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Abstract

Transaction Datalog (abbreviated T D) is a concurrent
programming language that provides process modeling,
database access, and advanced transactions. This paper
illustrates the use of T D for specifying and simulating
work
ows, with examples based on the needs of a high-
throughput genome laboratory. In addition to traditional
database support, these needs include synchronization of
work, cooperation between concurrent work
ows, and non-
serializable access to shared resources. After illustrating
work
ows, we use T D to explore their computational prop-
erties in data-intensive applications. We show, for instance,
that work
ows can be vastly more complex than traditional
database transactions, largely because concurrent processes
can interact and communicate via the database (i:e:, one
process can read what another process writes). We then
investigate the sources of this complexity, focusing on fea-
tures for data modeling and process modeling. We show
that by carefully controlling these features, the complexity
of work
ows can be reduced substantially. Finally, we de-
velop a sub-language called fully bounded T D that provides a
practical blend of modeling features while minimizing com-
plexity.

1 Introduction

The management of work
ows and business processes is a
ubiquitous task faced by many organizations in a wide range
of industries [22, 26, 31]. The problem is to coordinate the
various activities involved in a complex process, such as trip
planning, student registration, telephone installation, lab-
oratory testing, and loan application processing. Because
they can access and generate large volumes of data, many
work
ows require database support, including both data
modeling and transaction management. However, because
the demands of work
ows are more complex than those of
traditional database applications, conventional data man-
agement techniques are not enough. As one prominent re-
searcher puts it, \The next big challenge for the information
technology industry is the management and automation of
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business processes" [22]. This paper focuses on one aspect of
this challenge: high-level languages for specifying work
ow.
In particular, we investigate the e�ects of data-oriented and
process-oriented features, especially their in
uence on the
computational complexity of work
ows.

1.1 Background

The need for database support in work
ow management
shows up in several ways. For instance, declarative queries
and updates are needed both for accessing application data,
and for recording and monitoring the history of work
ow
execution. In fact, this need is so great in some applica-
tions that database benchmarks have been developed based
on the queries and updates produced by high-volume work-

ow systems [15, 13]. In addition, since work
ows may ac-
cess shared persistent data, transactions are required. This
presents a challenge since work
ows can also create depen-
dencies between transactions. For instance, if one transac-
tion fails, then others may have to be started or aborted,
depending on the work
ow [24, 8]. Such dependencies are
not accounted for in the classical theory of transaction man-
agement [7]. The result is that \business process manage-
ment cannot be handled by means of conventional database
techniques alone" [22]. For this reason, there has been con-
siderable research on advanced transaction models [24] and
their application to transactional work
ow [31].

In addition to database support, work
ow management
requires process modeling. A process model describes the

ow of control among the various activities that make up
a work
ow. For instance, in a simple linear work
ow, the
process model simply lists the order in which the activi-
ties must be carried out. In general, a process model can
be highly complex, and can specify that some activities be
carried out concurrently, that some be synchronized, that
some be executed repeatedly, and that some be invoked as
subprocesses of others. Numerous formalisms have been de-
veloped for this purpose, including various process algebras,
many kinds of Petri net, as well as temporal logic, state
charts, concurrent transition systems, and concurrent logic
programming (e:g:, [36, 29, 37, 27]). These formalisms all
allow concurrently executing processes to interact and com-
municate, and some (such as process algebras) allow new
processes to be created recursively at runtime.

Computational problems associated with work
ow have
been extensively studied by the process-modeling commu-
nity. This includes complexity results for problems such as
veri�cation, liveness, deadlock detection, and goal reacha-
bility (e:g:, [19, 34]). However, most of this work focuses
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on control 
ow, and either ignores data entirely, or uses
a highly simplistic model of data (such as tokens in Petri
nets [37]). This leaves many questions unanswered. For in-
stance, what is the in
uence of data-oriented features (such
as queries and updates) on work
ow complexity? How does
the combination of data modeling and process modeling af-
fect complexity? How does complexity depend on database
size? What is the e�ect of transactional features? This pa-
per begins to address these questions.

Our vehicle for this investigation is Transaction Data-
log (abbreviated T D), a concurrent programming language
that provides both process modeling and database sup-
port [10, 8]. T D has many of the features of process algebras.
These include concurrent access to shared resources, com-
munication between sequential processes, and the ability to
isolate (or hide) the inner workings of a group of processes
from the outside world. Like all process algebras, T D is com-
positional, so processes can be de�ned recursively in terms
of subprocesses. It is therefore possible to specify so-called
multi-level processes [22], even when the number of levels is
determined at runtime. However, unlike process algebras,
T D also provides high-level support for database functions.
These include declarative queries, bulk updates, views, and
serializability [11, 10]. T D also has many features of ad-
vanced transaction models, including subtransaction hierar-
chies, relaxed ACID requirements, and �ne-grained control
over abort and rollback [8]. This integration of process mod-
eling and database functionality is re
ected in the formal
semantics of T D, which is based on both database states
and events, while the semantics of process algebras is based
entirely on events.

1.2 Computational Complexity

As mentioned above, most computational studies of work-

ow and process models focus on problems such as veri�-
cation, deadlock detection, goal reachability, etc. Unfortu-
nately, while many of these problems are decidable for �nite
state machines, they are fully undecidable (outside of RE)
for many realistic work
ows, where the universe of database
states is in�nite. To deal with this problem, some database
researchers have chosen to restrict the process model instead
of the data model [5, 21, 42]. Unfortunately, the result, once
again, is that many realistic work
ows are not considered.

In this paper, we take a di�erent approach and address a
di�erent set of questions. Our goal is to start with a highly
expressive work
ow language (like T D), and pinpoint the
sources of complexity, including the tradeo� between data-
oriented and process-oriented features. We do not attempt
to reason about undecidable properties of work
ows. In-
stead, we measure what might be called the \data complex-
ity" of a work
ow. Speci�cally, we treat a work
ow as a
concurrent program that accesses a database. The process
starts from an initial database state, updates the database as
it executes, and leaves the database in some �nal state when
it terminates (if it terminates). In this way, the work
ow de-
�nes a partial mapping from initial to �nal states, just as a
Turing machine does. More generally, a non-deterministic
work
ow de�nes a binary relation on states. We de�ne the
data complexity of a work
ow to be the complexity of this
relation. With this approach, we can measure the complex-
ity of executing a single work
ow instance, or the complexity
of spawning many concurrent (and possibly interacting) in-
stances for processing a stream of work items. Sections 3
and 6.1 gives examples of both.

This approach also allows us to compare T D with other

transaction languages, since their complexity has been de-
�ned in the same way [3, 4]. The most striking result is that
work
ows de�ned in T D can be much more complex than
traditional database transactions. For instance, Section 5.1
shows that T D can simulate an arbitrary Turing machine,
even though it has none of the features that normally lead to
this kind of power in a database language. For instance, T D
does not expand the data domain or the database schema
during program execution. Database languages with this
property are said to be safe, and typically their data com-
plexity is within PSPACE [1, 3, 4, 17]. In contrast, the data
complexity of T D is complete for RE. This dramatic increase
in complexity, from PSPACE to RE, is due to a property of
T D not supported by traditional database languages: coop-
erative concurrency, i:e:, the ability of concurrently execut-
ing programs to communicate, synchronize, or otherwise co-
operate [28]. Cooperative concurrency is the dominant form
of concurrency in distributed systems and process modeling,
and is an essential element of work
ow [23, 36, 29].

In concurrent programming languages, cooperative con-
currency is not a primitive modeling feature, but is the result
of combining several more-basic features. In T D, this in-
cludes process-oriented features such as sequential and con-
current composition, as well as data-oriented features such
as queries and updates. Together, these features allow se-
quential processes to execute concurrently and to interact
via the database, since one process can read what another
process writes. Section 5 studies these features and their
e�ect on complexity in detail. We �rst develop a family of
simple syntactic restrictions, where each restriction elimi-
nates a single modeling feature. We then show that these
restrictions reduce the complexity of T D to various levels,
including EXPTIME, PSPACE, PTIME and LOGSPACE.
These results pinpoint the precise e�ect on complexity of
particular modeling features. However, each feature plays
an important role in de�ning work
ows, and in practice, we
do not want to entirely eliminate any one of them. With
this in mind, Section 6 develops a more complex restric-
tion, called full boundedness, that provides a practical blend
of modeling capabilities, and is complete for NP. Of course,
we would prefer a restriction whose complexity is in PTIME,
but cooperative concurrency is inherently non-deterministic,
and leads very quickly to NP-completeness.

In general, our complexity results are in line with and
improve upon related work in the literature. For instance,
like T D, most process algebras can simulate arbitrary Tur-
ing machines [40]. Moreover, Harel has shown that cooper-
ative concurrency increases the complexity of many prob-
lems by an exponential, even when the number of pro-
cesses is carefully bounded [28]. Thus, since safe transac-
tion languages are typically PSPACE-complete, one might
expect that adding a bounded number of concurrent pro-
cesses would increase their complexity to EXPSPACE. In
this light, our syntactic restrictions are very e�ective at
keeping complexity down.

Additional papers about T D, a prototype implemen-
tation, and the results of benchmark tests are available
on the Web at: http://www.cs.toronto.edu/~bonner/
transaction-logic.html

2 Overview of Transaction Datalog

Transaction Datalog is a fragment of Concurrent Transac-
tion Logic (abbreviated CT R), which we developed in pre-
vious work [10]. CT R is an extension of classical logic that
seamlessly integrates concurrency and communication with
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queries and updates. It has a purely logical semantics, in-
cluding a natural model theory and a sound-and-complete
proof theory. Like classical logic, CT R has a \Horn" frag-
ment with a procedural interpretation, in which programs
can be speci�ed and executed. T D is based on the Horn
fragment of CT R, just as classical Datalog is based on the
Horn fragment of classical logic. This section reviews the
syntax of T D and its procedural interpretation, summariz-
ing material from [8]. In this discussion, and the rest of the
paper, we adopt the terminology of deductive databases.
T D provides three operators for combining simple pro-

grams into more complex ones: sequential composition, de-
noted 
; concurrent composition, denoted j; and a modality
of isolation, denoted �. In addition, logical rules provide
a subroutine facility, exactly as in classical Datalog. The
following de�nition makes the syntax more precise.

De�nition 2.1 (Syntax) An atomic formula is a goal. If
�1 and �2 are goals, then so are the formulas �1 
 �2,
�1 j �2 and ��1. If � is a goal and p is an atomic formula,
then p �, is a rule. A �nite set of rules is a rulebase. A
rulebase together with a goal is a program. 2

Intuitively, goals are procedures, and rules are subroutine
de�nitions (in the logic-programming tradition). In partic-
ular, if � and � are goals, then

� �
 � means \First execute �, then execute �, and
commit i� both � and � commit."

� � j � means \Execute � and � concurrently, and com-
mit i� both � and � commit."

� �� means \Execute � in isolation, and commit i� �

commits."

� p � means \An execution of � is also an execution
of p, where p commits if � commits."

Using these four operators, a T D programmer combines
elementary operations into complex processes. In general,
an elementary operation can be any activity that accesses
a database, including activities that require human inter-
vention (as in many work
ows). Examples include sim-
ple database updates, complex application programs, and
legacy systems. Semantically, an elementary operation is
treated as a black box. This idea is formalized in [10].

In general, the complexity of a T D program depends on
its elementary operations. However, we would like to factor
out these operations in order to focus on the complexity of
T D itself. For this reason, we base our complexity analysis
on a small set of simple operations. This does not result
in any loss of expressiveness or computational power, since
with these operations, T D is expressively complete, i:e:, it
can express any computable database transaction (Theo-
rem 5.5). These operations are also minimal, since if any one
of them is removed, then expressive completeness is lost.1

In this paper, we use four kinds of elementary operation,
which we denote by four kinds of atomic formula: p(x),
p.empty, ins.p(x), del.p(x), where p is a base predicate
symbol. The formal semantics of these formulas is given
in [10, 8]. Intuitively, the �rst two formulas are yes/no
queries, and the last two formulas are updates. In particu-
lar,

1Another approach would be to prove relativized complexity re-
sults with elementary operations modeled by a variation of oracle
Turing machines [30]. Most of the results in this paper can be rela-
tivized in this way.

� p(x) means \Commit i� p(x) is in the database."

� p.empty means \Commit i� the database contains no
atoms of the form p(x)."

� ins.p(x) means \Insert atom p(x) into the database,
and commit."

� del.p(x) means \Delete atom p(x) from the database,
and commit."

These elementary operations can be combined into
more-complex database programs. For instance, the goal
del.p(a)
 del.p(b) is a simple program that �rst deletes
p(a) from the database and then deletes p(b). Likewise,
the goal [del.p(a)
 del.p(b)] j [ins.q(a)
 ins.q(b)] is a
program consisting of two sequential processes that exe-
cute concurrently, where one process deletes p(a) and p(b),
while the other process inserts q(a) and q(b). Finally, the
rule r(X) del.p(X)
 ins.q(X) de�nes a subroutine with
name r and parameter X. If the goal r(b) is executed, then
the subroutine is invoked with b as the parameter value, in
which case p(b) is �rst deleted from the database, and q(b)
is then inserted.

2.1 Isolation and Transactions

A program executes in isolation if it does not communicate
or interact with other programs. Isolation is a fundamental
property of database transactions [7], and is closely related
to serializability. For instance, if t1, t2, ..., tn are database
programs, then the goal �t1 j �t2 j � � � j �tn executes them
serializably. In T D, the modality of isolation supports a
wide variety of important database functions. We brie
y
describe a few of these here.

Transaction Programs. T D can be used to pro-
gram database transactions. For example, the goal
�[del.p(a)
 del.p(b)] is a simple transaction program. Such
programs execute in isolation, and they either commit or
abort. This particular program always commits since its
components, del.p(a) and del.p(b), always commit. As an-
other example, the goal �[p(b)
 del.p(b)] represents a
transaction program with a precondition, p(b). This pro-
gram �rst asks if p(b) is in the database, and if so, it deletes
p(b). This program commits if p(b) is in the database at
the start of execution, and aborts otherwise.2 By using
rules, a programmer can de�ne transactional subroutines.
For instance, the rule r(X) �[p(X)
 del.p(X)] de�nes
a transaction with name r and parameter X. Using b as the
parameter value, r(b) commits if p(b) is in the database at
the start of execution.

Advanced Transactions. As shown in [8], T D accounts
for many basic properties of \advanced" transaction mod-
els [24], including nested transactions. These properties in-
clude subtransaction hierarchies, non-vital subtransactions,
relative commit, and partial rollback. For example, the
goal �(�1 j �(�2 j ��3)) is a transaction, which contains
a subtransaction, �(�2 j ��3), which contains a sub-
subtransaction, ��3. As another example, in the transac-
tion �(�1 
 �2), the commit of �1 is relative to the whole

2In contrast, in a non-isolated execution of p(b) 
 del.b(b), if p(b)
were not in the database, then the execution would wait for some
other program to put it there. This idea is illustrated in Examples 3.3
and 3.4.
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transaction: if �2 aborts, then the whole transaction aborts
and is undone; in particular, �1 is undone, even though it
has already terminated and committed.

Declarative Queries. When an isolated T D program
contains no updates, it de�nes a read-only transaction, i:e:,
a query. As shown in Section 4.2, for such programs,
the connectives 
 and j both reduce to classical conjunc-
tion, and Transaction Datalog reduces to classical Data-
log. For instance, the goals �[p(X;Y )
 q(Y; Z)] and
�[p(X;Y ) j q(Y; Z)] both express the join of relations p and
q. Any classical Datalog query can be expressed in this fash-
ion. For instance, given the following two rules:

tc(X;Y ) p(X;Y ) tc(X;Y ) p(X;Z) j tc(Z;Y )

the goal � tc(X;Y ) expresses the transitive closure of pred-
icate p. Transaction Datalog is therefore an extension of
classical Datalog.

3 Examples of Work
ow

Like classical logic programs, T D programs have both
a declarative semantics and a procedural interpretation.
These have been published in detail elsewhere [10, 8, 11],
and are reviewed in the long version of this paper [9]. This
section illustrates the procedural interpretation through a
series of examples on work
ow. Each example has been
tested on our prototype implementation [32, 38], and per-
forms exactly as described below.

The examples focus on so-called production work
ow,
which forms the core of a business or enterprise [26, 35].
Production work
ows are typically complex, well de�ned,
high volume, and mission critical. Many production work-

ows are organized around work items of some kind, which
the work
ow activities operate on. Examples of work items
include insurance claims, loan applications, and laboratory
samples. Because they process large numbers of work items,
production work
ows are often data intensive. A concrete
example is the laboratory work
ows used at the Whitehead
Institute/MIT Center for Genome Research [14, 15, 39],
which is engaged in several large-scale genome mapping and
sequencing projects [20]. Each project involves the com-
pletion of tens of millions of experiments, organized into a
network of factory-like production lines. Coordinating the

ow of materials through the production lines, and record-
ing and querying the history of experimental steps and the
results they produce are the main data and work
ow man-
agement requirements [14]. The work
ows at the Genome
Center are data intensive. In fact, as laboratory automa-
tion increased, database performance became a bottleneck
in work
ow throughput, and we had to develop a work-

ow/database benchmark to evaluate new storage managers
for their laboratory information system [15, 13, 14]. To make
the examples in this paper more concrete, we shall some-
times describe them in terms of genome laboratory work-

ow.

Example 3.1 (Work
ow Speci�cation)
The three rules below de�ne a simple work
ow made up
of a collection of tasks and a sub-work
ow. The tasks ex-
ecute sequentially and concurrently, and the 
ow of work
in the sub-work
ow depends on a database query. Intu-
itively, the predicate workflow(W ) represents the 
ow of
work for a single work item, W . Likewise, the predicate
subflow(W ) represents the sub-work
ow, and the predicate
taski(W ) represents a work
ow task.

work
ow(W )  task1(W ) 


[task2a(W ) j task2b(W )] 
 task3(W ) 
 sub
ow(W )

sub
ow(W )  p(W ) 
 task4(W ) 
 task5(W )

sub
ow(W )  q(W ) 
 task6(W ) 
 task7(W )

The �rst rule says the following: �rst task1 should be ap-
plied toW ; then task2a and task2b should be applied concur-
rently; then task3 should be applied; and �nally W should
be passed to a sub-work
ow for further processing. The
sub-work
ow applies a series of tasks to W depending on
the outcome of a test: if p(W ) is true, then task4 and task5
are applied; but if q(W ) is true, then task6 and task7 are
applied.3 Note that p and q are arbitrary database queries,
and may be de�ned by a complex set of T D rules. Also note
the synchronization implicit in the �rst rule, since task3 can-
not start until both task2a and task2b have �nished. 2

Example 3.2 (Work
ow Simulation) The rules below
simulate the execution of a work
ow on a set of work items.
They assume that the predicate workflow(W ) has been de-
�ned, as in Example 3.1. The rules simulate the pipelining
found in many work
ow systems: items enter the work
ow
sequentially, but are processed by the work
ow concurrently.
We assume that a record identifying each work item is ini-
tially stored in a database relation called item, which acts as
an \in basket" for the work
ow. The �rst rule recursively
removes one work item after another from the in basket.
After each removal, the rule spawns a work
ow instance to
process the item, where di�erent instances of the work
ow
execute concurrently. The second rule terminates the recur-
sion (and the simulation) when there are no work items left
to process.

simulate  getItem(W ) 
 [simulate j work
ow(W )]

simulate  item.empty

getItem(W )  �[item(W ) 
 del.item(W )]

The third rule retrieves a work item, W , and then deletes it
from the database. Note the use of the modality of isolation,
�, in the rule body. This ensures that the retrieval and
deletion are carried out as a single transaction, i:e:, as if
getItem(W ) were an elementary operation. In this way, if
two processes both execute getItem concurrently, they will
not get the same item. 2

Examples 3.1 and 3.2 can be re�ned in several ways.
For instance, we may wish to process not a set of work
items, but a stream of items that arrive over a period of
time (e:g:, as new students apply for registration, or new
DNA samples arrive for laboratory testing). In this case, the
environment provides the work
ow with new work items.
As is commonly done in process algebras [36, 29], we can
treat the environment simply as another process (possi-
bly non-deterministic). That is, instead of executing the
goal simulate in Example 3.2, we could execute the goal
simulate j environment, where environment is a process
that inserts new work items into the database. For instance,
the process

ins.item(w1) 
 ins.item(w2) 
 � � � 
 ins.item(wn)

3If both tests are true, then the sub-work
ow chooses one series
of tasks non-deterministically. If neither test is true, then the sub-
work
ow waits until one of them becomes true.
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inserts a sequence of n new work items, w1; w2; :::;wn, one
item at a time. In this way, the database stores a \pool"
of work items that is consumed by the work
ow and replen-
ished by the environment. Of course, more-complex environ-
ments can also be modeled. In Example 6.2, for instance,
two work
ows generate multiple input streams for a third
work
ow.

The examples above can also be re�ned to account for the
sharing of limited resources during work
ow execution. To
appreciate the problem, observe that Example 3.2 executes
concurrently many instances of the work
ow in Example 3.1.
Normally, however, there are physical limits on the number
of work
ow instances that may be active at one time. Typ-
ically, each task in a work
ow is performed by an \agent,"
(e:g:, a machine or a person), only a �xed number of agents
is available, and only quali�ed agents can be assigned to
each task [26]. In e�ect, the agents are resources that must
be shared by the various work
ow instances, thus limiting
the number of instances that can be active at one time. For
this reason, an important part of work
ow speci�cation is
assigning agents to tasks [26]. This is easily accomplished in
a language like T D that integrates databases and processes,
since we can record the status of agents in the database, and
update them as the work
ow progresses. The next exam-
ple shows one way of doing this. The example also suggests
how to keep track of work that has been performed. This
allows for monitoring, tracking and querying the status of
work
ow activities, another important aspect of work
ow
management [26, 15].

Example 3.3 (Shared Resources) The rules below re-
�ne the predicate taski(W ) used in Example 3.1, to account
for the resources needed to execute the task. In this case,
the resources are quali�ed agents. The rules assign an agent,
A, to carry out taski on work item W . The rules access two
base predicates: qualifiedi(A), which means that agent A is
quali�ed to carry out taski; and available(A), which means
that agent A is currently not working on any other task. In
addition, after agent A has completed the task, the atom
donei(A;W ) is inserted into the database, which provides a
record of the work performed.

taski(W )  requesti(A) 
 doTaski(A;W ) 


release(A) 
 ins.donei(A;W )

requesti(A)  

�[qualifiedi(A) 
 available(A) 
 del.available(A)]

release(A)  ins.available(A)

The �rst rule requests an agent, A, quali�ed to perform
taski. When such an agent becomes available, the rule in-
vokes the predicate doTaski(A;W ), which represents agent
A carrying out taski on item W . When the task has been
completed, the rule releases the agent from service, and in-
serts a record of the work into the database. The second
rule selects the agent requested by the �rst rule. It retrieves
an agent, A, who is quali�ed to perform taski and who is
available. (If no such agent is currently available, then the
process waits until one becomes available.) The rule then
deletes A from the pool of available agents. The third rule
simply returns A to the pool. 2

In many applications, a work
ow is made up of sub-
work
ows that run concurrently and synchronize them-
selves. This is often the case when a work item is made

up of several parts, where each part is processed by a di�er-
ent sub-work
ow. Since the parts are related, the work
ows
may have dependencies between them. Typically, one work-

ow needs information produced by another work
ow, and
may have to wait for this information to become available
before it can continue. This is the case, for instance, in the
work
ow described in [15], in which the work items are DNA
samples, and the purpose of the work
ow is to construct a
physical genome map.4

Example 3.4 (Communication and Synchronization)
The rules below specify a work
ow with two sub-work
ows
that execute concurrently. Each sub-work
ow executes a se-
quence of tasks. Moreover, the two sub-work
ows are not
independent: each contains a task that cannot execute until
the other sub-work
ow reaches a certain point.

workflow(W )  subflow1(W ) j subflow2(W )

subflow1(W )  task1a(W ) 
 task1b(W ) 


done2b(W ) 
 task1c(W )

subflow2(W )  task2a(W ) 
 done1a(W ) 


task2b(W ) 
 task2c(W )

The �rst rule simply splits the main work
ow into two sub-
work
ows, denoted subflow1 and subflow2, each consisting
of three tasks. As in Example 3.3, we assume that upon
completion, each task inserts an atom into the database,
as a record of its activity. Speci�cally, we assume that
taski(W ) inserts the atom donei(W ). Observe that both
sub-work
ows contain atoms of the form donei(W ). When
these atoms appear in a goal (as they do here), they rep-
resent transactions that cannot commit until the atom is
true. Thus, donei(W ) will not commit until taski(W ) has
�nished. The execution of the work
ow is therefore sub-
ject to two constraints. First, task1a(W ) must �nish before
task2b(W ) can start. This is because subflow2 will wait at
the atom done1a(W ) until it is true. Likewise, task2b(W )
must �nish before task1c(W ) can start. This is because
subflow1 will wait at the atom done2b(W ) until it is true.
In e�ect, inserting the atom donei(W ) into the database
sends a synchronization message from one sub-work
ow to
the other. 2

4 Executional Entailment

This section introduces the notion of executional entail-
ment, which describes the e�ect of executing a T D program.
In this paper, we use executional entailment to describe
the transactional properties of T D programs, to show that
Transaction Datalog is an extension of classical Datalog, and
to de�ne the data complexity of T D.

Recall that a T D program is de�ned by a rulebase, P,
and a goal, �. An executional entailment for this program
is an expression of the form P;D1D2 j= �. Intuitively, this
expression means that when the program is executed in iso-
lation, it can transform database D1 into database D2. For
example, for any rulebase P,

P; fabg f g j= del.a
 del.b

P; f g fcdg j= ins.c
 ins.d

P; fabg fcdg j= (del.a
 del.b) j (ins.c
 ins.d)

4This particular work
ow consists of two concurrent sub-work
ows
that synchronize themselves at several points. One sub-work
ow pro-
cesses DNA samples called clones, and the other processes shorter
samples called tclones. At several points, the clone work
ow needs
information generated by the tclone work
ow.
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Likewise, if P contains the two rules p del.a
 del.b and
q  ins.c
 ins.d, then

P; fabg f g j= p

P; f g fcdg j= q

P; fabg fcdg j= p j q

We say that a program succeeds from database D1 if
P;D1D2 j= � for some database D2. Otherwise, the pro-
gram fails from D1. For example, the goal b
 del.b suc-
ceeds if and only if the database initially contains the atom
b; i:e:, this goal successfully deletes b from the database if b
is there to begin with, and fails otherwise. The formal se-
mantics of executional entailment is given in [10, 8], and is
reviewed in detail in the long version of this paper [9]. This
semantics integrates queries, updates and concurrency in a
simple logical framework.

As in the classical theory of concurrency control [7], T D
has an interleaving semantics. Intuitively, a T D program
consists of a number of concurrent processes, where each
process generates a sequence of queries and updates. By
interleaving these sequences, we obtain a new sequence of
operations, which can then be executed. The set of legal
interleavings is determined by interactions between the pro-
cesses. For instance, if one process writes data that an-
other process must read (as in Example 3.4), then the write
operation must come before the read operation in a legal
interleaving. When an interleaved sequence is executed, it
de�nes a transformation from databases to databases, which
we describe formally by executional entailments.

4.1 Transactional Properties

This section uses executional entailment to illustrate some
basic properties of T D programs. These properties are all
transactional since executional entailment describes the ef-
fects of isolated executions, i:e:, executions that involve no
interaction with the outside world.5 Of course, the pro-
grams themselves may have a rich internal structure of in-
teracting concurrent processes, but this is invisible to the
outside world (except for its e�ect on complexity, as shown
in Section 5).

We begin with elementary database operations. Recall
that the version of T D used in this paper has four kinds
of elementary operation: tuple testing, p(x); tuple inser-
tion, ins.p(x); tuple deletion, del.p(x); and emptiness test-
ing, p.empty. (Here, p is a base predicate symbol, and thus
does not appear in any rule heads.) These operations have
the following formal properties:

1. P;D1D2 j= ins.p(x) i� D2 = D1 [ fp(x)g

2. P;D1D2 j= del.p(x) i� D2 = D1 � fp(x)g

3. P;D1D2 j= p(x) i� D1 = D2 and p(x) 2D1

4. P;D1D2 j= p.empty i� D1 =D2 and
p(x) 62D1 for all x.

These properties have a natural interpretation in terms of
the operational semantics of T D. For instance, Property 1
says that the transaction ins.p(x) transforms database D1

into database D1 [ fp(x)g, and that it always succeeds (i:e:,
commits). In contrast, Property 3 says that the transaction
p(x) has no e�ect on the database, but that it succeeds if
and only if the atom p(x) is in the database.

5The e�ects of non-isolated execution have a more complex de-
scription involving execution histories [10, 8, 9].

We can also state some basic properties of compound
transactions, i:e:, transactions de�ned using the logical con-
nectives of T D. For instance,

5. P;D1D3 j= �
 � i� P;D1D2 j= � and
P;D2D3 j= � for some state D2.

6. If P;D1D2 j= � then P;D1D2 j= q, where
q  � is a ground instantiation of a rule in P.

7. P;D1D2 j= �� j �� i� P;D1D2 j= �
 � or
P;D1D2 j= � 
 �

8. P;D1D2 j= � i� P;D1D2 j=��

Again, these properties all have a natural interpretation. For
instance, Property 7 says that when isolated programs exe-
cute concurrently, the execution is serializable. Property 8
says simply that the expression P;D1D2 j= � refers only to
isolated executions of �.

We now use these properties to illustrate a basic feature
of T D.

4.2 Classical Datalog � Transaction Datalog

Transaction Datalog is an extension of Classical Datalog. In
particular, classical Datalog corresponds to the fragment of
T D in which tuple testing is the only elementary operation.
To see this, �rst note that since database updates are not
allowed, this fragment of T D de�nes read-only transactions,
i:e:, queries. Moreover, any program in this fragment can be
trivially transformed into classical Datalog: simply remove
all modalities of isolation, and replace sequential and con-
current composition by classical conjunction. For instance,
the rule b (c1 
 c2) j �(c3 
 c4) in Transaction Datalog
is transformed into the rule b c1 ^ c2 ^ c3 ^ c4 in clas-
sical Datalog. Clearly, any classical Datalog program can
be generated in this way, as illustrated in Section 2.1. The
following theorem shows that the transformed program and
the original T D program are equivalent.

Theorem 4.1 (Relationship to Classical Datalog)
Let P be a rulebase, let � be a goal, and let Pc and
�c be their transformed versions as described above. If
tuple tests are the only elementary operations in P and
�, then P;D1D2 j= � if and only if D1 = D2 and
Pc [D1 j=

c �c, for any pair of databases, D1, D2, where
j=c denotes entailment in classical logic.

We brie
y indicate why this theorem is true by appealing
to the eight properties described above. First note that the
the theorem clearly holds for elementary queries, i:e:, when �
is an atomic formula, p(x), and p is a base predicate symbol.
In this case, � = �c, and the theorem follows immediately
from Property 3. That is, P;DD j= p(x) i� p(x) 2D i�
Pc [D j=c p(x), since p does not appear in the head of any
rule in P or Pc. Second, in the absense of updates, we can
show that the connectives 
 and j both behave like classical
conjunction. This is because the database state does not
change during program execution, so the order of operations
does not a�ect the outcome. For instance, without updates,
Property 5 reduces to the following:

P;DD j= �
 � i� P;DD j= � and P;DD j= �

It is not hard to show that a similar property holds for con-
current composition. Third, in the absense of updates, rules
in T D behave like rules of classical Datalog. In particular,
Property 6 reduces to the following:
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if P;DD j= � then P;DD j= q

where q  � is a ground instantiation of a rule in P. Fi-
nally, we note that in the absense of updates, all executions
are serializable and thus isolated, so the modality of isola-
tion is simply not needed. These properties indicate why
Theorem 4.1 is true. A complete proof is given in the long
version of this paper [9].

Theorem 4.1 suggests a natural optimization. Suppose
that a T D goal (or rule body) contains a formula of the
form �p(x), where p is a predicate de�ned by rules in which
tuple testing is the only elementary operation. The formula
�p(x) is therefore a query, and according to Theorem 4.1, it
can be treated as a query of classical Datalog. This means
that work
ows de�ned in T D can contain arbitrary Datalog
queries, and that well-known optimization techniques (such
as magic sets or tabling) can be applied to them.

5 Data Complexity

The rest of this paper establishes the data complexity of T D,
and investigates the sources of this complexity, focusing �rst
on data-oriented features, and then on process-oriented fea-
tures. (The next section considers the interplay of the two.)
As discussed in Section 1, we measure the complexity of a
T D program by treating it as a transaction and observing
its e�ect on the database. This e�ect is formalized by the
notion of executional entailment introduced in Section 4.

Our complexity results are based on a number of stan-
dard de�nitions, adapted from [3, 4, 16]. A database schema
is a �nite set of base predicate symbols (with associated ar-
ities). A database with schema S is a �nite set of ground
atoms constructed from the predicate symbols in S. The
domain of a database is the set of constant symbols appear-
ing in it. The domain of database D is denoted dom(D). A
database transaction of type hS1; S2i is a binary relation on
databases of schema S1 and S2. A transaction T is safe if
dom(D2) � dom(D1) for every pair hD1;D2i in T . Con-
sider a T D program de�ned by rulebase P and goal �. The
program expresses a transaction T of type hS1; S2i if for
any database D1 with schema S1, the pair hD1;D2i 2 T if
and only if P;D1D2 j= �. The data complexity of a trans-
action, T , is the complexity of recognizing the elements of T ,
that is, of determining whether a given database pair is in
T . The data complexity of T D is the complexity of the most
complex transaction expressed by a T D program. Likewise
for the data complexity of a subset of T D. For instance,
given a subset of T D, if the most complex transaction is an
NP-complete language, then we say that this subset is data
complete for NP.

Due to space limitations, proofs of the theorems below
are given only in the long version of this paper [9].

5.1 Data-Oriented Features

This section shows how the complexity of T D depends on
the elementary database operations. We �rst show that up-
dates have a huge e�ect on the computational power of T D,
far beyond that of other database languages. We then show
that both insertions and deletions are needed to achieve this
power. Finally, we show that with all four elementary opera-
tions, T D is an expressively-complete transaction language.

We �rst consider the special case in which tuple-testing
is the only elementary operation. In this case, T D is a query
language, and as shown in Section 4.2, it reduces to classical
Datalog. Since the data complexity of classical Datalog is
complete for PTIME, we have the following result:

Corollary 5.1 With tuple testing as the only elementary
operation, T D is data complete for PTIME.

This corollary provides a sharp contrast to our next re-
sult, which accomodates updates. Speci�cally, we show that
when updates are added to T D, its data complexity skyrock-
ets from PTIME to RE. From a database perspective, this
result is the most unusual in the paper, since T D has none
of the features that normally lead to RE-completeness in
a database language. In particular, it is a safe language
that does not generate an unbounded number of tuples dur-
ing transaction execution. Normally, the data complexity of
such languages is con�ned to PSPACE [3, 4, 17]. The vastly
greater power of T D comes from an ability that is essen-
tial to work
ow, but is lacking in other update languages:
interacting concurrent processes.

Theorem 5.2 With tuple testing, tuple insertion, and tu-
ple deletion as the only elementary operations, T D is data
complete for RE.

In contrast to T D, many transaction languages achieve
RE-completeness by abandoning safety. Often, they expand
the data domain during transaction execution [3, 4, 1] or
they expand the database schema [16, 1]. Typically, to
prove RE-completeness, the tape of a Turing machine is en-
coded as a database, and the �nite control is encoded as
a database program. In such approaches, database queries
simulate tape reads, and database updates simulate tape
writes. The database then grows to arbitrary size during
program execution, since it encodes a machine tape that
grows to arbitrary length.

We take a completely di�erent approach. To prove the
RE-completeness of T D, we encode both the �nite control
and the machine tape as database programs. These pro-
grams execute concurrently, and use communication to sim-
ulate tape operations. In particular, to read from a tape,
the control program sends a \read message" to the tape
program; and to write, it sends a \write message." Here,
the database is the medium of communication: to send a
message between programs, one program reads what the
other one writes. In this way, we use queries and updates
to simulate communication, as illustrated in Example 3.4.
The result is that T D achieves RE-completeness with a �xed
data domain, and a �xed database schema, and thus with
databases of polynomial size.

Our encoding of Turing machines in T D has some re-
semblance to the encoding of Turing machines in process
algebras such as CCS [40]. However, in CCS, the simulation
relies heavily on the restriction operator [40, 19], which al-
lows a CCS program to create an unbounded number of new
(private) communication channels during execution. Since
T D is built around databases, not communication channels,
restriction is not a primitive operation in T D. Instead,
our simulation relies on sequential composition (which is
not a primitive operation in CCS). In e�ect, to encode a
tape storing the string abcd, we use the sequential program
a 
 b
 c
 d. Of course, this is not the whole story, since
in addition to encoding the tape contents, we must be able
to read and write the tape as well. For this, updates and
concurrency are essential. In fact, if either of these elements
is removed from T D, then its computational power drops
dramatically, as shown in Corollary 5.1 and Theorem 5.6.

The proof of Theorem 5.2 uses insertion and deletion to
simulate communication. However, Example 3.4 shows that
concurrent processes can interact and communicate with tu-
ple insertion alone. Tuple deletion is therefore not required
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for communication. However, only limited forms of commu-
nication can be achieved in this way. This is because for a
given data domain, the database can only hold a polynomial
number of tuples. The database therefore saturates after a
polynomial number of inserts, so only a polynomial number
of messages can be sent. This limitation is re
ected in The-
orems 5.3 and 5.4 below, which show that without both in-
sertion and deletion, the data complexity of T D drops from
RE to within PSPACE. In contrast, with both insertion and
deletion, an unbounded number of messages can be sent,
since tuples can be inserted and deleted from the database
an unbounded number of times. In other words, once a
message has been sent, it can be erased from the database
and sent again at a later time. This increased capacity for
communication is re
ected in the RE-completeness of The-
orem 5.2.

Theorem 5.3 With tuple testing and tuple insertion as the
only elementary operations, the data complexity of T D is in
PSPACE.

Theorem 5.4 With tuple testing and tuple deletion as the
only elementary operations, the data complexity of T D is in
PSPACE.

Observe that Theorem 5.3 corresponds to work
ows in
which information is added to a database but never deleted.
This is a common situation in scienti�c work
ows, where the
work
ow activities are laboratory experiments that gather,
store and analyze information [6]. An example is the work-

ows at the Whitehead Institute/MIT Center for Genome
Research [14, 39], where experimental results are accumu-
lated in the database, and queried by analysis programs, but
never deleted or altered. Note, however, that Examples 3.2,
3.3 and 6.2 all use deletion. Thus, even if application data
is never deleted, deletion may still be needed for work
ow
modelling and simulation.

To close this section, we note that Theorem 5.2 shows
that with three of the four kinds of elementary operation,
T D can express some RE-complete transaction. Neverthe-
less, there are many transactions that it cannot express,
even transactions with very low complexity. This is because
without the fourth elementary operation (emptiness test-
ing), T D can only express monotonic transactions. A mono-
tonic transaction has the following property: if it terminates
and commits when started from database D, then it ter-
minates and commits when started from any database con-
taining D. In contrast, emptiness testing is a non-monotonic
transaction: q.empty commits only when relation q is empty.
Thus, even though T D with three elementary operations
can simulate an arbitrary Turing machine, it cannot deter-
mine whether a base relation is empty, simply because this
is a non-monotonic operation.6 To express non-monotonic
transactions, we must add a source of non-monotonicity to
the language. Theorem 5.5 shows that emptiness testing is
enough: adding it as a fourth elementary operation enables
T D to express all computable transactions, both monotonic
and non-monotonic, as long as they are safe.7

6This is a common phenomenon in logical languages. For instance,
even though classical Horn logic (without negation) is data complete
for RE, it cannot compute the di�erence of two base relations, simply
because this is a non-monotonic query.

7As usual in expressibility results of this kind, we assume that the
constant symbols are uninterpreted. Formally, this means extending
the notion of genericity from queries to transactions, as in [3, 4].
Details are given in the long version of this paper [9].

Theorem 5.5 (Expressive Completeness)
With all four elementary operations, T D is expressively com-
plete for safe transactions, i:e:, it can express every safe
transaction in RE.

5.2 Process-Oriented Features

This section explores the e�ect of concurrency and recursive
processes on the data complexity of T D. (Due to lack of
space, we do not explore the e�ects of isolation.) We �rst
show that without any restrictions on recursion, T D is very
sensitive to concurrency, since a little concurrency can create
a huge increase in complexity. We then develop a restricted
form of recursion that is more robust. It allows iterated
work
ows to be speci�ed, and concurrency has no e�ect on
its complexity.

Concurrency is essential to the power of T D. As Theo-
rem 5.6 shows, when concurrent composition is removed, the
data complexity of T D plummets from RE to EXPTIME.
This version of the language, which we call sequential T D,
is comparable in complexity to many safe transaction lan-
guages [3, 4, 17]. The main di�erence is that such languages
are typically complete for PSPACE, not EXPTIME. The ex-
tra power of sequential T D comes from an ability to simulate
alternating PSPACE machines [18].

Theorem 5.6 Sequential T D is data complete for EXP-
TIME.

Theorem 5.6 says that sequential T D expresses some
transaction that is EXPTIME-complete. The next theorem
strengthens this result.

Theorem 5.7 (Expressive Completeness) Sequential
T D can express every safe transaction in EXPTIME.

Theorems 5.2 and 5.6 show that concurrency is essential
to the RE-completeness of T D. However, surprizingly lit-
tle concurrency is required. For instance, recursion through
concurrency is not needed. Nor is it necessary to spawn new
processes at runtime. In fact, examining the proof of The-
orem 5.2 shows that there need not be any concurrency in
the rulebase at all! Concurrency is needed only in the goal.
(Recall that a T D program consists of two parts: a rule-
base, P, and a goal, �.) More speci�cally, it is enough for
the goal to have the form �1 j �2 j �3, where each �i is se-
quential. This means that RE-completeness can be achieved
by three sequential processes executing concurrently. In the
proof, these three processes are used to simulate a 2-stack
machine [30], where two of the processes encode the stacks,
and the third process encodes the �nite control. We there-
fore have the following result.

Corollary 5.8 T D programs with sequential rulebases are
data complete for RE.

Restrictions on recursive processes also have a dramatic
e�ect on data complexity. As Theorem 5.9 shows, if we elim-
inate recursion altogether, then data complexity plummets
from RE to less than PTIME. Without recursion, we can
still specify work
ows like those in Examples 3.1 and 3.4,
but we cannot simulate their execution on a set of work
items, as in Example 3.2.

Theorem 5.9 Non-recursive T D is in LOGSPACE.
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Together, Theorem 5.9 and Corollary 5.8 establish two
extreme points, one of high complexity (RE), and one of low
complexity (LOGSPACE). These two extremes correspond
to unrestricted recursion and no recursion, respectively. Our
last result in this section establishes an intermediate point
(PSPACE). It allows more concurrency than Corollary 5.8,
and more recursion than Theorem 5.9. It is based on a syn-
tactic restriction we call sequential tail recursion. There are
two essential elements to this restriction: one corresponds to
tail recursion in classical logic programming, and the other
forbids recursion through concurrent composition.

De�nition 5.10 (Sequential Tail Recursion) Let P be
a T D rulebase. A rule in P exhibits sequential tail recursion
if it has the form p  
 q, where  is a goal, and q is the
only atom in the rule body that is mutually recursive with
p. The rulebase P exhibits sequential tail recursion if every
recursive rule in P does. 2

Observe that concurrent composition is allowed in the
goal  in De�nition 5.10. This goal may therefore contain
concurrent processes that interact and communicate, like
the work
ows in Examples 3.1 and 3.4. Tail recursion al-
lows these work
ows to be iterated. That is, they can be
executed over-and-over again until some condition is satis-
�ed. For instance, a work
ow for a shipping company may
load goods onto a truck until the truck is full. Likewise,
in a scienti�c laboratory, an experimental protocol may be
repeated until a conclusive result is achieved. This is the
case for the genome work
ow described in [15]. Note that
sequential tail recursion allows processes to be created and
destroyed at runtime, but only inside  . In particular, the
number of processes does not grow with each recursive call,
as in the simulation of Example 3.2.

Theorem 5.11 T D with sequential tail recursion is data
complete for PSPACE.

Finally, we show that the complexity of sequential tail
recursion is insensitive to concurrency. In fact, the lower
bound in Theorem 5.11 does not require concurrent compo-
sition at all.

Corollary 5.12 Sequential T D with sequential tail recur-
sion is data complete for PSPACE.

6 Fully Bounded T D

Section 5 established the e�ect of simple syntactic restric-
tions on the data complexity of work
ows. Each of these
restrictions targets a single syntactic feature of T D, such
as queries, updates, concurrency, or recursion. In practice,
however, each of these features has an important role in the
modeling of work
ows and business processes, so we do not
want to entirely eliminate any one of them. To address this
concern, this section develops a more-complex restriction,
called full boundedness, that has relatively-low complexity,
but retains a wide range of modeling capabilities. Due to
space limitations, we give only a brief and informal descrip-
tion of the restriction here, and state the main result. A for-
mal development is given in the long version of this paper [9].
An extended example based on cooperating work
ows in a
genome laboratory is given at the end of this section.

Full boundedness is based on two ideas. First, each re-
cursive call to a predicate must remove a tuple from a base
relation. For instance, in Example 3.2, each recursive call to
simulate removes a tuple from the item relation. Second,

tuples that are removed from a relation in this fashion must
not �nd their way back into the relation, as in the following
example:

p  item1(W )
 del.item1(W )
 task1(W )


ins.item2(W )
 p

q  item2(W )
 del.item2(W )
 task2(W )


ins.item1(W )
 q

Here, pmoves tuples from item1 to item2, and q moves them
back again. Thus, if p and q are executed concurrently, there
is no guarantee of termination. To eliminate this possibility,
we de�ne a data 
ow graph that keeps track of the 
ow
of tuples from one base relation to another at each level
of recursion. If this graph is acyclic, then we say that the
rulebase is fully bounded.

Theorem 6.1 Fully bounded T D is data complete for NP.

Observe that full boundedness reduces the complexity
of T D programs more than most other restriction consid-
ered in this paper. In fact, only two restrictions have
lower complexity|eliminating recursion, and eliminating
updates|and they severely reduce the ability of T D to
model processes. In contrast, full boundedness retains a
wide range of modeling capabilities. For instance, it is not
restricted to tail recursion, and it allows recursion through
sequential and concurrent composition. It also allows two-
way communication between processes, concurrent access to
shared resources, unlimited use of isolation, and all four el-
ementary database operations. This means that a wide va-
riety of practical work
ows can be speci�ed and simulated,
including all of the examples in this paper. In addition, full
boundedness allows separate work
ows to be \hooked up"
into a network of interacting work
ows, as illustrated below.

6.1 Work
ow Networks

An enterprise may consist of not just a single work
ow, but
a collection of cooperating work
ows. This is typically the
case when one work
ow prepares items needed by another
work
ow. The result is often a network of loosely-coupled
work
ows. For instance, in automobile manufacturing, one
work
ow may assemble carburetors, another transmissions,
another exhaust systems, etc. The products of these indi-
vidual work
ows may then be fed to another work
ow that
assembles them into a �nished automobile. Obviously, work-

ows may be cascaded and combined in this way to produce
a complex network of work
ows. Note that in this manufac-
turing example, the movement of items from one work
ow
to the next is acyclic. In such cases, the entire network of
work
ows can be represented by a fully bounded T D pro-
gram.

This idea is illustrated in the next example, which in-
volves three interacting work
ows. Two of the work
ows
process items, which are then combined and further pro-
cessed by the third work
ow. The example is based on a
common situation in large genome laboratories: some work-

ows prepare samples and reagents, while other work
ows
determine how they interact. A typical situation would be
the following: one work
ow processes long DNA samples, a
second work
ow processes short DNA samples, and a third
work
ow selects pairs of long and short samples that seem
likely to overlap, and processes the two samples together to
determine the exact nature of their overlap.
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Example 6.2 (Cooperating Work
ows) The rules be-
low simulate three interacting work
ows, represented
by the predicates workflow1(I), workflow2(J) and
workflow3(I; J). Here, workflow1 and workflow2 process
items which are then combined and processed together by
workflow3. However, work items are not handed directly
from one work
ow to another. Instead, workflow1 and
workflow2 place processed items in \baskets," from which
workflow3 then selects suitable pairs of items. A pair of
items, I, J , is suitable if the predicate suitable(I; J) is true.
This predicate is an arbitrary database query, and may be
de�ned by a complex set of T D rules.

The �rst set of rules below simulates the execution of
the two producer work
ows, workflow1 and workflow2.
As in Example 3.2, a record identifying each work item for
workflowi is initially stored in a database relation called
itemi, which acts as an \in basket" for the work
ow. In ad-
dition, after each work item has been processed, it is inserted
into the relation basketi, which acts as an \out basket" for
the work
ow.

producei  simulatei 
 ins.finishedi

simulatei  getItemi(W ) 


[simulatei j (workflowi(W ) 
 putItemi(W ))]

simulatei  itemi.empty

getItemi(W )  �[itemi(W ) 
 del.itemi(W )]

putItemi(W )  ins.basketi(W )

The �rst rule invokes the simulation of workflowi, and in-
serts the atom finishedi into the database when the simula-
tion is �nished. The second rule carries out the actual sim-
ulation. It recursively removes one work item after another
from the in basket for workflowi. After each removal, the
rule spawns a work
ow instance to process the item, where
di�erent work
ow instances execute concurrently. After the
work
ow instance terminates, the item is put into the out
basket. The third rule terminates the recursion (and the
simulation) when there are no work items left to process.

The next set of rules simulate the execution of
workflow3. This work
ow has two inputs, basket1 and
basket2. The work
ow selects a pair of items, one from
each basket, and processes them together. This process is
repeated until one of the inputs is permanently empty, at
which time, the work
ow stops.

consume  simulate3 
 ins.finished3

simulate3  selectItems(I;J) 


[simulate3 j workflow3(I; J)]

simulate3  finished1 
 basket1.empty

simulate3  finished2 
 basket2.empty

selectItems(I;J)  �[basket1(I) 
 basket2(J) 


suitable(I; J) 
 del.basket1(I) 
 del.basket2(J)]

The �rst rule invokes the simulation of workflow3, and in-
serts the atom finished3 into the database when the sim-
ulation is �nished. The second rule carries out the actual
simulation. It �rst selects and removes a pair of items, I and
J , from basket1 and basket2, respectively. After each selec-
tion, the rule spawns a work
ow instance, workflow3(I; J),
to process the pair. The third and fourth rules terminate
the recursion (and the simulation) when one of the inputs

is permanently empty. Speci�cally, the third rule stops
the simulation when workflow1 has �nished and basket1 is
empty. Likewise, the fourth rule stops the simulation when
workflow2 has �nished and basket2 is empty. The �fth rule
does the actual work of selecting and removing a pair of
items from the two baskets.

Finally, the following rule executes all three work
ows
concurrently:

work  produce1 j produce2 j consume 2

7 Related Work

T D can be compared to other languages in a number of
ways; e:g:, in terms of work
ow, complexity, or semantics.
A comprehensive comparison of the semantics of T D with
other update languages and logics of action can be found
in [12, 11]. Here, we focus on comparisons based on work
ow
and complexity, the two themes of this paper. Due to space
limitations, we con�ne the discussion to work in database
theory. Related work in other areas was discussed brie
y in
Section 1. Additional discussion can be found in [8, 10].

Work
ow and Processes: The database-theory commu-
nity has recently begun to study business processes and
work
ow management. For instance, Wodtke and Weikum
have used state charts [27] to develop a formal foundation for
work
ow execution in a distributed environment [42]. The
goal of this research is to partition a work
ow (at compile
time) into \orthogonal" components that can be executed
on di�erent servers in a distributed environment. To sim-
plify the problem, nested states (i:e:, sub-work
ows) are not
considered. This work is clearly orthogonal to our own.

Abiteboul, Vianu et al have developed relational trans-
ducers for use in electronic commerce. Like the transducers
in language theory, a relational transducer can be viewed as
a single sequential process. The main novelty is that a state
in a relational transducer is a relational database, and the
state transition function is a Datalog-like program. A rela-
tional transducer accepts a sequence of tuple sets as input,
and produces a sequence of tuple sets as output. The work
itself is primarily concerned with individual transducers and
their properties, such as log validation and goal reachability.
The work does not address many of the central issues in pro-
cess modeling, such as the interaction between concurrently
executing processes (or transducers), and the decomposition
of complex processes into simpler subprocesses.

Davulcu, Kifer et al have used Transaction Datalog (T D)
and the larger framework of Concurrent Transaction Logic
(CT R) to specify and reason about work
ows [21]. This
research was the �rst attempt to apply T D and CT R to
work
ow. It focuses on compiling global constraints (spec-
i�ed in CT R) into work
ow graphs (speci�ed in T D), and
establishes results on consistency and veri�cation. To make
the problem tractable, strong restrictions were placed on
the kind of T D programs allowed. Our paper is orthogonal
to this work. We place no restrictions on the allowed T D
programs, but we do not consider global constraints. We
also address a di�erent set of questions. In particular, we
ask what kind of work
ows can be expressed in T D, and
how is this a�ected by the interaction of data-oriented and
process-oriented features.

Complexity and Expressiveness: Using the results of Sec-
tions 5 and 6, we can compare T D to other query and up-
date languages based on their data complexity and expres-
sive power. For instance, we can compare T D to the highly
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expressive languages described in [1]. Like T D, these lan-
guages are data complete for RE, although in each case,
the source of power is di�erent. For instance, the language
whileN can perform complex arithmetic operations, the lan-
guage whilenew can create new constant symbols during ex-
ecution, and the language whileuty can repeatedly increase
the arity of database relations. The version of T D presented
here has none of these abilities. Instead, its power comes
from cooperative concurrency, i:e:, the ability to execute pro-
grams concurrently and have them communicate, synchro-
nize, or otherwise interact [28]. This feature is essential to
work
ow, but is lacking in traditional database languages,
including all the languages described in [1].

If we remove concurrency from T D, then its data com-
plexity drops from RE to EXPTIME (Theorem 5.6). The
resulting language (sequential T D) can be compared to the
less expressive languages in [1]. For instance, sequential
T D has many features in common with the basic while lan-
guage, such as insertion, deletion and sequential composi-
tion. However, whereas the while language is data com-
plete for PSPACE, sequential T D is data complete for EX-
PTIME. This di�erence in complexity is due to a basic
programming feature|recursive subroutines|that T D sup-
ports, but the while language does not. Instead, the while
language supports iteration, which corresponds to a spe-
cial form of recursion (tail recursion), and allows the while
language to simulate PSPACE machines. By using more
general forms of recursion, sequential T D can simulate al-
ternating PSPACE machines. This accounts for its greater
computational power, since alternating PSPACE = EXP-
TIME [18].

In addition to data complexity, Section 5 establishes re-
sults on expressive completeness (Theorems 5.5 and 5.7).
Unlike some expressiveness results in the literature (e:g:, [33,
41, 2, 1]), these results do not assume the data domain is
linearly ordered. The assumption of ordered domains is a
technical device that is often used to achieve expressiveness
results, but it is not an intrinsic feature of databases [2]. Be-
cause our results do not rely of this assumption, they provide
a complete characterization of the safe transactions in two
well-known complexity classes (RE and EXPTIME). Note
that these results are about standard complexity classes, not
the relational complexity classes introduced in [2], which are
based on so-called relational Turing machines. Relational
Turing machines capture many of the important features of
database programming, but they are strictly weaker than
ordinary Turing machines. For instance, relational Tur-
ing machines (no matter how powerful) cannot determine
whether a database has an even or odd number of tuples [2].
In contrast, this query can be expressed by T D, as well
as by sequential T D and fully bounded T D, as shown in
the long version of this paper [9]. In fact, because sequen-
tial T D expresses all the safe transactions in EXPTIME
(Theorem 5.7), it is strictly more expressive than all the
�xpoint logics described in [2], including those based on
alternating �xpoints. This is because their expressiveness
is bounded above by the relational version of EXPTIME,
which is strictly smaller than EXPTIME proper [2].

Finally, it is worth noting that our notion of transaction
expressiveness is di�erent from that developed by Abite-
boul and Vianu in [3, 4]. We have de�ned expressiveness in
terms of the ability to recognize whether a given database
pair hD1;D2i belongs to a transaction. In contrast, Abite-
boul and Vianu de�ne expressiveness in terms of the abil-
ity to generate D2 from D1. As a practical matter, one
can use the operational semantics of T D to generate D2

from D1, as in our implementation. However, as a theo-
retical device, we have found that de�ning expressiveness
in terms of recognition simpli�es the formal development,
and leads to clean results on the expressiveness and com-
plexity of T D. Moreover, these results are all formulated in
terms of standard complexity classes, such as NP, PSPACE
and RE. In contrast, Abiteboul and Vianu introduce spe-
cial classes such as DB-PSPACE and NDB-PSPACE. These
classes are de�ned in terms of standard Turing machines,
but in a non-standard way. The idea is to view a Turing
machine not as recognizing a language, but as computing a
mapping from input to output. For instance, NDB-PTIME
is the set of (non-deterministic) mappings computable by
NP machines. Note that transactions in NDB-PTIME are
easy to compute: they execute in polynomial time, mak-
ing non-deterministic choices along the way. In contrast, a
transaction whose recognition problem is in NP can be very
hard to compute. This is certainly the case for T D pro-
grams whose data complexity is NP-complete. These di�er-
ences re
ect the two di�erent notions of expressiveness: one
based on output recognition, and the other based on output
generation.
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