
Universität Zürich
Institut für Informatik

Hierarchical Object Modeling with
ADORA

Martin Glinz

Requirements Engineering Research Group
University of Zurich
http://www.ifi.unizh.ch/~glinz

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 2

Overview of the talk

 Introduction
• Modeling software requirements
• Why UML is not the ultimate solution of the problem

 ADORA – A fresh look at object-oriented modeling of software
• Some basic problems and how ADORA solves them
• An overview of the language
• About visualizing ADORA models
• The ADORA tool
• Exploring new avenues: simulation and aspect-orientation

 Conclusions

 Demonstration of the ADORA tool prototype

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 3

A machine
(hw & sw)

Interfaces

[Buttons, displays, sensors...]

A machine
(hw & sw)

Introduction: modeling software requirements (1)

The world
The problem of
describing require-
ments:

❍ and the restrictions
(performance,
qualities, constraints)

The context ❍ Identify the context

❍ Describe the stimuli
(from the context)

❍ and the responses
(to the context)

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 4

Introduction: modeling software requirements (2)

Specifying requirements with models means
 Model the machine ↔ context interaction

basically a set of relations
+ state
[state: what the machine must know about the state of the world]

 Hence, add a model the machine’s view of the world

... yielding a specification of the functional requirements

 Finally, add a specification of the restrictions

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 5

UML does it all !??

 UML seems to satisfy all needs:
It comprises sub-languages for nearly every modeling paradigm

But:
❍ Serious problems with UML 1.x as a requirements modeling language

[Glinz (2000): Problems and Deficiencies of UML as a Requirements
Specification Language. IWSSD-10. San Diego]

❍ Serious problems with UML 1.x as an architecture modeling language
(not a topic of this talk)

❍ UML 2.0
• solves some problems of UML 1.x (e.g. architectural modeling)
• lets all the requirements modeling problems persist
• makes some problems worse (e.g. the abundance of features)

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 6

The ADORA approach

ADORA (Analysis and Description of Requirements and Architecture)

 is a new approach to object-oriented modeling of specifications

 on the basis of

• Modeling with abstract objects

• Hierarchical decomposition of models

• An integrated model with views

• An adaptable degree of formality

• Contextual visualization of models

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 7

Class modeling considered harmful (1)

 In every Operator Support component we need
• the list of pending events
• the event currently being handled
• the list of processed events

 In the Archive component we have
• a global event history

 All these items belong to the same class: Eventlist

Example: Imagine an information system that supports control and
dispatching of emergency operations (police, ambulance service,…)

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 8

Class modeling considered harmful (2)

In a class model we have to model

Bad: does not model
essential elements
of the problem

Unnatural: subclasses are
structurally identical

either
Eventlist

or
Eventlist

Pending
events

Processed
events

Global event
history

Current
event

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 9

Class modeling considered harmful (3)

 Class models do not work
• when more than one object of the same class has to be modeled
• when collaboration between objects have to be modeled

 Class models cannot be decomposed hierarchically
• What is the semantics of a class containing other classes?

• What happens when different objects of a class belong to different
parts of a system?

 Subclassing is a workaround, no solution

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 10

Abstract objects: how ADORA does it

Processed
events:
Eventlist

Global event
history:
Eventlist

Current
event:
Eventlist

Operator support... Archive...

Pending
events:
Eventlist

Object name
Object type

Singleton
object

Object set

Emergency operations support...

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 11

Hierarchical decomposition of models

Example: A distributed heating control system

BoilerControl

Panel

RoomTemp

ControlPanel

Keypad Button Display

What UML can do
What ADORA does instead

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 12

Decomposition in modeling languages

Looking back

 Structured Analysis had it

 Entity-Relationship-models never got it

 Object-oriented models inherited the problem from ER-models

 Containers (à la UML packages) do not suffice

Why do we need decomposition for specifications?

 Making large specifications manageable

 Distributing work

 Understanding large models

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 13

An integrated model with views

❍ UML is a collection of models (class diagrams, class descriptions,
object diagrams, sequence diagrams, collaboration diagrams, state
diagrams, activity diagrams, use case diagrams, use case
descriptions, component diagrams, packet diagrams,...)

❍ A nightmare if you want to achieve consistency, completeness,
traceability…

 ADORA avoids this problem by

…integrating all these aspects into a single, coherent model

...ensuring usability and readability by providing
• Views
• Hierarchical decomposition

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 14

The ADORA view concept

 The Base view: Objects and object sets
+ hierarchy
+ annotations

 Combined with zero or more of the following views
• Structural view: static relationships and relationship abstractions
• Behavioral view: dynamic behavior expressed with a statechart-

like state machine hierarchy
• Functional view: detailed definition of an object (attributes,

methods)
• User view: User-system interaction modeled with scenarios
• Context view: how a system is embedded in its environment

 Types and the type hierarchy are defined and visualized separately

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 15

Visualizing hierarchical models

HeatingControlSystem

RoomModule...MasterModule...

(1,n)

An abstract view of the Heating control system

HeatingControlSystem

RoomModule...MasterModule...

(1,n)

Zooming into MasterModule

MasterModule

OperateHeating

System...

Boiler

Control

Panel...

Boiler

Control...

Traditional visualization would yield (explosive zooming):

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 16

Successively zooming in:

Contextual visualization in ADORA

➃

➀

➁

➂

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 17

Combining the base view with other views

Structural view: relationships Behavioral view: states&transitions

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 18

The context view and the user view

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 19

Adaptable degree of formality

ADORA provides a consistent framework for specifying problems

object HeatingControlSystem...
purpose "Provide a comfortable control for the heating
 of a building with several rooms."
end HeatingControlSystem.

...informally:

Operator acknowledges event
Make this event the current one

pending

current

…semi-formally:

…or formally: behavior and functionality can be described formally

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 20

Contextual visualization

 Principal ideas

• Use fisheye views for visualization

• Visualize according to the decomposition structure

 Integrates local detail and global context in a single view

• eases orientation
• minimizes cognitive overhead for navigation in the model
• supports the inherent abstraction mechanisms in the object model

 Works on any given layout, adjusting it incrementally and preserving it
as far as possible

 User may re-arrange a layout without losing these rearrangements
when zooming

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 21

The Layout algorithm – principal idea

A… B…

C…

A

A… B…

C…

C…

B…
B…

C…

C…

B…

A

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 22

Line Routing

 Dynamic diagram generation requires dynamic line routing
 Existing algorithms

• don't route in real time (e.g. Lee's algorithm used in VLSI design)
• or don't preserve the given arrangement of nodes

 Concepts:
• Represent free space with maximum

 horizontal tiles instead of a uniform grid
 of cells

• Adapt Lee's algorithm to this data structure,
making it fast enough for real time routing

• Compute lines in two decoupled steps
• 1. Determine the tiles that the shortest path goes through
• 2. Calculate the actual line within these tiles

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 23

Calculating a line

Step 1: Calculate a shortest/
cheapest path from source
 to target

Step 2: Calculate the actual line,
e.g. as polyline or spline

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 24

The ADORA tool

 Initially a hand-made model editor implemented in Java
 2006 completely re-implemented as an Eclipse plug-in
 Supports drawing & navigating
 No code generation

 Both runtime and code easily available under an open-source license

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 25

Exploring new avenues

 Simulation of models that are neither formal nor complete

 Aspect-oriented modeling

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 26

Simulation of models in ADORA

 Motivation
• Evolutionary modeling requires early and frequent model validation
➬Reviewing becomes too expensive
➬Classic simulation techniques are not applicable, because models

are incomplete and semi-formal
 Concepts

• Develop a technique for simulating incomplete, semi-formal models
• Re-validate changed models by regression simulation
• Let the modeler interactively specify missing behavior or

functionality in a simulation run
• Let regression simulation nevertheless run automatically
• Use simulation traces for visualizing failed simulation runs and

localizing defects in the model

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 27

Aspect-oriented modeling

 Motivation
• Model crosscutting requirements separately and integrate (weave)

them automatically into the base model on demand
 Concepts

• Extend ADORA by so-called aspect containers that contain model
fragments describing crosscutting functionality and behavior

• Explicitly model join points (no obliviousness)
• Define formal model weaving semantics
• Let the ADORA tool generate weaved models on demand, using its

capabilities for generating and incrementally adapting diagrams

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 28

Aspect-oriented modeling – example

Aspect
container

Join
relation

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 29

Aspect-oriented modeling – example – 2

Weaving semantics for statecharts

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 30

State of work

Current state
 Definition of language finished
 Prototype ADORA tool is available

Problems
 Tool development very time-consuming
 Still lots of minor problems that impede usability
 Major unsolved problem: stability of generated layouts

Plans
 Solve the tool problems
 Gain experience from application in real projects
 Do we need it all? Towards a simpler modeling language
 Investigate further issues: process, how to get from goals to models, ...

Hierarchical Object Modeling with ADORA © 2006 by Martin Glinz 31

Conclusions

 There is life beyond UML.

 Hierarchical object modeling with an integrated model
• yields a powerful approach to object-oriented specification
• solves major problems plaguing UML and related approaches
• could make a real difference in practical application ... but that is

yet to be proved
• opens promising new research directions.

