes. The result is that all maximal
cliques for 30,441 YACs are generated in just three
minutes. Details of this algorithm will be described
elsewhere.
The total number of maximal clusters generated for

the above data is 40,060, including 27,455 of size 3 or
more. The sizes of clusters range from 2 to 30 YACs.
The frequency of clusters of a given size decreases ex-
ponentially as a function of size, size 2 being the most
frequent (12,605 clusters), then size 3 (5,003), size 4
(4,092), etc.
Finally, we assigned clusters to particular chromo-

somes based on known assignments of STSs to chro-
mosomes. A cluster was assigned to a chromosome if
an STS assigned to that chromosome hits at least two
YACs in the cluster. This method implies tight linkage
between a cluster and its assigned chromosome(s). Ig-
noring clusters of size 2 (for reasons mentioned below),
only 13% of the clusters were left unassigned by this
method; 74% of the clusters were uniquely assigned,
11% were doubly-assigned, and the remaining 2% were
assigned to 3-7 chromosomes.

Linkage

This phase of map assembly links clusters into contigs.
Here, the term \contig" means a graph representing a
contiguous region of the genome. In these graphs, each
node is a cluster, and an edge means that two clusters
are close together on the genome. These graphs should
be straight, reecting the linear structure of chromo-
somes. Unfortunately, because of errors and anomalies
in the data, it is easy to get graphs that are crooked
and branched. Moreover, because of the huge volumes
of data involved, the graphs are large, unwieldy and
impossible to visualize. To solve these problems, we
divide this phase into several steps. First, we build an
intersection graph from the clusters. Then, we simplify
the graph so that its overall structure is apparent. Fi-
nally, we identify false links in the graph and extract
contigs from it.

Cluster Intersection Graphs: These are a generaliza-
tion of the STS intersection graphs. In a cluster inter-
section graph, each node is a cluster, and there is an
edge of weightM between two nodes if the correspond-
ing clusters have M > 0 YACs in common. As with
STS graphs, we only consider double linkage (M � 2).
We also ignore clusters of size two since they cannot
contribute to double linkage graphs|if a cluster of size
two shares its two YACs with another cluster, then it
is not maximal, which is a contradiction. Moreover, in
the case of Alu-PCR and �ngerprint data, where each
overlap is independent of other overlaps, a size two



Figure 4: Cluster structure graph of the human genome

The structure graph of the largest component of the double-linkage cluster intersection graph for the whole
human genome. The source graph has 24,304 nodes, 266,444 edges; the structure graph: 4,621 nodes, 5,001
edges.

cluster is not as reliable as a larger cluster, because
it lacks the mutual corroboration of overlap evidence
inherent in larger clusters.
The double-linkage cluster intersection graph for the

whole genome is almost entirely one component of
24,304 nodes (out of the 27,379 total) and 266,444
undirected edges. The size of this graph prohibited its
display, because of time and memory limitations. Even
if displayed, the detailed intersection graph would not
be intelligible as it would blacken the screen with edges.

Graph Simpli�cation: The structure-graph algorithm
described for STS intersection graphs can be applied to
any graph, including cluster intersection graphs. The
algorithm simpli�es the cluster graph of the human
genome to the extent that some piecewise-linearity is
apparent, as shown in Figure 4. There are about 5,000
nodes and 5,000 edges in this structure graph, a re-
duction of �ve-fold and �fty-fold, respectively, from
the cluster graph. Nevertheless, even the structure
graph is extremely complex and interconnected. In
this graph, the node labels represent assignments of
blobs to particular chromosomes. A blob has label C
if the majority of clusters in the blob are assigned to
Chromosome C. The label is \0" if there is no major-
ity assignment or if the majority of the clusters in the
blob are unassigned. From these assignments, we can
see that the graph represents numerous chromosomal
fragments tied together by false links.
We can simplify the cluster intersection graph even

further by the following three steps: �rst, extract a

subgraph for a particular chromosome; then, apply the
structure-graph algorithm; �nally, trim o� any remain-
ing small-scale details. To illustrate the process, we
selected a subset of clusters which might contribute to
contigs for Chromosome 7, namely clusters assigned to
Chromosome 7 and clusters not assigned to any chro-
mosome. This �lter produces a subset of 5,079 clus-
ters. The double-linkage intersection graph for this set
of clusters has 1,570 connected components, most of
which (1,410) contain less than 5 clusters (i:e:, nodes).
The three largest components contain 121, 223 and
645 clusters. The largest component is shown in Fig-
ure 5(a), along with its \trimmed" structure graph in
Figure 5(b) and (c). The trim algorithm simpli�es the
structure graph by removing branches of length 1 and
compressing cycles of length four, since such \hair"
is not relevant to the overall structure. The trimmed
structure graph is almost two orders of magnitude sim-
pler than the cluster graph in Figure 5(a), since the
number of edges is reduced from 6,736 to 72.

Contig Extraction: From the structure graph of Fig-
ure 5(b), it is immediately obvious that the cluster
graph is not a single contig, since it has a number of
piecewise linear sections and a cycle. To extract indi-
vidual contigs from it, we use positional information in
addition to the structural information. To this end, we
assigned map positions to clusters and blobs based on
known positions of STSs, taken from genetic and/or
radiation-hybrid maps. We �rst assigned a position p
to a cluster if the cluster contains all the YACs hit by



Figure 5: Cluster intersection graph and structure graphs of Human Chromosome 7.

(a) On the left the largest component of the cluster intersection graph for Chromosome 7 (645 nodes, 6,736
edges) is shown. The center (b) and right (c) panels contain the corresponding structure graph (72 nodes, 72
edges). Blobs in the center graph are labeled with radiation-hybrid positions (centiRays), and those in the right
graph are labeled with genetic positions (centiMorgans) where known.

an STS at position p. A blob inherits all the positions
of its component clusters. Figures 5(b) and 5(c) show
two versions of the structure graph corresponding to
Figure 5(a). In Figure 5(b), blobs are labelled with
radiation-hybrid positions in centiRays (cR), while in
Figure 5(c), they are labelled with genetic positions in
centiMorgans (cM).3 Blobs that have more than one
map position are labeled with the positions connected
by an underscore. For example, the lowermost blob
in Figure 5(b) is labeled \129 130" since it contains a
cluster at 129 cR and one at 130 cR. Only positions
relevant to Chromosome 7 are shown. Observe that
only a portion of the blobs are assigned map positions.
To extract a contig, we look for a simple path with

a reasonable sequence of map positions. The longest
such path of blobs includes the following sequence of
radiation-hybrid positions: (62 64, 67, 67, 68, 64, 67,
65 67, 72, 114, 104, 92, 83 87, 77 97, 87 125, 129 130).
and the following sequence of genetic positions: (29,
30, 30 31, 37 ,39 40, 42, 44, 52, 51, 52, 55), and This
proposed contig is shown in the top of Figure 6. At
the bottom of Figure 6 is a subgraph of the cluster
intersection graph corresponding to the shortest paths
from one extremum to the other of this contig. Genetic
positions of the blobs and clusters are shown where
known.

3The approximate correspondence between these mea-
sures and megabases is 1 megabase � 5 cR � 1 cM (cf:
Whitehead Release 8).

Other, shorter contigs could be extracted based
on structural and positional information in Figure 5.
However, it is di�cult to select the sequence of blobs
that form a contig in the region of the cycle, since
here both the positional and the structural information
are ambiguous. Additional information or a search for
\suspicious" clusters may resolve the ambiguity.
This example clearly illustrates two features of clus-

ter/structure graphs: (i) they provide a visual aid in
identifying errors and anomalies in physical mapping
data, and (ii) they help in extracting contigs from
the much-larger and more-complex cluster intersection
graphs. These contigs are the result of integrating
many forms of physical mapping data and of remov-
ing large-scale errors and anomalies. In this way, clus-
ter/structure graphs greatly simplify the construction
of physical maps, and can improve their completeness
and accuracy.

Ordering

In the last phase of our approach to map assembly,
we generate a physical map from the contig graphs
produced in the linkage phase. A detailed discussion
of the ordering algorithms we are developing for this
phase is beyond the scope of this paper. However, some
preliminary results are worth mentioning.
To estimate the accuracy of our approach, we con-

structed a map from the contig in Figure 6, and com-
pared it to the current Whitehead map of Chromo-



Figure 6: A contig from Human Chromosome 7.

On the top is shown a path extracted from the structure graph of Figure 5. The approximately sequential genetic
positions indicated by the labels of the blobs suggest that this path represents a contig. The lower graph shows
clusters contained in these blobs and shortest paths between the extrema in the corresponding cluster graph.

some 7 (Hudson et al. 1995). To construct this map,
we ordered the clusters, and then identi�ed clusters
with STSs. A cluster is identi�ed with an STS if it
contains all the YACs hit by the STS. The resulting
map shows that the doubly-linked contig of Figure 6
corresponds to a concatenation of four doubly-linked
contigs in the Whitehead map (contigs WC-234, WC-
427, WC-633, and WC-146). Whitehead also connects
these contigs, and more, but by single linkage, in con-
tig WC7.3. The cluster/STS order in our map is very
similar to the STS order in WC7.3, and di�erences ap-
pear to be within the resolution of the Whitehead map.
This result suggests that integration of data using clus-
ters improves the coverage of double-linkage maps, and
that contig extraction using structure graphs and po-
sitional information is viable.

Conclusion

This paper discusses a promising approach for the as-
sembly of integrated genome maps. The essence of the
approach is to devise discrete structures (i:e:, graphs)
that nicely mimic the maps we are constructing. The
bene�t is that problems with the map reveal them-
selves as defects in the structure: bad maps are crooked
and branched, while good maps are straight. The trick,
of course, is to �nd a good balance between statistical
and discrete reasoning, e:g:, to use statistics in form-
ing clusters and links, then use discrete reasoning to
�nd defects in the graph and to propose corrections,
then return to statistics to choose the best correction.

We are at an early stage in this process, and have only
a few steps worked out. However, the examples and
theory discussed in this paper provide strong evidence
for the potential of the approach. Since the real test
lies in map construction, our next step will be to gen-
erate maps using the cluster/structure method, and to
determine whether they are more complete and accu-
rate than maps prepared by other methods. We will
also examine the possibility of automating the entire
process.
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