
Page 1 of 24

Using i* in Requirements Projects: Some Experiences
and Lessons

Neil Maiden, Sara Jones, Cornelius Ncube and James Lockerbie

Centre for HCI Design
City University, London

Introduction
The i* approach has been available in research communities for more than 10 years, but it
has not been applied widely in industrial requirements projects. This is in spite of
undoubted strengths, which include a simple but formal and stable semantics, a graphical
modelling notation that is simple to use, models that are amenable to computational
analysis, and applicability in both agent-oriented and goal-oriented requirements
methods. Furthermore, i*’s capabilities to bridge the gap between organisational, socio-
technical and software systems, by modelling goal-based dependencies between
organisation, work role and software actors, makes it increasingly important in a world in
which we depend on computers in many aspects of our everyday lives. Based on these
strengths, we sought to integrate the i* approach into new requirements processes rolled
out as part of our transfer of requirements knowledge from research to practice.

This chapter reports three major industrial projects in which we have applied the i*
approach to specify complex socio-technical systems. It outlines the rationale for using i*
in these projects, how i* was integrated with other requirements modelling and
specification techniques, and what happened as a result of applying i*. The chapter ends
with ten lessons that we learned about using i* effectively in industrial projects, and the
benefits that can be gained from its effective use. We believe that these lessons have
broader implications for the uptake of requirements modelling techniques.

The remainder of the chapter is in 4 sections. As it assumes a basic knowledge of the i*
approach we do not describe the i* approach and types of model that are reported in the
chapter. Section 2 describes how we integrated i* into our broader RESCUE
requirements process. Section 3 describes 3 European air traffic management projects
that i* and RESCUE were applied to, the i* models that were produced, and the benefits
of these models to the requirements specifications produced in each project. Section 4
reports ten lessons learned that readers can apply to their own requirements processes and
projects. The chapter ends with a description of how these lessons have influenced our
own research agenda.

Page 2 of 24

i* in the RESCUE Process
The RESCUE process was developed in response to a request from Eurocontrol, the
organisation overseeing European air space, to deliver new and more effective processes
for discovering and specifying requirements for new air traffic management systems
(Maiden et al. 2003). Such systems are socio-technical systems that introduce new
technologies to support the redesign of human work – typically that of air traffic
controllers. As such RESCUE needed to acquire, describe, model and analyse
requirements on organisations, on work undertaken by individuals who fulfil roles in
these organisations, and software systems that will bring about changes in the work. This
need to model and specify socio-technical systems was the principal reason for selecting
i* to be an important component of RESCUE.

RESCUE supports a concurrent engineering process in which different modelling and
analysis processes take place in parallel. The concurrent processes are structured into 4
streams shown in Figure 1.

Figure 1. The RESCUE process structure – activity modeling ends after the synchronization stage at stage 2,
system modeling after the synchronization stage at stage 3, and scenario-driven walkthroughs and modeling
requirements after synchronization checks at stage 5. i* modeling is part of the system goal modeling stream

Each stream has a unique and specific purpose in the specification of a socio-technical
system:

1. Human activity modelling provides an understanding of how people work, in
order to baseline possible changes to it (Vicente 1999);

Page 3 of 24

2. System modelling enables the team to model the future system boundaries, actor
dependencies and most important system goals using the i* approach (Yu &
Mylopoulos 1994);

3. Use case modelling and scenario-driven walkthroughs enable the team to
communicate more effectively with stakeholders and acquire complete, precise
and testable requirements from them (Maiden 2004);

4. Managing requirements enables the team to handle the outcomes of the other 3
streams effectively as well as impose quality checks on all aspects of the
requirements document (Robertson & Robertson 1999).

Sub-processes during these 4 streams are co-ordinated using 5 synchronisation stages that
provide the project team with different perspectives with which to analyse system
boundaries, goals and scenarios. The 5 key synchronisation points are at the ends of
RESCUE’s 5 stages, implemented as one or more workshops with deliverables to be
signed off by stakeholder representatives:

1. The boundaries point, where the team establishes first-cut system boundaries and
undertakes creative thinking to investigate these boundaries;

2. The work allocation point, where the team allocate functions between actors
according to boundaries, and describe interaction and dependencies between these
actors;

3. The generation point, where required actor goals, tasks and resources are elaborated
and modelled, and scenarios are generated;

4. The coverage point, where stakeholders have walked through scenarios discover and
express all requirements so that they are testable;

5. The consequences point, where stakeholders undertake walkthroughs of the scenarios
and system models to explore impacts of implementing the system as specified on its
environment.

The synchronisation checks applied at these 5 points are designed using a RESCUE
meta-model of human activity, use case and i* modelling concepts constructed
specifically to design the synchronisation checks. You can read more about these
synchronization stages and their effectiveness in Maiden et al. (2004a).

The next section describes how we applied RESCUE and the i* approach in 3 different
air traffic management projects.
.

Three RESCUE Projects
This section reports 3 previous air traffic management projects in which i* was applied to
model and analyse requirements for new socio-technical systems – CORA-2, EASM and
DMAN. Each project is described, the use of i* modelling is reported, and example i*
models from each project are described and reviewed as a basis for the lessons learned in
the remainder of the chapter.

Page 4 of 24

i* Modelling in the CORA-2 Project
In 2001 we worked with Eurocontrol to design and implement RESCUE to discover
stakeholder requirements for CORA-2 (Conflict Resolution Assistant), a system to
provide computerised assistance to air traffic controllers to resolve potential conflicts
between en-route aircraft. The project team used 3 creativity workshops to discover new
concepts and requirements for CORA-2 (Maiden et al. 2004b), ART-SCENE scenario
walkthroughs to discover missing requirements for the system (Mavin & Maiden 2003),
and i* modelling to understand the relationships between the CORA-2 system and other
systems and human actors in the air traffic control tower.

CORA-2 was the first project to which RESCUE was applied, and the 5 synchronization
stages described in the previous section were not implemented. Instead the i* models
were used to discover important requirements on the entire CORA-2 system, and to
review system boundaries. Both i* Strategic Dependency (SD) and Strategic Rationale
(SR) models were produced. One analyst produced both without explicit guidelines from
RESCUE, using published material on i* (e.g. Yu & Mylopoulos 1994) to develop each
model.

The final SD model is shown in Figure 2. It specifies 8 actors and 24 dependencies
between these 8 actors. It specifies the CORA-2 software system (in the centre), adjacent
software systems such as the flight data processing system and conflict detector, and
human roles that are redesigned such as controllers who are using the CORA-2 software.
The model has some interesting properties. All dependencies are goal-type dependencies,
such as controller depends upon CORA-2 to implement chosen resolution, and resource-
type dependencies such as CORA-2 depends on conflict detector to have detected
conflicts. During retrospective questioning the analyst revealed that the resource-type
dependencies were derived from direct translation of data flows from an informal context
diagram of the CORA-2 system into actor dependencies. The presence of goal
dependencies was indicative of the strong focus on functional rather than non-functional
requirements during that phase of CORA-2 requirements modelling.

The second feature of the SD model was its centralizing structure. All but 2 of the 24
dependencies include the new CORA-2 software system as either a depender or a
dependee. No dependencies between other software-based systems upon which CORA-2
depended were modelled as we might have expected when specifying a socio-technical
system. One reason for this was the narrow view of CORA-2 held by some members of
the project team. CORA-2 had originally been conceived as a software component
without consideration of the wider socio-technical redesign of controller work. The
introduction of i* modelling challenged this view in the project, but a change in this view
did not manifest itself in the resulting models. The third feature of this SD model was the
failure to separate out the different human roles of controllers who would work with the
CORA-2 software into distinct and separate actors on the model. The analysts designed
the CORA-2 software system to be used in different ways by pairs of controllers –
planning controllers and tactical controllers – who work together to control the air traffic
in a sector. Clearly these two controller roles depend upon on each other to resolve
aircraft conflicts safely and efficiently, however these important dependencies were not

Page 5 of 24

modelled explicitly in i* for the CORA-2 system. Again, one reason for this was the
narrow, software-oriented view of CORA-2 at the beginning of the project. i* provided
important constructs for directly challenging this view, but again changes to the view
were not manifest in the models that resulted,

CORA 2
Conflict
Detector

Flight Data
Processing

System

Detected
 conflicts

Trajectory
Editor

Create a
 resolution (cora 1)

Clearance
Assistant

Consult one/set
of resolutions

Chosen resolution
Trajctory(ies)

Be supported for
 clearance issuance

System
Co-

ordinator

Resolution to be
 co-ordinated

Be supported in
co-ordination

CONTROLLER
using cora 2

Co-ord to be
 discontinued

Be aware of avail
of resolutions

Be supported in
resolution process

parameters
 for additional

resolutions

Have up-to-date
information

Smooth ATCO
workload

Have
 information

early
Implement

chosen
resolution

Sequencing
tools Environment

databse

Arrival
constraints

En-route
constraints

Resolution
 to be modified

Decide on
resolutions

Enviromental
Data

Departure
constraints

Cora 2 resolution
trajectory

to be cleared

System
trajectories

Edited
resolution

Figure 2. The CORA-2 SD model, showing the new i* software actor in the middle of the diagram, redesign
controller actors in the bottom right of the diagram, and adjacent systems.

Although the model was accepted and proved to be useful during the CORA-2
requirements process, it had properties that suggested potential extensions to RESCUE
that improve i* system modelling. These included guidance to separate out human roles
into different actors in a system model, and model dependencies as soft goal and goal
dependencies rather than resource dependencies that approximate to data flows between
actors. These guidelines were included in subsequent versions of RESCUE and are
explored in the lessons.

i* Modelling in the EASM Project
In 2004 we worked with the UK’s National Air Traffic Services (NATS) to apply the
latest version of RESCUE to the specification of the UK’s Enhanced Air Space
Management system (EASM). EASM is a new socio-technical system that is, in essence,
a scheduling system that will enable more effective, longer-term planning of UK airspace
use. The project team again used one creativity workshop to discover new concepts and
requirements for EASM, ART-SCENE scenario walkthroughs to discover missing
requirements for the system, and context and i* modelling of the new EASM system to
understand the actors and boundaries of the EASM system. A later version of RESCUE

Page 6 of 24

provided more concrete guidance for discovering actors, modeling goal and soft goal
dependencies, and specifying dependencies more precisely.

One analyst produced the first version of the SD model shown in Figure 3 using
RESCUE guidelines. The model was developed in two phases. In the first, a workshop
was held with key stakeholders to discover actor dependencies that were listed in a
dependency table described in Lesson 3. In the second phase, one analyst used the table
to construct a graphical i* SD model that was analysed and presented to stakeholders for
validation and analysis. Analysis of this graphical model revealed to the team’s surprise,
for the first time, that EASM had been modelled as three separate systems that had no
dependencies between them. The first system is associated to the AMC actor and is
shown in the top right-hand side of Figure 3. These 5 inter-dependent actors had no
strategic dependencies on other modelled actors. The second showed two dependencies
between the ATC and FDP system actors, but again strategic dependencies on other
EASM system actors. The third system, expressed in the rest of the model in Figure 3,
related to dependencies based on use of the new ASM support software system.

Figure 3. The first-cut EASM SD model, showing three separate systems with no strategic dependencies between
them.

These emergent model features were explored through further analysis, in particular to
discover whether EASM was indeed independent 3 separate strategic systems as
modelled. The answer was no, and further development of the model took place. The
final version of the EASM SD model incorporated several enhancements. In response to
missing strategic dependencies, five new goal dependencies between ASM function (an

Page 7 of 24

actor changed from the first version of the model) and ASM support system were added to
reflect new relationships identified in other EASM system models. Similarly new
dependencies were also added between the FDP system, ASM Support System and EAD,
and between CFMU systems and the ASM function. Elsewhere in the model, actor roles
were clarified, for example ATC evolved into civil and military ATC, which was
important civil and military controllers had different goals and soft goals on the EASM
system. The final model is shown in Figure 4.

Figure 4. The revised EASM SD model, extended to model important but missing dependencies identified from
graphical modelling of actor dependencies

To conclude, analysing and reviewing the first version of the EASM SD model identified
incorrect and missing dependencies that were not detected from the initial dependency
tables. The SD model was evolved in several iterations from the first to the final version.
The simple i* SD notation facilitated evolution and change of the model.

i* Modelling in the DMAN Project
In 2003 we also worked with the NATS to apply a version of RESCUE to the
specification of DMAN, a socio-technical system for scheduling and managing the
departure of aircraft from major European airports such as Heathrow and Charles de
Gaulle. A requirements team that included engineers from UK and French air traffic
service providers modelled the DMAN system and requirements. The project team
applied human activity modelling to understand the current system context, one creativity
workshop to discover new concepts and requirements (Maiden et al. 2004b), ART-
SCENE scenario walkthroughs to discover missing requirements for the system (Maiden

Page 8 of 24

& Robertson 2005), and context and i* modelling to understand the actors and boundaries
of the DMAN system (Maiden et al. 2004a). Once again, a later version of RESCUE
provided more concrete guidance for discovering actors, model goal and soft goal
dependencies, and specifying the dependencies more precisely. The team developed one
SD model and one complex SR model of the future DMAN system.

Figure 5 shows the SD model for the DMAN system. The SD model specified 15 actors
with 46 dependencies between these 15 actors. It specifies other systems that either
depend on or are depended on by DMAN (e.g. the TACT and A-SMGCS systems that are
not elaborated on in this paper), and human roles that depend on DMAN to do their work
(e.g. Runway ATCO and Departure Clearance ATCO). For example, the SD model
specifies that DMAN depends on TACT to achieve the goal CTOT and slot messages
updated, and A-SMGCS depends on DMAN to undertake the task update taxi time
estimates. Likewise, DMAN depends on the Tower Departure Sequencer ATCO to have
the departure sequence manual update, and the Departure Clearance ATCO depends on
DMAN to achieve the soft goal workload not increased.

Figure 5. Part of the SD Model for DMAN, showing most DMAN actors and actor dependencies

The DMAN SD model warrants some comparison with the earlier CORA-2 SD model.
Firstly, the DMAN SD model includes more goal and less resource dependencies,
reflecting an increased goal modelling effort. Secondly, in spite of the RESCUE
guidelines, the SD model only includes one dependent soft goal – workload not
increased. This inclusion reflected a concern that new departure scheduling technologies
should not increase workload overall. This is not to say that other soft goals, such as
performance and reliability, were not important. However, the analysts did not consider
these soft goals to be as important to decision-making about the design of DMAN as

Page 9 of 24

increased workload, and hence these were not included in the model. Thirdly, the model
reflects the specification of a socio-technical rather than software system, through the
inclusion of more human actor roles than the CORA-2 system, and more work-related
dependencies between these human actor roles.

Figure 6 shows part of the DMAN SR model for the Runway ATCO actor. This actor
undertakes one major task – control flight around the runway – that is decomposed into
other tasks such as issue line-up clearance and issue take-off clearance. The former task
can be further decomposed into sub-tasks and sub-goals which, if undertaken and
achieved, contribute negatively to the achievement of the most important soft goal – that
workload should not be increased. Furthermore, to do the issue line-up clearance task,
the Runway ATCO depends on the resource flight information from the electronic flight
strip. This demonstrates how the SR model was used to refine one important soft goal –
workload not increased – to explore in more detail contributions of different new work
tasks to the achievement or otherwise of that soft goal.

Figure 6. Part of a draft SR model for DMAN, showing elements for the Runway ATCO actor and its dependency
link with other actors.

To conclude, i* modelling of DMAN was instrumental in specification of DMAN as a
socio-technical rather than software system, in contrast to earlier experiences with
CORA-2. The SD model identified different types of actor and adjacent system upon
which requirements were specified in the DMAN requirements specification. SR models
were important for modelling actor behaviour and exploring important contributions to
the satisfaction of important soft goals. Later in the project, the DMAN team used the
DMAN SD model to generate candidate requirements statements directly, as we reported
in one of following lessons.

Page 10 of 24

i* Modelling Experiences: Conclusions
i* models were successfully developed and applied in the CORA-2, EASM and DMAN
projects. We also successfully applied i* in GOMOSCE, a project funded by Dstl, to
explore how to make goal-based trade-offs about architectures for network-enabled
capabilities in military domains. This and the air traffic management projects led us draw
ten lessons that were applied successively in these projects. The remainder of this chapter
summarizes these lessons and reports them to be learned and applied by others.

Lessons Learned
i* modelling in the 3 reported air traffic management system projects led the RESCUE
process team to draw important lessons that have led to revisions of RESCUE. We divide
these lessons into 2 types – lessons that describe how to apply i* modelling in real-world
requirements projects, and lessons that report the benefits that can accrue from i* system
modelling. Firstly we report lessons about how to apply i*, and in particular how to get
started and produce some first-cut i* models, which in our experience is more difficult
than it might at first appear.

1. Kick-start i* Modelling with Context Modelling
One problem that the published i* approach does not address directly is where to start i*
modelling. System goal modelling can be undertaken in many different contexts, to
explore incremental work change, to drive product innovations, or to inform architectural
trade-offs. i* models developed for each type of analysis will be different. Hence, it is
difficult to say, a priori, where to start i* modelling. Furthermore the focus on modelling
rigor imposed by i* semantics often makes it difficult to find the most important actors
and dependencies from which to produce a first-cut SD model. Our solution is to produce
context models beforehand, then to use this context model to guide the development of
the first-cut SD model.

A context diagram is, in essence, a data flow diagram. In its simplest form the system that
is to be designed and developed is represented by a circle, with the name of that system
written in the circle. Actors, which can be human roles, other systems and organisations
with which the new system will interact, are written as outside of the circle. Interaction is
represented as a data flow, the flow of exchange of data, either between an actor and the
new system, or between actors. The arrowhead indicates the direction of the flow of the
information, and arrows are labelled to describe the information that is flowing.

In RESCUE we have extended the context diagram by defining different types of system
boundary. The reason is simple. When you design a complex system, some things are
clearly within your design remit and others are clearly outside of it. For example, in a
simple automatic bank teller system, the design of the teller system is within the design
remit of the banking IT department - that is it can redesign the teller system. It also has
the remit to design how a bank teller, its employee, refills it every morning. Other
behaviour is clearly beyond its design remit - for example the design of bank notes - that
the bank must treat as a domain assumption during the redesign. However, in socio-
technical systems there is a grey area of things that you cannot directly redesign, but you

Page 11 of 24

can seek to influence the behaviour of using your design. The obvious example in this
domain is the client. Whilst a bank cannot make a client behave in a certain way (at least
not without breaking the law), they can seek to influence how a client uses an automatic
bank telling machine by design of the teller machine, such as additional services,
improved accessibility, and lower charge costs.

In RESCUE we explore this grey area by defining 4 types of system:

1. The technological systems, expressed in terms of software and hardware actors;
2. The redesigned work system, expressed primarily in terms of human actors;
3. Other hardware, software and people systems that are directly influenced by the

redesign of the new system;
4. External systems beyond the boundaries of the socio-technical system.

What you get by producing the context diagram first is a clearer understanding of the
system itself prior to producing the more complex SD model. In short, the context
diagram is a prototype SD model.

Figure 7 shows a context model developed retrospectively for the CORA-2 system shown
earlier in Figure 2. In the centre circle is the new CORA-2 software system. At the next
level are 2 human roles - planner controller and tactical controller that the project team
in CORA-2 was explicitly and deliberately redesigning - it was able to redesign the work
of the controllers to keep it line with the new CORA-2 software system. At the third level,
are other software systems that, although beyond the design remit of the CORA-2 team,
the team sought to influence the design of. These systems included CORA-1 (the system
that detected en-route conflicts that the CORA-2 system resolved), and TED (the
trajectory editor). The CORA-2 team realized that CORA-2 would be able to compute
possible conflict resolutions if the CORA-1 system detected the conflicts in certain ways
and provided certain information. Therefore, it sought to influence the design or redesign
of CORA-1. It did this during the requirements process by generating and specifying
requirements on CORA-1 upon which CORA-2 requirements were dependent. At the
fourth level are the systems and other actors that are beyond the design remit and
influence of the current project.

CORA-2

Departure
manager

En-route
manager

Arrival
manager

Flight data
processor Environment

data base

Trajectory
predictor

Conflict
detector

Systems co-
ordinatorCORA-1,

PAC, TED

Planner

Tactical

Page 12 of 24

Figure 7. Context model developed retrospectively for the CORA-2 system, showing the new software system,
actors whose work is redesigned as part of the project, actors whose behaviour is not within the remit of the
project to redesign, but is influenced by the new software and redesigned work, and external systems.

2. Think About Adjacent Systems
Neither context diagramming nor the i* approach offers strong advice for discovering
actors. Therefore, to supplement the use of context diagrams for getting started, we draw
on the notion of adjacent systems from Robertson & Robertson (1999). An adjacent
system is a system that is related to the system that you are specifying, and upon which
your system or product might be dependent, either for information or services. Adjacent
systems are typically one class of dependent actors in an SD model. However, Robertson
& Robertson (1999) go one step further and characterise different types of adjacent
system that are useful for discovering and modelling actors in SD models. These 3 types
are active, autonomous and co-operative adjacent systems, and each type has implications
for i* SD modelling. Each is described in turn.

An active adjacent system behaves dynamically, and interacts with or participates in the
new system. Active adjacent systems are usually roles that are fulfilled by humans. They
initiate events, and when they do, have some objective in mind. They can work with the
product by exchanging data and other signals, until their objective is satisfied. We can
predict the behaviour of an autonomous agent within reason, and you can expect it to
respond to signals from your work. As long as there is some perceived benefit to the
adjacent system, it will obey (more or less) instructions from the work. Furthermore an
active adjacent system is likely to respond in a suitably short time, not to delay the
transaction any more than necessary. This has implications for types of i* dependencies
that will exist between actors. Active adjacent actors in SD models often fulfil depender
roles and have goal and soft goal dependencies on other actors.

An autonomous adjacent system is some external body, such as another company, a
department, or a customer who is not directly interacting with your work. It acts
independently of the work or system being studied. Autonomous adjacent systems
communicate through one-way data flows. Again this has implications for types of i*
dependencies that will exist between actors. Given the relatively weak coupling with an
autonomous adjacent system, actors will depend on such systems for resources that might
contribute to the achievement of a goal or soft goal, but will not depend directly on such
systems for goal and soft goal achievement. Hence, expect to model resource-type
dependencies when an autonomous adjacent system is the dependee.

A co-operative adjacent system can be relied on to behave predictably when called upon.
In other words, they co-operate with the product or system to bring about some desired
outcome. This is almost always done by the means of a simple request-response dialogue.
It is unlikely that you will need, or want, to change the interfaces with the co-operative
system. As co-operative systems are black boxes, their services are stable, and there is
rarely much to be gained from trying to change them. Again this informs the types of
dependencies that might be modelled for a co-operative adjacent system. Expect such
systems to fulfil dependee roles that enable depender actors to achieve soft goals and
attain goals as well as undertake tasks and obtain resources.

Page 13 of 24

We can return to the example CORA-2 system shown in Figures 2 and 7 to demonstrate
different types of adjacent system. Active systems adjacent to the CORA-2 software
system are the planner and tactical controller roles, undertaken by human beings and
initiating behaviour to resolve conflicts through the use of the CORA-2 software system.
The flight data processing system is an autonomous adjacent system. Its behaviour is
independent of the CORA-2 software system, and dependencies between these two
systems are expressed as resource dependencies, such as for information about
trajectories. Finally the CORA-1 software system is a co-operative adjacent system,
because the CORA-2 software system relies on it to behave predictably when called upon
to detect potential conflicts. Our assumption when specifying the wider CORA-2 system
was that the CORA-1 system would provide the CORA-2 system with a stable service.

3. Use Dependency Lists to Discover Dependencies
Another problem when developing an i* SD model is how to establish all of the possible
dependencies. Analysts in our projects found it difficult to know how to ensure that all
possible dependencies had been considered. Our solution, implemented in RESCUE, is
very simple. Before attempting to draw a first-cut graphical SD model, list out the
possible dependencies between actor pairs in a tabular notation. We were surprised how
effective this proved to be.

A SD model dependency link is a link between two actors and indicates that one actor
depends on another for something that is essential to the former actor. The depending
actor is called the depender, the actor who is depended upon the dependee and the
process element around which the dependency. Although i* provides a useful graphical
notation, it is perhaps less effective for discovering and expressing actor dependencies in
the first place. This is where the tabular notation comes in.

Prior to producing a SD model, RESCUE analysts run workshops with stakeholders that
seek to complete the table showed in Table 1. An analyst encourages the stakeholders to
consider each possible pair of actors, often identified with context diagrams reported in
Lesson 1, to discover possible dependencies between them. The tabular representation
affords discovery of dependencies in several ways. Firstly, the sequential order of the
table encourages a more systematic approach, leading to a more complete specification of
dependencies. Contrast this with difficulties that often arise when trying to graph-walk an
i* model to consider all possible dependencies. Secondly, the row-at-a-time structure of
the list encourages all stakeholders to consider one dependency at a time, thus improving
the accuracy of the specification and obtaining more agreement about the dependencies
that are specified. Thirdly, and perhaps most importantly, the column structure of the
table is, we believe, more cognitively natural to stakeholders when reasoning about and
expressing dependencies. Whereas the graphical notation of an SD model places the
dependency between the two actors, the RESCUE table places the dependency at the end,
thus facilitating communication of and experimentation about dependencies. To see what
we mean, try reading out load the first dependency from the table: TACT depends on
DMAN to have REA messages sent. This format is easy to recall and reason about.

Page 14 of 24

ID Depender Dependee Dependency
1 TACT depends on DMAN to REA messages sent
2 TMA Dep. ATCo depends on Runway ATCo to Departure flow smoothed for

1st ACC sector
3 Airport CDMs depends on DMAN to Stand forwarded
4 …. depends on to

depends on to
depends on to

Table 1. A RESCUE dependency table, partially completed from dependencies shown in the DMAN SD model
depicted in Figure 5.

In conclusion, our experiences have shown that one effective way to produce i* SD
models is to, well, hide the i* SD model. Modelling syntax and semantics are often
distractions for most stakeholders who have not been trained in system modelling
approaches, even in highly technical domains such as air traffic management. The goal of
SD modelling is to model strategic dependencies between strategic actors. Simple tables
implemented in familiar technologies such as Word concentrate stakeholders on these
dependencies and avoid possible distractions associated with graphical i* models.

4. Get Your Training in First
This lesson might seem very obvious, but is important for some less obvious reasons.
One of our principal findings from the reported projects is that it is easy to use i* badly,
but less so to use it effectively. There are 2 main reasons for this Firstly, the i* approach
is substantially different to most other modelling approaches that analysts and
stakeholders have been exposed to. The focus in SD models on actors and dependencies
in a socio-technical system contrasts with existing methods such as the UML and its
simple notations such as use case and class diagrams to model a system that is primarily
software-oriented. Whereas UML specifications describe what a system shall do, i*
models also specify why it shall do this with cross-references to goals and soft goals.
Secondly, although i* only has 5 process elements (actors, goals, soft goals, tasks and
resources), these elements can be used in combination in many different ways in SD and
SR models, and this gives rise to modelling problems that only emerge through practice
with i*. Whilst some of the other lessons in this chapter are in direct response to
problems that we have observed, others need to be experienced by analysts and
stakeholders to be understood and avoided in the future. In short, you need to let people
learn from their i* modelling mistakes.

To minimize the effect of these mistakes on real projects, allow a substantial period of
training for relevant staff before a RESCUE or i* project starts. On most RESCUE
projects we timetable 3 full days of i* training for all analysts, composed in part of short
lectures with notes, but mostly of group modelling and critiquing exercises of examples
related to the project domain.

5. Heuristics to Choose Process Elements
Choosing the process element to include in an SD actor dependency can be more difficult
than it first appears. Should the analyst model a dependency as a resource that A depends
on B for, as a task-type dependency describing the task that A needs the resource from B
for, or as a goal-type or soft goal-type dependency to depict the goal that is attained or
soft goal that is achieved by undertaking the task with the resource? To try and answer

Page 15 of 24

these questions in RESCUE, we developed the following three heuristics that our analysts
and stakeholders have applied successfully to avoid difficulties when choosing to model
dependencies and the type of dependency to be modeled:

1. Discover the real dependency: it can be difficult to choose between several
associated, on the surface valid dependencies. Often process elements in a model are
associated. Resources are consumed in tasks that are completed to attain goals and
achieve soft goals. So is the dependency a resource, task, goal or soft goal
dependency? We apply a simple test based on the exclusivity of the dependency. If
the depender actor depends on dependee only to obtain a resource, but can still
undertake the associated task without the dependee actor (e.g. through other sources
of resource), then the dependency is a resource-type dependency. If, however, the
depender actor cannot undertake the task but still attain the associated goal or
achieve the associated soft goal without the dependee actor (e.g. by undertaking task
on own), then the dependency is a task-type dependency. Otherwise, only if the
depender cannot attain the goal or achieve the soft goal without the dependee actor
do we model a goal or soft goal-type dependency;

2. Task dependencies: task dependencies can be difficult to specify. Therefore assume
that, in a task-type dependency, it is the depender who initiates the task. One option
is to avoid task-type dependencies in SD models. If you have task-type
dependencies, ask why the actors want to undertake these tasks, to turn them into
goal-type and soft goal-type dependencies. Note that this will not always be possible,
but be prepared to challenge dependencies;

3. Naming dependencies: it is very important to be careful when naming goals and soft
goals, in order to ensure that the notion of the goal or soft goal will be understood by
other people. Use the following guidelines. The description of a goal should describe
a desirable state <desirable state>, for example ticket purchased, car repaired. The
wording of a soft goal should describe some properties or constraints on that state
<desirable state> <adjective | adverb>, for example ticket purchased quickly, car
repaired cheaply. Tasks should be specified using active verbs describing how
something is done <do task>, for example purchase tickets online. Finally, resources
are described using a noun <resource>, for example conflict information, 5 seconds,
ticket.

6. Cost-Effective Use of SR Modelling
So far our lessons have said very little about how to develop and apply i* SR models.
One reason for this is the considerable effort needed to produce a complete SR model for
even a moderately complex system, as indicated by the scale of the SR models that were
produced by one analyst for the DMAN project, see Figure 6. As well as the intellectual
effort needed to develop each actor model, the resulting SR models were large and
somewhat difficult to manage, especially given the rudimentary tool support available.
Furthermore, the benefits obtained from SR modelling within RESCUE were limited, due
primarily to the parallel development of use case specifications that represented concepts
similar to those found in SR models. Our experiences suggest that SR modelling should
be used more selectively in future projects.

Page 16 of 24

One important role of SR models is to describe how actors will behave to achieve and
attain their own and collective soft goals and goals respectively. This behaviour is
normally expressed as tasks and sub-tasks that consume and produce resources, and are
means to attain goals and achieve soft goals. However, these soft goal/goal, task and
resource structures are also specified, if perhaps less explicitly, in use case normal
courses. Moreover use cases expressed in structured English are often easier to produce,
read and manage than SR models, even though they lack some of the expressive power of
SR models. Therefore, in RESCUE, we recommend using use case specifications for
modelling most actor behaviour.

But SR modelling can still fulfil the following roles in RESCUE projects. Firstly, it can
be used prior to use case specification, alongside the use case diagram, to explore
important system actors, goals and tasks that can be used to discover and structure use
case specifications. The Rational Unified Process (RUP) still offers limited advice in the
area of use case discovery, whilst UML use case diagramming notations are weak and
open to misinterpretation. Focused use of SR models can complement use case diagrams,
and discover goals that behaviour specified in use cases should attain, and coarse-grain
tasks undertaken by actors to attain the goals.

Secondly SR modelling should be used to model important semantics that are not
represented in use case specifications. In particular use cases have no explicit
representation for task/action contributions to soft goals. Modelling such contributions is
important if analysts are to understand how behaviour specified in use cases achieves
different soft goals, to inform trade-off analysis and other forms of goal-related decision-
making. Therefore, construct SR models that are related to single use cases to investigate
goal attainment and soft goal achievement, and explore different possible use case
specifications through different modelled tasks.

Thirdly, use SR models to explore dependencies that can exist between use cases. The
behaviour specified in use cases, which are treated in UML as stove-piped partial
behaviour specifications, can often depend on behaviour in other use cases, and SR
models can be used to explore these task- and resource-type dependencies. Consider the
following example that emerged from the DMAN project (Maiden et al. 2004). The i*
models specified that the TMA Departure ATCO depends on the Runway ATCO to do the
task control flight after takeoff (referred to here as task T1), which in turn depends on the
Runway ATCO doing the task transfer flight to TMA Departure ATCO (referred to as task
T2). Task T1 maps to action-7 in UC7, and task T2 maps to action-6 in UC13. This
reveals an implied dependency between UC7 and UC13, and that action-6 in UC13 shall
happen before action-7 in UC7. From this and 5 other similar dependencies, we produced
a simple model showing previously un-stated dependencies between DMAN use cases
that have important implications for the timing and order of actor behaviour in the future
DMAN system.

7. Provide simple-to-use tools
Our experiences reveal that i* modelling can be challenging. Therefore even simple
forms of support can make the difference between the success and failure of i* in a

Page 17 of 24

requirements project. One obvious area where we can provide assistance is with tool
support for i* graphical modelling. In RESCUE we have provided the REDEPEND
modelling tool, which provides systems engineers with i* modelling and analysis
functions, coupled with additional functionality and the reliability of Microsoft’s Visio
product. REDEPEND is delivered as 2 simple plug-in files for the MS Visio 2003
application. All that an analyst needs to do to work with REDEPEND is to install these
files in the correct Visio directory.

Once installed, REDEPEND provides a graphical palette from which systems engineers
can drag-and-drop i* concepts in order to develop SD and SR models. Part of the DMAN
SD model, redrawn using the latest version 4.1 of REDEPEND for clarity in this chapter,
is shown in Figure 8. REDEPEND provides 2 palettes on the left-hand side, the top one
for SD modelling and the bottom one for SR modelling (it has more modelling elements).
When an analyst wants to draw a SD or SR model, s/he drags and drops the relevant
element from the palette onto the workspace. Associations, such as dependencies, task
decompositions and means-ends links, are also dragged and then connected to process
elements already on the diagram. Other diagramming advances in version 4.1 (the split
palette is one) include colour coding of process elements to improve diagram readability,
and a simple ‘process element check’ feature, which enables an analyst to indicate that a
chosen element of a model has already been validated during a model review or
walkthrough, so that it need not be returned to unnecessarily later in the review.

Figure 8. REDEPEND’s standard graphical modelling view, showing part of the redrawn SD model from the DMAN
project.

Figure 9 shows two other important features of REDEPEND’s graphical modelling
support. The left-hand side shows how simple right-hand mouse click menus enable the
analyst to change dependency types in the same SD model at the click of a button. This is
important to encourage exploration and revision of i* models in the early stages of a

Page 18 of 24

project. The right-hand side of Figure 9 shows a simple feature added to type each actor
as within the system boundaries and a new software actor, within the boundaries and a
redesigned stakeholder, or an adjacent system outside the system boundaries. This feature
is used for automatic requirements generation in Lesson 9.

Figure 9. Other REDEPEND graphical modelling features, showing on the left-hand side how to change process
element types in a dependency relationship, and on the right-and side more effective element alignment.

So far we have reported lessons that are intended to guide projects to kickstart and use i*
modelling in requirements projects. The remaining three lessons take a different
perspective – what benefits can a project derive from using i* models in requirements
processes.

8. SD Models for Exploring System Boundaries
In our projects, SD models have proven to be very useful for thinking about and
exploring system boundaries. Whilst context models described in Lesson 1 provide an
important first view of a system from which to construct the i* SD model, boundaries are
expressed in terms of data flows between actors on either side of a boundary. In contrast,
the SD models themselves refine these boundaries and allow analysts to explore them in
terms of goals and soft goals.

In simple terms, a SD model replaces data flows expressed in the context model with goal
and soft goal dependencies that actors want to achieve. This provides an important test of
a system boundary. If the depender actor in a dependency relationship wants to attain a
goal or achieve a soft goal, and the project will test to determine whether the depender
actor attains the goal or achieves the soft goal, then the depender actor is part of your
socio-technical system. Conversely, if the project is not interested if the depender actor
attains the goal or achieves the soft goal, then the actor is not part of your system.

On the surface, this boundary test is stating the obvious to many requirements
practitioners, but i* provides practitioners with several important advantages. Firstly the
focus of SD models, on the strategic dependencies between actors, means that the SD
model identifies, by default, the actor goals and soft goals that form the boundary test.
Secondly, the model expresses the tests in the right form – desirable properties that an
actor is seeking to attain or achieve. Alternative modeling representations, from context

Page 19 of 24

models to UML use case models and class models, do not provide this explicit first-order
representation of goal and soft goal. Thirdly, the test is simple to apply, and can be
applied recursively to actors in the model that are further and further from the new
software system that is being introduced. Thus, the test provides a simple-to-use stopping
point for i* SD modeling. Try it – it really works!

9. i* SD Models to Generate Textual Requirements Statements
There are many model-based specification and analysis approaches reported in the
literature to specify requirements (e.g. De Landtsheer et al. 2005). In contrast, most
organizations continue to represent requirements textually, both to enable requirements to
be reviewed by stakeholders, and to deliver requirements documents that are legally
binding on the contractor. Unfortunately, most modelling approaches have not been
designed to support the derivation of requirements statements from models or to be used
along side textual requirement descriptions. Therefore, in RESCUE, we have extended
the REDEPEND software tool to generate candidate requirements automatically from i*
SD models using simple patterns. This approach is reported at length in Maiden et al.
(2006).

In RESCUE we designed simple patterns – recurring syntactic and semantic structures in
the i* models – that are applied automatically to any SD model expressed in REDEPEND
to generate textual requirement statements. Our patterns are not traditional in the design
sense – a solution to a problem in context. Rather each pattern defines one or more
desired properties (requirements) on the future system that must be satisfied for the SD
model dependency to hold for the future system. As such, the SD model, which has been
signed off as complete and correct, informs further discovery and specification of
requirements statements.

REDEPEND v4.1 implements 19 different patterns, divided into 2 types. The first 16 are
specific to the i* model dependency, defined in terms of the dependency’s process
elements (goal, task, resource and soft goal) and the types of depender and dependee
actors (new system, adjacent system, stakeholder) based on the different boundaries
identified during context modelling. These 16 patterns can be divided into three broad
categories – P1-P6 that link the software system actors; P7-P12 that link stakeholders to
the new system; and P13-P16, which are independent of these actor types.

Consider the example of pattern P3. REDEPEND applies pattern P3 to generate
candidate requirement statements related to each instance of an SD dependency in which
a new software actor (e.g. the CORA-2 or DMAN software systems) depends on an
adjacent system actor to achieve a goal. The pattern specifies the need for functional
requirement statements on the new system to attain a goal G, on the adjacent system to
enable the new system to attain G, and 4 types of non-functional requirement statement
on the new and adjacent system to provide resources that enable the attainment of G on
time, reliably, accurately and with up-to-date resources. An important domain assumption
underpins this pattern – that the goal dependency can only be achieved by the exchange
of some resource – normally information – between the new and adjacent systems.
Domain assumptions also underpin the types of non-functional requirement specified in

Page 20 of 24

the pattern. Safety-critical air traffic management systems necessitate timely and up-to-
date resources and goal satisfaction, whereas other non-functional requirements types
such as usability and security are less important and not defined in the patterns
implemented in the reported projects.

The remaining 3 patterns were specified to handle composite process elements in i*
model dependencies. Whereas RESCUE mandates atomic requirement statements that
cannot be further decomposed, the systems engineers had developed the i* SD model to
include compound dependencies such as DMAN depends on ATC tower supervisor for
current and foreseen runway status, primarily to simplify the development and
management of the complex i* models. Therefore we introduced 3 patterns to detect and
decompose composite dependencies.

Pattern matching and automatic requirements generation were implemented in
REDEPEND v4.1. The 19 patterns are represented in an MS Excel file, so that new
patterns can be added with requiring any changes to REDEPEND software. Full details of
REDEPEND v4.1 are available in Lockerbie (2005).

Figure 10 describes how REDEPEND generates requirements from an analyst’s
perspective. The left-hand side shows how an analyst accesses the requirements
generation function, from the REDEPEND top-line pull-down menu. The right-hand side
shows one possible representation of requirements generated from the i* SD model. All
requirements are automatically generated into an MS Word document, as this is the most
common storage mechanism for requirements, even when using requirements
management tools such as DOORS and Requisite Pro. Each requirement in the document
is structured using and expressed with a partially complete VOLERE shell (Robertson &
Robertson 1999). For each requirement, the shell specifies a unique identifier for the
requirement in the generation run; the requirement type; the requirement description; a
rationale of canned text describing how the requirement was generated; and the source
dependency in the SD model from which the requirement was generated.

Figure 10. Automatic requirements generation in REDEPEND, showing how generated is called, and one outcome
of the requirements generation process

Page 21 of 24

In the original DMAN project we prototyped pattern-based requirements generation
manually with the DMAN SD model containing 15 actors with 46 dependencies between
these 15 actors. One systems engineer, an experienced member of the RESCUE team,
assigned to the DMAN project, took a total of 3 working days to apply the 19 patterns to
all 46 dependencies modeled in the SD model. The result was 214 new DMAN
requirement statements – almost 25% of the total number of requirements statements in
the final DMAN requirements specification. Given the DMAN requirements project
duration – 10 months – this represents a major advance of the DMAN specification in a
short period of time, notwithstanding the time spent to produce the SD model in the first
place. The majority of these requirements statements were retained in the final DMAN
specification (Maiden et al. 2006).

In contrast in a recent trial, REDEPEND version 4.1, running on a standard laptop PC,
took 12 seconds to generate 287 requirements automatically from the same DMAN SD
model. A larger number of requirements were generated due to refinements in the 19
patterns that led to more requirements of different types being generated. This result
would suggest that automatic generation of requirements is potentially cost-effective, if
the patterns generated as what analysts and stakeholders want. This question is explored
in the last lesson.

10. Use i* Models to Explore Candidate Requirements
REDEPEND provides new capabilities for generating candidate requirements statements
from i* models that, in turn, can change how we use i* models in requirements. In
particular, by automatically generating these candidate requirement statements, we aim to
exploit evidence that people are better at identifying errors of commission rather than
omission (Baddeley 1990), which is they are better at recognizing incorrect rather than
missing requirements statements. We have already exploited this general trend in human
cognition for recall to be weaker than recognition when designing the ART-SCENE
scenario walkthrough tool (Maiden 2004). Generated requirement statements are
delivered to systems engineers so that they can be modified or rejected easily using
macros that we implement in the REDEPEND. Figure 11 shows how REDEPEND
delivers candidate requirements that the pattern generation algorithm has generated to an
analyst to select or reject prior to generated in the structured VOLERE shells in MS
Word in the previous lesson. All of the shown requirements were generated from one
dependency D11 in the SD model. The analyst can tick and un-tick selected requirement
statements using the simple feature. The list also shows dependencies for which
REDEPEND did not generate requirements statements.

Page 22 of 24

Figure 11. Requirements browsing in REDEPEND, showing lists of candidate generated requirements that an
analyst can accept or reject using simple tick boxes

So how does REDEPEND do this? In simple terms, all generated requirements are output
into tailored MS Excel sheets that provide an auto-filter for reviewing the requirements.
This auto-filter provides the analyst with the capability to order all generated
requirements in ascending and descending order of different requirement attributes, and
to restrict the list to requirements of certain selected types such as performance,
reliability and availability. More fine-grain selection of individual requirements is
possible using the tick box filter.

Initial evaluation feedback from NATS analysts on this REDEPEND feature was
positive, and we look to gather and report evaluation data in the future. With these new
features, REDEPEND provides analysts with capabilities to construct i* SD models
during a workshop, automatically generate candidate requirement statements from this
model in real time, then walkthrough these generated requirements to select and reject
them. We believe that such tangible and immediate benefits from i* will have
implications for its future uptake.

Conclusions
This chapter reports our experiences in applying i* in industrial requirements projects,
and ten lessons that we learned and share with readers of this book. Some lessons are
simple for readers to apply – for example getting the training in early. Others, in
particular those that relate to REDEPEND, need our software to implement. Readers are
encouraged to take inspiration from these lessons. Most have been implemented by us
with relatively little resource and no external funding. The availability of adaptable
graphical modelling technologies made this possible. So, if readers do not want to use

Page 23 of 24

REDEPEND, we encourage you to develop and experiment with your own tools. You’ll
be surprised how quickly you will perceive benefits from i*.

The reported work has informed part of our own requirements research agenda. At the
time of writing, October 2005, we are exploring the following extensions to
REDEPEND:

• Supporting the development and management of large-scale i* models. In
particular SR models are large, difficult to develop, and as a result hard to
manage. New diagramming capabilities are needed to support development of
integrated SR models;

• Developing context models and transforming them automatically into i* SD
models. Analysts can use REDEPEND version 4.1 to develop context models
using standard Visio diagramming palettes, but REDEPEND cannot interpret
these diagrams. REDEPEND will be extended with a new context diagramming
palette, and new capabilities to generate first version i* SD diagrams from these
context diagrams;

• Related to this, dependency tables will be added to REDEPEND, to allow analysts
to complete these tables and generate first version i* SD diagrams from such a
table;

• Working with NATS (the UK’s National Air Traffic Services) to extend
REDEPEND with new capabilities for safety analyses of systems modelled with
i*. In particular REDEPEND will be required to parse process elements such as
goal, soft goal and task descriptions;

• Extend REDEPEND with scenario walkthrough capabilities to discover missing
contributes-to soft goal links, based on scenario generation techniques from ART-
SCENE (Maiden 2004). Scenarios are partial specifications of behaviour that
contribute positively or negatively to soft goals modelled in i* SR models.
Walking through these scenarios can help analysts to discover all important
contributes-to soft goal links, especially if we tailor ART-SCENE’s scenario
generation although to generate relevant prompts.

Finally, we will continue our transfer of requirements knowledge through RESCUE and
i*, in particular to evaluate the new versions of REDEPEND reported in the lessons, and
future work outlined. We look forward to the challenge, and to reporting it in the future.

References
• Baddeley, A.D., 1990, 'Human memory: Theory and practice', Lawrence Erlbaum

Associates, Hove.
• De Landtsheer R., Letier E. & van Laamsweerde A., 2003, ‘Deriving Tabular Event-

Based Specifications from Goal-Oriented Requirements Models’, Proceedings 11th

IEEE International Conference on Requirements Engineering, IEEE Computer Society
Press, 200-210.

• Lockerbie J., 2005, ‘Automating the Pattern-Based Generation of Requirements for I*
System Models’, MSc Dissertation, School of Informatics, City University, November
2005.

Page 24 of 24

• Maiden N.A.M., ‘Systematic Scenario Walkthroughs with ART-SCENE’, in
‘Scenarios, Stories and Use Cases’, Eds Alexander & Maiden, John Wiley, 166-178.

• Maiden N.A.M., Jones S.V. & Flynn M., 2003, 'Innovative Requirements Engineering
Applied to ATM', Proceedings ATM (Air Traffic Management) 2003, Budapest, June
23-27 2003.

• Maiden N.A.M.,, Jones S.V., Manning S., Greenwood J. & Renou L., 2004a, ‘Model-
Driven Requirements Engineering: Synchronising Models in an Air Traffic
Management Case Study’, Proceedings CaiSE’2004, Springer-Verlag LNCS 3084,
368-383

• Maiden N.A.M., Manning S., Robertson S. & Greenwood J., 2004b, ‘Integrating
Creativity Workshops into Structured Requirements Processes’, Proceedings
DIS’2004, Cambridge Mass, ACM Press, 113-122

• Maiden N.A.M., Manning S., Jones S. & Greenwood J., 2006, ‘Generating
Requirements from Systems Models using Patterns: A Case Study’, Requirements
Engineering Journal.

• Maiden N.A.M. & Robertson S., 2005, ‘Integrated Creativity into Requirements
Processes: Experiences with an Air Traffic Management System’, Proceedings 13th

IEEE International Conference on Requirements Engineering, IEEE Computer Society
Press, 105-114.

• Mavin A. & Maiden N.A.M., 2003, ‘Determining Socio-Technical Systems
Requirements: Experiences with Generating and Walking Through Scenarios’,
Proceedings 11th International Conference on Requirements Engineering, IEEE
Computer Society Press, 213-222

• Robertson S. & Robertson J., 1999, ‘Mastering the Requirements Process’, Addison-
Wesley.

• Vicente, K., Cognitive work analysis, Lawrence Erlbaum Associates, 1999.
• Yu E. & Mylopoulos J.M., 1994, ‘Understanding “Why” in Software Process

Modelling, Analysis and Design’, Proceedings, 16th International Conference on
Software Engineering, IEEE Computer Society Press, 159-168

