
Introducing Tool Support for Knowledge Management in Software
Architecture Evaluation Process

1Muhammad Ali Babar, 2Andrew Northway, 3Ian Gorton, 2Paul Heuer, 2Thong

Nguyen
1Empirical Software Engineering, National ICT Australia Ltd.

malibaba@nicta.com.au
2Air Operations Division, Defence Science and Technology Organisation

{andrew.northway,paul.heuer,thong.nguyen}@dsto.defence.gov.au
3Pacific Northwest National Laboratory, USA

Ian.gorton@pnnl.gov

NICTA Technical Report # PA006116.
January 2007

 2

Abstract

Management of software architecture knowledge is vital for improving an organisation’s
architectural capabilities. Despite the recognition of the importance of capturing and reusing
software architecture knowledge, there is currently no suitable support mechanism. To
address this issue, we have developed a conceptual framework for managing architecture
design knowledge. A web-based knowledge management tool, Process-based Architecture
Knowledge Management Environment (PAKME), has been developed to support that
framework. This report discusses the main architectural components and features of PAKME.
We also discuss different usages of the tool for capturing and using architecture design
knowledge to support the software architecture process. This report also describes the
objectives, logistics and initial findings of deploying and trialling PAKME in an Australian
Defence acquisition environment for evaluating a military mission system’s architecture.

 3

Table of Content

1. Introduction .. 4
2. Knowledge Management Problems in Architecture Process .. 5
3. Knowledge Management Tool Support .. 5
4. Managing Architecture Knowledge with PAKME ... 8

4.1. Capturing and presenting knowledge .. 9
4.2. Supporting knowledge use/reuse ... 13
4.3. Support for design and analysis methods .. 15

5. Trialing PAKME .. 17
5.1. Organisational context... 17
5.2. Trial’s objectives... 18
5.3. Tailoring PAKME... 19
5.4. Project Description.. 20
5.5. Use of PAKME’s knowledge base .. 20
5.6. Use of PAKME’s project base .. 22
5.7. Challenges and observations ... 24

6. Conclusion and Future Work .. 25
7. References .. 26

 4

1. Introduction

The Software Architecture (SA) process consists of several activities (such as design,
documentation, and evaluation), which involve complex knowledge intensive tasks [1, 2].
The knowledge that is required to make suitable architectural choices and to rigorously assess
those design decisions is broad, complex, and evolving. Such knowledge is often beyond the
capabilities of any single architect. The software architecture community has developed
several methods (such as a general model of software architecture design [3], Architecture
Tradeoff Analysis Method (ATAM) [4], and architecture-based development [5]) to support a
disciplined architecture process. Although, these approaches help manage complexity by
using systematic approaches, they provide little support to provide or manage the knowledge
required or generated during the software architecture process.
The requisite knowledge can be technical (such as patterns, tactics, and quality attribute
analysis models) or contextual (such as design options considered, tradeoffs made,
assumptions, and design reasoning) [6]. The former type of knowledge is required to
identify, assess, and select suitable design options for design decisions. The latter is required
to provide the answers about a particular design option or the process followed to select that
design option [7, 8]. If not documented, knowledge concerning the domain analysis, patterns
used, design options evaluated, and decisions made is lost, and hence is unavailable to
support subsequent decisions in development lifecycle [9-11].
Recently, various researchers [12, 13] have proposed different ways to capture contextual
knowledge underpinning design decisions. An essential requirement of all these approaches is
to describe software architecture in terms of design decisions and the knowledge surrounding
them. However, architecture design decisions and the contextual knowledge are seldom
documented in a rigorous manner. Moreover, we have also found that there is little use/reuse
of the architectural artefacts (such as scenarios, quality attributes and tactics) informally
described in patterns’ documentation [14]. This shortfall is simply because current formats
for describing patterns are not suitable for the software architecture process – too much detail
is counter-productive as expert designers usually follow a breadth-first and depth-later
approach [1]. Nor do pattern documentation formats explicate the schemas of the
relationships among scenarios, quality attributes, and patterns in a way that makes this
knowledge readily reusable.
In order to provide an infrastructure for managing software architecture knowledge, we have
developed a framework for managing architecture knowledge [6, 15]. This framework
consists of techniques for capturing design decisions and contextual information, an approach
to distill and document architectural information from patterns, and a data model to
characterise architectural constructs, their attributes and relationships [6]. The central
objective of this framework is to provide a theoretical underpinning and conceptual guidance
to design and implement a repository-based tool support for managing architecture
knowledge [15]. We have extended this framework to incorporate Case-Based Reasoning
(CBR) to contextualise the captured knowledge. The novelty of this framework resides in its
ability to incorporate all the components into an integrated approach, which has been
implemented in a web-based architecture knowledge management tool called PAKME
(Process-based Architecture Knowledge Management Environment). This report describes
various aspects of PAKME and explains how PAKME has been applied in the context of

 5

evaluating architectures for mission systems in the Defence environment. The implementation
of PAKME is intended to provide a practical solution to knowledge management issues that
characterise the architecture process and are discussed in the following sections.

2. Knowledge Management Problems in Architecture Process

One of the problems in software architecting process is the lack of access to knowledge
underpinning the design decisions and process [6, 10]. This type of knowledge involves
things like the impact of certain middleware choices on communication mechanisms, why an
API is used instead of a wrapper, and who to contact to discuss the performance issues. Much
of this knowledge is episodic and is usually not documented [2]. The absence of a disciplined
approach to managing architecture knowledge has many downstream consequences which
include:

• The evolution of the system becomes complex and cumbersome, resulting in
violation of the fundamental design decisions

• Inability to identify design errors
• Inadequate clarification of arguments and information sharing about the design

artefacts and process.
All of these factors cause a loss of substantial knowledge generated during the architecture
process, thus depriving organisations of a valuable resource. Further, loss of key personnel
may mean loss of knowledge [2, 16, 17].
The architecture research community has developed several methods (such as ATAM [4],
PASA [18]) to support a disciplined approach to architectural practices. Some of these
methods emphasise the need for knowledge management. However, there is no approach that
explicitly states what type of knowledge needs to be managed and how, when, where, or by
whom to support architecture activities. Also, none of the current approaches provides any
conceptual framework to design, develop and maintain a repository of architecture
knowledge. To address these issues, we have developed a framework for managing software
architecture knowledge. This framework incorporates concepts from knowledge management
[19, 20], experience factories [21, 22], and pattern-mining [14, 23] paradigms to provide an
integrated support environment. The framework requires a knowledge repository, which is
logically divided into two types of architecture knowledge: generic architecture knowledge
(such as general scenarios, patterns, quality attributes, design options and others), and project
specific architecture knowledge (such as concrete scenarios, contextualised patterns, quality
factors, architectural decisions and others). The generic knowledge is accumulated by
capturing architecture knowledge using the techniques included in our framework for
capturing and using architecture design knowledge [15].

3. Knowledge Management Tool Support

PAKME is a web-based architecture knowledge management tool that is aimed at providing
knowledge management support for the software architecture process. It has been built on top
of an open source groupware platform, Hipergate [24]. This platform provides various
collaborative features including contact management, project management, online
collaboration tools and others, which can be exploited to build a groupware support

 6

mechanism, which incorporate architecture knowledge management features, for
geographically distributed stakeholders involved in the software architecture process.
An appropriate conceptual data model is a prerequisite for developing an integrated support
environment to assist in the improvement of a certain software development process [25] such
as software architecting.

Figure 1: A partial data model characterising archi tectural artefacts captured in the
software architecture knowledge base

Like the modelers of measurement data [26], we also believe that a data model is one of the
earliest artefacts needed for the development of an automated system for storing and
accessing the data that underpin the architecture design knowledge. Additionally, the data
model needs to be customisable in order to meet the needs of different domains and
organisations for characterising architecture knowledge [6]. Figure 1 presents a partial
conceptual data model that identifies the main architectural constructs and their relationships.
This data model has been constructed during domain modeling aimed at characterizing
knowledge used or generated during software architecture process. The process of domain
modeling and an extended version of this data can be found in [6].
The knowledge repository of PAKME is logically divided into organisational knowledge
(generic), and project-specific knowledge (concrete). The generic architecture knowledge is
accumulated by using the knowledge capture techniques described [27, 28]. Project-based
architecture knowledge consists of the artifacts either instantiated from the generic
knowledge or newly created during different activities of the software architecture process.
Access to a repository of generic architecture knowledge enables designers to use the
accumulated “wisdom” from different projects when devising or analysing architectural
decisions for projects in the same or similar domains. For example, instantiating abstract
scenarios into concrete ones, contextualizing design decisions and others. The project specific
part of the data model also has other entities to capture and consolidate architecture

 7

knowledge and rationale that is specific to a particular project. For example, design history,
findings of architecture analysis, architectural views of interest to each type of stakeholders
and others. A project specific architecture knowledge repository is populated with
architecture knowledge drawn from the organisational repository, standard work products of
the design process, logs of the deliberations and histories of documentation to build
organization’s architecture design memory [29].

Figure 2: Component view of PAKME’ architecture

We have also made certain modifications to the presentation and business logic tiers of
Hipergate in order to add the features required to capture, retrieve and manage architecture
design knowledge. Currently PAKME consists of four components as shown in Figure 2.

• User Interface – The only way to interact with PAKME is through a user interface
that is integrated into Hipergate. It has been implemented using Java Server Pages
(JSP) and HTML.

• Knowledge management – This component provides common services to store,
retrieve, and update artefacts that make up architecture knowledge. This component
also provides services to instantiate generic architectural artefacts into project-
specific artefacts. For example, creating concrete scenarios to characterise quality
attributes for a project based on general scenarios stored in the knowledge-base.

• Search – This component helps users search the desired artefacts. There are three
types of search functions: keyword-based search, advanced search, and navigation-
based search. The keyword-based search facility explores the repository for a desired
artefact utilising key words that are attached as meta-data to each artefact. The
advanced search function is based on a combination of logical operators. The
navigational search is provided by presenting the retrieved artefacts as hyperlinks,
which can be traversed for further details.

• Reporting – This component provides the services for representing architectural
knowledge to explicate the relationships that exist between different architectural

 8

artefacts or to show their positive or negative effects on each other. The reporting
component also supports architecture evaluation by helping stakeholders develop
utility trees to specify quality attributes and presenting the findings of architecture
analysis as a result tree.

• Data Management – This component provides all the services to store, maintain, and
retrieve data from a persistent data source, which is implemented with PostgreSQL
8.0. The data management logic uses Postgres’s scripting language. The repository
has been designed based on a data model described in [6] and partially presented in
Figure 1.

4. Managing Architecture Knowledge with PAKME

Most of the approaches to managing knowledge can broadly be categorized into codification
and personalization [30]. Codification concentrates on identifying, eliciting and storing
knowledge as information in repositories, which are expected to support high-quality,
reliable, and speedy reuse of knowledge. Personalization resorts to fostering interaction
among knowledge workers for explicating and sharing knowledge. Though, this paper focuses
on those features of PAKME that support codification, this tool also supports personalization
as it not only provides access to architectural knowledge but also identifies the source of
knowledge. That means it can also support a hybrid strategy to managing knowledge [31].
Here we briefly discuss the four main services of PAKME for managing architecture
knowledge to support software architecture process:

• Knowledge acquisition service provides various forms and editing tools to enter new
generic or project specific knowledge into the repository. The knowledge capture
forms are based on various templates that we have designed to help maintain
consistency during knowledge elicitation and structuring processes.

• Knowledge maintenance service provides different functions to modify, delete and
instantiate the artifacts stored in the knowledge repository. Moreover, this service
also implements the constraints on the modifications of different artifacts based on
the requirements of a particular domain.

• Knowledge retrieval service helps a user to locate and retrieve desired artifacts along
with the information about the artifacts associated with them. PAKME provides three
types of search mechanisms. A basics search can be performed within a single artifact
based on the values of its attributes or keywords. An advanced search string is built
using a combination of logical operators within a single or multiple artifacts.
Navigational search is supported by presenting the retrieved artifacts and their
relationships with other artifacts as hyperlinks.

• Knowledge presentation service helps presents knowledge to in a structured manner
at a suitable abstraction level by using templates (such as provided in [32]) and
representation mechanisms like utility and results trees described in [33].

These services not only satisfy the requirements identified by us to provide knowledge
management support for methods like [34, 35], but also support many of the use cases
proposed in [13] such as add a decision, retrieve a design decision, get a rationale, clone
architecture knowledge, attach relevant documents to artifacts, and study the chronology of
design decisions.

 9

4.1. Capturing and presenting knowledge

There are usually two main strategies to elicit and codify knowledge:

1. Appoint a knowledge engineer to elicit and codify knowledge from individuals or
teams [2, 36];

2. Provide a tool to encode the knowledge into the system as part of the knowledge
creation process.

The latter is called contextualised knowledge acquisition [37]; each of this strategy has its
strengths and weaknesses. To take the advantage of strengths of both strategies, PAKME
helps elicit and codify architecture knowledge using either of these strategies. We have
been using PAKME by embedding it into knowledge creation processes. Its repository
has been populated by capturing knowledge from several J2EE [38] patterns and
architecture patterns [39], and case studies described in [4, 33] or design primitives [40].

Figure 3: General scenarios captured by PAKME’s rep ository

As we mentioned, PAKME provides several kinds of forms based on different templates to
help users elicit and structure knowledge before storing it into the repository. Templates are
aimed at keeping the process consistent across users [35]. Figure 4 shows a form for
capturing a general scenario, which can be elicited from a stakeholder or extracted from a
pattern. Each scenario can have several attributes attached to it including source documents,
revision history, and a set of keywords. PAKME’s repository contains hundreds of general
scenarios (Figure 3 shows some of them).

 10

Figure 4: The interface to capture a general scenario

Figure 5 shows a template for capturing and presenting patterns irrespective of the level of
granularity (i.e., architecture, design, or framework-based). A pattern may be composed of
other patterns (i.e., architectural pattern containing design patterns) and each pattern may
have several tactics attached to it. To support the reusability at the design decision level,
PAKME’s repository contains design options, which are design decisions that can be
considered and/or evaluated to satisfy one or more functional or non-functional requirements
during architecture design. For example, Java RMI or publish-scribe design options can be
used for event notification purposes. Each design option is composed of one of more
architectural and/or design patterns and each of them composed of one or more tactics. For
example, publish-scribe design option applies publish-on-demand design pattern.

Figure 5: Template to capture and present patterns

 11

PAKME captures design options as contextualized cases from literature or previous

projects. A design option case consists of problem and solution statements, patterns and
tactics used, rationale, and related design options. Rationale for each design option is
captured in a separate template, which is designed based on practitioners’ opinion about
rationale reported in [41] and templates proposed in [9, 42]. Figure 6 shows a partial
description of a design option. By capturing design options as cases, PAKME enables
architects to follow a case-based decision approach and supports human-intensive case-based
reasoning [43].

Figure 6: A partial view of a design option case

Recently, there has been an increased emphasis on describing software architecture as a set
of design decisions [10, 44]. Kruchten et al. have proposed a taxonomy of architectural
decisions, their properties, and relationships among them [13]. Figures 7 shows that PAKME
can capture many of the attributes and relationships of architecture design decision as
described in [13] and template proposed in [9]. In PAKME, architecture design decision can
be described at different levels of granularity as an architecture design decision is a selected
design option, which can be composed of architectural pattern, design pattern or design tactic.
Like a design option, each architecture design decision also captures rationale using a
template. This rationale describes the reasons underpinning the architecture design decision,
justification for it, tradeoffs made, and argumentation leading to the design decision. Hence,
PAKME captures rationale for design options as well as for architectural design decisions,
which are made by selecting one or more suitable design options from a set of
considered/assessed design options.

 12

Figure 7: An architecture decision captured in PAKM E

Moreover, traceability is also provided as each architectural design decision describes the
design options considered but rejected, concrete scenarios to be satisfied, and model of
architectural decision attached as design artifacts (Shown in Figure 7). Additionally, revisions
to architecture design decisions and reasons are logged for later review. Architecture design
decisions are time stamped and annotated with the decision maker’s details, which can be
used to seek further explanation for an architectural design decision. Hence, we believe that
PAKME supports the description of an architecture design decision in ways suggested in [9,
44] and the attributes and relationships proposed in [13]. Figure 8 shows that a user can
establish several types of relationships among architecture design decisions.

 13

Figure 8: Types of relationships that can be established

4.2. Supporting knowledge use/reuse

This section describes various ways in which PAKME facilitates architecture knowledge

use/reuse. Let us first consider how PAKME supports the reuse of design options in making
architecture decisions. Figure 9 shows that there is a four steps process of reusing design
options, which are captured as cases.

This process starts when a user has a new requirement that needs architectural support.
Such requirement would characterise a quality goal and would have been specified using
concrete scenario. In order to satisfy that requirement, an architect needs to make a new
architecture design decision. To address that requirement, the architect would then have two
options:

Search and retrieve a previous design option from the knowledge repository;
Create a new design option to solve the given problem. For a new design option, the

architect would also need to document the rationale.

Figure 9: Process model of reusing design options

 14

If the architect decides to search through the knowledge repository for cases of design

options, he/she can perform a search to retrieve a list of design options. Figure 10 shows that
a user can build a very complex search string based on various attributes. After reviewing the
retrieved list of design options, the architect can either reuse an existing design option in its
original form or modifies it according to the current context. Figure 11 shows that a retrieved
design option can be used/reused by attaching it to an architecture design decision. If a design
option is modified, it is considered a new design option but it is linked with the original
design option for traceability. This new design option can be chosen as an architecture design
decision through attachment.

Figure 10: PAKME’s interface for searching design o ption cases that can be used in
architecture design

To demonstrate the other ways of reusing architecture knowledge with PAKME, let us

consider that an architect needs to design a suitable architecture for a new application that
should satisfy certain non-functional requirements. The architect is likely to make
architectural decisions using a common process - understanding the problem, identifying
potential alternatives, and assessing their viability. There are a few ways PAKME can support
this process. The architect can search the repository for architectural artefacts that can be
reused. For example, he/she can use a particular quality attribute (e.g. performance) as a
keyword to retrieve general scenarios that characterise performance. The architect decides to
instantiate those general scenarios into concrete performance scenarios. These general
scenarios can also help the architect to identify the patterns that can be used to satisfy the
performance requirements. Moreover, those general scenarios can also lead the architect to
identify a reasoning model that should be used to analyse architectural decisions. In this
process, the architect can use different search features provided by PAKME.

 15

Figure 11: Attaching a retrieved design option to a n architecture design

The architect may decide to find out if similar problems have been solved in other projects.

He/she can browse through the existing projects for similar problems. Having found a similar
project, the architect can retrieve the architecture design decisions taken, design options
considered, rationale for choosing a particular design option, tradeoffs made, and findings of
architecture evaluation. Such information can help the architect to decide whether the
architecture decision can be reused or not and how much tailoring is required. Additionally,
project-specific knowledge can also help designers, developers and maintainers to better
understand the architectural decisions, their constraints and reasoning behind it. Availability
of the reasoning behind the design decisions helps architects to explain architectural choices
and how they satisfy business goals [9]. Such knowledge is also valuable during
implementation and maintenance stages.

4.3. Support for design and analysis methods

In order to understand how PAKME can support a particular method of architecture design

and/or analysis. Let us consider PAKME’s use in the context of a generic model of
architecture design recently proposed by Hofmeister et al. [34]. This model has three main
activities: architectural analysis, architectural synthesis, and architectural evaluation. We
believe that PAKME can be helpful in all three activities of this generic design model. For
example, architectural analysis is aimed at eliciting architecturally significant requirements
(ASRs), which are usually characterised by concrete scenarios. PAKME provides several
hundreds of general scenarios (as shown in Figure 3), which can be concretised to specify
quality attributes for a given system.

Architectural synthesis intends to identify candidate architectural solutions that address
ASRs elicited in the architectural analysis activity. PAKME provides a repository of generic
design options, and architectural and design patterns that can be examined and assessed by an
architect to compose an architectural decisions by tailoring existing design options, or

 16

selecting suitable styles, patterns, or tactics for building new design options. Architectural
evaluation attempts to ensure that the architectural decisions used are the right ones. PAKME
can support architecture evaluation in several ways. For example, if a method like ATAM [4]
is used for evaluating software architecture, PAKME provides different features to supports
several activities (such as generating utility tree, identifying suitable reasoning framework,
recording evaluation findings, and building results tree to visualize risks and risk themes) of
this method. During software architecture evaluation, architecture knowledge captured by
PAKME helps assess the suitability of certain patterns in the proposed architecture by
matching the required concrete scenarios with the general scenarios extracted from the
patterns used in the architecture as described in [15]. Moreover, PAKEM helps evaluation
team to capture findings from analysing architecture decisions and justification for those
finding. Figure 12 shows one finding from evaluating one of the architecture design decision.
It shows the concrete scenario, proposed architecture decision, design option used, ranking of
the decision relative to other proposed decisions, and any associated documents. Apart from
temple-based presentation of findings, PAKME also generates PDF-based reports of findings.

Figure 12: Evaluation findings captured in PAMKE

PAKME also provides template for capturing rationale underpinning decisions as required
by the three main activities of the generic model [34]. Moreover, provision of design,
analysis, and realization knowledge is considered a critical input to the design process
proposed in [34]. PAKME provides several types of design and analysis knowledge such as
general scenarios, generic design decision, styles, patterns, tactics, and analytical
frameworks.

Apart from supporting well-known methods and approaches incorporated into the generic
model of architecture design as discussed in the previous section, PAKME’s provides
architectural knowledge management support to several of the ten techniques proposed in
[35] for the SEI’s methods for architecture analysis and design. For example, PAKME
provides several templates to capture information during architecture analysis. Provision of
suitable templates is important for making a method consistent across evaluators. Templates
also help in consistently gathering and documenting information that is useful for the
stakeholders [35]. The use of quality attribute scenarios is one of the core techniques for
SEI’s methods to characterize stakeholders’ concerns. “General scenarios” are used to aid in

 17

the elicitation of “concrete scenarios” using a six part framework as described in following
paragraph.

PAKME provides a repository of domain-specific general scenarios (Shown in Figure 3
and 15) that are used to steer the process of developing concrete scenarios; PAKME also
provides a template to capture the concrete scenarios. This template is based on six parts
framework proposed in [33] but it only utilizes four parts (i.e., stimulus, source of stimulus,
context, and response). Moreover, PAKME also helps stakeholders to structure and prioritise
concrete scenarios using techniques like utility tree as shown in Figure 17. Explicit elicitation
of architecture documentation and rationale in standardized views is another important
technique to support architecture analysis and design [35]. PAKME supports the elicitation
and capture of rationale for design decision by providing a template build upon the elements
of design rationale reported in [9, 41]. Additionally, templates have been implemented to
describe architecture decision at various levels of abstractions and each design decision may
be composed of architectural or design patterns and tactics, which are represented using
templates proposed in [4, 6]. We have already discussed how PAKME can support different
activities of architecture evaluation using SEI’s architecture evaluation ATAM in the context
of the generic model of architecture design.

5. Trialing PAKME

To demonstrate the use of PAKME for capturing and managing architecture design
knowledge and rationale for improving the software architecture process, this section reports
on an industrial trial of PAKME in the military mission system domain. This trial is a part of
a research and development collaborative project being carried out by the National ICT
Australia and the Defence Science and Technology Organisation (DSTO), Australia. This
collaborative project is aimed at exploiting the architecture evaluation technologies
developed by NICTA for improving DSTO’s capabilities in evaluating architectural risk
during system acquisition. The case study reported here was undertaken to tailor and deploy
PAKME in one of the divisions of DSTO for codifying and managing process and domain
knowledge of evaluating software architecture.

5.1. Organisational context

DSTO is a research and development organisation, which provides scientific and technical
advice on the acquisition of materiel to the Australian Defence Organisation (ADO). One of
the key responsibilities of DSTO is to evaluate Request for Proposal (RFP) responses from
tenderers to identify technical and project risks of each proposal. The Airborne Mission
Systems (AMS) division of DSTO is responsible for evaluating software architectures for
aircrafts acquisition projects. AMS is required to understand and organise large amount of
architecture design knowledge for a mission system’s architecture to support the evaluation
process. Currently there is a lack of a rigorous process for evaluating architectures. The
architectural evaluation mainly relies on the domain knowledge of local experts. As the
modern mission systems are increasingly becoming more reliant on software, evaluating
proposed architectural solutions has become much more important as the software intensive
projects are historically considered the most risk prone in the Defence domain [45]. Hence,
there has been growing recognition of the importance of systemising architecture evaluation

 18

architecture evaluation processes within Defence.
Recently, AMS’s technical leadership has become increasingly interested in building its

capabilities in systematically evaluating system and software architectures and managing
architecture knowledge for aircraft mission systems. Hence, AMS has decided to improve its
architectural evaluation practices by codifying and reusing an architecture evaluation process,
architecture design knowledge, and contextual knowledge. This is expected to be achieved
through the use of a tool like PAKME that can help AMS to capture and manage architecture
knowledge.

5.2. Trial’s objectives

This trial was a part of an ongoing collaboration between NICTA and DSTO aimed at
improving AMS’s architecture evaluation capabilities by capturing and managing
organisational knowledge concerning system architecture evaluation and processes. It is
expected that the use of an architecture knowledge management tool will systemise the
process and help organise the architecture design knowledge and contextual information
required or generated during a software architecture evaluation process.

This objective is expected to be achieved by embedding PAKME in the software
architecture evaluation process. A simplified illustration of how PAKME has been embedded
in the AMS’s architecture evaluation framework is shown in Figure 13. Once integrated in
the evaluation process as shown in Figure 13, PAKME supports several architecture
evaluation tasks. For example, it helps build quality models using scenarios (abstracts and
concrete), reason about the suitability of various design options proposed by contractors,
capture the rationale for ranking, approving, or rejecting various design proposals, and
centralise architecture design knowledge.

Figure 13: AMS’s software architecture evaluation p rocess supported PAKME

Although knowledge management initiative requires considerable time and resources, it is
anticipated there will be considerable time and cost savings in the long-term [46]. DSTO and
NICTA have also identified several benefits from managing architecture knowledge during
architecture evaluation for Defence acquisition. Some of these benefits are:

• Capture rationale for architecture decisions

 19

• Help build architectural capabilities
• Improve architectural reusability
• Provide an audit trail for TRA findings
• Reduce demands on subject matter experts
• Encourage best architectural practices
• Improve efficiency of architectural processes
• Accelerate the training process of new employees within the organisation

5.3. Tailoring PAKME

PAKME provides a generic solution to address the architecture knowledge management
issues during the software architecture process. It is designed to help users access or capture
architecture knowledge required or generated during software architecture design,
documentation, or evaluation activities. Hence, it needs to be customised depending on the
organisational requirements and role in the software architecture process. For example, AMS
does not design or document architectures. Rather, it evaluates architectures proposed by
contractors. Thus, it needed features of the tool that support software architecture evaluation
tasks.

Therefore, there was a need to customise PAKME for supporting the AMS’s architecture
evaluation process. Initially analysis of the AMS’s process also revealed the need for extra
features and certain modifications to fulfill the requirements of the Defence environment. In
order to identify the requirements for tailoring PAKME, a workshop was held. During this
workshop, staff organisations collaboratively identified the initial set of requirements, which
needs to be satisfied by PAKME to be applicable to AMS’s architecture evaluaiton process.
In addition to the requirements gathered during the worksop, AMS also generated additional
set of requirements. All the requirements were categorised as high and low priority based
their importance to the AMS’s process needs. The high priority requirements were
implemented in the current version of PAKME. Some of the high prirotiy requirements
implemented for tailoring PAKME are:

• Classification of project data according to the Defence classification scheme
• Mechanism for recording compliance of architecture decisions with respect to

requirements
• File-based report of findings
• Store and evaluate different tenderer’s proposals for the same set of scenarios within

the one project
Some of the lower priority requirements, which are being implemented include:

• Different levels of access to project data based on the Defence security scheme
• Ability to import/export data from the tool based on a classification code
• Risk management scheme for ranking design decisions
• Integration with requirements management and architecture modelling tools.

Both organisations have been equally participating in tailoring and enhancing PAKME for
AMS’s needs. NICTA’s researchers and software engineers have been refining and
implementing requirements. Whilst, AMS’s staff members are testing the need features and
reporting the bugs and errors back to the NICTA’s team. In tis process, AMS has also

 20

identified sevearl new requirements, which are expected to be included in the next phase of
enhancing PAKME.

5.4. Project Description

In order to assess the use of PAKME for supporting the AMS’s architecture evaluation
process, a study was carried out within the AMS environment. This study involved using the
PAKME for capturing and managing architecture knowledge to support architecture
evaluation of an aircraft system. This study has been conducted as a post-mortem analysis of
the architecture evaluation conducted without using PAKME. This study was aimed at
investigating how the introduction of PAKME could help capture and manage architectural
knowledge and whether or not the evaluation process is improved by using PAKME. Both
organisations realised the need and importance of designing and conducting such a case study
before deploying PAKME in the AMS’s future evaluation projects.

A number of quality factors were chosen as measures for the mission system architecture
evaluation process. The evaluation process involved DSTO analysts comparing alternative
design decisions from multiple hypothetical tenders, to simulate the type of evaluation
completed during the real evaluation of an aircraft acquisition project. The evaluation was
performed by measuring each scenario against the quality attributes as well as assigning a
measure of risk to the design solution. Some of the key architectural requirements of the
system under evaluation included:

• An open system architecture
• Object-oriented software design
• POSIX-compliant layering
• Open standards-compliant
• Secure, open, and scaleable interfaces
• Hardware and software portability
• Support hardware and software failure detection, isolation, and recording
• Localisation and confinement of the effects of design changes and failures
• Provisions for adding more processing capability
• Data assurance and protection

5.5. Use of PAKME’s knowledge base

PAKME’s generic knoweldge base repository has been populated by generic
architecturally signficant artefacts such as general scenarios, quality attributes, design
options, design patterns, tactics, and analysis models. Most of the generic architectural
knowledge comes with PAKME is more suitable to enterprise systems as such knoweldge has
been captured based on the NICTA’s experience in that domain. For example, Figure 14
shows a general scenario, which has been extracted from the data access object pattern using
the pattern-mining process.

 21

Figure 14: a general scenario distilled from a patt ern

To populate the PAKME’s knowledge base with the AMS’s domain knowledge, AMS and
NICTA held a workshop in April 2006 involving NICTA’s researchers and AMS’s domain
experts. During this workshop, participants constructed a preliminary domain specific quality
model for software architecture evaluation of Airborne Mission Systems (AMS). This quality
model is based on ISO 9126 [47], SEI defined attributes, and AMS domain experience. The
quality model involves identifying key quality attributes to enable evaluators to assess the
potential risks of architectural designs against the requirements.

Figure 15: General scenarios captured by PAKME’s re pository

 22

The qulaity model consists of into six quality attributes:
1. Performance
2. Reliability
3. Usability
4. Maintainability
5. Functionality
6. Portability

The quality model has been created in PAKME’s repository for use by any AMS staff.
PAKME’s repository also has been populated with general scenarios for characterising each
of the quality attribute included in the quality model. These scenarios have been developed
and structured using a scenario development template provided by PAKME. This template
has been designed based on the scenario development framework proposed by Bass et al in
[33]. The general scenarios stored in PAKME are used to generate concrete scenarios for
different evaluation projects of AMS. Figure 15 shows the general scenarios captured in
PAKME to characterise a quality model for AMs.

Figure 16: A user-defined general scenario

Figure 16 shows a general scenario for a generic mission system architecture used in this
case study. PAKME’s repository has also been populated with Defence specific general
design options. These design options have been captured from the architecture solutions
proposed for the system reviewed for this case study, AMS’s domain experts, and case
studies on avionics systems reported in sources like [33, 48]. Each design option has been
captured as a design decision case as shown in Figure 4. These generic design options are
used as input to design decision making or evaluation processes. The data captured in
PAKME for this study have been sanitised of the sensitive and classified information about
the aircraft system.

5.6. Use of PAKME’s project base

PAKME’s project base knowledge repository is used for capturing and managing project
specific architecture knowledge such as quality factors, concrete scenarios, architecture
decisions, rationale, and findings of evaluating architecture decisions. For this study, AMS’s
team create a new project in PAKME and populated its project-base with the project specific
quality model to specify quality factors with concrete scenarios based on the general
scenarios of the AMS’s general quality model. Figure 17 shows a utility tree of the concrete

 23

concrete scenarios that characterise quality factors growth, security and adaptability for this
project.

Each architecture decision proposed by different contractors for satisfying required
scenarios of the project was identified and entered into PAKME. Each architecture decision
has been linked to the concrete scenario that is expected to be satisfied by that architecture
decision. An example of a design decision affecting architectural quality is the use of a
layered architecture including an isolation layer to reduce the impact of change, and thus
improving flexibility, technology refreshment and growth capability. This architecture design
decision has been stored in PAKME along the rationale. Each architecture decision of this
project has also been captured as a design option in the generic knowledge base of PAKME.
AMS’s team has also captured several design options based on their domain knowledge.
During architecture evaluation, each architecture design decision has been assessed with
respective to the design options, which are expected to satisfy the same concrete scenario.

Figure 17: A utility tree for the case study

Having populated PAKME with the project specific architecture knowledge, AMS’s team
evaluated the architecture design decisions proposed for an aircraft system by several
contractors. For this evaluation, AMS’s team used PAKME for accessing the architecture
knowledge required for the evaluation and capturing the findings and rationale for evaluation
decisions. AMS’s team used their existing process of evaluating architecture with one
exception of introducing PAKME in the process as shown in Figure 13.

The architecture evaluation process involved determining whether or not the concrete
scenario is satisfied by the proposed architecture decision. If there were more than one
proposed architecture decision for a scenario, architecture decisions were assigned a ranking

 24

based on the evaluator’s opinion about each architecture decision’s capability of achieving a
certain level of required quality factor. Evaluators captured their findings in PAKME’s
repository. Each finding describes whether or not a certain architecture decision complied
with the relevant requirement, its ranking, and rationale /justification underpinning the
finding. Based on the evaluation findings, architecture decisions were categorised as risk and
non-risks. Risks were further categorised under various risk themes.

Figure 18 shows a report of the findings of the evaluation carried out using PAKME. This
report shows each concrete scenario and its associated architecture decision and findings.
Apart from the browser based reporting, PAKME also generates PDF reports for evaluation
teams and management.

Figure 18: Reports of the evaluation case study

5.7. Challenges and observations

Customising PAKME for AMS proved to be a challenging task. NICTA’s team did not
have security clearance to access the architectures being evaluated by AMS. Nor did they
have domain expertise. However, they had to gain certain level of domain understanding in
order to help AMS generate domain-specific scenarios, identify and capture design options
and patterns from architectural descriptions of the systems being evaluated, and determine
requirements for customising PAKME. Quality attribute characterisation workshop held in
April 2006 helped NICTA team to understand AMS’s domain and identify initial set of
requirements. During these workshops AMS’s staff learned how to generate and structure
general and concrete scenarios using templates provided by PAKME.

PAKME was not designed to classify data for security reasons. Nor did it handle the
requirement of different levels of access to project data. For the first requirement, we had to
make significant changes in PAKME’s data structure. The other was handled by exploiting

 25

Hipergate’s domain and work area concepts for implementing role-based security model [24].
Another unique requirement was capturing multiple architecture solutions proposed for a
single scenario by different contractors. Each combination of scenario and proposed solution
needed to have its own findings attached. Again this requirement has been satisfied by
modifying PAKME’s repository structure and interface.

AMS’s experience of using PAKME has been quite encouraging. During a simulated
architecture evaluation project, AMS’s evaluators used PAKME as a communication and
knowledge sharing mechanism. General scenarios and design options captured in the
knowledge base helped them in generating concrete scenarios and understanding proposed
solutions. Having a codified quality model provided all evaluators with the same
understanding of the quality requirements. Moreover, evaluators found PAKME’s templates
to capture justification for evaluation decision are very useful. Overall, evaluators and subject
matter experts found that the use of an evaluation framework and knowledge management
tool brought added rigour to the evaluation process. It is anticipated that the management of
evaluation decisions and their justification using PAKME would minimize the need for
contacting the evaluator of past projects for explanation.

The modified version of PAKME provides AMS with an effective and efficient
mechanism to organise and understand large amount of architecture knowledge. During this
trial, AMSs’ team have identified several requirements to further enhance PAKME, some of
them are mentioned in section 6, however, the current version of PAKME is suitable for
capturing and managing several types of architectural knowledge and artefacts of an airborne
mission system for evaluating architecture.

AMS is more convinced that an architecture knowledge management tool like PAKME
will provide them with several benefits outlined in section 5.2 and help them
institutionalising a disciplined evaluation process. In light of new mandated role for DSTO in
Defence acquisitions, PAKME will provide AMS with a centralized infrastructure for storing
and revisiting evaluation decision quickly and codifying the software architecture evaluation
process and practices.

6. Conclusion and Future Work

This research is aimed at improving the effectiveness of architecture-based software
engineering through a knowledge management support mechanism. A framework for
capturing and using architecture knowledge and a tool, PAKME, to support that framework
have been developed. This paper discusses various architectural aspects and features provided
by PAKME. This paper also reports on the logistics and our experiences of tailoring and
trialling PAKME for evaluating architecture of an aircraft system. During this trial, PAKME
and the conceptual framework underpinning it have proven to be adaptable and useful to
complex domains like Defence. This has been demonstrated by successfully tailoring and
trialling PKAME in a Defence acquisition evaluation setting. Based on the feedback from
AMS’s evaluators, NICTA is more convinced that its architecture knowledge management
framework and tool have the potential to help organisations improve their software
architecture processes and build architectural capabilities.

NICTA and AMS have planned further trials of PAKME in future architecture evaluation
projects. Based on the current trial, following are some of the planned enhancements to
PAKME:

 26

Implementing metrics to measure the usage of the different artefacts of architecture
knowledge. Such a feature will provide a feedback loop to improve the type of knowledge
captured and features provided.

Improving the speed and accuracy of knowledge retrieval by using the task-based retrieval
techniques.

Integrating PAKME with a requirements management tool used in DSTO domain. Such
integration will provide an effective mechanism to maintain traceability from requirements to
scenarios, to architecture design decisions along with the contextual knowledge underpinning
design decisions. Moreover, it will also minimize the duplication of data entry. A similar
integration with an architecture modelling/description tool has also been planed.

Acknowledgement – Several undergraduate students helped us build the PAKME tool. National

ICT Australia is funded through the Australian Government's Backing Australia's Ability initiative, in
part through the Australian Research Council. The authors would also like to thank the AMS branch
members who provided their domain knowledge and expertise to assist in generating the framework
and quality attributes used to tailor the PAKME tool to the military mission system domain.

7. References

[1]. P.N. Robillard, The role of knowledge in software development, Communication of the ACM, 1999. 42(1): pp.
87-92.
[2]. L.G. Terveen, P.G. Selfridge, and M.D. Long, Living Design Memory: Framework, Implementation, Lessons
Learned, Human-Computer Interaction, 1995. 10(1): pp. 1-37.
[3]. C. Hofmeister, P. Kruchten, R.L. Nord, H. Obbink, A. Ran, and P. America, A General Model of Software
Architecture Design Derived from Five Industrial Approaches, Journal of Systems and Software, Article in the
press, 2006.
[4]. P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures: Methods and Case Studies. 2002:
Addison-Wesley.
[5]. L. Bass and R. Kazman, Architecture-Based Development, Tech Report CMU/SEI-99-TR-007, Software
Engineering Institute (SEI), Carnegie Mellon University, Pittsburgh, USA, 1999.
[6]. M. Ali-Babar, I. Gorton, and B. Kitchenham, A Framework for Supporting Architecture Knowledge and
Rationale Management, in Rationale Management in Software Engineering, A.H. Dutoit, et al., Editors. 2006,
Springer. pp. 237-254.
[7]. A.H. Dutoit and B. Paech, Rationale Management in Software Engineering, in Handbook of Software
Engineering and Knowledge Engineering, S. Change, Editor. 2001, World Scientific Publishing, Singapore. pp. 1-
29.
[8]. T. Gruber and D. Russell, Design Knowledge and Design Rationale: A Framework for Representation,
Capture, and Use, Tech Report KSL 90-45, Knowledge Laboratory, Stanford University, Standford, United States,
1991.
[9]. J. Tyree and A. Akerman, Architecture Decisions: Demystifying Architecture, IEEE Software, 2005. 22(2): pp.
19-27.
[10]. J. Bosch, Software Architecture: The Next Step, European Workshop on Software Architecture, 2004.
[11]. F. Pena-Mora and S. Vadhavkar, Augmenting design patterns with design rationale, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 1997. 11: pp. 93-108.
[12]. A. Jansen and J. Bosch, Software Architecture as a Set of Architectural Design Decisions, Proceedings of the
5th Working IEEE/IFIP Conference on Software Architecture, 2005.
[13]. P. Kruchten, P. Lago, and H.V. Vliet, Building up and Reasoning about Architecture Knowledge,
Proccedings of the 2nd International Conference on Quality of Software Architectures, 2006.
[14]. M. Ali-Babar, B. Kitchenham, P. Maheshwari, and R. Jeffery, Mining Patterns for Improving Architecting
Activities - A Research Program and Preliminary Assessment, Proceedings of the 9th International conference on
Empirical Assessment in Software Engineering, 2005.

 27

[15]. M. Ali-Babar, I. Gorton, and R. Jeffery, Capturing and Using Software Architecture Knowledge for
Architecture-Based Software Development, Proceedings of the 5th International Conference on Quality Software,
2005.
[16]. T.R. Gruber and D.M. Russell, Design Knowledge and Design Rationale: A Framework for Representing,
Capture, and Use, Tech Report KSL 90-45, Knowledge Systems Laboratory, Standford University, California,
USA, 1991.
[17]. A.P.J. Jarczyk, P. Loffler, and F.M.S. III, Design Rationale for Software Engineering: A Survey, Proc. 25th
Hawaii Int'l. Conf. on System Sciences, 1992.
[18]. L.G. Williams and C.U. Smith, PASA: An Architectural Approach to Fixing Software Performance
Problems, Proceedings of the International Conference of the Computer Measurement Group, 2002.
[19]. G.J.B. Probst. Practical Knowledge Management: A Model That Works. Last accessed on 14th March, 2005,
Available from: http://know.unige.ch/publications/Prismartikel.PDF.
[20]. I. Rus and M. Lindvall, Knowledge Management in Software Engineering, IEEE Software, 2002. 19(3): pp.
26-38.
[21]. V.R. Basili and G. Caldiera, Improving Software Quality Reusing Knowledge and Experience, Sloan
Management Review, 1995. 37(1): pp. 55-64.
[22]. V.R. Basili, G. Caldiera, and H.D. Rombach, The Experience Factory, in Encyclopedia of Software
Engineering, J.J. Marciniak, Editor. 2001, John Wiley & Sons.
[23]. L. Zhu, M. Ali-Babar, and R. Jeffery, Mining Patterns to Support Software Architecture Evaluation,
Proceedings of the 4th Working IEEE/IFIP Conference on Software Architecture, 2004.
[24]. Hipergate. An open source CRM and Groupware system. Last accessed on 16th March, 2006, Available
from: http://www.hipergate.com.
[25]. R. Jeffery and V. Basili, Validating the Tame Resource Data Model, Proceedings of the10th International
Conference on Software Engineering, 1988.
[26]. B.A. Kitchenham, R.T. Hughes, and S.G. Linkman, Modeling software measurement data, Software
Engineering, IEEE Transactions on, 2001. 27(9): pp. 788-804.
[27]. M. Ali-Babar, B. Kitchenham, and P. Maheshwari, The Value of Architecturally Significant Information
Extracted from Patterns: A Controlled Experiment, Proceedings of the 17th Australian Software Engineering
Conference, 2006.
[28]. M. Ali-Babar, B. Kitchenham, and P. Maheshwari, Assessing the Value of Architectural Information
Extracted from Patterns for Architecting, Proceedings of the 10th International conference on Empirical
Assessment in Software Engineering, 2006.
[29]. G. Arango, E. Schoen, and R. Pettengill, A Process for Consolidating and Reusing Design Knowledge,
Proceedings of the 15th International Conference on Software Engineering, 1993.
[30]. M.T. Hansen, N. Nohria, and T. Tierney, What's Your Strategy For Managing Knowledge? Harvard Business
Review, 1999. March-April : pp. 106-116.
[31]. K.C. Desouza and J.R. Evaristo, Managing Knowledge in Distributed Projects, Communication of the ACM,
2004. 47(4): pp. 87-91.
[32]. M. Ali-Babar, I. Gorton, and R. Jeffery, Toward a Framework for Capturing and Using Architecture Design
Knowledge, Tech Report TR-0513, University of New South Wales, Australia, 2005.
[33]. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. 2 ed. 2003: Addison-Wesley.
[34]. C. Hofmeister, P. Kruchten, R.L. Nord, H. Obbink, A. Ran, and P. America, A General Model of Software
Architecture Design Derived from Five Industrial Approaches, the 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA 05), Pittsburgh, PA, USA, 2005.
[35]. R. Kazman, L. Bass, and M. Klein, The essential components of software architecture design and analysis,
Journal of Systems and Software, 2006. 79: pp. 1207-1216.
[36]. B. Skuce, Knowledge management in software design: a tool and a trial, Software Engineering Journal, Sept.
995: pp. 183-193.
[37]. S. Henninger, Tool Support for Experience-Based Software Development Methologies, Advances in
Computers, 2003. 59: pp. 29-82.
[38]. D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns: Best Practices and Design Strategies. 2nd ed. 2003: Sun
Microsystem Press.
[39]. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software Architecture:
A System of Patterns. 1996: John Wiley & Sons.
[40]. L. Bass, M. Klein, and F. Bachmann, Quality Attribute Design Primitives, Tech Report CMU/SEI-2000-TN-
017, SEI, Carnegie Mellon University, USA, 2000.

 28

[41]. A. Tang, M. Ali-Babar, I. Gorton, and J. Han, A Survey of Architecture Design Rationale, Journal of Systems
and Software, 2006. 79(12): pp. 1792-1804.
[42]. P. Clements, et al., Documenting Software Architectures: Views and Beyond. 2002: Addison-Wesley.
[43]. J.L. Kolodner, Improving Human Decision Making through Case-Based Decision Aiding, AI Magazine,
1991. 12(2): pp. 52-68.
[44]. A. Jansen, J.v.d. Ven, P. Avgeriou, and D. Hammer, Tool Support for Architectural Decisions, Proceedings
of the 6th working IEEE/IFIP Conference on Software Architecture, Mumbai, India, 2007.
[45]. Defence Electronic Systems Sector Stragic Plan, C. Department of Defence, Australia, Editor. Feb 2004. pp.
97.
[46]. M. Barbacci, Clements, P., Lattanze, A., Northrop, L., Wood, W., Using the Architecture Tradeoff Analysis
Method (ATAM) to Evaluate the Software Architecture for a Product Line of Avionics Systems: A Case Study,
Tech Report CMU/SEI-2003-TN-012, Carnegie Mellon Software Engineering Institute, July 2003.
[47]. A. Kamel, M. Chandra, and P.G. Sorenson, Building an Experience-Base for Product-line Software
Development Process, ACM, 2001.
[48]. M.R. Barbacci, P. Clements, A. Lattanze, L. Northrop, and W. Wood, Using the Architecture Tradeoff
Analysis Method (ATAM) to Evaluate the Software Architecture for a Product Line of Avionics Systems: A Case
Study, Tech Report CMU/SEI-2003-TN-012, SEI, Carnegie Mellon University, USA., 2003.

