Transaction Datalog: A Compositional
Language for Transaction Programming

Anthony J. Bonner

University of Toronto, Department of Computer Science,
Toronto, Ontario, Canada M5S 1A4
WWW.cCs.toronto.edu/bonner

Abstract. In the classical model of database transactions, large transac-
tions cannot be built out of smaller ones. Instead, transactions are mod-
elled as atomic and isolated units of work. This model has been widely
successful in traditional database applications, in which transactions per-
form only a few simple operations on small amounts of simply-structured
data. Unfortunately, this model is inappropriate for more complex ap-
plications in which transactions must be combined and coordinated to
achieve a larger goal. Examples include CAD, office automation, collab-
orative work, manufacturing control, and workflow management. These
applications require new transaction models, new methods of transaction
management, and new transaction languages. This paper focuses on the
latter issue: languages for specifying non-classical transactions, and com-
bining them into complex processes. In particular, we develop Transac-
tion Datalog, a deductive language that integrates queries, updates, and
transaction composition in a simple logical framework. This integration
extends the deductive-database paradigm with several new capabilities.
For instance, Transaction Datalog supports all the properties of classical
transactions, such as persistence, atomicity, isolation, abort and roll-
back. It also supports properties found in many new transaction mod-
els, such as subtransaction hierarchies, concurrency within individual
transactions, cooperation between concurrent activities, a separation of
atomicity and isolation, and fine-grained control over abort and rollback.
These capabilities are all provided within a purely logical framework, in-
cluding a natural model theory and a sound-and-complete proof theory.
This paper outlines the problems of developing a compositional transac-
tion language, illustrates our solution (Transaction Datalog) through a
series of examples, and develops its formal semantics in terms of a logical
inference system.

1 Introduction

Database transactions were originally modeled as atomic and isolated units of
work, with no internal structure and no external connections [4]. This “classical”
transaction model has been widely successful for applications like banking, air-
line reservations, and inventory control, where transactions perform only a few
simple operations on small amounts of simply-structured data. Unfortunately,
this model is inappropriate for more complex applications in which transactions

must be combined and coordinated to achieve a larger goal. This need is typ-
ical of new database applications involving distributed systems, complex data
structures, and cooperation between multiple users or multiple concurrent pro-
cesses. Examples include CAD, office automation, collaborative work, manufac-
turing control, and workflow management. Such applications combine database
transactions, application programs, and other activities into larger information
systems and business processes [15, 18, 19, 21]. These applications require new
transaction models, new methods of transaction management, and new transac-
tion languages [14, 15, 18, 19].

This paper focuses on the latter issue: languages for specifying non-classical
transactions, and for combining them into complex processes. In particular, we
argue that logic provides a natural basis for such languages. The main contribu-
tion is a new deductive language called Transaction Datalog (abbreviated 7 D).
7D has a natural model theory and a sound-and-complete proof theory, and
it extends the paradigm of deductive databases with several new capabilities.
For instance, in addition to declarative queries and views, 7D provides () up-
dates and nested transactions, (i7) composition of transaction programs, and
(#4¢) concurrency and communication. In addition, it provides a smooth integra-
tion of procedural and declarative programming, and in the absence of updates,
it reduces to classical Datalog.

Transaction Datalog is derived from a general logic of state change called
Transaction Logic [8, 9, 10, 11]. Transaction Logic allows users to express prop-
erties of transaction programs and to reason about them [7]. For instance, one
can reason about when a program will commit or abort, and about whether a
program preserves integrity constraints. In addition, like classical logic, Trans-
action Logic has a “Horn” fragment with both a procedural and declarative
semantics. This fragment provides a logic programming language in which users
can specify and execute database transactions. Transaction Datalog is derived
from this Horn fragment by restricting it to relational databases and to rules
without function symbols (i.e., just as classical Datalog is derived from classical
Horn logic). Transaction Datalog thus inherits the semantics of the full logic,
which has been published elsewhere [8, 9, 11]. However, because Transaction
Datalog 1s a specialized system, i1t has a specialized semantics, which is simpler
than the more-general semantics of the full logic. This paper develops the simpli-
fied semantics in terms of a logical inference system. The paper also illustrates
the properties of 7D through a series of examples. The examples show how
logical formulas in 7D can be interpreted both procedurally and declaratively.
They also show how the logical structure of 7D naturally captures many basic
properties of non-classical transactions.

Related papers on Transaction Logic, a prototype implementation, and the
results of benchmark tests are available at the Transaction Logic web-page:
http://wuw.cs.toronto.edu/ bonner/transaction-logic.html

1.1 Background

The limitations of the classical transaction model are well-documented in the lit-
erature (e.g., [15, 18, 19, 27]). One important limitation is that this model does
not support the composition of transaction programs. For instance, database
transactions are usually defined by embedding SQL commands within a host
programming language. Unfortunately, there are severe restrictions on the abil-
ity of embedded SQL to combine simple transaction programs into larger ones,
regardless of the host language. These restrictions greatly hinder the modular
development of large transaction programs. This problem is not limited to em-
bedded SQL, but is shared by almost all application programming languages
for commercial database systems, since these systems are based on the classical
transaction model.

The first attempt to address this problem lead to the nested transaction
model, in which a transaction can be composed of subtransactions [19, 27]. As a
simple example, suppose we have a transaction program for withdrawing money
from a bank account, and another for depositing money. We would like to com-
pose these two programs into a third program for transferring money from one
account to another, and we would like this third program to execute as a trans-
action, ¢.e., as an atomic and isolated unit of work. Of course, we could write
a money-transfer program from scratch in embedded SQL, but that is not the
point. The point is to reuse and combine existing transaction programs. In par-
ticular, we would like to execute the withdraw and deposit programs concur-
rently; and if one fails, we would like them both to abort, and their effects on
the database to be undone. This requirement poses several serious problems
for the classical transaction model, and for transaction management systems
based on it. First, the withdraw and deposit transactions are not independent.
In particular, the failure of one implies the failure of the other, even if the other
has successfully completed its execution and has committed. Second, we now
need serializability within transactions, not just between them. In particular,
the withdraw and deposit transactions must be executed serializably within the
transfer transaction. Third, composite transactions can now behave like atomic
and isolated units of work. In particular, the transfer program must execute to
completion or not at all (atomicity), and its execution with other transactions
must be serializable (isolation). These requirements are not supported by most
commercial products. In particular, they cannot be met by having application
programmers specify transactions in a conventional programming language on
top of a conventional DBMS (e.g., by using SQL embedded in C, or even con-
current C).

As another example, consider the following abstract process, taken from [35]:

Run Transaction T1. Then execute transactions T2, T3, and T} wn par-
allel. Immediately after their successful completion, start T5. But, if one
of T2, T3, or T4 fails, then abort the other two. In this case, the effects
of T1 have to be cancelled as well.

This process is a composition of five transactions, T7-T5. As in the previous

example, the transactions are not independent, and the failure of one can require
that others be undone, even if they have already completed and committed.
This dependence conflicts with the classical transaction model, which assumes
that separate transactions are unrelated units of work. Such dependencies are
typical of many new database applications, in which transactions participate in a
complex web of relations. These new applications require the development of new
transaction models. This need has been eloquently expressed by Jim Gray [15,
page xvii]:

The transaction concept has emerged as the key structuring technique for
distributed data and distributed computations. Originally developed and
applied to database applications, the transaction model 1s now being used
mn new application areas ranging from process control to cooperative work.
Not surprisingly, these more sophisticated applications require a refined
and generalized transaction model. The concept must be made recursive,
it must deal with concurrency within a transaction, it must relax the
strict isolation among transactions, and it must deal more gracefully with
failures.

Many new transaction models have been proposed in the literature. Nested
Transactions were the first [19, 27]. More recent models include Sagas [17], Con-
Tracts [35], Flex Transactions [16], Cooperative Transactions [29], Multi-Level
Transactions and Open Nested Transactions [36], among others [15]. Much of
the research on these models emphasizes transaction management. The focus
has therefore been on systems issues such as concurrency control and recovery,
locking protocols, distributed commit and abort, fault tolerance, scheduling, im-
plementation and performance.

In addition to new methods of transaction management, new transaction lan-
guages are also needed [14]. These languages must deal both with conventional
programming issues and with transactional issues. For instance, they must allow
transaction programs to be combined sequentially, concurrently, and hierarchi-
cally. In addition, they must deal with persistent data and with transaction
abort, rollback, atomicity, and isolation. Moreover, they must deal with these
issues both for elementary transactions and for composite transactions. For ex-
ample, suppose that a number of small transaction programs are combined into
a larger program. Numerous questions about the larger program immediately
arise. Does it execute as a transaction? Does it execute atomically? Does it ex-
ecute in isolation? If some of the small transaction programs abort, does the
larger program abort as well? If so, is it aborted completely or partially? What
effect does this have on the database? What effect does this have on the pro-
gram’s execution state? These questions must be addressed by any language that
supports the composition of transaction programs.

The database systems community has begun to address these questions. For
instance, some transaction programming languages offer save points, which sup-
port a limited form of nested transactions and partial rollback. In addition,
Transactional-C is a commercial programming language for the Encina TP mon-
itor, which provides full support for nested transactions [33]. Likewise, a number

of research projects have developed programming languages for nested transac-
tions and other non-classical transaction models.

Unfortunately, although some programming languages have been implemented
and others have been proposed, their theoretical foundations are incomplete. In
general, the theory of non-classical transactions has focussed on transaction man-
agement, not on transaction languages. For instance, there has been no attempt
to integrate relational algebra and relational updates into a language for transac-
tion composition. Likewise, issues such as declarative semantics, data complexity,
and transaction expressibility have been completely ignored. These issues have
been studied extensively in the context of classical transactions and database
queries (e.g., [1, 2, 12]). The challenge is to extend this theory to non-classical
transactions. This paper takes a first step.

1.2 Transaction Datalog

In this paper, we propose a logic-based approach to the problems of specify-
ing non-classical transactions. In particular, we develop Transaction Datalog (or
TD), a deductive database language for specifying transactions and combining
simple transactions into complex ones. Like classical Datalog, 7D has both a
declarative semantics and an equivalent operational semantics. The declarative
semantics includes a logical model theory and a sound-and-complete inference
system. The operational semantics includes an SLD-style proof procedure in
the logic-programming tradition [8, 9, 10, 11]. This procedure executes transac-
tions and updates the database as it proves theorems. Transaction Datalog is a
minimal language based on a few simple operations. However, these operations
lead directly to a wide range of transactional and programming capabilities. For
instance, 7 D supports all the properties of classical transactions, such as persis-
tence, atomicity, isolation, abort and rollback. It also supports many properties
found in non-classical transaction models, such as subtransaction hierarchies,
concurrency within individual transactions, cooperation between concurrent ac-
tivities, a separation of atomicity and isolation, and fine-grained control over
abort and rollback. Moreover, these features are seamlessly integrated with the
traditional features of classical deductive databases, namely declarative queries
and views. In fact, in the absence of updates, Transaction Datalog reduces to clas-
sical Datalog. It therefore represents a conservative extension of the deductive-
database paradigm.

This extension is possible because, unlike ordinary programs, transactions
either commit (succeed) or abort (fail). We can therefore associate a truth value
with each execution of a transaction program, where true corresponds to commit,
and false corresponds to abort. Based on this idea, we develop a logical calcu-
lus for combining transaction programs, including connectives for sequential and
concurrent composition, and a modality for specifying isolation. All formulas in
the calculus represent transaction programs. In the declarative semantics, a for-
mula specifies a program’s legal execution traces (Section 3). In the operational
semantics, the formula is evaluated as the program executes; if at any point the
formula evaluates to false, then the execution is aborted and the database is

rolled back to an earlier state (Section 2). In 7D, calculus formulas are used as
rule bodies. In this way, users can define named procedures (such as views and
subroutines), exactly as in deductive databases and logic programming.

Like classical Datalog, Transaction Datalog can be embellished with negation-
as-failure. When this is done, 7D can simulate a number of different transaction
models. For simplicity, though, this paper focuses on the negation-free version
of the language, which is well-suited to specifying nested transactions [19, 27].
In this model, a transaction may be decomposed into subtransactions. These
subtransactions may execute serially or concurrently, and their effects are un-
done if the parent transaction aborts, even if the subtransactions have already
committed. “Nested transactions provide a powerful mechanism for fine-tuning
the scope of rollback in applications with a complex structure” [19]. Moreover,
“there is a strong relationship between the concept of modularization in software
engineering and the nested transaction mechanism” [19]. These properties make
nested transactions ideal for distributed applications, object-oriented databases,
and layered software systems. Numerous examples in this paper deal with nested
transactions.

In addition to transactional features, Transaction Datalog provides all the
functionality of a declarative query language and a procedural programming
language, seamlessly integrated. To see this, it is instructive to compare and
contrast Transaction Datalog with embedded SQL (e.g., SQL embedded in C).
Like embedded SQL, Transaction Datalog is a database programming language
for defining queries, updates and transactions. Both languages integrate pro-
gramming constructs with database access. However, unlike embedded SQL,
Transaction Datalog is a single, unified formalism, not an amalgamation of two
formalisms (SQL and C). In particular, Transaction Datalog does not make a
sharp distinction between declarative programming (SQL) and procedural pro-
gramming (C). In fact, because it has a logic-programming foundation, Trans-
action Datalog provides a seamless integration of procedural and declarative
programming styles. For instance, users can write classical Datalog queries, and
they can write sequential and concurrent algorithms, and they can write pro-
grams that are neither procedural nor declarative, but somewhere in between.
The result is that Transaction Datalog avoids many of the problems of embedded
SQL, such as the infamous “impedance mismatch” problem. Of course, Trans-
action Datalog can also compose transactions and define nested transactions,
which goes well beyond the capabilities of embedded SQL.

2 Overview of Transaction Datalog

This section introduces Transaction Datalog informally through a series of simple
examples. The examples show how logical formulas in 7D can be interpreted
procedurally and declaratively, and how they lead quickly to the basic properties
of nested transactions. More-involved examples are given in the long version of
this paper [6].

As in any programming language, programs in Transaction Datalog are ul-
timately built from a set of elementary operations. In the case of database pro-
gramming languages (like 7 D), these operations are elementary database trans-
actions. The precise set of elementary operations is somewhat arbitrary, and in
this paper, four are provided. These operations are simple, they can be efficiently
implemented, and they lead to expressive completeness [5]. They are also mini-
mal, since removing any one of them causes a loss of expressive completeness [5].
To represent these four operations, we use four types of expression: ¢, r.empty,
ins.q, del.q. The first two expressions are yes/no queries. Intuitively, ¢ means
“Is atom q wn the database,” and r.empty means “Is relation r empty.” The
other two expressions are updates. Intuitively, ins.q means “Insert atom ¢ into
the database,” and del.q means “Delete atom ¢ from the database.” These four
elementary operations are transactions. The two updates are transactions that
always succeed; and the two queries are transactions that succeed if they return
“yes,” and fail if they return “no.” We shall see that the queries can be used as
tests and conditions to force larger, composite transactions to fail. In the exam-
ples below, we adopt the Prolog convention that variables begin in upper case,
and constants begin in lower case.

2.1 Sequential Transactions

To combine transaction programs sequentially, 7 D includes a logical connective
called serial conjunction, denoted ®. Intuitively, if formulas ¢; and ¢- repre-
sent transaction programs, then the formula ¢; ® ¢o represents their sequential
composition, that is, program ¢; followed by program ¢s. Thus, the formula
del.q(a) @ ins.r(a) deletes the atom g¢(a) from the database, and then inserts
the atom r(a). Formulas of the form ¢; ® ¢2® -+ ® ¢, are called serial pro-
grams.

To assign a name to a program, 7 D uses Horn-like rules. Intuitively, if p
is an atomic formula, and ¢ is a program, then the rule p < ¢ is a proce-
dure definition, where p is the procedure name and ¢ is the procedure body.
Thus, the formula p(X) « del.¢(X) ® ins.r(X) defines p(X) to be the program
del.q(X) ® ins.r(X). The variable X is a parameter of the procedure, and is
bound to a constant symbol at run time. Rules may be recursive.

Ezample 1. (Financial Transactions: I) Suppose the balance of a bank ac-
count is given by the relation balance(Acct, Amt). The rules below define four
transaction programs: change(Acct, Baly, Bals), which changes the balance of
account Aect from Baly to Baly; withdraw(Amt, Acct), which withdraws an
amount from an account; deposit(Amt, Acct), which deposits an amount into
an account; and transfer(Amt, Accty, Accts), which transfers an amount from
account Acct; to account Accts.

transfer(Amt, Accty, Accty) + withdraw(Amt, Accty) ® deposit(Amt, Accty)

withdraw(Amt, Acct) +
balance(Acct, Bal) ® Bal > Amt ® change(Acct, Bal, Bal — Amt)

deposit(Amt, Acct) + balance(Acct, Bal) ® change(Acct, Bal, Bal + Amt)
change(Acct, Baly, Baly) + delbalance(Acct, Bal1) ® ins.balance(Acct, Bals)

In each rule, the premises are evaluated from left to right. For instance, the
first rule says: to transfer an amount, Amt, from Accty to Accts, first withdraw
Amt from Accty; and then, if the withdrawal succeeds, deposit Amt in Accts.
Likewise, the second rule says, to withdraw Amt from an account Acct, first
retrieve the balance of the account; then check that the account will not be
overdrawn by the transaction; then, if all is well, change the balance from Bal
to Bal — Amt. Notice that the atom balance(Acet, Bal) is a query that retrieves
the balance of the specified account, and Bal > Amt is a test. All other atoms
in this example are updates. The last rule changes the balance of an account by
deleting the old balance and then inserting the new one.

A transaction defined by serial conjunction succeeds if and only if each of
its subtransactions succeed. More formally, the transaction ¢; ® ¢o succeeds if
and only if both ¢; and ¢, succeed (which is why & is called serial conjunc-
tion). This implies that the failure of a subtransaction can cause the failure of
its parent transaction. For instance, in Example 1, the transfer transaction fails
if either of the subtransactions withdraw and deposit fail. Likewise, the withdraw
transaction fails if the test Bal > Amt fails. In the terminology of nested trans-
actions, ¢1 and ¢4 are wvital subtransactions of ¢; ® ¢2, since both are crucial
to its success.

Serial conjunction leads immediately to a basic property of nested transac-
tions — relative commut. For instance, in the transaction ¢1 ® ¢4, if subtransac-
tion ¢- fails, then the whole transaction fails and must be undone. In particular,
subtransaction ¢; must be undone, even though it has already succeeded (and
committed). Thus, subtransaction commits are not irrevocable, and can be un-
done if the parent transaction fails. The following is a more concrete illustration
of this phenomenon.

Ezample 2. (Relative Commit) Consider a transaction involving two trans-
fers, defined as follows:

transfer(fee, client, broker) @ transfer(cost, client, seller) (1)

This transaction transfers a fee from a client to a broker, and then transfers a cost
from the client to a seller. The transaction succeeds if and only if both transfers
succeed. In a successful execution, the first transfer succeeds (and commits),
and then the second transfer succeeds (and commits). However, suppose that
the first transfer succeeds, and then the second transfer fails (due to lack of
funds). In this case, the whole transaction fails, and is undone. In particular,
even though the first transfer has already committed, its effects are undone,

and the database is restored to its initial state. Thus, the commit of the first
transfer was not absolute, but was relative to the overall transaction. In this
way, the whole transaction (like the individual transfers) behaves like an atomic
operation, which executes to completion or not at all.

A transaction defined by a rule succeeds if the rule body succeeds. More
formally, given the rule p + ¢, then p succeeds if ¢ succeeds. This leads 1imme-
diately to non-determinism. For instance, suppose we are given the rules p + ¢1,
P4 @3, ... p 4 ¢,. Then, p succeeds if ¢; succeeds, and p succeeds if ¢y suc-
ceeds, and p succeeds if ¢3 succeeds, etc. Thus, p succeeds if some ¢; succeeds.
Intuitively, each ¢; represents an alternative execution of p. Because of these
alternatives, no ¢; by itself is crucial to the success of p. In the terminology of
nested transactions, each ¢; is a non-vital subtransaction of p.

As with nested transactions, the presence of alternative subtransactions al-
lows transaction failure and rollback to be localized. This is possible because the
effects of failure can be limited to a single subtransaction: if a subtransaction
fails because of a logical error, then it can be undone and an alternative sub-
transaction can be executed.’ In this way, we can undo the effects of a small
part of a transaction without undoing the entire transaction (which is the nor-
mal procedure for classical transactions). This ability, known as partial failure
or partial rollback, is particularly important for long-running transactions, since
the likelihood of failure is high, and we do not want to undo a large quantity of
work.

Ezample 3. (Save Points and Partial Rollback) Consider the following three
rules:

parent < task, @ choose choose — tasks choose + tasks

These rules define a parent transaction having three subtransactions, taskq,
tasks and tasks, and a non-deterministic choice. The parent transaction commits
if both task, and choose commit, and choose commits if tasks or tasks commit.
Because choose has more than one possible execution, the point between task;
and choose acts as both a choice point and a save point. That is, if an execution
of choose aborts, then the state of the system can be rolled back to the choice
point, from which a different execution of choose can be attempted.

As an example, consider a specific execution of the parent transaction. When
parent is invoked, task; is immediately executed. If task; commits, then choose
1s invoked, which causes either tasks or tasks to be chosen non-deterministically.
Suppose tasks is chosen. If tasks eventually aborts, then its effects must be
undone; so, the database state and the program state are rolled back to the
choice point. After rollback, tasks is executed. If tasks eventually commits, then
choose commits, and the parent transaction commits. In this case, therefore, a
local abort (of tasks) does not cause a global abort (of parent). Moreover, the

! Even without alternatives, if a subtransaction fails because of a system error (e.g.,
deadlock), then it can be undone and restarted by the transaction manager.

choice point acts as a save point, so the effects of the abort are localized (to
within the choose transaction).

2.2 Concurrent Transactions

To combine transaction programs concurrently, 7D includes a logical connec-
tive called concurrent conjunction, denoted |. Intuitively, if formulas ¢1 and ¢-
represent transaction programs, then the formula ¢ | ¢» represents their con-
current composition, that is, a program in which ¢; and ¢» execute concurrently
in an interleaved fashion. As in most concurrent programming languages, pro-
grams in Transaction Datalog may communicate and synchronize themselves.
This is possible because one program can read what another program writes.
The database thus acts as the medium of communication.? Of course, when
programs are executed in isolation (Section 2.3), communication can take place
freely within individual programs, but not between them.

A transaction defined by concurrent conjunction succeeds if and only if each
of its subtransactions succeed. More formally, the transaction ¢ | ¢o succeeds
if and only if both ¢, and ¢, succeed (which is why | is called concurrent con-
Junction). Like serial conjunction, concurrent conjunction leads immediately to
relative commit. For instance, in the transaction ¢ | ¢o, if subtransaction ¢;
fails, then the entire transaction fails, and subtransaction ¢s is undone, even
though it may have already succeeded (and committed). Thus, when a sub-
transaction commits, it only commits relative to its parent transaction. As a
more concrete example, consider the following program:

transfer(fee, client, broker) | transfer(cost, client, seller) (2)

This is a concurrent version of Example 2, involving two money transfers. As in
the sequential version, if either transfer fails, then both transfers are undone, and
the database is restored to its initial state. Unlike the sequential version, either
transfer can now start first, and neither is delayed by an artificially-imposed
execution order. In particular, each transfer can execute as soon as the data
items it needs are available (i.e., not locked by other transactions). As another
example, consider the composition of five transactions described in the third
paragraph of Section 1.1. This composition is easily specified in Transaction
Datalog by the following formula: ;1 @ (2 | t3 | t4) ® t5. In this case, if one of
transactions s, t3 or t4 fails, then the other two are aborted, and the effects of
t1 are also undone. Transaction 5 is unaffected, since it had not been started
when the failure occurred.

Concurrent programs in 7 D can cooperate by using the database to commu-
nicate and synchronize themselves. This idea 1s illustrated in Example 4 below.

2 Here, we are using the term “database” is a general sense that includes any kind of
shared memory, as long as the information in it can be viewed as a set of tuples.
In particular, the database can contain structures and access methods designed for
efficient communication. For instance, some relations in the database could be a view
of a set of message queues or communication channels, as described in [11].

To convey the right intuition, we refer to formulas of the form ¢; ® g2 ® - - - ® ¢,
as sequential processes, or simply as processes. The example also illustrates how
concurrency in 7D can be interpreted both procedurally and declaratively. The
declarative semantics involves checking all possible interleavings of several pro-
cesses, as described in Section 3. In contrast, the procedural semantics involves
one process waiting for another process to perform an update, as described in
Example 4. A more-involved example of cooperation between processes in 7D
is given in the long version of this paper [6], where concurrent transactions are
combined into a workflow.

Ezample /. (Communication and Synchronization) The rules below define
a process and two subprocesses. The subprocesses communicate with each other
and synchronize the execution of several tasks.

process < processA | processB
processA « taskAy, ® ins.startBy @ taskAs @ startAs ® taskAs
processB « taskB; @ startBs @ taskBs @ ins.startAs @ taskBs

The first rule defines the top-level process, which immediately splits into two
subprocesses, called processA and processB. The two subprocesses execute con-
currently, but not independently. In particular, each subprocess executes three
tasks, where taskBs cannot start until taskA; is finished, and fask A3 cannot
start until taskBs is finished. To see this, observe that while executing task A,
and task By, the two subprocesses run concurrently without interacting with each
other. However, when processB completes task By, it cannot start task B, until
the atom start B is in the database, which only happens after processA has ex-
ecuted taskA;. In this way, the two subprocesses communicate, and processB is
synchronized with processA. Likewise, on completing task Ay, processA cannot
start task Az until the atom start Az is in the database, which only happens after
processB has executed taskBs. In this way, the two subprocesses again commu-
nicate (in the reverse direction), and processA is synchronized with processB.
Observe that if process 1s executed in isolation, then it i1s a transaction. However,
because the two subprocesses communicate in both directions, they cannot be
isolated from each other, so they are not subtransactions.

Queries are transactions that do not update the database (i.e., read-only
transactions). Thus, in the absence of updates, transaction composition re-
duces to query composition, i.e., the composition of simple queries into complex
queries. In this case, serial and concurrent conjunction both reduce to classi-
cal conjunction, and Transaction Datalog reduces to classical Datalog. Formally,
in the absence of updates, a ® 5 = «|F = a A S. This reduction leads to
a seamless integration of procedural and declarative programming in 7 D. Pro-
grams involving only queries are purely declarative. But, as updates are gradually
introduced, programs gradually become procedural. In particular, conjunctive
queries become sequential or concurrent programs, and union queries become
non-deterministic programs.

Ezample 5. (Declarative Queries) The following rules of classical Datalog
express the transitive closure of a binary relation, 7:

tr(X,Y) « r(X,Y) tr(X,Y) « (X, 2)Atr(Z,Y)
These rules translate directly into Transaction Datalog in two ways.

Translation 1: tr(X,Y) « r(X,Y) tr(X,Y) « (X, 2)otr(Z,Y)
Translation 2: tr(X,Y) « r(X,Y) tr(X,Y) « r(X,2)|tr(2,Y)

2.3 Isolation and Nested Transactions

As described above, concurrent programs in Transaction Datalog can interact
and communicate with each other. Because communication can be two-way, ex-
ecutions of such programs need not be serializable [4], so 7D programs need not
be isolated transactions. To specify isolation, 7D includes a logical modality
called the modality of isolation, denoted ®. Intuitively, the formula ®¢ means
that program ¢ executes in isolation from all other concurrent programs. For
instance, in the program ¢; | (®¢2) | ¢3, the subprograms ¢, and ¢3 may com-
municate with each other, but not with ¢,, which is an isolated transaction. As
a special case, in the program (©¢1) | (®¢2), the subprograms ¢; and ¢4 exe-
cute in isolation from each other, and do not communicate. They must therefore
execute as serializable transactions. In 7 D, isolated transactions may be nested
within other isolated transactions to arbitrary depth. For example, the program
é1 | ©(¢2 | ©¢3) contains an isolated transaction, which in turn contains an iso-
lated subtransaction. The transaction ¢o | ®@3 executes concurrently with, but
in isolation from ¢;. Likewise, within this transaction, the subtransaction ¢s
executes concurrently with, but in i1solation from ¢,.

As described earlier, logical rules are used to define named procedures and
subroutines. In general, the body of a rule may use the three connectives ®, | and
® in any combination. For instance, the formula p « (g1 ® ¢2) | ©(r1 ® r2) is
a legal rule. Intuitively, this rule says, “To execute procedure p, concurrently ex-
ecute the programs ¢; ® g2 and r; ® ry, where the latter program must execute
in isolation.”

Ezample 6. (Financial Transactions: IT) Consider the banking programs of
Example 1, which transfer money between accounts. In the presence of concur-
rency, these programs must be modified to ensure that they execute as trans-
actions. For instance, as is, there is nothing to prevent non-serializable behav-
ior during two concurrent money transfers, as in program (2). We can use the
modality of isolation to ensure serializability. We can also use concurrent con-
junction to exploit intra-transaction concurrency, and increase the throughput
of the transaction system. Here are the modified rules:

sell(Brkr, Client, Seller, Cost, Fee) +
Otransfer(Fee, Client, Brkr) | transfer(Cost, Client, Seller)]

transfer(Amt, Accty, Accts) + O[withdraw(Amt, Accty) | deposit(Amt, Accts)]

withdraw(Amt, Acct) +
®lbalance(Acct, Bal) @ Bal > Amt @ change(Acct, Bal, Bal — Amt)]

deposit(Amt, Acct) + ©[balance(Acct, Bal) ® change(Acct, Bal, Bal + Amt)]
change(Acct, Baly, Baly) + delbalance(Acct, Baly) | ins.balance(Acct, Bals)

These rules define four isolated transactions — sell, transfer, withdraw and
deposit — and one subroutine — change. Observe that withdraw and deposit
are nested within transfer, and two instances of transfer are nested within sell.
In these rules, we have used concurrent composition where possible, although in
some cases, we have used sequential composition because of dataflow within a
rule. For instance, in the rule for withdraw, the account balance is retrieved and
tested before it is updated. Note that the rule for sell simply turns program (2)
into a named transaction.

The depth of nesting in Transaction Datalog is not always static, as in Ex-
ample 6, but can depend on the database. Dynamic nesting arises from recursion
through isolation. Such recursions add no complications to the logical semantics
of Transaction Datalog.

Ezample 7. (Dynamic Nesting) Suppose that r is a database relation with n
tuples. Then, the rules below define a transaction trans that spawns n concurrent
instances of task(x), one instance for each tuple z in relation . Moreover, as they
are spawned, successive tasks are nested more and more deeply within frans, so
that the final task is nested n — 1 levels deep.

trans + r(X) ® del.r(X) ® [task(X) | ©®trans]
trans < r.emply

The first rule is recursive. At each level of recursion, it non-deterministically
chooses a tuple X from relation r, deletes it from the database, and then applies
the task to the tuple by spawning task(X) as a concurrent process. In addition,
the rule calls itself recursively and in isolation; so, each recursive call to trans is
nested one level deeper than the previous call. The second rule halts the recursion
after all the tuples have been deleted from relation r, i.e., after n — 1 recursive
calls

3 Syntax and Semantics

Recall that Transaction Datalog is a fragment of Transaction Logic, which is a
general logic of state change [8, 9, 10, 11]. Transaction Datalog therefore inherits

the semantics of Transaction Logic, including its model theory and proof pro-
cedures, which have been published elsewhere [8, 9, 11]. For convenience, this
section develops a simplified version of that semantics, specialized for Trans-
action Datalog. The simplification comes from restricting Transaction Logic to
relational databases and Horn-like rules without function symbols (in much the
same way that classical Datalog is a restriction of classical logic). The simplified
semantics is based on a logical inference system that describes the legal execution
traces of a 7D program.

It should also be mentioned that Transaction Logic (and thus Transaction
Datalog) has an operational semantics based on a proof procedure with unifi-
cation [11, 10, 8]. This procedure executes transactions, updates the database,
and generates query answers, all as a result of proving theorems. Transactional
features such as abort, rollback, and save-points are also handled by the proof
procedure. This procedure is the foundation of our implementation [22].

3.1 Syntax

The language of Transaction Datalog includes three infinite enumerable sets
of symbols: constant symbols (a,b,¢,...), variables (X,Y, 7, ...), and predicate
symbols (p,q,r,...). We adopt the Prolog convention that variables begin in
upper case, and constant symbols begin in lower case. As in classical Datalog,
there are two sorts of predicate symbol: base and derived. In addition, for each
base predicate, p, there are three special predicate symbols, denoted p.empty,
wmns.p and del.p. The first has arity zero, and the other two have the same arity
as p. We define a database state to be a finite set of ground atomic formulas
with base predicate symbols. We sometimes refer to a database state simply as
a database or a state.

Definition1l. (Goals and Rules) A goal is a formula of the following form:

an atomic formula;

(¢1 ® ¢2 ® -+ - @ ¢) where k > 0 and each ¢; is a goal; or
(¢1 | @2 |- | 1) where k > 0 and each ¢; is a goal; or
(¢ where ¢ is a goal.

A rule 1s a formula of the form p < ¢, where ¢ is a goal, and p 1s an atomic
formula with a derived predicate symbol.

A transaction base is a set of rules. A program is a transaction base together
with a goal. Intuitively, the goal defines the main procedure, and each rule in
the transaction base defines a subroutine. When the transaction base is implicit,
we sometimes refer to the goal as a program. A transaction program is a pro-
gram whose main procedure executes in isolation, i.e., has the form ®¢. In the
literature [4, 19], a transaction is a particular execution of a transaction pro-
gram. This paper uses the same definition, but when there is no confusion, we
sometimes use “transaction” as an abbreviation for “transaction program.”

3.2 Execution Traces

Concurrency in Transaction Datalog has an interleaving semantics. Intuitively,
a 7D program consists of a number of concurrent processes, where each process
generates a sequence of elementary database operations. By interleaving these
sequences, we obtain a new sequence of operations, which can then be executed.
The set of legal interleavings is determined partly by the need for subtransactions
to execute in isolation, and partly by the need for other activities to execute
cooperatively. As an example of the latter, suppose that one process writes data
that another process must read; then the write operation must come before the
read operation in the interleaved sequence. These needs are specified by 7D
programs.

In an interleaving semantics, only one program executes at a time, while
all concurrent programs are suspended. To model this behavior, 7D records
the state of the database whenever a program is suspended or awakened. For-
mally, an execution of a program, ¢, is represented as a finite sequence of pairs,
D,D;, DsD,4, DsDg, ..., D,_1D,,, which we call an execution trace, or simply an
erecution or a trace. In this sequence, each pair D;D; 1 represents a period of
uninterrupted execution of program ¢ during which ¢ changes the database from
state D; to D;41. Between adjacent pairs, ¢ is suspended and other programs
execute. Thus, initially ¢ changes the database from state D, to Ds. Then, ¢
is suspended, while other programs change the database from state Dy to Ds.
Then, ¢ is awakened and changes the database from D3 to D4. Then, ¢ is sus-
pended again, while other programs change the database from D4 to Ds. This
process of execution and suspension continues until ¢ terminates, leaving the
database in state D,,. For example, the sequence {a} {ab}, {d}{cd} is an exe-
cution trace of the program ins.b ® ins.c. That is, starting from state {a}, the
program first inserts b, changing the database to state {ab}. Then, the program
is suspended, and other programs change the database to state {d}. Finally, the
original program is re-awakened, and it inserts the atom ¢, leaving the database
in state {ed}.

If a program 1is isolated, then its execution is not interleaved with that of any
other programs. It should therefore execute continuously, without interruption
or suspension. An execution trace of an isolated program thus consists of a single
database pair, D1D5. For example, the pair {a} {abc} is an execution trace of
the program ®(ins.b @ ins.c). That is, starting from state {a}, the program in-
serts the atoms b and ¢, leaving the database in state {abc}. Transactions always
execute in isolation, so in T D, each execution of a transaction is represented by a
single database pair. One consequence of this idea is that a concurrent execution
of several transactions is equivalent to a serial execution. For instance, if ¢ and
¢2 are T D programs, then a correct execution of (®¢1) | (O¢2) is equivalent to
an execution of ¢1 ® ¢z or ¢s ® ¢1.

We are not saying here that to achieve isolation, transactions must be ex-
ecuted serially. Rather, a program that executes in isolation must behave as «f
it were not interleaved with any other programs. As a special case, a concur-
rent execution of transactions must have the same effect as a serial execution;

t.e., transactions must be serializable, which is the normal understanding in
database concurrency control [4]. Our semantics therefore specifies the effects
of a 7D program, but not its actual execution inside a DBMS. In fact, inside
a DBMS, concurrent programs may be executed in parallel, rather than in an
interleaved fashion. For instance, suppose that predicates p and ¢ are stored on
different disks. Then, when the transaction ins.p(a) | ins.q(b) is executed, the
elementary updates ins.p(a) and ins.q(b) can be executed simultaneously. On
the other hand, if p and ¢ are stored on the same disk, then ins.p(a) and ins.q(b)
must be executed serially, in some order. In either case, the effect is the same: to
insert the atoms p(a) and ¢(b) into the database. The details of how and when
concurrent operations are actually executed is an implementation issue, and is
beyond the scope of this paper.

With the above model of execution, we can develop a simple semantics for
the three logical connectives ®, | and ©. The semantics is defined in terms of
three operations on execution traces: concatenation, interleaving and reduction.
The first two are familiar list operations. For example, the concatenation of lists
[a,b,c] and [z, y, z] is the list [a,b, ¢, z,y, z]. An interleaving of two lists, L, and
Lo, 1s any list composed of the elements of L1 and L, that preserves the relative
order of the elements in each list. For example, the two lists [a,b] and [«,y]
have six interleavings:

[a’b’x’y] [a’x’b’y] [a’x’y’ b] [x’a’b’y] [x’a’y’ b] [x’y’a’b]

We use concatenation and interleaving to model serial and concurrent conjunc-
tion, respectively. Intuitively, suppose that D; is an execution of ¢1, and D> is
an execution of ¢». Then, the concatenation of Dy and D> is an execution of
$1 @ ¢, and any interleaving of Dy and Dy is an execution of ¢ | ¢».

Unlike concatenation and interleaving, which are general list operations, re-
duction is specific to execution traces.

Definition2. (Reduction) The execution trace [D;D{,D-;D%,..D,D/]is
reducible if D} =D;yq for 1 < i < n. In this case, [D1D/]is the reduction
of the trace.

Thus [D;Dy, DsD3, D3Dy] is reducible, and its reduction is [D1Dy]. Intu-
itively, if a program has a reducible execution trace, then the database does not
change when the program is suspended. The suspensions are therefore unnec-
essary, and the program could execute continuously, without interruption. The
reduced trace therefore represents another possible execution of the program. In
fact, it represents an isolated execution, i.e., an execution that is not interleaved
with the executions of other programs. Intuitively, if [D1Ds, DoD3, D3Dy] is
an execution of ¢, then [D1Dy] is an execution of ®¢.

3.3 Logical Inference

This section develops a declarative semantics for 7 D. The development is based
on a logical inference system that specifies the legal execution traces of a 7D

program. In [11], an equivalent, model-theoretic semantics is developed, along
with a practical proof procedure based on unification.

The inference system below manipulates expressions of the form P : D F ¢,
called sequents. Here, P is a transaction base, ¢ is a ground goal, and D is an
execution trace. This sequent means that D is an execution trace of program
¢. The inference system itself is a collection of axioms and inference rules. Each
inference rule consists of several sequents, and has the following interpretation: if
the sequent(s) above the horizontal line can be derived, then the sequent below
the line can also be derived. Based on the axiom sequents, the system uses the
inference rules to derive more-and-more sequents. Observe that the inference
system guarantees safety, since the data domain is fixed.

Definition 3. (Inference System) Let dom be a finite set of constant sym-
bols, called the data domain. Then F(dom) is the system of axioms and inference
rules below, where each sequent contains only those constants in dom. Here, P
is a transaction base, D is a database, D is an execution trace, ¢ is a ground
atomic formula, and ¢ is a ground goal.

Axioms:

1. Elementary Queries:
P:DD F ()
P:DD | ¢ if g€ D
P:.DD F r.empty if D contains no atoms with predicate symbol r

2. FElementary Updates:
P:DD; F ins.q if Dy=D;+ {q}
P D1D2 F delq Zf D2 = D1 — {q}

Inference Rules:

3. Subroutines: if q + ¢ s a ground instantiation of a rule in P, then
P:DF g
P:DFy
4. Sequential Composition: if D3 is the concatenation of Dy and Do, then
P:D; F ¢ P:D, + ¢
P:DsF ¢ @ ¢

5. Concurrent Composition: if D3 is an interleaving of D1 and Ds, then
P:ﬁll—qbl PZﬁz"QSQ
P:Dst ¢1 ¢

6. Isolation: if Dy reduces to Do, then
P ﬁl F ¢
P ﬁz F ® ¢

Each axiom and inference rule in Definition 3 has a simple, intuitive inter-
pretation. For instance, axioms of type 1 all have the form P : DD ¢. Here,
the execution trace is a single database pair, DD, in which the initial and final
states are the same, D, which means that ¢ is a read-only transaction (i.e., a
query). The first axiom defines the empty goal (), which is a transaction that
does nothing and always succeeds. The second axiom defines simple queries that
ask whether a given atom, ¢, is in the database. The third axiom defines queries
that ask whether a given relation, r, is empty.

Axioms of type 2 all have the form P : D;D4l ¢. Here, the execution trace
is a single database pair, D1D5, in which the initial and final states of the
database may be different. This means that ¢ is an updating transaction that
changes the database from state D; to Ds. The first axiom says that transaction
ins.q changes the database from state D to state D + {¢}. Likewise, the second
axiom says that transaction del.q changes the database from state D to state
D — {q}. The following sequents are instances of these two axioms:

P {p}{pe} F insq P {pg}{q} t delp (3)

The four inference rules are also straightforward. For instance, suppose that
D, is an execution of ¢1, and D5 is an execution of ¢5. Then, rule 4 says that
the concatenation of Dy and Ds is an execution of ¢1 ® ¢o. Likewise, rule 5
says that any interleaving of Dy and D+ is an execution of ¢ | ¢5. Thus, the
following sequent can be derived from sequents (3) using inference rule 4:

P {p}{pa}, {pg}{a} b ins.q@ delp (4)

Rule 6 says that if D is an execution of ¢, then the reduction of D is an execution
of ®¢, assuming that D is reducible. Thus, the following sequent can be derived
from sequent (4) using inference rule 6:

P: {p}{q} b © (ins.q@ delp) (5)

Inference rule 3 uses the rules in the transaction base, P. Recall that each
rule represents a procedure, where the rule head is the procedure name, and
the rule body is the procedure definition. Variables in the rule represent param-
eters of the procedure, and are instantiated at run time. Intuitively, inference
rule 3 says that if D is an execution of an instantiated procedure body, ¢, then
it is also an execution of the instantiated procedure name, ¢. For instance, if
7 + O(ins.q @ del.p) is a ground instantiation of a rule in P, then the sequent
P : {p} {q} F r can be derived from sequent (5) using inference rule 3.

A more-involved example of logical inference is given in the long version of
this paper [6].

4 Related Work

This section compares and contrasts Transaction Datalog with other languages
in the literature. We have divided the comparison into several broad areas. Due

to space limitations, we have limited most of the comparisons to formalisms
involving concurrency. In addition, 7D can be compared to the numerous logics
for representing action. These include dynamic logic, process logic, action logic,
algorithmic logic, procedural logic, the event calculus, the situation calculus,
and many others. However, none of these formalisms provide concurrency and
communication, none provide composition of transaction programs, and none can
model nested transactions. In addition, many have no notion of database state
or declarative query, many are propositional, and many are simply inappropriate
for database applications. An extensive comparison of these formalisms with the
sequential version of Transaction Logic can be found in [9, 10].

Transaction Languages: Broadly speaking, the theoretical literature has explored
two kinds of transaction language, in order to address two different problems.
In the first approach, the user specifies the effects of individual transactions;
and in the second approach, he coordinates the execution of a set of transac-
tions. We shall refer to these two approaches as specification and coordination,
respectively. In software-engineering terms, these two approaches correspond to
“programming in the small” and “programming in the large,” respectively [14].

The specification approach implicitly focuses on classical transactions. The
problem is to develop a high-level language for specifying database queries and
updates, and to establish its theoretical properties, such as formal semantics,
data complexity, and expressive power. Numerous languages with logical, alge-
braic and procedural semantics have been developed. Like SQL and relational
algebra, these languages are often related to first-order predicate logic. Typi-
cal results are, “Language L1 expresses more transactions than language L2,”
and “The data complexity of language L1 is complete for PSPACE.” Relation-
ships between transactions are not an issue here; so concurrency, communica-
tion, isolation, abort and rollback are not addressed. Formally, these issues are
abstracted away, and only the effects of transactions are considered. These lan-
guages therefore model a transaction as a mapping from databases to databases.
Developments in this area include the procedural and declarative transaction lan-
guages of Abiteboul and Vianu [1, 2], the procedural language QL of Chandra
and Harel [12],> Dynamic Prolog [24], LDL [28], and numerous other languages.
A detailed discussion of these works can be found in [9, 10].

The coordination approach focuses on non-classical transactions. The prob-
lem is to develop a high-level language for combining a set of tasks into a larger
application or software system. The focus is on relationships between tasks.
Typical problems are to specify intertask dependencies, including data-flow and
control flow, and to schedule and coordinate the execution of tasks. A typical
control dependency is, “Task T2 cannot start until task T1 has committed;”
and a typical data dependency is, “Task T2 can start if task T1 returns a value
greater than 25” [30]. Specifying database updates and queries is not an issue
here. Formally, the effects of tasks are abstracted away, and only the relation-

? Although presented as a query language, QL is even more natural as an update
language.

ships between tasks are considered. Typically, these languages model a classical
transaction as a finite automaton with a small number of states such as “start,”
“commit” and “abort.” Temporal constraints between the states of different au-
tomata are then specified in a propositional logic. Developments in this area in-
clude ACTA [13], proposals for Third Generation TP Monitors [14], approaches
based on temporal logic [3] and event algebras [32], and numerous other works.

In this paper, we addressed both issues, and integrated them into a sin-
gle language. Specifically, Transaction Datalog can specify the effects of classi-
cal and non-classical transactions, and it can compose simple transaction pro-
grams into complex ones. For instance, 7D can specify queries (Example 5),
updates (Example 1), and nested transactions (Example 6). Given a set of trans-
action programs, 7D can impose a control structure on them (Examples 2),
co-ordinate their execution (Example 4), and nest them to arbitrary depth (Ex-
ample 7). The programs themselves can execute sequentially, concurrently and
non-deterministically, they can execute in isolation, and they can cooperate with
each other by communicating and synchronizing.

Concurrent Logic Programming: There has been considerable research on con-
currency in the logic programming community. However, this work has focussed
on the implementation of concurrency and on communication via shared vari-
ables. In particular, there has been no emphasis on logical semantics, database
updates, or database transactions. Transaction Datalog and Transaction Logic
therefore make a two-fold contribution to logic programming. First, they extend
the logic programming paradigm with a host of transactional notions, including
atomicity, isolation, rollback, and subtransaction hierarchies. Second, they inte-
grate concurrency, communication and updates into a purely logical framework,
including a natural model theory and a sound-and-complete proof theory [11].

This integration presents interesting possibilities for concurrent logic pro-
gramming (CLP). For instance, concurrent processes can now communicate via
the database, since one process can read what another process writes. This form
of communication leads to a programming style that is very different from that
of existing CLP languages [31]. In such languages, concurrent processes com-
municate via shared variables and unification. This kind of communication is
orthogonal to communication via the database. Both are possible in 7 D. Imple-
mentations of 7D may therefore adopt many of the techniques of shared-variable
communication developed for CLP. However, this possibility is not the focus of
our work. Instead, we focus on concurrent processes that interact and commu-
nicate via the database. Indeed, one of the novelties of 7D is that it provides a
logical foundation for exactly this kind of interaction.

Process Algebras: These are a family of algebraic systems for modeling con-
current communicating processes. They include Milner’s Calculus of Commu-
nicating Systems (CCS) [25], and Hoare’s Communicating Sequential Processes
(CSP) [20], among others. Transaction Datalog and process algebras use very
different formal frameworks. This difference is most easily seen in terms of
COSY [23], an early algebraic approach to modeling concurrent processes. COSY

is an extension of regular expressions, while Transaction Datalog is an extension
of deductive databases. Process algebras have since developed into equational
theories, but the formal differences with 7D remain the same.

The main conceptual difference between process algebras and Transaction
Datalog i1s that process algebras are high-level models of shared-nothing sys-
tems, while Transaction Datalog is a high-level model of shared-memory systems,
especially database systems with transaction processing. For instance, process
algebras explicitly reject the notion of processes interacting via shared mem-
ory (such as a database) [26]. Instead, each process has its own local memory,
and 1t interacts with other processes via synchronized communication. In con-
trast, Transaction Datalog is explicitly intended for database transactions, i.e.,
processes that interact with a shared database. As such, 1t provides high-level
primitives for database functions such as declarative queries, subtransaction hi-
erarchies, serializable execution, transaction abort and rollback, etc. This differ-
ence in intent is reflected by differences in semantics: process algebras emphasis
synchronized communication, while Transaction Datalog emphasizes database
states.

Transaction Datalog integrates processes and data. It therefore unifies two
previously disparate views of information systems and workflow management:
the process-oriented view, and the data-oriented view. The former view is em-
bodied in business processes and process algebras, while the latter view is em-
bodied in database systems and query languages. As the examples in this paper
illustrate, programs in Transaction Datalog can take either point of view, or a
combination of both.

Acknowledgements: Transaction Logic was developed in collaboration with Michael
Kifer [8, 9, 10, 11]. Thanks go to David Toman and Michael Kifer for their comments
and suggestions on this paper. This work was supported in part by a Research Grant
from the Natural Sciences and Engineering Research Council of Canada (NSERC).

References

1. S. Abiteboul and V. Vianu. Procedural languages for database queries and up-
dates. Journal of Computer and System Sciences, 41:181-229, 1990.

2. S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates.
Journal of Computer and System Sciences, 43:62-124, 1991.

3. P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and enforcing inter-
task dependencies. In Intl. Conference on Very Large Data Bases, Dublin, Ireland,
August 1993.

4. P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery mn Databases. Addison Wesley, 1987.

5. A.J. Bonner. The power of cooperating transactions. Manuscript, 1997.

6. A.J. Bonner. Transaction Datalog: a compositional language for transaction
programming. In Proceedings of the International Workshop on Database Pro-
gramming Languages, Estes Park, Colorado, August 1997. Springer Verlag.
Long version available at http://www.cs.toronto.edu/bonner/papers.html
#transaction-logic.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A.J. Bonner and M. Kifer. Results on reasoning about action in transaction logic.
1998. Submitted for publication.

A.J. Bonner and M. Kifer. Transaction logic programming. In Intl. Conference on
Logic Programming, pages 257-282, Budapest, Hungary, June 1993. MIT Press.
A.J. Bonner and M. Kifer. An overview of transaction logic. Theoretical Computer
Science, 133:205-265, October 1994.

A.J. Bonner and M. Kifer. Transaction logic programming (or a logic of
declarative and procedural knowledge). Technical Report CSRI-323, Uni-
versity of Toronto, November 1995. http://www.cs.toronto.edu/ bonner/
transaction-logic.html.

A.J. Bonner and M. Kifer. Concurrency and communication in transaction logic.
In Joint Intl. Conference and Symposium on Logic Programming, pages 142—156,
Bonn, Germany, September 1996. MIT Press.

A K. Chandra and D. Harel. Computable queries for relational databases. Journal
of Computer and System Sciences, 21(2):156-178, 1980.

P.K. Chrysanthis and K. Ramamritham. Synthesis of extended transaction models
using ACTA. ACM Transactions on Database Systems, 19(3):450-491, Sept. 1994.
U. Dayal, H. Garcia-Molina, M. Hsu, B. Kao, and M.-C. Shan. Third generation
TP monitors: A database challenge. In ACM SIGMOD Conference on Manage-
ment of Data, pages 393-397, Washington, DD, May 1993.

A K. Elmagarmid, editor. Database Transaction Models for Advanced Applications.
Morgan-Kaufmann, San Mateo, CA, 1992.

A.K. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewcz. A multidatabase
transaction model for interbase. In Intl. Conference on Very Large Data Bases,
pages 507-518, Brisbane, Australia, August 13-16 1990.

H. Garcia-Molina and K. Salem. Sagas. In Intl. Conference on Very Large Data
Bases, pages 249-259, May 1987.

J. Gray. The transaction concept: Virtues and limitations. In Intl. Conference on
Very Large Data Bases, pages 144-154, Cannes, France, September 1981.

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Mateo, CA, 1993.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, NJ, 1985.

M. Hsu, Ed. Special issue on workflow and extended transaction systems. Bulletin
of the Technical Committee on Data Engineering (IEEE Computer Society), 16(2),
June 1993.

Samuel Y.K. Hung. Implementation and Performance of Transaction Logic in
Prolog. Master’s thesis, Department of Computer Science, University of Toronto,
1996. http://www.cs.toronto.edu/bonner/transaction-logic.html.

P.E. Lauer and R.H. Campbell. Formal semantics of a class of high-level primitives
for co-ordinating concurrent processes. Acta Informatica, 5:297-332, 1975.

S. Manchanda and D.S. Warren. A logic-based language for database updates.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 363-394. Morgan-Kaufmann, Los Altos, CA, 1988.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

R. Milner. Operational and algebraic semantics of concurrent processes. In [34],
chapter 19, pages 1201-1242. 1990.

J. E. B. Moss. Nested Transactions: An Approach to Reliable Distributed Comput-
ing. Series in Information Systems. MIT Press, Cambridge, MA, 1985.

28

29.

30.

31.

32.

33.

34.

35.

36.

S. Nagvi and R. Krishnamurthy. Database updates in logic programming. In ACM
Symposium on Principles of Database Systems, pages 251-262, New York, March
1988. ACM.

M. H. Nodine, S. Ramaswamy, and S. B. Zdonik. A cooperative transaction model
for design databases. In [15], chapter 3, pages 53-85. 1992.

M. Rusinkiewicz and A. Sheth. Specification and execution of transactional work-
flows. In W. Kim, editor, Modern Database Systems: The Object Model, Interop-
erability, and Beyond. Addison-Wesley, 1994.

E. Shapiro. A family of concurrent logic programming languages. ACM Computing
Surveys, 21(3), 1989.

M.P. Singh. Semantical considerations on workflows: An algebra for intertask de-
pendencies. In Proceedings of the International Workshop on Database Program-
ming Languages, Gubbio, Umbria, Italy, September 6-8 1995.

Transarc-Encina. FEncina Transactional Processing System: Transactional-C Pro-
grammers Guide and Reference, TP-00-D347. Transarc Corp., Pittsburg, PA,
1991.

J. van Leeuwen, editor. Handbook of Theoretical Computer Science, Volume B,
Formal Methods and Semantics. Elsevier, Amsterdam, 1990.

H. Wachter and A. Reuter. The ConTract model. In [15], chapter 7, pages 220—
263. 1992.

G. Weikum and H.-J. Schek. Concepts and applications of multilevel transactions
and open nested transactions. In [15], chapter 13, pages 515-553. 1992.

This article was processed using the INTpX macro package with LLNCS style

