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Abstract

In this work1, we take a two pronged approach to improving cross-lingual sentiment anal-

ysis. First, using a new technique, we show that word embeddings can be enriched for senti-

ment information without the need of a labeled corpora; this enrichment improves performance

across the board in both sentiment and non-sentiment-related tasks. Second, we study how a

linear transformation that can effectively leverage embeddings and English sentiment knowl-

edge without the need for accurate translation. Across a series of diverse tasks, we show that

this transformation is effective in analyzing languages with scarce data, despite the sub-par

translation accuracy, thus making sentiment and related analyses for many languages inexpen-

sive.

1This work is based on two papers: i)(Abdalla and Hirst, 2017) and ii)(Abdalla et al., 2018)
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1 Introduction

Word embeddings (i.e., word vectors, distributed representations) aim to represent words as a

sequence of numbers that can subsequently be used as input for a wide variety of statistical machine

learning models and techniques for various tasks. The complexity of such encodings varies from

the very simple (e.g., one-hot encoding) to the relatively complex (i.e., automatically generated

embeddings by newer machine learning techniques).

While word embeddings have worked well in the past for a variety of NLP tasks, because of

the distributional hypothesis (Firth, 1957), there remains room for improvement. For example,

sentiment words with opposite emotional values are often used in the same context, and thus have

very close representations in a language’s vector space, closer than their antonymy implies. If we

could incorporate sentiment during the creation of our embeddings, we would add some degree of

separation between words that occur in the same context but with opposite meanings.

1.1 Incorporating Sentiment Information into Word Embeddings Without
The Need for Labeled Corpora

In the first part of this work, we introduce a more effective and generalizable way of incorporating

sentiment during the creation of word embeddings, which improves performance over previous

approaches (Tang et al., 2016) on a diverse set of tasks and does not require labeling of the en-

tire corpus. We also test the effect of our approach and past sentiment-enriched embeddings on

non-sentiment related tasks to see whether the increase in performance for sentiment-related tasks

comes at a price of performance in other unrelated tasks.

Most common approaches to incorporating sentiment in embedding creation have the loss func-

tion be composed of a context loss and a sentiment loss. Tang et al. (2016) make use of this ap-

proach and make use of distant-supervision (Go et al., 2009) by looking at sentence level labeling.

Inspired by Tang et al., we adopt a similar approach, combining the loss of context with that of

sentiment, extending their model to allow for training without the need for human labeling of sen-

tences. We contribute two novel ideas: i) the generalization of the combined context+sentiment

approach by substituting the need for sentence-level sentiment labeling with context-based senti-

ment scores that are automatically calculated; ii) the removal of Tang et al.’s htanh layer, as we

show that it degrades performance in most tasks.

We quantitatively evaluate our proposed techniques in comparison with previous ones on a

variety of tasks, including both sentiment and non-sentiment tasks.
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1.2 Cross Lingual Sentiment Analysis without (Good) Translation

The second part of this work deals with leveraging the wealth of sentiment information available

for the English language to aid in the analysis of sentiment where data is more scarce. Since many

applications for the analysis of sentiment rely on a treasure-trove of labeled data, they cannot read-

ily be applied to other languages. Therefore, many approaches which deal with other languages

often: i) experiment with small datasets that are limited in domain or size of training and test-

ing sets (Lee and Renganathan, 2011; Tan and Zhang, 2008), or ii) attempt to elucidate sentiment

lexicons for their respective languages (Mohammad et al., 2016).

A growing number of publications attempt to leverage labeled English data to compensate

for the relative lack of training material in the other languages. This is usually done through

the use of either bilingual lexicons (Balamurali et al., 2012), machine translation (MT) systems

(Salameh et al., 2015; Zhou et al., 2016), or more recently through the usage of bilingual vector

space embeddings (Chen et al., 2016).

Unfortunately, in many cases, such data is still expensive to obtain. Many languages do not

have good, or sometimes any, MT systems, and the cost of producing word alignments or sentence

alignments for training bilingual word embeddings (BWE) (Zou et al., 2013; Bengio and Corrado,

2015) or similar techniques (Jain and Batra, 2015) which are frequently used can be too expen-

sive or not feasible. Here, we introduce a high-performance, low-cost approach to cross-lingual

sentiment classification, which aims to serve as a benchmark for more expensive methods, and we

demonstrate that limited training data suffices for effective cross-lingual sentiment analysis.

Our approach relies on the simple vector space translation matrix method (Mikolov et al.,

2013b), which computes a matrix to convert from the vector space of one language to that of

another. We noted that sentiment is highly preserved even in the face of poor translation accuracy.

We observed that a sentiment classifier trained only with word vectors from English (hereafter

referred to as the target language) performs well on unseen words from other unseen languages

(referred to as the source languages) translated into the English vector space through the simple

matrix method, even with very poor translation scores.2

We quantitatively evaluate our methods by training on English and testing on words from Span-

ish and Chinese. We experiment with differing amounts of data during training to show the robust-

ness of our observation. We then apply the fine-grained sentiment regressor to the task of review

classification as done by Chen et al. (2016), and show that our naı̈ve algorithm achieves results

similar to their benchmark but at a lower cost.

2This work involves translations in both directions between English and the other languages studied. However, we
will consistently take the perspective of the translation matrix introduced in section 3.2 and thus refer to English as the
target language and the others as source languages.
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2 Previous Work

2.1 Word Embeddings

Word embeddings are a dense vector representation for words of a corpus. They range from low-

rank approximations of co-occurrence matrices (e.g. Sahlgren (2005); Bullinaria and Levy (2012);

Pennington et al. (2014)) to those created using shallow neural networks (e.g. Mikolov et al.

(2013a)). The latter approach has been shown to be connected to the former approach (Hashimoto

et al., 2016), and all embeddings are heavily influenced by the distributional hypothesis (Sahlgren,

2008).

The specific algorithm that we improve upon is a model that attempts to predict the current

word given the context (surrounding words), termed continuous bag of words (CBOW) (Mikolov

et al., 2013a), which contrasts with the common Skip-Gram approach (Mikolov et al., 2013c) that

attempts to predict the context words given the current word. We made this decision as using this

very common setup allowed us to compare our results with those of previous work.

2.2 Enriched Word Embeddings

Some past work has sought to improve the quality and utility of word embeddings by incorporating

external non-context information into the embeddings, a technique we refer to as “embedding

enrichment”. Previous work has enriched embeddings with different external information ranging

from semantic information (Faruqui et al., 2015) to sentiment information (Maas et al., 2011;

Socher et al., 2011; Tang et al., 2014, 2016).

Faruqui et al. (2015)’s approach uses semantic lexicons to retrofit word-vectors by encouraging

linked words to have similar vector representations. In this work we included the model which per-

formed best on their sentiment analysis, retrofitting the word vectors using the paraphrase database

(PPDB) (Ganitkevitch et al., 2013), for comparison in our battery of tests.

Focused on sentiment enrichment alone, Maas et al. (2011) make use of a probabilistic docu-

ment modeling approach, constraining words that express similar sentiment to have a more similar

representation. Socher et al. (2011) make use of manually labeled data and the semantic principle

of composition, that the meaning of a complex expression can be determined through understand-

ing of the parts of which it is composed, to learn the meaning and sentiment of phrases and sen-

tences. Tang et al. (2014) make use of distant supervision and a massive Twitter dataset in order

to learn word embeddings. They then extend their work by combining the traditional embedding

model (CBOW) with their previous work, showing that the incorporated loss function serves to

improve the embeddings’ capability to analyze sentiment (Tang et al., 2016).
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2.3 Cross-Lingual Word Embeddings

When working with more than one language, we seek to satisfy two objectives: i) mono-lingually,

similar words of the same language have similar embeddings; and ii) cross-lingually, similar words

across languages also have similar embeddings. Satisfying these two criteria would allow us to

use algorithms trained for the embeddings of a single language (such as English with a wealth of

labeled data) for other languages as well. Below we discuss algorithms to achieve the second cross-

lingual objective, their costs, performance, and the rationale underlying our algorithm design.

2.3.1 Offline Alignment

The simplest approach to achieving the cross-lingual objective is to train each monolingual objec-

tive separately (create a model for each language), and then learn a transformation to enforce the

second objective. This approach uses a dictionary of paired words in order to learn a transformation

or ‘alignment’ from the vector space of one language to that of another.

First introduced by Mikolov et al. (2013b), and later extended by Faruqui and Dyer (2014),

offline alignment is fast and low cost, but does not achieve a high translation accuracy. A big

drawback of these approaches is that using a dictionary ignores the polysemic nature of languages.

It is also not clear or proven that a single transformation would be able to capture the relationship

between all the words in a cross-lingual setting.

We opt to use offline alignment to show that such a low-cost approach does, in fact, capture a

significant part of the relationship between words of different languages when it comes to senti-

ment. That is, a single transformation (linear in the case of our work) is enough to learn a projection

which allows one to use labeled English data to aid in sentiment analysis.

2.3.2 Parallel-Only

An alternative approach to offline alignment is the parallel-only approach. Approaches which fall

into this group, such as bilingual compositional model (BiCVM) (Hermann and Blunsom, 2013)

and bilingual auto-encoder (BAE) (Sarath Chandar et al., 2014), rely purely on sentence-aligned

parallel data to train a model with similar representations. Such approaches can be effective, but

require data that is expensive to collect and is not always available. Another drawback is that these

approaches can be affected by the writing style of the parallel text (Bengio and Corrado, 2015).

2.3.3 Jointly-Trained Model

Combining the offline alignment and parallel-only algorithms is a third class of jointly-trained

approaches. These approaches jointly optimize the monolingual objective at the same time as the
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cross-lingual objective, making use of both monolingual and parallel data. When looking at the

cost of parallel data, approaches like those of Klementiev et al. (2012) and Zou et al. (2013) use

word-aligned data in order to learn the fine-grained cross-lingual features and tend to be quite

slow, while that of Bengio and Corrado (2015) relies on sentence-aligned data and is faster than

other jointly-trained models. While these models are cheaper than parallel-only approaches, it is

still quite expensive to obtain a good set of word or sentence alignments for many languages, a

problem we sought to avoid.

A lower-cost alternative to these expensive jointly trained models was proposed by Duong

et al. (2016) and later used to project multiple languages in the same vector space (Duong et al.,

2017). The model involved creating and making use of translations produced using a bilingual dic-

tionary during training. Using expectation-maximization-inspired training, sentence translations

were produced by selecting translations of words based on context to deal with polysemy, and this

approach demonstrated improvements on the simple linear transformation method. However, even

this model uses a significantly larger amount of data than the methods used in this work, with its

smallest dictionary being composed of 35,000 word pairs compared to our largest model of 9500

words for both translation and sentiment regression.

2.4 Cross-Lingual Sentiment Analysis

Previous approaches to cross-lingual sentiment analysis can be classified into two main categories:

either i) rely on parallel corpora to train BWE’s (use pre-trained embeddings) (Chen et al., 2016;

Sarath Chandar et al., 2014; Tang and Wan, 2014), or ii) use translation systems (Zhou et al., 2015,

2016) in order to obtain aligned inputs to learn to extract features which work on both languages.

This allows them to have their training and testing data in the same vector space. However many

languages have no MT system, and it is extremely expensive to create one on a language-by-

language basis.

3 Data

3.1 Affective Norms for English Words

For fine-grained sentiment regression we used Affective Norms for English Words (ANEW) (Bradley

and Lang, 1999b). The creators of ANEW aimed to provide emotional ratings for a relatively large

number of words in the English language.

ANEW falls inside an assumed framework where all human emotion is located in a space with

three basic underlying dimensions, in which the entire range of human emotions can be arranged.
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Low Stimulus High Stimulus
Arousal Relaxed (2.39) Infatuation (7.02)

Dominance Victim (2.69) Confident (7.68)

Valence Death (1.61) Beauty (7.82)

Table 1: Examples of words on each end of the spectrum for each of the three dimensions. Numeric

stimulus value is placed within the brackets.

The first dimension, valence, ranges from pleasant to unpleasant; the second dimension, arousal,

ranges from calm to excited; and the third dimension, dominance, ranges from in-control to out-

of-control.

Bradley and Lang (1999b) used a nonverbal pictographic measure, the Self-Assessment Manikin

(SAM) (Bradley and Lang, 1994), to measure stimuli across these three dimensions. The figures

in the SAM consist of bipolar scales depicting different values along each of the three emotional

dimensions. For example, when considering valence SAM ranges from a frowning unhappy figure

to a smiling happy figure, and similarly for the other dimensions. Using this test, Bradley and

Lang were able to arrive at a numerical value for each dimension ranging from 1 to 9; where 1

is the low stimulus (unpleasant, calm, in-control) and 9 is the high stimulus (pleasant, excited,

out-of-control).

Warriner et al. (2013) used crowd-sourced numerical ratings directly and anchored their scales

in the same direction as previous work done by Bradley and Lang. Warriner et al. also showed that

the usage of numerical ratings through online crowd-sourcing highly correlates with SAM results

from ANEW.

3.2 Word Lists

Translation Word List For the process of learning a translation matrix from one language to

the other, a lexicon of approximately 10,000 English words was obtained online by scraping the

most commonly used words as determined by n-gram frequency analysis in Google’s “Trillion

Word Corpus”3. The lexicon was then translated using Google Translate4 in order to obtain cor-

responding words in Spanish and traditional Chinese. For alignment lists of smaller sizes during

experimentation, a random subset of the larger list was selected. During the selection we discarded

any words which were not in the target language vector space and whose translation was not in the

source language(s) vector space(s).

3https://github.com/first20hours/google-10000-english
4https://translate.google.com/
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Binary Sentiment Word List For the task of binary sentiment classification we used a list5 curated

by Hu and Liu (2004b) containing both positive and negative English opinion words (or sentiment

words). Google Translate was used to translate the list into the other languages to obtain cross-

lingual word pairs. During training and testing, we made sure to balance the dataset and to discard

words that were not in the vector space of the target language or whose translation was not in the

vector space of the source language(s).

3.3 Twitter Data

In order to emulate previous work for comparison, we follow the same procedure for the procure-

ment of data. Following Hu et al. (2013), Tang et al. (2016), we scrape Twitter for positive and

negative tweets, defined as containing a positive or negative emoticon, as manual labeling of a

large amount of sentences from other sources is not feasible. We scraped 5 million positive and 5

million negative tweets.

The Twitter data was preprocessed in the following ways:

• The tweets were tokenized using NLTK’s tweet tokenizer (Loper and Bird, 2002), as opposed

to the previously used TwitterNLP (Gimpel et al., 2011), but we believe that the differences

between the two tokenizers are not significant.

• URLs, hashtags, and “@” symbols were removed.

• Tweets fewer than 7 words long (after the previous steps) were removed.

3.4 Word Embeddings

For the second task of this paper, we used precomputed word embeddings in multiple languages.

English Vector Space Model For English, we used a model pre-trained on part of the Google

News dataset (which is composed of approximately 100 billion words).6 The words are repre-

sented by 300-dimensional vectors.

Spanish Vector Space Model For the Spanish word embeddings, we opted to use a model pre-

trained on the Spanish Billion Word Corpus (Cardellino, 2016). It consists of just under 1.5 billion

words compiled from a variety of Spanish resources. As with the English model, the words are

represented by 300-dimensional vectors.

5https://github.com/williamgunn/SciSentiment
6https://code.google.com/archive/p/word2vec/
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Chinese Vector Space Model For Chinese word embeddings, we learned our own vector repre-

sentations using a Wikimedia dump7 of around 250,000 articles composed of around 150 million

words from articles in both simplified and traditional Chinese. We used OpenCC8 to translate the

articles in simplified Chinese to traditional. To segment the text into tokens we used Jieba9. Fi-

nally, to create the actual word embedding model we used Gensim (Řehřek and Sojka, 2011) with

the minimum count set to 1, using continuous bag of words (CBOW), a window of 8, and vector

dimension set to 300.

3.5 Review Data

In this subsection, we discuss the data used to replicate the review classification task done by Chen

et al. (2016) as a means of validating the usability of our model. This experiment was done using

only English and Chinese because there was no Spanish data for this task and the Arabic review

data-set that Chen et al. (2016) used was not freely available.

Labeled English Reviews Following Chen et al. (2016), we obtained a balanced dataset of 700,000

reviews of businesses on Yelp from Zhang et al. (2015) with their sentiment ratings as labels rang-

ing from 1 for very negative to 5 for very positive.

Labeled Chinese Reviews Here we use a dataset from Lin et al. (2015). Their work provides

hotel reviews, with labels ranging from 1 for very negative to 5 for very positive. In order to fairly

compare our work with that of Chen et al. (2016), we use 10,000 reviews for model selection, and

another unseen 10,000 as our test set.

4 Enriched Embedding

4.1 Methods

Here we present the techniques used to learn sentiment-enriched embeddings. For consistency with

previous work (Tang et al., 2016), we will first describe the techniques used to capture traditional

context-based word embeddings, followed by the techniques used to encode sentiment polarity. We

will then describe how we combine the two models together to enrich the context-based sentiment

embeddings. The structure of described models is presented in Figure 1.

7https://dumps.wikimedia.org/zhwiki/latest/
8https://github.com/BYVoid/OpenCC
9https://github.com/fxsjy/Jieba
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Figure 1: The neural network architectures used in experiments. (a) Context-Based Embeddings

(CBOW). (b) Sentiment Regression (ANEW). (c) Combined context, sentiment regression loss.

(d) Sentiment Classification (Tweets). (e) Combined context, sentiment classification loss.

Unlike previous work, we make use of the TensorFlow library (Abadi et al., 2016). Code for

our both the traditional CBOW and enriched sentiment model are provided with the supplemental

data.

4.1.1 Context-Based Embeddings

We will focus specifically on the CBOW technique and how it was modified and extended for

this work. The traditional CBOW approach attempts to predict a word wi given a context hi,

which is composed of {wi−c, ...,wi−1,wi+1, ...,wi+c} where c is the context size. That is, given the

surrounding context words preceding and following a given word, we try to automatically predict

the current word.

The lookup layer maps each word to the corresponding continuous vector representation using

a lookup table. For our CBOW implementation, the output of the lookup layer would be the mean

of the context vectors (Equation 1), but for the sentiment-embedding models the output is the

concatenation of the extracted context vectors into a new vector as is with previous work (Equation

2).
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Olookup =
2c

∑
i

ei

2c
(1)

Olookup = [ei−c,ei−c+1, ...,ei+c−1,ei+c] (2)

In either case, the output of the lookup layer is then passed to a linear layer, such that:

Ol1 =W ×Olookup +b (3)

We experimented with and without the addition of an htanh non-linearity such that:

htanh(x) =


0 if x < 0

x if 0≤ x≤ 1

1 if x > 1

(4)

As with most embedding creation, we rely on noise-contrastive estimation to speed-up the training

process, instead of the normal softmax.

4.1.2 Sentiment-Based Embeddings

4.1.2.1 Binary Classification

The network used to encode sentiment in the case of binary classification, Figure 1 (d), is a re-

implementation of the method that is described by Tang et al. (2016). During training, the gold

labels would be a [1,0] if a tweet was positive and [0,1] if negative. The initial layers are all

equivalent to those described above, and the final layer is a softmax layer with a cross-entropy

error between the gold and predicted distributions as the loss of this network.

4.1.2.2 ANEW Regression

We wanted to replicate improvements of previous work without having the corpus limitation that

came with the approach. Previous work (Abdalla and Hirst, 2017) has shown that it is possible to

predict the ANEW values of a word given embeddings. Here we describe three approaches tested

using ANEW: i) Valence Regression, ii)Valence Window Regression, iii) Full ANEW Regression.

The approaches work as follows:

1. Given an un-enriched word embedding model, and the ANEW lexicon, train a simple linear

regressor that predicts the valence of a word given the vector representation of the word for

the first two approaches, and three regressors that predicts each ANEW axis for the third

approach. We used linear SVM as our regressor.
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2. For each word in the vocabulary, use the trained regressor(s) to predict the valence (and

arousal and dominance for the third approach) of the word. These predicted values will

serve as the “gold” label during training of the enriched embedding.

3. Approach i): When training the embedding, instead of binary classification, treat this as

a regression problem where the task is to predict the associated valence from Step 2, given

hi. The error function used for this task is the mean squared error (MSE).

Approach ii): When training the embedding, instead of binary classification, we again

treat this as a regression problem. However, instead of predicting the valence of wi, here we

attempt to predict the average valence of each word in context including the current word

(i.e., the average of predicted values for each word in the set {wi and hi}). The error function

used for this task is the mean squared error (MSE).

Approach iii):When training the embedding, instead of simple regression as with the

previous approaches, here we use the window approach described above three times, one for

each ANEW dimension. The entire sentiment loss, where any loss is denoted by L, is an

equal split between MSE loss for each of the axes:

Lsenti =

(
1
3
Larousal +

1
3
Ldominance +

1
3
Lvalence

)
(5)

4.1.3 Enriching Context-Based Embeddings with Sentiment

4.1.3.1 Hybrid Classification Models

MODELS: All variations of SE-HyPred

In this model, the context-based embeddings are combined with the original binary classifica-

tion sentiment embeddings. The combined loss function is:

Lcombined = αLcontext +(1−α)Lclassification (6)

Where α = 0.5 for consistency with previous work. All of the layers except for the final predictive

layers are shared as shown in Figure 1(c).

4.1.3.2 Hybrid Regression Models

MODELS: All variations of SE-HyReg

In these models, Figure 1(e), the context-based embeddings are combined with the variety of

regression-based sentiment models described in Section 4.1.2.2. The combined loss function is:

Lcombined = αLcontext +(1−α)Lregression (7)
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As with before, α = 0.5, and all of the layers except for the final predictive layers are shared

between both the context-based and sentiment-based embeddings.

4.1.4 Enriching Context-Based Embeddings with Semantic Information

We had briefly highlighted, in Section 2 (Previous Work), enrichment algorithms that made use of

semantic information to enrich embeddings (as opposed to sentiment information). However, as

sentiment is often encoded in semantics, we describe the approach that had the best performance

on sentiment tasks from the work of Faruqui et al. (2015).

The best-performing model (on their tests of sentiment analysis) was the model retrofitted with

PPDB. Given traditionally created word-vectors, the enrichment of these word vectors is then done

by iteratively transforming the vector space such that the words which are paraphrases of each other

also have closer representation in the vector embedding space. We used 10 iterations, as recom-

mended by the authors. In the remainder of this work, we refer to this model as CBOW+PPDB.

4.1.5 Network Parameters

In this section, we describe the network parameters used for the results presented in the experi-

ments. For consistency with previous work, and to enable fair comparisons, we used the same

parameters for all of the shared networks (i.e., same context window, and layer parameters, etc., so

that without enrichment they would have encoded the same information, thereby measuring only

the effects of the enrichment process). Where possible we used the parameters described by Tang

et al. (2016). Where such parameters were not defined, we used ones we thought made sense given

the data and models at hand, making sure to stay consistent throughout all of the networks.

The word embeddings were initialized from a random uniform distribution U(−0.01,0.01).

The weights of the linear layers were initialized from a random uniform distribution function

U( −0.01
layer length ,

0.01
layer length). The window size was set to 7 (3 preceding words, and 3 following

words). The embedding size was set to 50. AdaGrad was used for parameter updating, with

an initial value of 0.1.

The minimum occurrence requirement (often used to filter non-words and misspellings) was

set to 10. The threshold for down-sampling high-frequency words was set to 10−3. 64 words were

negatively sampled. The batch size was set to 200, and we did 5 iterations (epochs) over the corpus.

4.2 Experiments and Results

We conducted experiments to determine whether the sentiment-enriched embeddings improve per-

formance for sentiment-related tasks (e.g., binary word sentiment classification), and what their

effect is on traditional tasks that are not explicitly sentiment-related (e.g., document classification).
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The experiments are split into two main categories: (1) Word-level (upstream) tasks: i) Binary

sentiment classification, ii) Fine-grained sentiment regression, iii) Analogy evaluation, and (2)

Sentence-level (downstream) tasks: i) SemEval 2013 tweet classification, ii) Document classifica-

tion.

Table 2 defines the different network setups used for experimentation and assigns each of them

a name by which they will be referred to in later sections.

Embedding htanh Sentiment Output

Word2Vec (CBOW) − Classification

CBOW+PPDB − Vectors retrofitted using PPDB, (Faruqui et al., 2015)

SE-HyPred + Classification, (Tang et al., 2016)

SE-HyPred-S − Classification

SE-HyReg-V + Valence regression on current word

SE-HyReg-VW + Valence regression on current context window + word

SE-HyReg-VWS − Valence regression on current context window + word

SE-HyReg-VADWS − Regression with all ANEW on current context window + word

SE-HyReg-VADWS (R=1) − Regression with all ANEW on current context window + word

Table 2: The models used in our experiment. The htanh column uses ‘+’ to denote the inclusion

of the non-linearity, and ‘−’ for exclusion. ‘SE-HyPred’ denotes ‘S’entiment ‘E’nriched embed-

dings where the task at hand was classification (‘PRED’diction). ‘SE-HyReg’ denotes ‘S’entiment

‘E’nriched embeddings where the task at hand was ‘Reg’ression. ‘V’ = regression on valence, ‘A’

= regression on arousal, ‘D’ = regression on Dominance, ‘W’ = window approach, ‘S’ = no htanh,

‘R’- if we recurse (use ANEW classifier trained on enriched embeddings).

4.2.1 Sentiment Tasks

4.2.1.1 Word-Level Binary Sentiment Classification

In this task, we tested whether word embeddings enriched with sentiment information resulted in

improved performance for predicting word-level sentiment classification. This was a task also done

in previous work, allowing us to compare our results with predecessors to verify implementation

and findings. A classifier whose task was to predict whether a word is positive or negative was

trained on the following three lexicons: BL-Lexicon (Hu and Liu, 2004a)10, MPQA (Wilson et al.,

10https://www.cs.uic.edu/∼liub/FBS/sentiment-analysis.html
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2005)11, and NRC-Lexicon (Mohammad and Turney, 2013)12.

We performed both 5-fold and 10-fold cross-validation to ensure consistency in result compari-

son with previous work. We trained supervised classifiers (linear SVMs), and present the averaged

training accuracy in Table 3. The classes within the data are heavily unbalanced, and therefore we

balanced the dataset before training and testing.

Embedding
5-fold CV 10-fold CV

BL MPQA NRC BL MPQA NRC
Word2Vec (CBOW) 66.9 65.9 64.9 68.4 66.5 65.0

CBOW+PPDB 75.8 74.2 65.7 76.1 74.4 65.8

SE-HyPred 75.1 70.4 66.6 75.1 70.4 66.6

SE-HyPred-S 77.3 73.0 70.0 77.6 73.2 69.9
SE-HyReg-V 68.7 66.9 63.1 69.0 67.1 63.0

SE-HyReg-VW 69.5 67.0 63.7 69.4 67.0 63.8

SE-HyReg-VWS 76.0 74.1 68.7 75.7 74.1 68.7

SE-HyReg-VADWS 76.3 72.5 68.1 76.3 73.1 68.0

SE-HyReg-VADWS (R=1) 76.8 73.9 68.7 77.4 74.1 68.7

Table 3: The accuracies from the word-level binary sentiment classification task. The best scores

in each column are bolded, and the second-best performing values are underlined.

Our results mimic the trend observed by Tang et al. (2016) for the first two models. The

absolute difference in performance between our results and theirs could be attributed to several

reasons. Firstly, although both methods use Twitter data, the exact tweets used, their topic of

conversation and such, is not something we could control for and therefore might have had an

impact on the results. Additionally, Tang et al. state only that they used a “trained supervised

classifier” without specifying which classifier. This could also be a cause behind the difference

in performance. Last, we balanced our testing and training dataset, but it is not clear whether the

previous authors have done the same.

However, although the specific numbers are different, the general trend between models that

appeared in the previous paper is preserved. Removing the non-linearity from the network (ap-

proaches containing “-S”) tends to perform better than models with the htanh layer. We also see

that considering the average of the current context (approaches containing “-W”) leads to a small

improvement over only the current word. SE-HyPred-S (implementation of previous work, but

after removal of htanh), and SE-HyReg-VADWS both outperform the baseline and the best of pre-

11http://mpqa.cs.pitt.edu/lexicons/subj lexicon/
12http://saifmohammad.com/WebPages/NRC-Emotion-Lexicon.htm
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vious work. The latter does so while not requiring the entire corpus to be labeled. Faruqui et al.

(2015)’s CBOW+PPDB performs well on MPQA but is outperformed by the baseline on NRC,

and the our techniques for both BL and NRC.

4.2.1.2 Word-Level Fine-Grained Sentiment Regression

The previous experiment showed that the new methods improved binary sentiment classification,

but we sought to establish whether this improvement in performance (for binary-sentiment classi-

fication) was present at fine-grained level. To do this, we regressed on the valence dimension of

ANEW lexicon. We used a linear model (SVR), 5-fold CV, and present the results in Table 4.

Embedding Valence MSE Binary F1-Score Ternary F1-Score

Word2Vec (CBOW) 1.46 72.0 56.5

CBOW+PPDB 1.36 69.1 56.6

SE-HyPred 1.35 75.7 56.9

SE-HyPred-S 1.28 74.8 59.7
SE-HyReg-V 1.43 71.4 54.3

SE-HyReg-VW 1.36 72.7 53.1

SE-HyReg-VWS 1.25 74.1 57.6

SE-HyReg-VADWS 1.25 74.8 57.7

SE-HyReg-VADWS (R=1) 1.26 74.1 57.4

Table 4: Results for both: i) word-level fine grained sentiment regression (mean-squared error

(MSE)) (first column) and ii) sentence-level SemEval tweet sentiment classification (for both the

binary and ternary setups), macro-F1 score (second and third column respectively). The best scores

in each column are bolded, and the second best performing values are underlined.

Again, removing the htanh layer (approaches containing the “-S” suffix) improves perfor-

mance. As aforementioned, models which take into account the average sentiment of the context

instead of just the current word (approaches containing the “-W” suffix) also tend to perform better.

Unlike the results in the binary classification task, we see that regressing leads to the better per-

forming models (as opposed to a tie in performance). Here Faruqui et al. (2015)’s CBOW+PPDB

does not beat the baseline of Tang et al. (2016)’s best model.

4.2.1.3 SemEval — Sentence-Level Sentiment Classification

Having confirmed that enrichment improves performance when it comes to word-level sentiment

tasks, we show that the improvements in performance carry over to the sentence-level sentiment
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tasks. To do this, we attempted the SemEval Task 2 — Sentiment analysis in Twitter (Nakov et al.,

2013), involving the sentiment classification of sentences.

In order to do sentence-level sentiment analysis, we used the principle of compositionality

(Frege, 1948) to construct sentence-level features. The compositionality principle states that the

meaning of a sentence, or other expression, is determined by the smaller units from which it is

composed (words in this case). Thus we used max, average, and minimum pooling layers to

construct sentence representations from the individual words.

The data used was the training and development datasets provided by SemEval 2013. As the

test-dataset “SemEval-2013Test” was not publicly available, we changed the experimental pro-

tocol. We trained classifiers on the training dataset “SemEval-2013Train”, using 5 fold cross-

validation, selecting the highest performing fold, and testing on the development set “SemEval-

2013Dev” (which we treated as our test-set). We must note that not all of the specific tweets in

either of the sets could be obtained, as the original tweets had either been deleted or had their

access policy changed.

We performed two different classification tasks: i) Binary positive/negative sentiment classi-

fication and ii) ternary positive/neutral/negative sentiment classification. For the results, shown

in Table 4, we present Macro-F1 which is defined as the average of F1-Scores across all of the

categories.

We reached numbers close to those of Tang et al. (2016), and observe a similar trend (but

smaller in magnitude) when it comes to improvement over the baseline. Interestingly, we see that

the original model developed by Tang et al. does indeed perform the best in the binary test, but

not by a large margin over the new methods (less than 2 points). However the original model

(‘SE-HyPred’) does not perform as well in the ternary case when compared to the new models. As

before Faruqui et al. (2015)’s CBOW+PPDB does not beat the baseline of Tang et al. (2016)’s best

model.

4.2.2 Non-Sentiment Tasks

We have shown that word embeddings enriched with sentiment information during creation re-

sult in more meaningful embeddings when it comes to tasks that are directly related to sentiment

analysis. However, previous work did not study the effect of enriching such embeddings on non-

sentiment related tasks. It may be that the gains in sentiment-related tasks come at a price of the

general embedding quality (given that the loss function weighs context and sentiment equally). The

following tasks study this effect to see whether the enriched embeddings can be used for unrelated

tasks.
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Embedding P@1 P@5 P@10

Word2Vec (CBOW) 49 (0.28%) 306 (1.72%) 533 (3.00%)

CBOW+PPDB 66 (0.37%) 274 (1.54%) 488 (2.75%)

SE-HyPred 38 (0.21%) 150 (0.85%) 246 (1.39%)

SE-HyPred-S 127 (0.72%) 484 (2.73%) 854 (4.81%)

SE-HyReg-V 42 (0.24%) 232 (1.31%) 371 (2.09%)

SE-HyReg-VW 32 (0.18%) 140 (0.79%) 266 (1.50%)

SE-HyReg-VWS 207 (1.17%) 611 (3.44%) 1016 (5.73%)

SE-HyReg-VADWS 226 (1.27%) 700 (3.95%) 1160 (6.54%)
SE-HyReg-VADWS (R=1) 181 (1.02%) 674 (3.80%) 1079 (6.08%)

Table 5: Results from the Google analogy evaluation. Both the total count, and percentage of total

examples in test-set are shown. The best scores in each column are bolded, and the second-best

performing values are underlined.

4.2.2.1 Embedding Analogy Evaluation

The first non-sentiment task we studied was Google’s Embedding Analogy Task. Embeddings

are tested for their ability to predict the fourth word from the first three words, such that the first

and second word have a relationship to each other that is equivalent to that of the third and fourth

word: (e.g., Athens is to Greece as Madrid is to Spain). This can mathematically be represented as

attempting to find vector v such that:

arg max~v∈V cos(~v,~v2−~v1 +~v3) (8)

Table 5 presents both the total count and the percentage of the entire dataset to be captured. The

notation P@N is used to denote the number or percentage of times the correct vector is within the

N-closest vectors to~v2−~v1 +~v3. We removed words that were not found in the training data and

thus had no trained embedding. The results are quite poor, which is expected for normal embedding

trained on “proper” English text (Jastrzebski et al., 2017), and we believe the problem is further

exacerbated by the fact that Twitter data itself does not discuss all of the topics/relationships which

are represented in the dataset.

We observe that the models introduced by Tang et al. actually resulted in a decrease in embed-

ding quality for this task. Faruqui et al. (2015)’s CBOW+PPDB increased performance slightly

for P@1, but decreased for the other measures, and was largely eclipsed by the newer techniques.

As expected, the removal of htanh results in a notable increase in performance when compared to

all models with the non-linearity. We also notice here that looking at singular values seems to per-
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Embedding F1 (Accuracy)

Word2Vec (CBOW) 21.1 (74.5)

CBOW+PPDB 19.6 (72.6)

SE-HyPred 41.8 (79.9)

SE-HyPred-S 46.7 (81.9)

SE-HyReg-V 37.1 (79.3)

SE-HyReg-VW 35.3 (77.4)

SE-HyReg-VWS 46.5 (84.4)

SE-HyReg-VADWS 45.1 (84.2)

SE-HyReg-VADWS (R=1) 48.7 (85.4)

Table 6: Results of the document classification task. Since the dataset is not balanced, both Macro-

F1 and Accuracy are presented. The best scores in each column are bolded, and the second-best

performing values are underlined.

form better than the window approach, but window + all dimensions results in the best performance

against all models.

4.2.2.2 Document Classification Performance

We wanted to study whether the increased performance on the analogy task (hinting at an improved

embedding in the general sense) would carry over to downstream non-sentiment related tasks.

To study this, we considered the classic task of document classification. Given N classes, and

unlabeled documents, we asked whether we could learn a classifier for the documents.

For this problem, we used the R8 dataset (Cardoso-Cachopo, 2007), which is composed of 7674

single-labeled Reuters news articles split into 8 topics. Cardoso-Cachopo removed any document

which could have been assigned more than a single label. As the classes were heavily unbalanced

during both training and testing, we present both the macro-F1 Score and the unweighted accuracy

as well. Table 6 shows that again, the removal of htanh layer results in a significant increase in

embedding performance. Here CBOW+PPDB performs worse than both baselines. We again see

that regression on ANEW values outperforms previous approaches, and competes with improved

versions of past approaches that require much labeled data.

22



5 Cross-Lingual Translation

5.1 Methods

5.1.1 Translation Matrix Technique

As described by Mikolov et al. (2013b), the translation matrix technique assumes that we are given

a set of word pairs and their associated vector space representations. More specifically, we are

given j word pairs, {xi,zi} j
i=1 where xi ∈ Rn is a word vector from the source language of word

i and zi ∈ Rm is the word vector representation of the corresponding translated word in the target

language.

We then want to find a transformation matrix W such that Wxi approximates zi. We learn this

by solving the following optimization problem:

min
W

j

∑
i=1
||Wxi− zi||2

Instead of solving with stochastic gradient descent, we instead opt to use the closed-form solution.

To translate a word from source language to target language, we can map it using z =Wx, and

then find the closest word in that language space using cosine similarity as the measure of distance.

The method of testing was Monte Carlo cross-validation run 10 times with a split of 90% training

data and 10% test data.

5.1.2 Models

5.1.2.1 Binary Sentiment Analysis Model

The sentiment analysis model, Figure 2(a), is a simple linear support vector machine (SVM) clas-

sifier. Implemented using Sci-kit Learn’s SGDClassifier function (Pedregosa et al., 2011), this

model takes a word represented as a vector with dimension of 300 and outputs a prediction of

either −1 or +1 (for negative and positive respectively). The classifier itself performs stochastic

gradient descent (SGD) with l2 regularization to arrive at the best classification.

The training procedure of this model is quite simple and involves only the target language.

The model is trained only on word embeddings from the target language but tested on embeddings

returned by the translation of words originally from the source language(s). We made sure that the

English translation of the test words had not been seen before in training. The training/testing split

was changed to 80% and 20% from the previous 90%/10% to account for the smaller number of

examples in the dataset (and the fact that we wanted to test on a representative sample of the data).
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(a) Binary Sentiment Classification (b) Fine-Grained Sentiment Re-
gression

(c) Cross-lingual Review Classifi-
cation

Figure 2: The three models used in the experiments. All the models are trained only on English

word vectors, and are tested on Chinese and Spanish word vectors which are transformed to English

word vectors by the matrix translation method.

5.1.2.2 Fine-Grained Sentiment Analysis Model

The fine-grained sentiment analysis model in Figure 2(b) is a regression model to predict the

ANEW values for each of the three dimensions. For our experiment we built a regressor for each

of the 3 dimensions whose input is a 300-dimension vector and whose output is a real number from

1 to 9. The regressor used was a Bayesian Ridge regressor, which estimates a probabilistic model

of the regression problem. The prior for the parameter w is given by a spherical Gaussian:

p(w|λ ) = N (w|0,λ−1Ip) (9)

The priors α and λ are chosen to be gamma distributions, the conjugate prior for the precision

of the Gaussian. The resulting model is similar to that of the Ridge regression. The model was

implemented using Sci-kit Learn’s with hyperparameters alpha 1 and alpha 2 set to 1.

The training procedure of this model is quite simple and similar to that of the previous model.

Again it only trains on the vector of the target language, and is tested purely on words from the

source language whose translation into the target language were not seen in the training of the

regressor (so that there may be no chance of skewing the results). The training/testing split here

was 75%/25%.
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5.1.2.3 Review Classification Model

For the task of review classification, another model Figure 2(c), was built to make use of the

previously described fine-grained sentiment analysis model. The classifier used for this task is a

logistic regression classifier. For a given review ri in the target language, composed of n words,

we construct a 1×Max length sentiment vector (where Max length is the number of words of the

longest target review). We construct this vector by passing in the word embedding for every word

into the sentiment analysis model and placing the resulting values (of 1 to 9) into the constructed

array. The array is then padded with 0’s in order to make it of length Max length.

For reviews in the source language, the process is similar, with the only change being that the

words are first translated from their original vector space to that of the target language before being

passed into the sentiment classifier. Once the review vector has been constructed, it is passed to

the classifier to produce a classification of 1 to 5.

As with the previous classifier, the training procedure is quite simple and involves only the

target language (i.e., the classifier is trained only on reviews which are originally from the target

language), but it is tested on reviews only from the source language.

5.2 Experiments and Results

5.2.1 Translation Accuracy

1000 WORDS 4500 WORDS 8500 WORDS
Translation P@1 P@5 P@1 P@5 P@1 P@5

EN→ ES 20.3 34.6 33.42 46.13 34.79 47.79

EN→ CN 2.4 11.6 7.60 20.29 8.87 23.01

Table 7: Accuracy of the word translation method. P@1 and P@5 represent Top-1 and Top-5

accuracy respectively. The columns are split by number of words used in both testing and training

the translation matrix.

We first measure the accuracy of the matrix translation method. The data used is described

in section 2.1. Table 7 shows the effect of training size (number of words) on the accuracy of

the translation matrix method. As expected (and previously shown by Mikolov), the translation

accuracy increases with more training examples, as shown in Figure 3. It is also interesting to

note that Chinese, which is less like English than Spanish is, also suffers a lower translation score

across both categories. However, we see that this large drop is not represented significantly in later

portions.
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Figure 3: Top-1 and Top-5 Accuracy for Spanish and Chinese using various amounts of training

data.

5.2.2 Binary Word Sentiment Classification

The second experiment tested the binary cross-lingual sentiment classification capabilities of the

matrix translation method, i.e., how well can we differentiate between positive and negative words

of a language we have not seen before using a model trained only on English words? Here we

used the binary sentiment word list described in section 2.1.2 in order to assess whether or not

the translation matrix would preserve sentiment even with poor translation accuracy scores. Given

that the classifier is trained only on the target language vectors, we used the translation matrices

produced previously to translate a word from source to target language embedding space.

As we can see in Table 8, even with low translation accuracy, such as the 1000-word Chinese

translation matrix, we are able to achieve good binary sentiment classification. Another observa-

tion to note is that a significant drop in translation accuracy results in only a relatively small drop

in sentiment classification performance.

5.2.3 Fine-Grained Sentiment Analysis

In the third experiment, we tested the accuracy of cross-lingual regression when it comes to pre-

dicting a word’s value in any of the 3 ANEW dimensions of valence, arousal, and dominance.

That is to say, we attempted to predict the valence, arousal, and dominance of words in the source

language, having only trained on the target language. As we saw in the last experiment, massive
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Figure 4: F-Measure of binary sentiment classifier with varying amounts of training data for both

Spanish and Chinese.

Spanish Chinese
1000 Words
Precision 0.77 0.76

Recall 0.79 0.74

F-Measure 0.78 0.75

4500 Words
Precision 0.82 0.79

Recall 0.82 0.77

F-Measure 0.82 0.78

8500 Words
Precision 0.83 0.80

Recall 0.83 0.77

F-Measure 0.83 0.75

Table 8: Results of the binary sentiment classification task for each language with each translation

matrix.
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(a) Arousal (b) Dominance (c) Valence

Figure 5: Mean squared error for each regression problem with varying amounts of training data

for all three of the ANEW dimensions. (Lower is better).

drop-off in translation accuracy need not result in a massive drop-off in sentiment analysis. As

this is a regression problem, Table 9 presents both the r2 and the mean squared error (MSE) as

measurements of model performance. Given the data’s scale from 1 to 9 with an average standard

deviation among participants for each word of 2.02, an average mean squared error of approxi-

mately 1 shows that our model has high predictive power.

5.2.4 Sentiment Classification of Reviews

In the fourth experiment, we sought to show that the regressor developed in section 3.3.2 could be

used as a feature extractor in performing other tasks. To this end, we replicated the experiment by

Chen et al. (2016), where we predicted hotel ratings from Chinese reviews using a model trained

only on English restaurant reviews.

Chen et al. (2016) had two baseline models which they beat using their new model: i) a logistic

regression classifier (line 1 in Table 10), and ii) a non-adversarial variation of adversarial deep

averaging network (ADAN) (line 2), referred to as DAN (deep averaging network), which is one

of the state-of-the-art neural models for sentiment classification. These were the only two models

which did not make use of either labeled Chinese examples or a MT system, and therefore were

chosen to serve as a fair comparison to our method. Both models use bilingual word embeddings

as an input representation to map words from both languages into the same vector space. Our own

model (line 3) uses logistic regression on sentence arrays created by predicting their ANEW values

for each dimension to predict review scores.

We were able to match the accuracy of the baseline systems implemented by Chen et al. (2016)

for Chinese reviews, Table 10.
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Spanish Chinese
1000 Words
Arousal 0.24 (0.84) 0.24 (0.84)

Dominance 0.31 (0.73) 0.23 (0.83)

Valence 0.48 (2.08) 0.32 (2.78)

4500 Words
Arousal 0.33 (0.76) 0.28 (0.83)

Dominance 0.39 (0.63) 0.28 (0.74)

Valence 0.54 (1.81) 0.44 (2.27)

8500 Words
Arousal 0.33 (0.77) 0.29 (0.81)

Dominance 0.38 (0.65) 0.31 (0.69)

Valence 0.54 (1.78) 0.43 (2.26)

Table 9: Results of the fine-grained sentiment regression task for each language with each transla-

tion matrix. Provided in the form of r2(MSE).

Approach Accuracy
Logistic regression (BWE) 30.58%

Deep averaging network (DAN) 29.11%

Logistic regression (ANEW) 28.05%

Table 10: Model performance on sentiment extracted vectors versus previous approaches. Logistic

regression on predicted sentiment (ANEW) values preformed similarly to both regression and DAN

on BWEs.
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These results demonstrate that our sentiment regressors encoded enough information into the

sentence vectors to achieve similar results to the baseline models which took bilingual word em-

bedding as input, and that the fine-grained sentiment model can be used to extract sentiment-based

features for other tasks in languages where aligned data might be expensive to obtain.

6 Conclusion

In this work, we have introduced two new techniques: i) a novel and generalizable way of incor-

porating sentiment information into word embeddings without the need of a labeled corpora, and

ii) a novel way of leveraging the wealth of labeled sentiment data in English to aid with sentiment

analysis in languages with fewer resources.

We subsequently studied the effect of enrichment on both sentiment and non-sentiment related

tasks, showing that the enriched embeddings seem to improve traditional (CBOW) embeddings

both at the word level and the sentence level for all of the tasks tested. This observation suggests

that sentiment information and other linguistic properties are not completely encoded by the dis-

tributional hypothesis; i.e. not fully extracted by looking at the direct neighbors of a word. In

future work, we can extend the idea that representations of words can be further enhanced by in-

corporating external information (as evidenced with sentiment in this case). However, additional

experiments are required to see if the observations hold for traditional text corpora (such as that of

Wikipedia), although preliminary testing seems to indicate that they do.

Our work has also shown that the matrix translation method can be used to infer and predict

cross-lingual sentiment. More notably we observe that: i) sentiment is preserved accurately even

with sub-par translations, and ii) this low-cost approach also maintained fine-grained sentiment

information between languages. These observations were further cemented by the experiments

performed where we showed that with as low as 11% P@5 translation accuracy, we are still able

to predict sentiment with 75% accuracy.

Throughout the experiments, we saw the general trend of reduced error and increased accuracy

with more training data. In our fine-grained experiment we showed that it was possible to get

a MSE lower than 2 on a scale from 1 to 9. However, the increases in accuracy start to diminish

around 8500 words for both experiments. The cause of this leveling could be an inherent limitation

of the either the translation technique used or the classification or regression algorithms used. In

order to determine which, more experiments need to be done by exploring different translation

algorithms (CCA (Faruqui and Dyer, 2014), Orthogonal transformation (Smith et al., 2017)), and

studying whether using non-linear functions improves sentiment value prediction.

The most obvious extension to the work presented here is combining cross-lingual sentiment

analysis with the mono-lingually enriched embeddings. In the next iteration of this work, we
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hope to study the effect of translation on enriched word embeddings. Using enriched embeddings

might allow us to break the plateau in performance observed with 8500 words. Studying the

topological sentiment map produced by enriched embeddings might lead to insights regarding how

the enrichment itself works.

7 Discussion

We hypothesize that having sentiment framed as regression instead of classification is conducive to

achieving a sentiment gradient in the embedding space (when compared to pairwise classification).

Framing the problem as regression also dealt with limitations with previous work; their inability to

handle sentences with a neutral sentiment score (as it is unclear how one would accurately extract

such labels from online datasets without manual human labeling) Tang et al. (2016). Yet the ability

to do this is crucial for an actual model of human emotions, as not all documents carry sentiment

value.

It was interesting for us to observe that our proposed techniques outperformed Faruqui et al.

(2015)’s technique on Google’s Analogy task; as we only enrich for sentiment, while they enrich

using semantic information. However, the results of Faruqui et al. (2015)’s technique when com-

pared to our own have to have certain factors taken into consideration. Their work did not study

the effects of enrichment on text from social platforms which is different from that of newspapers

(the source of their word-embeddings). The word-embeddings of their original work were of size

300, and trained on a massive set of documents when compared to our 50-dimensional word em-

beddings and 10 million tweets. All of these could be reasons why Faruqui et al. (2015)’s method

did not perform as well.

The techniques used here could be used to study changes in sentiment for words in a single

language over time, leading to new insights or re-affirming old ones. Future analysis could compare

different transformations and their effect on sentiment analysis. The ability to produce a “stable”

topological sentiment map could also be used to evaluate algorithms which create embeddings as

well.

Both works lack the ability to handle polysemy and this subsequently impacts both the embed-

ding quality but also sentiment prediction (as different words carry different sentiment values in

different contexts). Future work could possibly try to incorporate sentiment into embeddings that

are also enriched with polysemic information.
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