
Modifying Kernels Using Label Information

Improves Protein Classification Performance

Renqiang Min1, Anthony Bonner1, and Zhaolei Zhang2

1 Department of Computer Science, University of Toronto, 10 King’s College Road,
Toronto, ON M5S3G4, Canada

2 Banting and Best Department of Medical Research, University of Toronto, 112
College Street, Toronto, ON M5G1L6, Canada

Abstract. Kernel learning methods based on kernel alignment with
semidefinite programming (SDP) are often memory intensive and compu-
tationally expensive, thus often impractical for problems with large-size
dataset. We propose a method using label information to scale the train-
ing part of a given kernel matrix to form the training part of a new kernel
matrix. The test part of the new kernel matrix is estimated based on a
linear transformation in a reduced feature space and can be calculated
computationally efficiently. As a result, the new kernel matrix reflects
the label-dependent separability of the sequence data in a better way
than the original kernel matrix. In addition, our experimental results on
a benchmark dataset, the SCOP dataset, show that the SVM classifier
based on the improved kernels has better performance than the SVM
classifier based on the original kernels; moreover, SVM based on the im-
proved Profile kernel with pull-in homologs (see experiment section for
explanations) produced the best results for remote homology detection
on the SCOP dataset compared to the published results.

1 Introduction

Protein sequence classification and fold recognition is still a challenging task in
the bioinformatics research community. Generative models (e.g., profile HMMs
[4], [5]) and discriminative models (e.g., kernel SVMs [1], [2], [6]) have been
applied to solve this problem. Since protein sequence data is a string of letters, it
is relatively straightforward to apply HMMs directly to it. But for other machine
learning methods that take numerical inputs, analyzing the sequence data by
them is not that easy. Owing to the emergence of kernel methods, we can solve
this problem indirectly. We can map the letter sequences to a higher dimensional
numerical space called feature space, in which each sequence x is mapped to a
vector Φ(x). In the feature space, we can apply many machine learning methods
to analyze the sequence data while doing computations using the kernel trick.
For a wide range of applications including protein classification, the components
of the constructed kernels are positive. In our method, we require the kernel
entries be positive.

It has been shown that the kernel SVM method has better classification and
prediction performance on protein sequence data than some other methods (see

[1], [2], and [6]). Several kernels such as pairwise-sequence-similarity-score based
kernels and mismatch-string kernels, which are especially suitable for protein
sequence data that consists of a limited number of letters from the amino acid
alphabet, are frequently used in sequence classification and structure prediction.
However, the label information of labeled sequences (the class membership of
the data points; in a binary classification problem, the label of a data point is 1
or 0) is completely or partly ignored in the construction process of these kernels,
and the available information between pairwise unlabeled sequences is also ig-
nored both in the training phase and in the testing phase. In this paper, we will
incorporate the label information of training data into the construction process
of a new kernel, hoping that the obtained kernel reflects the real neighborhood
property of the data in a better way than the original kernel. We believe this
helps classification in most situations.

In the paper, we will use two mismatch-string kernels as base kernels [9]. Then
we modify the base kernels using label information of training data. We briefly
describe SVM classifier based on mismatch-string kernels in Section 2. In Section
3, we discuss some recent related methods that motivated us to improve kernels
using label information. In Section 4, we describe in details our approach to
improve kernels using label information based on Singular Value Decomposition
(SVD) and a linear mapping. We present our experimental results for protein
homology detection on the SCOP dataset in Section 5. And in Section 6, we
conclude the paper with some discussions and proposed directions for future
research.

2 SVM based on mismatch-string kernel

SVM is a discriminative method proposed for classification. Suppose we have
a two-class dataset {xi, yi}, i = 1, · · · ,m, yi ∈ {−1, 1}, xi ∈ Rn. A linear SVM
gives a separating hyperplane that maximizes the margin between the sample
data points of the two classes, which is equivalent to minimizing the following
objective function:

L(w) =
1

2
‖w‖2 + C (Σiξi) (1)

xiw + b ≥ +1− ξi for yi = +1 (2)

xiw + b ≤ −1 + ξi for yi = −1 (3)

ξi ≥ 0 ∀i ∈ {1, · · · ,m} (4)

Where C is a penalty coefficient, and the ξi are non-negative slack variables,
which are set to 0 when the dataset is separable.

By constructing a kernel, K, we can map every data point, xi, to a high-
dimensional feature space, in which an SVM can be used to generate a separating
hyperplane. However, by transforming equation (1) and its constraints to inner-
product form using Lagrange multipliers, all calculations can be done in low-
dimensional space by using the kernel trick.

As discussed earlier, kernels can map sequences consisting of letters to a
high-dimensional numerical space. For example, suppose that A is an alphabet
with ` symbols (` = 20 for protein sequences). A k-mer string kernel maps every
sequence in A to a `k-dimensional feature space in which coordinates are indexed
by all possible sub-sequences of length k (k-mers). The specific feature map is

Φk (x) =
(

Φα1
(x) , Φα2

(x) , · · · , Φα
lk

(x)
)T

(5)

where Φα (x) is the number of occurrences of k-mer α in sequence x. The corre-
sponding kernel matrix is

Kk (x, y) = Φk (x)
T

Φk (y) (6)

The mismatch string kernel extends this idea by taking into account mismatches
when counting the number of occurrences of a k-mer in an input sequence. In
particular, for any k-mer, α, let N(α,m) be the set of all k-mers that differ from
α by at most m mismatches. The kernel mapping and kernel matrix are then
defined as follows:

Φ(k,m) (x) =
(

Φ(k,m),α1
(x) , · · · , Φ(k,m),α

`k
(x)

)T

(7)

Φ(k,m),α (x) =
∑

β∈N(α,m)(x)

Φβ (x) (8)

K(k,m) (x, y) = Φ(k,m) (x)
T

Φ(k,m) (y) (9)

A Profile Kernel [3] extends the above mismatch-string kernel by using ad-
ditional profile information of each sequence, that is, the emission probability of
every amino acid at each position in respective sequences. Instead of treating all
k-mers with less than m mismatches the same like the above mismatch-string
kernel, the profile-kernel examines these k-mers further by looking at the emis-
sion probabilities at the mismatch positions and only accepts some mismatches
by thresholding. Suppose we have a sequence x = x1x2...xN composed of amino
acids with alphabet Σ and N is the length of the sequence, P (x) = {pi(a), a ∈
Σ}Ni=1 is a profile for sequence x, where pi(a) denotes the emission probability
of amino acid a in position i and

∑

a∈Σ pi(a) = 1 for each position i. In the
Profile Kernel, the neighborhood for a k-mer x[j + 1 : j + k]=xj+1xj+2...xj+k in
x(0 ≤ j ≤ |x| − k) is:

M(k,σ)(P (x[j + 1 : j + k])) =

{β = b1b2...bk : −
k

∑

i=1

logpj+i(bi) < σ}. (10)

where pj+i(b) with i = 1, ..., k comes from the profile of sequence x and it can
be smoothed using the background frequency of amino acid b. And the feature
vector of sequence x in the Profile Kernel is defined as the following:

Φ(k,σ)(x) =
∑

j=0...|x|−k

(φβ(P (x[j + 1 : j + k])))β∈Σk (11)

where the coordinate φβ(P (x[j + 1 : j + k])) equals 1 if β ∈ M(k,σ)(P (x[j + 1 :
j + k])), and 0 otherwise. Note that all entries in these kernel matrices are non-
negative.

As described in [2] and [3], given a set of labelled and unlabelled protein
sequences, mismatch-string kernels can be efficiently computed. A SVM classi-
fier can be trained using the kernel entries for pairwise labelled sequences, and
the classifier can then be used to predict the remote homology of unlabelled
sequences.

3 Related methods

A kernel matrix K with K(i, j) = Φ(i)T Φ(j) can be used to derive a similarity
matrix based on square Euclidean distances between any pairwise data points,
i and j, in the feature space, as follows:

Dist2(i, j) = K(i, i) + K(j, j)− 2K(i, j) (12)

Although SVM generates the optimal separating hyperplane in the feature space
given a specific kernel, it does not adjust the given kernel and make it more
discriminative. Therefore, it leaves room for improvement as we can apply the
aforementioned idea of preserving neighbor identity to construct new kernels in
order to achieve better separability in the new feature space. Instead of com-
puting more discriminative features of data points explicitly, we can construct a
more discriminative kernel directly and all the computations needed by training
and classification can be cast onto the new kernel matrix. As discussed in [10]
and [11], a linear combination of some predefined kernels is used to generate new
kernels, and the mixing coefficients are calculated by aligning the training part
of the combined kernel to the training part of an optimal kernel K as follows:

K =

[

Ktr Ktt
T

Ktt unused

]

(13)

Ktr(i, j) =

{

+1 if i and j have the same label
−1 otherwise

(14)

where i and j index data points in the training set, and tr and tt respectively
denote the training part and the test part (this rule applies to all the denotations
in the paper). If there are n training data points and m test data points, Ktr

is an n-by-n block sub-matrix and Ktt is an m-by-n block sub-matrix in K. In
fact, doing kernel alignment is to make the constructed kernel approximate the
neighbor identity and data separability reflected by the optimal kernel. From
Equation (10), we can easily find that the optimal kernel makes the distances
between pairwise data points having the same label be 0 and the distances be-
tween pairwise data points having the different labels be 2. That is to say, the
kernel alignment algorithms actually use the label information to construct a
new kernel to achieve good data potability. However, doing the alignment to

calculate the mixing coefficients costs a lot of memory and is very computa-
tionally expensive or impossible for handling large datasets for combining many
kernels. In [8], an efficient approach to learning a convex combination of a set
of kernels was proposed. In this paper, we propose another efficient approach
for constructing new kernels using label information, which is based on scaling,
matrix decomposition, and a linear mapping, to achieve better data separability
as discussed above. The approach is easy to implement and easy to extend to
many types of kernels.

4 Improved kernels using label information

Suppose that we have a dataset as described in Section 2 (we only consider the
two-class problem here) and a given mapping from the input data space to a
high dimensional feature space. We can then construct a kernel K based on the
mapping.

Given the constructed kernel K with K(i, j) = Φ(i)T Φ(j) and the label infor-
mation of training data, we want a new kernel that better reflects the neighbor
identity and separability of the data consistent to the current labels of training
data. If two arbitrary data points in the training set, i and j, have the same
label, we multiply the inner product of their feature vectors by a scaling factor,
α (see Section 5 for detailed discussion about choosing α), which is greater than
1, to get a new kernel matrix K̂ as follows:

K̂ =

[

K̂tr K̂T
tt

K̂tt unused

]

(15)

where

K̂tr(i, j) =

{

αKtr(i, j) if i and j have the same label or i = j
Ktr(i, j) otherwise

(16)

label information of the training set to modify the training part of the kernel
matrix. This modification will affect both the training part and the test part
of K. The test part K̂tt of the new kernel matrix K̂ is calculated using kernel
extrapolation, which is based on a linear mapping. The matrix K̂tr is positive
semidefinite. The distances between pairwise data points in the new feature space
corresponding to K̂tr are as follows:

ˆDist
2

tr(i, j) =

αDist2(i, j) if i and j have the same label
αDist2(i, j)+ otherwise.
2(α− 1)Ktr(i, j) α > 1

(17)

Here Dist2(i, j) is defined in Equation (12), and i and j index the data points
in the training set. We see from Equation (17) that, in the new feature space,
the distance between points having the same label is increased by a factor of
α. Moreover, since α > 1 and Ktr(i, j) is non-negative, the distance between
points having different labels is increased even further by the additional term

2(α−1)Ktr(i, j). That is to say, in the feature space defined by K̂tr, data points
with the same label stay relatively close together, while data points with different
labels move relatively further apart. Figure 1 illustrates the separation of data
points in feature spaces corresponding to Ktr and K̂tr.

+
+

+
+

+
+

+ −
− − −
− − −

+ + +

+ + +

− − −

 − − −

+

−

Fig. 1. The data distribution in the original feature space and in the new feature space.
’+’ means positive and ’-’ means negative.

We can also interpret the similarity between a pair of data points, i and
j, in terms of the angle between their feature vectors, Φ(i) and Φ(j), which
is given by θ = arccos[K(i, j)/

√

K(i, i)K(j, j)]. The angle between two points
with the same label is the same in the new feature space and the original feature
space, while the angle between two points with different labels is larger in the
new feature space than in the original feature space. This can also be seen in
Figure 1.

After the training part, K̂tr, of the new kernel is constructed, we need to
estimate the testing part, K̂tt. That is, to classify a test case by an SVM based
on K̂, we need to estimate the inner products of the new feature vector of the test
case and the new feature vectors of all the training cases. This can be done by
approximating all the high-dimensional feature vectors by lower, N -dimensional
feature vectors, where N is the size of the training set. To do this, we decompose
the training part of K and K̂, denoted by Ktr and K̂tr, respectively, into SVD
form as follows:

KtrVtr = VtrDtr (18)

Ktr = VtrDtrVtr
T = Wtr

T Wtr (19)

where
Wtr = (Vtr

√

Dtr)
T (20)

Similarly,
K̂trV̂tr = V̂trD̂tr (21)

K̂tr = V̂trD̂trV̂
T
tr = ŴT

trŴtr (22)

where

Ŵtr = (V̂tr

√

D̂tr)
T (23)

In these equations, the columns of Vtr are orthogonal eigenvectors of K2
tr, and

Dtr is a diagonal matrix containing the corresponding eigenvalues. Likewise for

V̂tr, K̂tr and D̂tr. Wtr and Ŵtr are n-by-n matrices, where n is the size of the
training set.

We can view Wtr as a compressed representation of the high-dimensional
feature vectors of the training data in a lower dimensional space. Note that this
representation preserves all the inner products. We can interpret Ŵtr in the same
way. Moreover, the new kernel, K̂tr, can be calculated from Ŵtr, which in turn
can be computed by applying a linear transformation to Wtr, as the following
lemma shows:

Lemma 1 AWtr = Ŵtr, where A =
√

D̂trV̂
T
tr Vtr

1√
Dtr

Here, the expression 1√
D

means the inverse of the diagonal matrix
√

D. The

lemma itself follows immediately from equations (20) and (23). We interpret this
lemma as follows: Ktr and K̂tr, respectively, corresponds to feature space F and
F̂ with Wtr lying in F and Ŵtr lying in F̂ ; there exists a linear transformation
between F and F̂ . We shall use the linear transformation, A, to estimate the
matrix K̂tt, the testing part of K̂. This involves the following assumption:

Assumption 1 The linear relation shown in Lemma 1 can be extended to A[Wtr;Wtt] =
[Ŵtr; Ŵtt], where Wtt and Ŵtt are m-by-n matrices which satisfy W T

tt Wtr = Ktt

and ŴT
tt Ŵtr = K̂tt, n and m are respectively the size of the training set and the

test set.

In this assumption, we assume that: Wtt lies in F and Ŵtt lies in F̂ ; applying
the linear transformation A to Wtt will result in the n-dimensional feature vectors
of test data Ŵtt in the reduced feature space F̂ , which better reflects the label-
dependent separability of the test data points as A does to Wtr. The value of this
assumption is tested empirically in Section 5, where we show that the resulting
kernel leads to an SVM classifier with significantly improved performance.

Note that Wtt and Ŵtt are N -dimensional feature vectors representing the
test data points3. Using Lemmas 1 and Assumption 1, we can calculate K̂tt.
First, from the definitions of K and W ,

WT
tt Wtr = Ktt (24)

and so by equation (20),

Wtt =
1√
Dtr

V T
tr KT

tt (25)

According to Assumption 1, we have

K̂tt = ŴT
tt Ŵtr = Ktt(Vtr

1

Dtr

V T
tr)K̂tr = KttK

−1
tr K̂tr (26)

3 Here, we should note that, unlike transductive learning methods, we need not know
all the test data in advance, the test data might come one by one, and we denote
the N -dimensional feature vectors of all the test data by one symbol for description
convenience

When calculating K̂tt, we need to calculate K−1
tr first, and then we can obtain

K̂tt easily by Equation (26). Note that we need not perform SVD at all and the
inverse of Ktr can be computed in Matlab very fast (it takes less than 10 seconds
to get the inverse of a 2620-by-2620 kernel matrix in our machine with 3.0GHz
CPU and 4.0GB memory)4. After the new kernel is constructed, we can apply
machine learning techniques based on the kernel to classification, clustering, or
regression problems. In the next section, we use SVM classifiers based on the
new kernel to classify proteins.

5 Experiments on remote protein homology detection

We determine the classification performance of the new kernels against the
original kernels by comparing their ability to detect protein remote homol-
ogy. A benchmark dataset, which was derived by Jaakkola from the SCOP
database (see [7] and [1]), is used here. In SCOP, protein sequences are clas-
sified into a 4-level hierarchy: class, fold, superfamily, and family, starting from
the top. Remote homology is simulated by choosing all the members of a fam-
ily as positive test data, some family (or families) in the same superfamily
of the test data as positive training data, all sequences outside the fold of
the test data as either negative training data or negative test data, and se-
quences that are neither in the training set nor in the test set are considered
as unlabelled data. This data splitting scheme has been used in several pre-
vious papers (see [1], [6], and [9]). We used the same training and test data
split as those used in [6] and [9]. The version 1.59 of the SCOP dataset from
http://astral.berkeley.edu is used, in which no pair of sequences share more than
95% identity. The detailed explanation about the experimental setting can be
found in http://www.kyb.tuebingen.mpg.de/bs/people/weston/semiprot/supp.html.

In the experiments, there are 54 target test families altogether classified into
four classes: alpha proteins (9 families), beta proteins (18 families), alpha and
beta proteins (17 families), and small proteins (10 families). In the data splits, for
most experiments, there are only several positive test cases but hundreds or even
thousands of negative test cases. The maximum number of positive test cases is
below 30, but the maximum number of negative test cases is above 2600. The
minimum number of positive test case is 1, but the minimum number of negative
test cases is still above 250. So, in the experiments with a very limited number
of positive test cases and a large number of negative test cases, we can almost
ignore the ranking of positive cases below 50 negative cases. In such situations,
we consider that the ROC50 score is much more important than the ROC score.
Here, a ROC curve plots the rate of true positives as a function of the rate of
false positives at different decision thresholds, the ROC score is the area under
the curve, and the ROC50 score is the ROC score computed up to the first 50

4 Equation (26) requires Ktr is non-singular, and if it is singular, it means that some
rows in Ktr corresponding to some training data points can be expressed as the
linear combination of some other rows in Ktr, we can simply remove the redundant
rows to get a non-singular Ktr or set Ktr to be Ktr + εI.

Alpha Beta Alpha and Small Overall Mean
Proteins Proteins Beta Proteins Proteins ROC50

K1 0.4874 0.5208 0.5798 0.5905 0.5448
ImproK1 0.5395 0.5283 0.5933 0.6010 0.5630
K2 0.7909 0.8156 0.8924 0.8687 0.8441
ImproK2 0.8172 0.8276 0.9075 0.8808 0.8597

Table 1. “K1” represents “Mismatch kernel + [PSI-BLAST]”, “ImproK1” repre-
sents “Improved Mismatch kernel + [PSI-BLAST]”, “K2” represents “Profile Kernel +
[PSI-BLAST]”, and “ImproK2” represents “Improved Profile Kernel + [PSI-BLAST]”.
The number in the bracket denotes the number of families in each class.

false positives. Thus, in our experiments, we only compare the ROC50 scores
corresponding to different kernels.

Because our approach to generating new kernels based on label information is
independent of given kernels, we choose two representative kernels, which were,
respectively, “Mismatch kernel + homologs [PSI-BLAST]” as described in [9]
and “Profile kernel” as described in [3] also “plus homologs [PSI-BLAST]” as
base kernels. “kernels + homologs [PSI-BLAST]” refers to a semi-supervised
learning method: prior to training SVM, close homologs of the training data in
the unlabelled set found by PSI-BLAST with E-value less than 0.05 are added
to the positive training set, and are labelled as positive (we call this “pull-in
homologs”). We choose the first kernel because it gives the best results on remote
homology detection among the kernels that don’t use the profile information;
and we choose the second kernel because it produced the best results on SCOP
among all the kernels (we don’t consider transductive learning in this paper). To
perform SVM classification based on the kernels, we used the SVM classifier in
the freely available Spider Matlab machine learning package.

We compared the methods using the mismatch kernel with k = 5 and m = 1
and the profile kernel with k = 5 and σ = 7.5, and the α is set by Cross Validation
(CV). In the experiments in which the number of positive training cases is greater
than or equal to 5, we respectively generated a random permutation of the
positive training cases and of the negative training cases, then we divided the
two permutations into 5 folds denoted by Pi and Ni, i = 1, · · · , 5. We form a
new set M = {{Pi, Ni}|i = 1, · · · , 5}, then we did 5-fold CV on M and chose α
corresponding to the biggest mean ROC50 score from a pre-defined list. In the
experiments in which the number of the positive training cases is less than 5,
we used a similar strategy as above but we divided the positive training set and
the negative training set into 2 folds, and we did 2-fold CV on the newly formed
set M to choose α. In the experiments, the free parameters C for SVM and the
free parameter α are chose using Cross Validation as discussed above. Before

training SVM, the kernel was normalized using K(i, j)← K(i,j)√
K(i,i)K(j,j)

.

Table 1 gives the mean ROC50 scores on different protein classes in several
classes corresponding to the original kernels and the modified kernels. From Table

2, we see that: modified kernels using label information gave better performance
than the original kernels.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RFP
R

T
P

ROC50 curve on family 2.28.1.1

Profile Kernel[PSIBLAST]
Improved Profile Kernel[PSIBLAST]

Fig. 2. Comparison of the ROC50 curves on family 2.28.1.1 (Legume lectins).

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RFP

R
T

P

ROC50 curve on family 3.2.1.3

Profile Kernel[PSIBLAST]
Improved Profile Kernel[PSIBLAST]

Fig. 3. Comparison of the ROC50 curves on family 2.28.1.1 (Legume lectins).

To determine whether the improvement given by the modified kernels is sta-
tistically significant, we performed a Wilcoxon Matched-Pairs Signed-Ranks Test
on the differences. The resulting p-value for the improvement over the Mis-
match+homologs [PSI-BLAST] kernel is 2.19e − 04, and the p-value for the
improvement over the Profile+homologs [PSI-BLAST] kernel is 0.0162.

To show our algorithm improves the original kernels in more detail, we plot
some ROC50 curves in Figure 2 and Figure 3. From the two figures, we can see
that the improved kernels have better performance than the original kernels. In
Figure 4 and Figure 5, we respectively plot a block sub-matrix of the test part of
the normalized original Profile + [PSIBLAST] and of the normalized improved
Profile +[PSIBLAST] matrix on family 2.28.1.1 (Legume lectins). In the two
figures, the first three rows correspond to all the positive test sequences in the
test set, and the remainder rows correspond to some randomly seleted negative
test sequences. The first nine columns correspond to some randomly selected

Profile Kernel on family 2.28.1.1

training data

te
st

 d
at

a

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 4. A block sub-matrix in Ktt of the original Profile Kernel[PSIBLAST] on family
2.28.1.1 (Legume lectins). See the text for explanation.

Improved Profile Kernel on family 2.28.1.1

training data

te
st

 d
at

a

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

Fig. 5. A block sub-matrix in K̂tt of the improved Profile Kernel[PSIBLAST] on family
2.28.1.1 (Legume lectins). See the text for explanation.

positive training sequences, and the last column corresponds to a randomly
selected negative training sequence. The whiter the blobs in the figures, the
larger the corresponding similarity scores. Comparing Figure 4 to Figure 5, we
can see that the similarity scores between the positive test data and the positive
training data in the improved kernel is increased (the block on the upper left
corner becomes whiter in the improved kernel matrix).

6 Discussion and future work

We described an approach to modify kernels using label information of training
data based on SVD and a linear mapping. The modified kernel is more discrim-
inative than the original kernel. We also showed that, unlike Kernel Alignment
with SDP, the test part of the modified kernel can be calculated very efficiently
in practice. We tested the performance of the modified kernel by detecting pro-
tein remote homology. Experimental results show that the improvement given by
the new kernel is statistically significant, although one more free parameter α is
introduced. In our approach, both the scaling factor α and the free parameter C
of SVM are chosen by Cross Validation (CV). The CV procedure we used is very
stable. Even when we run the CV procedure several times on each experiment,
we will get the same scaling factor α on each experiment each time.

We believe that the modified kernel will not overfit the training data, because
the label information is only used to modify the training part of kernel matrix
and the degree of the modification is controlled by CV. The experimental results
in the paper show that the generalization is good. The approach discussed in
the paper is general and can be readily applied to many problems. In the future
work, we plan to learn a non-linear mapping from an original reduced feature
space to a new feature space using neural networks instead of using a linear
mapping.

Acknowledgment

This project was funded by a start-up fund from University of Toronto to Zhaolei
Zhang, an NSERC grant to Anthony Bonner,and a grant from Genome Canada
through the Ontario Genomics Institute.

References

1. Jaakkola, T., Diekhans, M., and Haussler, D.: A discriminative framework for detect-
ing remote protein homologies. Journal of Computational Biology. 7 (2000) Numbers
1/2, 95-114

2. Leslie, C., Eskin, E., Weston, J., and Noble, W.S.: Mismatch string kernels for SVM
protein classification. Neural Information Processing Systems. 15 (2002)

3. Kuang, R., Ie, E., Wang, K., Wang, K., Siddiqi, M., Freund, Y., and Leslie C.:
Profile-based String Kernels for Remote Homology Detection and Motif Extraction.
Journal of Bioinformatics and Computational Biology. 3 (2005) No. 3 527-550

4. Krogh, A., Brown, M., Mian, I., Sjolander, K., and Haussler, D.: Hidden markov
models in computational biology: Applications to protein modeling. Journal of Molec-
ular Biology. 235 (1994) 1501-1531.

5. Baldi, P., Chauvin, Y., Hunkapiller, T., and McClure, M.A.: Hidden markov models
of biological primary sequence information. PNAS, 91(3) (1994) 1059-1063.

6. Liao, C. and Noble, W.S.: Combining pairwise sequence similarity and support
vector machines for remote protein homology detection. Proceedings of RECOMB.
(2002)

7. Murzin A. G., Brenner S. E., Hubbard T., Chothia C.: SCOP: a structural classifi-
cation of proteins database for the investigation of sequences and structures. J. Mol.
Biol. 247 (1995) 536-540

8. Sonnenburg, S., Ratsch, G., and Schafer: Learning Interpretable SVMs for biological
Sequence Classification. RECOMB (2005) 389-407.

9. Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff, A. and Noble, W.S.: Semi-
Supervised Protein Classification using Cluster Kernels. Bioinformatics. 21 (2005)
3241-3247.

10. Zhu, X., Kandola, J., Ghahramani, Z., and Lafferty, J.: Nonparametric Transforms
of Graph Kernels for Semi-Supervised Learning. Advances in Neural Information
Processing Systems. 17 (2005)

11. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L. and Jordan, M.: Learning the
kernel matrix with semidefinite programming. Journal of Machine Learning Research.
5 (2004) 27-72

This article was processed using the LATEX macro package with LLNCS style

