
A Framework for Empirical Evaluation of Model Comprehensibility

Jorge Aranda, Neil Ernst, Jennifer Horkoff, and Steve Easterbrook
University of Toronto, Canada

{jaranda, nernst, jenhork, sme}@cs.toronto.edu

Abstract

If designers of modelling languages want their

creations to be used in real software projects, the
communication qualities of their languages need to be
evaluated, and their proposals must evolve as a result
of these evaluations. A key quality of communication
artifacts is their comprehensibility. We present a
flexible framework to evaluate the comprehensibility of
model representations that is grounded on the
underlying theory of the language to be evaluated, and
on theoretical frameworks in cognitive science.

1. Introduction

Over the past decades, hundreds of conceptual
modelling languages have been proposed as tools to
understand and communicate software project
information [14]. We have a wealth of notations at our
disposal to represent almost any kind of information
we wish, from machine states to stakeholder goals. Yet
the use of these modelling languages in real software
projects and their adoption rate by the software
industry are still very low [7].

An important cause of this usage problem may be a
lack of attention to the extent to which these languages
enable effective communication among their users.
Models have many uses, but one of the most prominent
is serving as communication artifacts in software
teams. In fact, if they have one purpose, for most
languages, it is communicating ideas.

The effectiveness of software models depends on a
number of communication qualities such as: Cost of
production, comprehensibility, speed of ‘decay’ (loss
of synchrony with the content it represents), and
steepness of their learning curve. If a language is
deficient in several of these qualities, then it does not
matter whether it has a high expressive power or well-
formalized semantics; it will not be used for
communication purposes.

Considering models as communication artifacts
raises an important issue. Even the simplest models of

communication available [11] require a receiver to
decode and assimilate the message for the
communication instance to be successful. A
communication event does not stop with the
transmission of an encoded message. In practical
terms, creating and sending a diagram to somebody
may lead us to believe that we have communicated its
information to that person; but if the diagram is not
read, processed, and assimilated correctly by the
receiver, the communication instance has failed.

For this reason, an essential quality of
communication artifacts is their comprehensibility.
Documents and diagrams that are cryptic, misleading,
or vague will not serve their communication purpose.
Therefore, it is important to bring comprehensibility,
along with other communication qualities, to the
forefront of the modelling language debate.
Unfortunately, as we will discuss in Section 4, there
have been very few careful empirical studies that
evaluate the comprehensibility of software modeling
languages. When it is considered at all, judgments
about model comprehensibility are often very
subjective and have little regard for empirical validity.

In this paper we present an empirical framework to
evaluate model comprehensibility. The framework,
presented as a sequence of steps and guidelines, is
intended to guide evaluators to address the challenges
of studying a construct as subtle and complex as
comprehensibility. We assume that any researchers
who apply it will have some empirical software
engineering expertise, and access to expert modellers
of the language of their choice.

2. The comprehensibility construct

2.1. Challenges to define the construct

The first challenge for evaluators of model

comprehensibility is to define the meaning of the
construct: it is an intuitive concept, but very difficult to
define. The naive view (“Can I make sense of this
document?”) breaks down when we try to

operationalize it. To clarify it, we propose the use of
the comprehensibility variables in Tables 1 and 2.

As can be seen in the tables, there are many
variables to consider, and it may not be feasible to
evaluate them all in a single empirical study. The
choice of which of these should be addressed is up to
the evaluator, though it is important to declare these
decisions explicitly. We will return to these tables
when discussing study hypotheses, in Section 3.

2.2. Challenges to evaluate comprehensibility
empirically

Studying comprehensibility raises a number of

challenges in addition to those inherent to all empirical
work. We describe them in the following list:

Information equivalence: In practical terms, it is
impossible to guarantee that two different
representations transmit the same meaning to a human
reader, even when their underlying conceptual content
is the same (that is, when they have information
equivalence [13]). This problem arises because our
innate ability to handle qualitative information is
notoriously difficult to operationalize. Figure 1 shows
an example of this problem: A simple change in the
layout of the nodes of a graph triggers different
meanings in the reader. The problem is magnified

when comparing documents in different notations. A
class diagram is not designed to represent the same
information as an entity-relationship diagram.
Therefore, an evaluator needs to decide whether her
comparisons will strive towards the ideal of
information equivalence, at the risk or artificiality; or if
she will use models with uneven information to
achieve a comparison with greater realism.

Figure 1 - The same graph may represent centrality or

hierarchy

Accessibility of participants: If finding competent

participants is a challenge in most software engineering
studies, the problem is exacerbated when we require
participants to be experts in one or several languages,
given that this expertise is scarce both in industry and
academia for most languages. Some workarounds for
this problem are discussed in section 3.7.

Researcher bias and agenda: Since the evaluator
of a notation is often its proponent, many evaluations
suffer from researcher bias. This is evident in
questionnaires that are trivially answered with the
preferred model and unanswerable with another.
Section 3.7 of this paper describes some safeguards we
have developed against this sort of bias.

3. Evaluating comprehensibility

Our framework consists of a sequence of guidelines
that may be followed in the order presented:

3.1. Select the modelling notation

Selecting the notation is an evident first step, but

there are several detailed decisions to make in order to
achieve precision. First, if the notation of choice has
several versions, which of them is being studied? Does
the study include language extensions? Will it be
allowed to tweak the notation rules to better represent
information (as often happens in practice), or will we
adhere to a strict implementation of the rules, to the
potential detriment of the readability of the model? It is
essential to be clear about the version and conventions
to be tested.

Table 1 – Affected comprehensibility variables
Correctness of
Understanding

The degree to which persons can answer
questions about the representation correctly.

Time Time required to understand the representation.

Confidence Subjective confidence that people display
regarding their own understanding of the
representation.

Perceived
difficulty

Subjective judgment that people display
regarding the ease to obtain information through
the representation.

Type of task The different tasks that readers perform with a
representation are facilitated or hindered to
varied degrees. Comprehensibility for
information search, information retention, or
functional tasks requiring the integration of
information in the reader’s mental model, lead to
different evaluation results.

Language
expertise

Previous expertise with the modelling language
under study.

Domain
expertise

Previous expertise with the domain being
modelled.

Problem size Size of the domain. Different modelling
languages scale up with variable degrees of
success.

 Table 2 – Affecting comprehensibility variables

3.2. Articulate the underlying theory

Every modeling language is proposed under the

assumption that it will be useful for particular reasons
and situations. A notation might be proposed as a
means of communication between analysts and
developers, or between analysts and users. It may
assume a logical skill set or familiarity with the
domain on the part of its readers. It may require its
models to have some complementary documentation,
or may be designed to be meaningful on its own.
Sometimes these assumptions are stated explicitly by
the notation’s designers; sometimes they arise through
practice. We call the set of assumptions behind a
language its underlying theory. Although this
underlying theory is usually concerned with more than
communication, here we focus on its communication
aspect: the nature of the ideas the notation represents,
and the context in which it is used.

Ideally, the underlying theory of a language will be
obtained by studying its literature. Unfortunately,
many language proposals are not explicit in this regard.
They are frequently offered without considerations for
the target users, domains, problem sizes, and required
domain expertise of their readers. If this is the case,
one should try to extract the underlying theory from the
language as it is used in practice. If it is popular, one
might detect patterns from its users and the domains in
which it is applied. For example, we could observe that
a language is used mostly as a communication
mechanism among analysts, or as a validation tool
between analysts and stakeholders. These observations
would lead us to assert, under the lack of an explicit
theory, that the language is intended to be used for
those types of people, in those contexts.

If there is no community of users and no explicit
underlying theory, then one has no choice but to fill in
the blanks of the underlying theory and to state so
directly. The study will run the risk of being countered
with the argument that the underlying theory declared
is incorrect (especially if the results of the study do not
favour the notation). But this is not a flaw of the
evaluation; it is a flaw –a major, though frequent flaw–
of the language proposal that failed to offer this
information explicitly to its audience.

3.3. Formulate the claims of the notation

Once we have identified the underlying theory of

the language, we need to re-express the theory as a set
of claims regarding comprehension. In extracting these
from the underlying theory, we must be careful not to
lose its spirit along the way. Later in the process, these
claims will become the study hypotheses.

3.4. Choose a control

An evaluation should have a baseline for

comparison – otherwise we cannot tell whether scores
are caused purely by the characteristics of our notation,
or by the inherent level of complexity of the model
domains. We offer the three following guidelines:

First, the baseline should be a sensible alternative to
perform the same tasks that the notation assists. It need
not be diagrammatic; it is reasonable, for example, to
compare a sequence diagram with a sentential
description of the same scenario.

Second, if the notation under evaluation is an
extension to a language, one might think that a sensible
alternative for a baseline is a standard version of the
same language. This decision should be taken
carefully. Extensions are frequently designed to cover
gaps in ideas that the original language cannot express;
in that case the original language is not a sensible
alternative.

Third, in cases when there is no clear baseline, the
most suitable alternative is, simply, a natural language
version of the same information, written in a style and
tone similar to the one that potential readers would
have access to. Some of the more esoteric notations
only have a natural language counterpart.

3.5. Turn the claims into hypotheses

Once we have chosen a control we can turn the

claims of the notation into testable hypotheses, with
the following considerations:

First, although studying the overall
comprehensibility of a model is important, from a
language evolution perspective it is even more relevant
to discover which elements of a notation work well and
which do not. For instance, discovering that the
meaning of a class diagram was only partially grasped
is convenient; discovering that aggregations were
obvious to readers but other associations were not is
even better. We should aim to design hypotheses that
cover both the abstract comprehension effect and the
specific, concrete elements that the notation represents.

Second, for our purposes, syntax is not sugar.
Syntactic refinements may yield far greater benefits
than semantic modifications to the language.
Evaluators should not shy away from evaluating the
syntax of a notation and the elements and icons that
communicate the semantics of the models. Similarly, if
a language demands to be used with a specific tool, it
should also be included in the evaluation.

Finally, it is desirable to generate hypotheses that
cover most of the variables mentioned in Tables 1 and

2. In any case, we must define the expected domain
and language expertise of participants and the size of
the problem they will work with.

3.6. Inform the hypotheses

Software engineering is not the first discipline to

study the effects of representations in human
performance, and we should bring the insights of other
research areas to our evaluations. Two theoretical
perspectives are of particular relevance:

3.6.1. External Cognition. A branch of Cognitive

Science, external cognition treats humans and the
artifacts they use to solve problems as a single
cognitive entity. Artifacts are part of our problem-
solving resources, and they enhance and augment our
capabilities. There are several ways in which
representations can improve our reasoning [3]. The
following are extracted from Scaife and Rogers [16]:

Offloading: Representations, such as models, can
reduce a person’s cognitive effort by putting
knowledge in the world, rather than in the head. The
less data we need to keep in our memory, and the
fewer rules we need to process them, the better.

Re-representation: Some representations, by virtue
of their cognitive fit to the problems they are used for,
make problem solving easier. A classic example is
performing a multiplication with Arabic (43 x 10)
versus Roman numerals (XLIII x X).

Graphical constraining: If a diagram constrains the
number of inferences we can make, it allows us to
spend our cognitive power on them more effectively.

3.6.2. Cognitive Dimensions (CD) Framework.

The Cognitive Dimensions framework [4], which
enjoys some popularity in the HCI field, enumerates
dimensions of tool use that are relevant from a
cognitive perspective. CD proponents have designed a
questionnaire [5] to assess the quality of tools and to
guide design decisions. A sample of dimensions
follows (the full framework has more than a dozen):

Visibility: Ability to view components easily.
Hidden dependencies: Are important links between

entities visible? Does the tool user have to go through
complicated processes to uncover these dependencies?

Role-expressiveness: Easily inferring the purpose
of an entity.

3.6.3. Other relevant perspectives. We have

chosen two theoretical perspectives, but these are not
the only alternatives. A model evaluation proposal by
Wand and Gemino [9] asks evaluators to perform
ontological assessments of the model’s expressive

power, and to analyze them with a range of cognitive
theories.

These perspectives add value to a comprehensibility
study by offering systematic ways of understanding
how models aid cognition. But for each additional
perspective an evaluator considers, the practicality of
performing evaluations decreases. We adopted external
cognition and the cognitive dimensions framework
because we believe they have a particularly high
relevance to comprehensibility considerations.

3.6.4. How to inform the hypotheses? Once

evaluators become familiarized with the theoretical
perspectives they should inform the study hypotheses
with insights from them. By this we mean to examine
the hypotheses through the “lens” of the theory, in
order to detect gaps in the hypotheses under evaluation.

For example, for each cognitive dimension we can
ask whether the hypotheses we have previously
generated test for the benefits of that particular
dimension. If we find a relevant gap, we may decide to
modify or add more hypotheses to our list. Role-
expressiveness, for instance, may be evaluated by
asking readers with little experience with a modelling
language what each of its graphical elements means.

If there are important gaps between the hypotheses
and relevant cognitive perspectives, the evaluator could
be missing some comprehension-related benefits, and
may wish to refine the hypotheses to include them.

3.7. Design and execute the study

We will not describe general empirical methods

[19], but there are particularities concerning the design
of comprehensibility studies that we should mention.

To evaluate a modelling language empirically, one
must test particular instances of that modelling
language. It is impossible to empirically assess, for
example, the comprehensibility of sequence diagrams
in general; one must assess the comprehensibility of
particular sequence diagrams and, by induction,
generalize to the language as a whole. However,
evaluating particular models poses delicate problems.
Here are some guidelines to consider:

Natural domains: The choice of domains to model
should be natural for the language under study. For
instance, a sequence diagram excels when displaying
series of events and method calls, not decision-making
algorithms (even though they may be used for the
latter). Some studies evaluate notations out of their
natural domains (for example, pseudocode of how to
cook), and their results are questionable for this reason.

Familiar domains: A common challenge of
empirical software engineering studies is getting
enough qualified participants. Some hypotheses may

require high levels of background knowledge, making
recruitment even harder than usual. A familiar domain
should be chosen to improve the chances of getting
enough participants. The exception to this guideline is
if the evaluator wants to test the notation as a
pedagogical tool: that is, to analyze whether novices
understand the complexities of an unknown domain
exclusively through the model under study.

Participant role: As mentioned before, the study
should be explicit on the types of participants
(stakeholders, analysts, developers, maintainers, or
others) required, and on the levels of expertise they
must possess. These criteria should be central to the
recruitment process.

Expert modelers: The models should be prepared
by notation experts, though this is a contentious issue.
On one hand, real model readers routinely work with
models produced by people at varying degrees of
language expertise, and it is important to evaluate
models at all of them. On the other hand, if models
come from people with dubious expertise, poor results
may be adjudicated to the flawed model instead of
inherent notation problems. We prefer to avoid this
potential bias. Additionally, modelers should not be
part of the research team if possible, to avoid
contaminating the models with the researchers’ biases.

Number of domains: If resources allow, the study
should test several models, from several domains, to
avoid a mono-operation bias.

Questionnaire: Whenever feasible, the study
should collect data for each question on several
variables: correctness (did the participant give the right
answer?), confidence (certainty of the participant in his
answers), perceived difficulty (to respond the question),
source of answer (did the answer come from the
model, from previous knowledge, or from
assumptions?), and time to respond.

3.8. Improve these guidelines

Since we assume all modelling languages, as all

tools, are perfectible, we would be at fault if we did not
assume the perfectibility of our framework as well. We
have modified it, and we expect to continue modifying
it, through its repeated application to multiple
empirical studies. We hope the community will
contribute in a similar fashion.

4. Related work

The topic of model comprehensibility has been
previously addressed, with varying degrees of
empirical rigour. Two early studies of the field were
those of Ramsey et al. [15], who reported that

pseudocode and flowcharts yield no difference in
comprehension, and Scanlan [17], who countered that
flowcharts actually outperform pseudocode. Neither
study offers any theoretical foundation to ground the
evaluation, and their methodological problems cast
serious doubt on their validity.

More recently there have been significant steps to
overcome the challenge of assessing
comprehensibility. Progress has been twofold: the
theoretical grounding of comprehensibility studies has
been laid out more clearly, and the soundness of the
empirical studies has increased notably. Agarwal et al.
[1] based their comprehensibility assessment of models
on the notion of cognitive fit (reflected in our insistence
of basing evaluations on the underlying theory of the
modelling language), and on the concept of
information equivalence. Kim et al. [12] also drew
from the information equivalence concept, while
Gemino and Wand [10] advocated for ontological
analyses and the use of the cognitive theory of
multimedia learning to drive their evaluations.
However, not every recent study bases its evaluation
on theory. Finney et al. [8], and Zimmerman et al. [20],
among others, did not address the issue of how to
measure their constructs properly, if at all.

The idea that the evaluation of models should be
grounded on their function is most notably present in a
recent study [2] of UML documentation for
maintenance tasks. Participant background, training,
and type of tasks were also considered in a recent
evaluation of formality in UML by Briand et al. [6].

We are aware of one other framework to evaluate
conceptual models, by Gemino and Wand [9]. Their
framework “is based on the notion that modeling
techniques should be compared via their underlying
grammars”, although these “grammars” cannot truly be
evaluated empirically. It defines two dimensions for
evaluation: affecting and affected variables. They do
not focus on comprehensibility, on the theoretical
grounding of evaluations, or on the particular
challenges of this type of empirical study. For these
reasons we believe our framework complements and
augments theirs.

5. Conclusions and future work

We have presented an empirical framework to
evaluate the comprehensibility of model
representations. The framework can be applied by the
modelling community, provided they have empirical
software engineering expertise in their teams.

This framework arose through the discussions of
our team when designing a series of evaluations, with
the goal of ensuring proper methodological and

theoretical foundations. We initially wanted to be able
to apply it systematically –that is, to refine it into a
benchmark [18], rather than a set of guidelines for ad
hoc tests. We were soon convinced this was not
possible. There are too many subtle distinctions
between languages and too many differences of
underlying theories for such a systematized solution to
succeed. But we believe this framework provides a
helpful guide to lead our theoretical analyses, our study
designs, and our sense-making of the available
modelling language literature.

There are far too many languages for us to evaluate,
and each evaluation requires a considerable
investment. We will perform evaluations on several
languages based on their apparent promise and
popularity. We expect our framework to be modified
by each of our planned evaluations.

An appealing quality of this framework is that it is
not restricted to diagrammatic representations. In the
near future, we intend to evaluate sentential types of
representations commonly used in software
development, such as specifications and user stories.

The framework can also be modified to evaluate
communication qualities other than comprehensibility.
Analyzing production cost, for example, seems to be a
promising area of research. This requires adapting Step
6 of the framework, described in Section 3.6, to suit the
appropriate theoretical perspectives, but the rest of it
should be as effective for evaluating other
communication qualities as it is for comprehensibility.

6. References

[1] Agarwal, R., De, P., and Sinha, A.P. Comprehending
Object and Process Models: An Empirical Study. IEEE
Transactions on Software Engineering, 25, 4, 1999.

[2] Arisholm, E., Briand, L.C., Hove, S.E., and Labiche, Y.
The Impact of UML Documentation on Software
Maintenance: An Experimental Evaluation. IEEE
Transactions on Software Engineering, 32, 6. June 2006.

[3] Bauer, M.I., and Johnson-Laird, P.N. How Diagrams can
Improve Reasoning. Psych. Science, 4, 6. November 1993.

[4] Blackwell, A., and Green, T. Notational Systems—The
Cognitive Dimensions of Notations Framework. In: Carroll,
J. (Ed) HCI: Models, Theories and Frameworks, Morgan
Kaufmann, 2003.

[5] Blackwell, A., and Green, T. A Cognitive Dimensions
Questionnaire. 2000. Downloaded from the web at:
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/
CDquestionnaire.pdf

[6] Briand, L.C., Labiche, Y., Di Penta, M., and Yan-
Bondoc, H. An Experimental Investigation of Formality in
UML-Based Development. IEEE Transactions on Software
Engineering, 31, 10. October 2005.

[7] Dobing, B., and Parsons, J. How the UML is Used.
Communications of the ACM, 49(5), May 2006.

[8] Finney, K., Fenton, N., and Fedorec, A. Effects of
structure on the comprehensibility of formal specifications.
In IEE Proc-Softw., 146, 4, August 1999.

[9] Gemino, A., and Wand, Y. A framework for empirical
evaluation of conceptual modeling techniques. Requirements
Engineering, 9, 248-260, 2004.

[10] Gemino, A., and Wand, Y. Evaluating Modeling
Techniques Based on Models of Learning. Communications
of the ACM. 2003.

[11] Hargie, O.D.W. (Ed.) The Handbook of Communication
Skills. Routledge, 1997.

[12] Kim, J., Hahn, J., and Hahn, H. How Do We Understand
a System with (So) Many Diagrams? Cognitive Integration
Processes in Diagrammatic Reasoning. Information Systems
Research, 11, 3, 284-303, 2000.

[13] Larkin, J.H., and Simon, H.A. Why a Diagram is
(Sometimes) Worth Ten Thousand Words. Cognitive Science
11, 65-99, 1987.

[14] Mylopoulos, J. Information Modeling in the Time of the
Revolution. Information Systems, 23 (3-4), June 1998.

[15] Ramsey, H.R., Atwood, M.E., and Van Doren, J.R.
Flowcharts Versus Program Design Languages: An
Experimental Comparison. Comm. of the ACM, 26, 1983.

[16] Scaife, M., and Rogers, Y. External cognition: how do
graphical representations work? Int. J. Human-Computer
Studies, 45, 185-213, 1996.

[17] Scanlan, D.A. Structured Flowcharts Outperform
Pseudocode: An Experimental Comparison. IEEE Software,
September, 1989.

[18] Sim, S., Easterbrook, S., and Holt, R. Using
Benchmarks to Advance Research: A Challenge to Software
Engineering. 25th Intl. Conf. on Software Engineering
(ICSE’03), 2003.

[19] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C.,
Regnell, B., and Wesslén, A. Experimentation in Software
Engineering: An Introduction. Kluwer, 2000.

[20] Zimmerman, M.K., Lundqvist, K., and Leveson, N.
Investigating the Readability of State-Based Formal
Requirements Specification Languages. In: Proceedings of
the Intl. Conf. on Software Engineering (ICSE’02), 2002.

