A Concept of Agent for Software Development

Eric Yu University of Toronto June 2001

AOIS workshop @ CAiSE'01

What is AOIS? Why AOIS?

• AOIS is a (specialized) class of information technology solutions ?

- compare: software agents technology, data mining tech.,...
- Solutions looking for problems?

• AOIS is a (specialized) class of IS applications?

- compare: e-commerce, m-commerce, digital libraries,...
- Problems looking for solutions?
- AOIS is a new conception of what information systems are, by adopting "agent" as a key abstraction.
 - Agent concepts can (should) be used throughout conceptualization, requirements analysis, architecture, design, and implementation, as well as during ongoing support.
 - Provides techniques for expressing problems, solutions, and for matching problems with solutions (at each stage)

Problems & Solutions in IS & SE

Problems in IS/SE

- high costs, frequent failures, ...
- legacy, evolution, ...
- inflexibility, incompatibilities, ...

Solutions in IS/SE

- technologies, platforms, ...
 - e.g., C/S, dist'd systems, DBs, web technologies,
- models, languages, tools
- formal methods, informal (structured) methodologies for system development – requirements, design, implementation,...
- reuse, patterns, frameworks, ...

Problems & Solutions in AOIS

same as in IS/SE • Problems addressed by AOIS ? + new opportunities

- high costs, frequent failures, ...
- legacy, evolution,
- inflexibility, incompatibilities, ...

Solutions offered by AOIS ?

- agent technologies, platforms, ...
- models, languages, tools
- methodologies for system development ??
 - requirements, design, implementation,...
- reuse, patterns, frameworks, …??

Points to remember

1. AOIS (and IS) is not just about technology.

- Systems exist in a social/organizational environment.
- ISD/SE continues to be intensely a human activity.

So...

- If agent concepts are to be used throughout conceptualization, requirements analysis, architecture, design, and implementation, as well as during ongoing support,
 - what concept(s) of agent is appropriate?
 - what properties/characteristics should it have?
 - what abstractions should the agent concept provide?

Conception of Agent as a <u>Computational</u> Abstraction

e.g., Jennings, Sycara, Wooldridge (1998)

Situated

 sense the environment and perform actions that change the environment

Autonomous

- have control over their own actions and internal states
- can act without direct intervention from humans

• Flexible

 responsive to changes in environment, goal-oriented, opportunistic, take initiatives

Social

 interact with other artificial agents and humans to complete their tasks and help others

Analysis and Design of Agent-Oriented Systems

e.g., Wooldridge Jennings Kinny (JAAMAS 2000) "GAIA"

Analysis level

- Roles and Interactions
 - Permissions
 - Responsibilities » liveness properties » safety properties
 - Activities
 - Protocols

Design level

- Agent types
- Services
- Acquaintances

Modelling concepts being driven from programming again?!!

- Structured Analysis from
 - Structured Programming
 - · OOA from OOD, OOP
 - · AOA from AOP ??

Requirements Engineering

relationship between system and environment.

• Bubenko (1980), Greenspan (1982), Jackson (1983)...

Traditional focus:

- consistency, completeness, ...
- e.g., "Three Dimensions of RE" Pohl (1993)
 - informal -> formal (representation)
 - opaque -> complete (specification)
 - personal view -> common view (agreement)

• Recent:

• goals, scenarios, agents van Lamsweerde (ICSE 2000)

Points to remember

1. AOIS (and IS) is not just about technology.

- Systems exist in a social/organizational environment.
- ISD/SE continues to be intensely a human activity.
- 2. Need to model relationships between machine and world.

Ontologíes for Modelling

- Static Ontologies
- Dynamic Ontologies
- Intentional Ontologies
- Most current conceptions and models of information systems are based on static and dynamic ontologies.
 business process models
 workflow models
 enterprise models

Social Ontologies

[J. Mylopoulos CAiSE 97 Keynote]

i* - agent-oriented modelling

I* objectíves, premíses, key concepts

• Actors are semi-autonomous, partially knowable

 Strategic actors, intentional dependencies

wants and abilities

 have choice, reasons about alternate means to ends

2. implicit intentionality \rightarrow agents

-**D**-**D**-

wants and abilities

"Strategic Dependency" Model

[Yu RE97]

Revealing goals, finding alternatives Ask "Why", "How", "How else"

Scheduling meeting ... with meeting scheduler

"Strategic Rationale" Model with Meeting Scheduler

So what are the important concepts for Agent Orientation as a <u>Modelling</u> Paradigm?

- Intentionality
- Autonomy
- Sociality
- Identity & Boundaries
- Strategic Reflectivity
- Rational Self-Interest

E. Yu. "Agent Orientation as a Modelling Paradigm," Wirtschaftsinformatik, April 2001.

1. Intentionality

- Agents are intentional.
- Agent intentionality is externally attributed by the modeller.
- Agency provides localization of intentionality.
- Agents can relate to each other at an intentional level.

21

Meeting Scheduling Example

2. Autonomy

- An agent has its own initiative, and can act independently. Consequently, for a modeller and from the viewpoint of other agents:
 - its behaviour is not fully predictable.
 - It is not fully knowable,
 - nor fully controllable.
- The behaviour of an agent can be partially characterized, despite autonomy, using intentional concepts.

3. Sociality

- An agent is characterized by its relationships with other agents, and not by its intrinsic properties alone.
- Relationships among agents are complex and generally not reducible.
- Conflicts among many of the relationships that an agent participates in are not easily resolvable.
- Agents tend to have multi-lateral relationships, rather than oneway relationships.
- Agent relationships form an unbounded network
- Cooperation among agents cannot be taken for granted.
- Autonomy is tempered by sociality.

- 4. Identity & Boundaries
 - Agents can be abstract, or physical.
 - The boundaries, and thus the identity, of an agent are contingent and changeable.
 - Agent, both physical and abstract, may be created and terminated.
 - Agent behaviour may be classified, and generalized.

5. Strategic Reflectivity

- Agents can reflect upon their own operations.
- Development world deliberations and decisions are usually strategic with respect to the operational world.
- The scope of reflectivity is contingent.

6. Rational Self-Interest

- An agent strives to meet its goals.
- Self-interest is in a context of social relations.
- Rationality is bounded and partial.

Points to remember

1. AOIS (and IS) is not just about technology.

- Systems exist in a social/organizational environment.
- ISD/SE continues to be intensely a human activity.
- 2. Need to model relationships between machine and world.
 - Requirements Engineering
- 3. Use agent concepts for modeling, analysis, design, regardless of implementation technology.
 - goals, means-ends, strat. deps., opportunities, vulnerabilities...

Now apply to ...

Software Development throughout

AiStreamesaux Mis A Requirement-Driven Development Methodology

Jaelson Castro +

Manuel Kolp * John Mylopoulos *

* Centro de Informática Universidade Federal de Pernambuco Recife 50732-970, Brazil Department of Computer Science University of Toronto Toronto M5S 3G4, Canada

CAiSE'01 - June 6 2001, Interlaken, Switzerland

Agent-Oriented Software Development [J. Mylopoulos AOIS'99 Invited Talk]

30

Tropos & related projects http://www.cs.toronto.edu/km/tropos

U. of Toronto, Canada

- John Mylopoulos
- Eric Yu
- Yves Lespérance
- Manuel Kolp
- Ariel Fuxman

U. of Trento/IRST, Italy

- Paolo Bresciani
- Paolo Giorgini
- Fausto Giunchiglia
- John Mylopoulos
- Anna Perini
- Marco Pistore
- Paolo Traverso

RWTH Aachen, Germany

- Matthias Jarke
- Gerhard Lakemeyer
- Gunther Gans

UFPE Recife, Brazil

Jaelson Castro

Research Agenda

- Ontology
- Formalization
- Analysis and reasoning
- Methodologies
- Knowledge Based Support
 - Generic knowledge, e.g., common NFR goals, refinements, solution techniques (e.g., for security, safety,...)
 - Larger patterns
- Tools
- Evaluation, Validation, Empirical studies
- Heterogeneous modelling frameworks

Recent Work

- Requirements -> architecturaql design *STRAW01*
- Trust & security Trust00
- GRL part of URN proposal for ITU standard
- GRL+UCM STRAW01
- Intellectual property management *submitted*
- Others Tropos <u>A015@AA01</u> i*+ConGolog Lesperance+

Points to remember

1. AOIS (and IS) is not just about technology.

- Systems exist in a social/organizational environment.
- ISD/SE continues to be intensely a human activity.
- 2. Need to model relationships between machine and world.
 - Requirements Engineering
- 3. Use agent concepts for modeling, analysis, design, regardless of implementation technology.
 - goals, means-ends, strat. deps., opportunities, vulnerabilities...
- 4. AOIS means new ways for understanding problems, and for translating them into solutions.
 - techniques for expressing, analyzing problems, solutions, and for matching them <u>at each stage/level</u> in development.