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The quantification of lexical semantic relatedness has many applications in NLP, and many dif-
ferent measures have been proposed.We evaluate five of these measures, all of which use WordNet
as their central resource, by comparing their performance in detecting and correcting real-word
spelling errors. An information-content–based measure proposed by Jiang and Conrath is found
superior to those proposed by Hirst and St-Onge, Leacock and Chodorow, Lin, and Resnik. In
addition, we explain why distributional similarity is not an adequate proxy for lexical semantic
relatedness.

1 Introduction

The need to determine semantic relatedness or its inverse, semantic distance, between two

lexically expressed concepts is a problem that pervades much of natural language pro-

cessing. Measures of relatedness or distance are used in such applications as word sense

disambiguation, determining the structure of texts, text summarization and annotation,

information extraction and retrieval, automatic indexing, lexical selection, and the auto-

matic correction of word errors in text. It’s important to note that semantic relatedness

is a more general concept than similarity; similar entities are semantically related by

virtue of their similarity (bank–trust company), but dissimilar entities may also be se-

mantically related by lexical relationships such as meronymy (car–wheel) and antonymy

(hot–cold), or just by any kind of functional relationship or frequent association (pencil–

paper, penguin–Antarctica, rain–flood). Computational applications typically require relat-

edness rather than just similarity; for example,money and river are cues to the in-context

meaning of bank that are just as good as trust company.
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However, it is frequently unclear how to assess the relative merits of the many com-

peting approaches that have been proposed for determining lexical semantic related-

ness. Given a measure of relatedness, how can we tell whether it is a good one or a poor

one? Given two measures, how can we tell whether one is better than the other, and

under what conditions it is better? And what is it that makes some measures better than

others? Our purpose in this paper is to compare the performance of a number of mea-

sures of semantic relatedness that have been proposed for use in applications in natural

language processing and information retrieval.

1.1 Terminology and notation

In the literature related to this topic, at least three different terms are used by different

authors or sometimes interchangeably by the same authors: semantic relatedness, similar-

ity, and semantic distance.

Resnik (1995) attempts to demonstrate the distinction between the first two by way

of example. “Cars and gasoline”, he writes, “would seem to be more closely related than,

say, cars and bicycles, but the latter pair are certainly more similar.” Similarity is thus a

special case of semantic relatedness, and we adopt this perspective in this paper. Among

other relationships that the notion of relatedness encompasses are the various kinds of

meronymy, antonymy, functional association, and other “non-classical relations” (Mor-

ris and Hirst, 2004).

The term semantic distance may cause even more confusion, as it can be used when

talking about either just similarity or relatedness in general. Two concepts are “close”

to one another if their similarity or their relatedness is high, and otherwise they are

“distant”. Most of the time, these two uses are consistent with one another, but not al-

ways; antonymous concepts are dissimilar and hence distant in one sense, and yet are

strongly related semantically and hence close in the other sense. We would thus have
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very much preferred to be able to adhere to the view of semantic distance as the inverse

of semantic relatedness, not merely of similarity, in the present paper. Unfortunately, be-

cause of the sheer number of methods measuring similarity, as well as those measuring

distance as the “opposite” of similarity, this would have made for an awkward presen-

tation. Therefore, we have to ask the reader to rely on context when interpreting what

exactly the expressions semantic distance, semantically distant, and semantically closemean

in each particular case.

Various approaches presented below speak of concepts and words. As a means of

acknowledging the polysemy of language, in this paper the term concept will refer to a

particular sense of a given word. We want to be very clear that, throughout this paper,

when we say that two words are “similar”, this is a short way of saying that they denote

similar concepts; we are not talking about similarity of distributional or co-occurrence

behavior of the words, for which the term word similarity has also been used (Dagan,

2000; Dagan et al., 1999). While similarity of denotation might be inferred from similar-

ity of distributional or co-occurrence behavior (Dagan, 2000; Weeds, 2003), the two are

distinct ideas. We return to the relationship between them in Section 6.2.

When we refer to hierarchies and networks of concepts, we will use both the terms

link and edge to refer to the relationships between nodes; we prefer the former term

when our view emphasizes the taxonomic aspect or the meaning of the network, and

the latter when our view emphasizes algorithmic or graph-theoretic aspects. In running

text, examples of concepts are typeset in sans-serif font, whereas examples of words are

given in italics; in formulas, concepts and words will usually be denoted by c and w,

with various subscripts. For the sake of uniformity of presentation, we have taken the

liberty of altering the original notation accordingly in some other authors’ formulas.
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2 Lexical resource–based approaches to measuring semantic relatedness

All approaches to measuring semantic relatedness that use a lexical resource construe

the resource, in one way or another, as a network or directed graph, and then base the

measure of relatedness on properties of paths in this graph.

2.1 Dictionary-based approaches

Kozima and Furugori (1993) turned the Longman Dictionary of Contemporary English

(LDOCE) (Procter, 1978) into a network by creating a node for every headword and link-

ing each node to the nodes for all the words used in its definition. The 2851-word con-

trolled defining vocabulary of LDOCE thus becomes the densest part of the network:

the remaining nodes, which represent the headwords outside of the defining vocabu-

lary, can be pictured as being situated at the fringe of the network, as they are linked

only to defining-vocabulary nodes and not to each other. In this network, the similar-

ity function simKF between words of the defining vocabulary is computed by means of

spreading activation on this network. The function is extended to the rest of LDOCE by

representing each word as a list W � �w1� � � � �wr� of the words in its definition; thus,

for instance,

simKF(linguistics� stylistics)

� simKF(�the, study, of, language, in, general, and, of, particular,

languages, and, their, structure, and, grammar, and, history��

�the, study, of, style, in, written, or, spoken, language�) �

Kozima and Ito (1997) built on this work to derive a context-sensitive, or dynamic,

measure that takes into account the ‘associative direction’ of a given word pair. For

example, the context �car, bus� imposes the associative direction of vehicle (close words

are then likely to include taxi, railway, airplane, etc.), whereas the context �car, engine�
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imposes the direction of components of car (tire, seat, headlight, etc.).

2.2 Approaches based on Roget-structured thesauri

Roget-structured thesauri, such as Roget’s Thesaurus itself, the Macquarie Thesaurus

(Bernard, 1986), and others, group words in a structure based on categorieswithin which

there are several levels of finer clustering. The categories themselves are grouped into

a number of broad, loosely defined classes. However, while the classes and categories

are named, the finer divisions are not; the words are clustered without attempting to

explicitly indicate how and why they are related. The user’s main access is through the

index, which contains category numbers along with labels representative of those cate-

gories for each word. Polysemes are implicitly disambiguated, to a certain extent, by

the other words in their cluster and in their index entry. Closely related concepts might

or might not be physically close in the thesaurus: “Physical closeness has some impor-

tance . . . but words in the index of the thesaurus often have widely scattered categories,

and each category often points to a widely scattered selection of categories” (Morris and

Hirst, 1991). Methods of semantic distance that are based on Roget-structured thesauri

therefore rely not only on the category structure but also on the index and on the pointers

within categories that cross-reference other categories. In part as a consequence of this,

typically no numerical value for semantic distance can be obtained: rather, algorithms

using the thesaurus compute a distance implicitly and return a boolean value of ‘close’

or ‘not close’.

Working with an abridged version of Roget’s Thesaurus, Morris and Hirst (1991)

identified five types of semantic relations between words. In their approach, two words

were deemed to be related to one another, or semantically close, if their base forms sat-

isfy any one of the following conditions:

1. they have a category in common in their index entries;
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2. one has a category in its index entry that contains a pointer to a category of the

other;

3. one is either a label in the other’s index entry or is in a category of the other;

4. they are both contained in the same subcategory;

5. they both have categories in their index entries that point to a common

category.

These relations account for such pairings as wife and married, car and driving, blind and

see, reality and theoretically, brutal and terrified. (However, different editions of Roget’s

Thesaurus yield somewhat different sets of relations.) Of the five types of relations, per-

haps the most intuitively plausible ones — the first two in the list above — were found

to validate over 90% of the intuitive lexical relationships that the authors used as a

benchmark in their experiments.

Jarmasz and Szpakowicz (2003) also implemented a similarity measure with Roget’s

Thesaurus; but because this measure is based strictly on hierachy rather than the index

structure, we discuss it in Section 2.4 below.

2.3 Approaches using WordNet and other semantic networks

Most of the methods discussed in the remainder of Section 2 use WordNet (Fellbaum,

1998), a broad coverage lexical network of English words. Nouns, verbs, adjectives, and

adverbs are each organized into networks of synonym sets (synsets) that each represent

one underlying lexical concept and are interlinked with a variety of relations. (A pol-

ysemous word will appear in one synset for each of its senses.) In the first versions of

WordNet (those numbered 1.x), the networks for the four different parts of speech were

6



Budanitsky and Hirst Lexical Semantic Relatedness

not linked to one another.1 The noun network of WordNet was the first to be richly

developed, and most of the researchers whose work we will discuss below therefore

limited themselves to this network.2

The backbone of the noun network is the subsumption hierarchy (hy-

ponymy/hypernymy), which accounts for close to 80% of the relations. At the top of the

hierarchy are 11 abstract concepts, termed unique beginners, such as entity (‘something

having concrete existence; living or nonliving’) and psychological feature (‘a feature of

the mental life of a living organism’). The maximum depth of the noun hierarchy is 16

nodes. The nine types of relations defined on the noun subnetwork, in addition to the

synonymy relation that is implicit in each node are: hyponymy (IS-A) relation, and its in-

verse, hypernymy; six meronymic (PART-OF) relations — COMPONENT-OF, MEMBER-OF

and SUBSTANCE-OF and their inverses; and antonymy, the COMPLEMENT-OF relation.

In discussing WordNet, we use the following definitions and notation:

� The length of the shortest path in WordNet from synset ci to synset cj

(measured in edges or nodes) is denoted by len(ci� c j). We stipulate a global

root root above the 11 unique beginners to ensure the existence of a path

between any two nodes.

� The depth of a node is the length of the path to it from the global root, i.e.,

depth(ci)� len(root� ci).

� We write lso(c1� c2) for the lowest super-ordinate (or most specific common

subsumer) of c1 and c2.

1 We began this work with WordNet 1.5, and stayed with this version despite newer releases in order to
maintain strict comparability. Our experiments were complete before WordNet 2.0 was released.
2 It seems to have been tacitly assumed by these researchers that results would generalize to the network
hierarchies of other parts of speech. Nonetheless, Resnik and Diab (2000) caution that the properties of
verbs and nouns might be different enough that they should be treated as separate problems, and recent
research by Banerjee and Pedersen (2003) supports this assumption: they found that in word-sense
disambiguation task, their gloss-overlap measure of semantic relatedness (see section 6.1 below)
performed far worse on verbs (and slightly worse on adjectives) than it did on nouns.
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� Given any formula rel(c1� c2) for semantic relatedness between two concepts c1

and c2, the relatedness rel(w1�w2) between two words w1 and w2 can be

calculated as

rel(w1�w2)� max
c1�s(w1)�c2�s(w2)

[rel(c1� c2)] � (1)

where s(wi) is “the set of concepts in the taxonomy that are senses of word wi”

(Resnik, 1995). That is, the relatedness of two words is equal to that of the

most-related pair of concepts that they denote.

2.4 Computing taxonomic path length

A simple way to compute semantic relatedness in a taxonomy such as WordNet is to

view it as a graph and identify relatedness with path length between the concepts:

“The shorter the path from one node to another, the more similar they are” (Resnik,

1995). This approach was taken, for example, by Rada and colleagues (Rada et al., 1989;

Rada and Bicknell, 1989), not on WordNet but on MeSH (Medical Subject Headings),

a semantic hierarchy of terms used for indexing articles in the bibliographic retrieval

system Medline. The network’s 15,000 terms form a nine-level hierarchy based on the

BROADER-THAN relationship. The principal assumption of Rada and colleagues was

that “the number of edges between terms in the MeSH hierarchy is a measure of con-

ceptual distance between terms”. Despite the simplicity of this distance function, the

authors were able to obtain surprisingly good results in their information retrieval task.

In part, their success can be explained by the observation of Lee et al. (1993) that while

“in the context of . . . semantic networks, shortest path lengths between two concepts

are not sufficient to represent conceptual distance between those concepts . . . when the

paths are restricted to IS-A links, the shortest path length does measure conceptual dis-

tance.” Another component of their success is certainly the specificity of the domain,

which ensures relative homogeneity of the hierarchy. Notwithstanding these qualifica-
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tions, Jarmasz and Szpakowicz (2003) also achieved good results with Roget’s Thesaurus

by ignoring the index and treating the thesaurus as a simple hierarchy of clusters. They

computed semantic similarity between two words as the length of the shortest path

between them. The words were not explicitly disambiguated.

Hirst and St-Onge (1998; St-Onge 1995) adapted Morris and Hirst’s (1991) seman-

tic distance algorithm from Roget’s Thesaurus to WordNet.3 They distinguished two

strengths of semantic relations in WordNet. Two words are strongly related if one of

the following holds:

1. They have a synset in common (for example, human and person);

2. They are associated with two different synsets that are connected by the

antonymy relation (for example, precursor and successor);

3. One of the words is a compound (or a phrase) that includes the other and

“there is any kind of link at all between a synset associated with each word”

(for example, school and private school).

Two words are said to be in a medium-strong, or regular, relation if there exists an

allowable path connecting a synset associated with each word (for example, carrot and

apple). A path is allowable if it contains no more than five links and conforms to one

of eight patterns, the intuition behind which is that “the longer the path and the more

changes of direction, the lower the weight”. The details of the patterns are outside of

the scope of this paper; all we need to know for the purposes of subsequent discussion

is that an allowable path may include more than one link and that the directions of

links on the same path may vary (among upward (hypernymy and meronymy), downward

3 The original ideas and definitions of Hirst and St-Onge (1998) (including those for the direction of links
— see below) were intended to apply to all parts of speech and the entire range of relations featured in
the WordNet ontology (which include cause, pertinence, also see, etc.). Like other researchers, however, they
had to resort to the noun subnetwork only. In what follows, therefore, we will use appropriately restricted
versions of their notions.
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(hyponymy and holonymy) and horizontal (antonymy)). Hirst and St-Onge’s approach may

thus be summarized by the following formula for two WordNet concepts c1 �� c2:

relHS(c1� c2)� C� len(c1� c2)� k� turns(c1� c2) (2)

where C and k are constants (in practice, they used C � 8 and k � 1), and turns(c1� c2) is

the number of times the path between c1 and c2 changes direction.

2.5 Scaling the network

Despite its apparent simplicity, a widely acknowledged problem with the edge-

counting approach is that it typically “relies on the notion that links in the taxonomy

represent uniform distances”, which is typically not true: “there is a wide variability

in the ‘distance’ covered by a single taxonomic link, particularly when certain sub-

taxonomies (e.g., biological categories) are much denser than others” (Resnik, 1995). For

instance, in WordNet, the link rabbit ears IS-A television antenna covers an intuitively

narrow distance, whereas white elephant IS-A possession covers an intuitively wide

one. The approaches discussed below are attempts undertaken by various researchers

to overcome this problem.

2.5.1 Sussna’s depth-relative scaling Sussna’s (1993; 1997) approach to scaling is based

on his observation that sibling-concepts deep in a taxonomy appear to be more closely

related to one another than those higher up. His method construes each edge in the

WordNet noun network as consisting of two directed edges representing inverse rela-

tions. Each relation r has a weight or a range [minr;maxr] of weights associated with

it: for example, hypernymy, hyponymy, holonymy, and meronymy have weights between

minr � 1 andmaxr � 2.4 The weight of each edge of type r from some node c1 is reduced

4 Sussna’s experiments proved the precise details of the weighting scheme to be material only in
fine-tuning the performance.
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by a factor that depends on the number of edges, edgesr, of the same type leaving c1:

wt(c1�r)�maxr �
maxr �minr
edgesr(c1)

� (3)

The distance between two adjacent nodes c1 and c2 is then the average of the weights

on each direction of the edge, scaled by the depth of the nodes:

distS(c1� c2) �
wt(c1�r)�wt(c2�r�)

2�max�depth(c1)�depth(c2)�
� (4)

where r is the relation that holds between c1 and c2 and r� is its inverse (i.e., the rela-

tion that holds between c2 and c1). Finally, the semantic distance between two arbitrary

nodes ci and c j is the sum of the distances between the pairs of adjacent nodes along the

shortest path connecting them.

2.5.2 Wu and Palmer’s Conceptual Similarity In a paper on translating English verbs

into Mandarin Chinese, Wu and Palmer (1994) introduce a scaled metric for what they

call conceptual similarity between a pair of concepts c1 and c2 in a hierarchy as

simWP(c1� c2)�
2� depth(lso(c1� c2))

len(c1� lso(c1� c2))� len(c2� lso(c1� c2))� 2� depth(lso(c1� c2))
(5)

Note that depth(lso(c1� c2)) is the ‘global’ depth in the hierarchy; its role as a scaling

factor can be seen more clearly, if we recast Equation 5 from similarity into distance:

distWP(c1� c2)� 1� simWP(c1� c2)�
len(c1� lso(c1� c2))� len(c2� lso(c1� c2))

len(c1� lso(c1� c2))� len(c2� lso(c1� c2))� 2� depth(lso(c1� c2))

(6)

2.5.3 Leacock and Chodorow’s Normalized Path Length Leacock and Chodorow

(1998) proposed the following formula for computing the scaled semantic similarity

between concepts c1 and c2 in WordNet:

simLC(c1� c2)� � log
len(c1� c2)

2� max
c�WordNet

depth(c)
� (7)

Here, the denominator includes the maximum depth of the hierarchy.
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2.6 Information-based and integrated approaches

Like the methods in the preceding subsection, the final group of approaches that we

present attempt to counter problems inherent in a general ontology by incorporating an

additional, and qualitatively different, knowledge source, namely information from a

corpus.

2.6.1 Resnik’s information-based approach The key idea underlying Resnik’s (1995)

approach is the intuition that one criterion of similarity between two concepts is “the

extent to which they share information in common”, which in an IS-A taxonomy can

be determined by inspecting the relative position of the most-specific concept that sub-

sumes them both. This intuition seems to be indirectly captured by edge-countingmeth-

ods (such as that of Rada and colleagues; Section 2.4 above), in that “if the minimal path

of IS-A links between two nodes is long, that means it is necessary to go high in the

taxonomy, to more abstract concepts, in order to find a least upper bound”. An example

given by Resnik is the difference in the relative positions of the most-specific subsumer

of nickel and dime — coin— and that of nickel and credit card— medium of exchange,

as seen in Figure 1.

In mathematical terms, for any concept c in the taxonomy, let p(c) be the probability

of encountering an instance of concept c. Following the standard definition from infor-

mation theory, the information content of c, IC(c), is then � logp(c). Thus, we can define

the semantic similarity of a pair of concepts c1 and c2, as

simR(c1� c2)� � logp(lso(c1� c2)) � (8)

Notice that p is monotonic as one moves up the taxonomy: if c1 IS-A c2 then p(c1)� p(c2).

For example, whenever we encounter a nickel, we have encountered a coin (Figure 1),

so p(nickel) � p(coin). As a consequence, the higher the position of the most specific

subsumer for given two concepts in the taxonomy (i.e., the more abstract it is), the lower

12



Budanitsky and Hirst Lexical Semantic Relatedness

cash

coin

money

medium of exchange

credit

credit cardnickel dime
Figure 1
Fragment of the WordNet taxonomy, showing most-specific subsumers of nickel and dime and of
nickel and credit card. Solid lines represent IS-A links; dashed lines indicate that some
intervening nodes have been omitted. Adapted from Resnik (1995).

their similarity. In particular, if the taxonomy has a unique top node, its probability will

be 1, so if the most specific subsumer of a pair of concepts is the top node, their similarity

will be� log(1)� 0, as desired.

In Resnik’s experiments, the probabilities of concepts in the taxonomy were esti-

mated from noun frequencies gathered from the one-million-word Brown Corpus of

American English (Francis and Kučera, 1982). The key characteristic of his counting

method is that an individual occurrence of any noun in the corpus “was counted as an

occurrence of each taxonomic class containing it”. For example, an occurrence of the

noun nickel was, in accordance with Figure 1, counted towards the frequency of nickel,

coin, and so forth. Notice that, as a consequence of using raw (non-disambiguated) data,

encountering a polysemous word contributes to the counts of all its senses. So in case of

nickel, the counts of both the coin and the metal senses will be increased. Formally,

p(c)�
∑w�W(c) count(w)

N
� (9)

where W(c) is the set of words (nouns) in the corpus whose senses are subsumed by

concept c, and N is the total number of word (noun) tokens in the corpus that are also
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present in WordNet.

Thus Resnik’s approach attempts to deal with the problem of varying link distances

(see Section 2.5) by generally downplaying the role of network edges in the determi-

nation of the degree of semantic proximity: edges are used solely for locating super-

ordinates of a pair of concepts; in particular, the number of links does not figure in any

of the formulas pertaining to the method; and numerical evidence comes from corpus

statistics, which are associated with nodes. This rather selective use of the structure of

the taxonomy has its drawbacks, one of which is the indistinguishability, in terms of se-

mantic distance, of any two pairs of concepts having the same most-specific subsumer.

For example, in Figure 1, we find that simR(money� credit)� simR(dime� credit card), be-

cause in each case the lso is medium of exchange, whereas, for an edge-based method

such as Leacock and Chodorow’s (Section 2.5.3), clearly this is not so, as the number of

edges in each case is different.

2.6.2 Jiang and Conrath’s combined approach Reacting to the disadvantages of

Resnik’s method, Jiang and Conrath’s (1997) idea was to synthesize edge- and node-

based techniques by restoring network edges to their dominant role in similarity com-

putations, and using corpus statistics as a secondary, corrective factor. A complete ex-

egesis of their work is presented by Budanitsky (1999); here we summarize only their

conclusions.

In the framework of the IS-A hierarchy, Jiang and Conrath postulated that the se-

mantic distance of the link connecting a child-concept c to its parent-concept par(c) is

proportional to the conditional probability p(c �par(c)) of encountering an instance of c

given an instance of par(c). More specifically,

distJC(c� par(c))� � logp(c �par(c)) � (10)
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By definition,

p(c �par(c))�
p(c&par(c))
p(par(c))

� (11)

If we adopt Resnik’s scheme for assigning probabilities to concepts (Section 2.6.1), then

p(c&par(c))� p(c), since any instance of a child is automatically an instance of its parent.

Then,

p(c�par(c))�
p(c)

p(par(c))
� (12)

and, recalling the definition of information content,

distJC(c� par(c))� IC(c)� IC(par(c)) � (13)

Given this as the measure of semantic distance from a node to its immediate parent,

the semantic distance between an arbitrary pair of nodes was taken, as per common

practice, to be the sum of the distances along the shortest path that connects the nodes:

distJC(c1� c2)� ∑
c�Path(c1�c2)�lso(c1�c2)

distJC(c� par(c)) � (14)

where Path(c1� c2) is the set of all the nodes in the shortest path from c1 to c2. The node

lso(c1� c2) is removed from Path(c1� c2) in (14)), because it has no parent in the set. Ex-

panding the sum in the right-hand side of Equation 14, plugging in the expression for

parent–child distance from Equation 13, and performing necessary eliminations results

in the following final formula for the semantic distance between concepts c1 and c2:

distJC(c1� c2) � IC(c1)� IC(c2)� 2� IC(lso(c1� c2)) (15)

� 2 logp(lso(c1� c2))� (logp(c1)� logp(c2)) � (16)

2.6.3 Lin’s universal similarity measure Noticing that all of the similarity measures

known to him were tied to a particular application, domain, or resource, Lin (1998b)

attempted to define a measure of similarity that would be both universal (applicable

to arbitrary objects and “not presuming any form of knowledge representation”) and
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theoretically justified (“derived from a set of assumptions”, instead of “directly by a

formula”, so that “if the assumptions are deemed reasonable, the similarity measure

necessarily follows”). He used the following three intuitions as a basis:

1. The similarity between arbitrary objects A and B is related to their

commonality; the more commonality they share, the more similar they are.

2. The similarity between A and B is related to the differences between them; the

more differences they have, the less similar they are.

3. The maximum similarity between A and B is reached when A and B are

identical, no matter how much commonality they share.

Lin defined the commonality between A and B as the information content of “the propo-

sition that states the commonalities” between them, formally

IC(comm(A� B)) � (17)

and the difference between A and B as

IC(descr(A� B))� IC(comm(A� B)) � (18)

where descr(A� B) is a proposition describing what A and B are.

Given these assumptions and definitions and the apparatus of information theory,

Lin proved the following:

Similarity Theorem: The similarity between A and B is measured by the ratio
between the amount of information needed to state their commonality and the
information needed to fully describe what they are:

simL(A� B)�
logp(comm(A� B))
logp(descr(A� B))

� (19)

His measure of similarity between two concepts in a taxonomy is a corollary of this

theorem:

simL(c1� c2)�
2� logp(lso(c1� c2))
logp(c1)� logp(c2)

� (20)
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where the probabilities p(c) are determined in a manner analogous to Resnik’s p(c)

(Equation 9).

3 Evaluation methods

How can we reason about and evaluate computational measures of semantic related-

ness? Three kinds of approaches are prevalent in the literature.

The first kind (Wei, 1993; Lin, 1998b) is a (chiefly) theoretical examination of a pro-

posed measure for those mathematical properties thought desirable, such as whether

it is a metric (or the inverse of a metric), whether it has singularities, whether its

parameter-projections are smooth functions, and so on. In our opinion, such analyses

act at best as a coarse filter in the comparison of a set of measures and an even coarser

one in the assessment of a single measure.

The second kind of evaluation is comparison with human judgments. Insofar as

human judgments of similarity and relatedness are deemed to be correct by definition,

this clearly gives the best assessment of the ‘goodness’ of a measure. Its main drawback

lies in the difficulty of obtaining a large set of reliable, subject-independent judgments

for comparison—designing a psycholinguistic experiment, validating its results, and so

on. (In Section 4.1 below, we will employ the rather limited data that such experiments

have obtained to date.)

The third approach is to evaluate the measures with respect to their performance

in the framework of a particular application. If some particular NLP system requires a

measure of semantic relatedness, we can compare different measures by seeing which

one the system is most effective with, while holding all other aspects of the system

constant.

In the remainder of this paper, wewill use the second and the thirdmethods to com-

pare several different measures (sections 4 and 5 respectively). We focus on measures
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that use WordNet (Fellbaum, 1998) as their knowledge source (to keep that as a con-

stant) and that permit straightforward implementation as functions in a programming

language. Therefore, we select the following five measures: Hirst and St-Onge’s (Sec-

tion 2.4), Jiang and Conrath’s (Section 2.6.2), Leacock and Chodorow’s (Section 2.5.3),

Lin’s (Section 2.6.3), Resnik’s (Section 2.6.1).5 The first is claimed as a measure of se-

mantic relatedness because it uses all noun relations in WordNet; the others are claimed

only as measures of similarity because they use only the hyponymy relation. We imple-

mented each measure, and used the Brown Corpus as the basis for the frequency counts

needed in the information-based approaches.6

4 Comparison with human ratings of semantic relatedness

In this section we compare the five chosen measures by how well they reflect human

judgments of semantic relatedness. In addition, we will use the data that we obtain

in this section to set closeness thresholds for the application-based evaluation of each

measure in Section 5.

4.1 Data

As a part of an investigation into “the relationship between similarity of context and

similarity of meaning (synonymy)”, Rubenstein andGoodenough (1965) obtained “syn-

onymy judgements” from 51 human subjects on 65 pairs of words. The pairs ranged

from “highly synonymous” to “semantically unrelated”, and the subjects were asked

to rate them, on the scale of 0.0 to 4.0, according to their “similarity of meaning” (see

5 We also attempted to implement Sussna’s (1993; 1997) measure (Section 2.5.1), but ran into problems
because a key element depended closely on the particulars of an earlier version of WordNet; see
(Budanitsky, 1999) for details. We did not include Wu and Palmer’s measure (Section 2.5.2) because Lin
(1998b) has shown it to be a special case of his measure in which all child–parent probabilities are equal.
6 In their original experiments, Lin and Jiang and Conrath used SemCor, a sense-tagged subset of the
Brown Corpus, as their empirical data; but we decided to follow Resnik in using the full and untagged
corpus. While this means trading accuracy for size, we believe that using a non-disambiguated corpus
constitutes a more-general approach, as the availability and size of disambiguated texts such as SemCor
is highly limited.
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Table 1, columns 2 and 3). For a similar study, Miller and Charles (1991) chose 30 pairs

from the original 65, taking 10 from the “high level (between 3 and 4. . . ), 10 from the

intermediate level (between 1 and 3), and 10 from the low level (0 to 1) of semantic

similarity”, and then obtained similarity judgements from 38 subjects, given the same

instructions as above, on those 30 pairs (see Table 2, columns 2 and 3).7

4.2 Method

For each of our five implementedmeasures, we obtained similarity or relatedness scores

for the human-rated pairs. Where either or both of the words had more than one synset

in WordNet, we took the most-related pair of synsets. For the measures of Resnik, Jiang

and Conrath, and Lin, this replicates and extends a study by each of the original authors

of their own measure.

4.3 Results

The mean ratings fromRubenstein and Goodenough’s andMiller and Charles’s original

experiments (labeled ‘Humans’) and the ratings of the Rubenstein–Goodenough and

Miller–Charles word pairs produced by (our implementations of) the Hirst–St-Onge,

Jiang–Conrath, Leacock–Chodorow, Lin, and Resnik measures of relatedness are given

in Tables 1 and 2, and in Figures 2 and 3.8

4.4 Discussion

When comparing two sets of ratings, we are interested in the strength of the linear asso-

ciation between two quantitative variables, so we follow Resnik (1995) in summarizing

7 As a result of a typographical error that occurred in the course of either Miller and Charles’s actual
experiments or in its publication, the Rubenstein–Goodenough pair cord–smile became chord–smile.
Probably because of the comparable degree of (dis)similarity, the error was not discovered and the latter
pair has been used in all subsequent work.
8 We have kept the original orderings of the pairs: from dissimilar to similar for the
Rubenstein–Goodenough data and from similar to dissimilar for Miller–Charles. This explains why the
two groups of graphs (Figures 2 and 3) as wholes have the opposite directions. Notice that because distJC
measures distance, the Jiang–Conrath plot has a slope opposite to the rest of each group.
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Table 1
Human and computer ratings of the Rubenstein–Goodenough set of word pairs (part 1 of 2).

# Pair Humans relHS distJC simLC simL simR

1 cord smile 0.02 0 19.6 1.38 0.09 1.17
2 rooster voyage 0.04 0 26.9 0.91 0.00 0.00
3 noon string 0.04 0 22.6 1.50 0.00 0.00
4 fruit furnace 0.05 0 18.5 2.28 0.14 1.85
5 autograph shore 0.06 0 22.7 1.38 0.00 0.00
6 automobile wizard 0.11 0 17.8 1.50 0.09 0.97
7 mound stove 0.14 0 17.2 2.28 0.22 2.90
8 grin implement 0.18 0 16.6 1.28 0.00 0.00
9 asylum fruit 0.19 0 19.5 2.28 0.14 1.85
10 asylum monk 0.39 0 25.6 1.62 0.07 0.97
11 graveyard madhouse 0.42 0 29.7 1.18 0.00 0.00
12 glass magician 0.44 0 22.8 1.91 0.07 0.97
13 boy rooster 0.44 0 17.8 1.50 0.21 2.38
14 cushion jewel 0.45 0 22.9 2.28 0.13 1.85
15 monk slave 0.57 94 18.9 2.76 0.21 2.53
16 asylum cemetery 0.79 0 28.1 1.50 0.00 0.00
17 coast forest 0.85 0 20.2 2.28 0.12 1.50
18 grin lad 0.88 0 20.8 1.28 0.00 0.00
19 shore woodland 0.90 93 19.3 2.50 0.13 1.50
20 monk oracle 0.91 0 22.7 2.08 0.18 2.53
21 boy sage 0.96 93 19.9 2.50 0.20 2.53
22 automobile cushion 0.97 98 15.0 2.08 0.27 2.90
23 mound shore 0.97 91 12.4 2.76 0.49 6.19
24 lad wizard 0.99 94 16.5 2.76 0.23 2.53
25 forest graveyard 1.00 0 24.5 1.76 0.00 0.00
26 food rooster 1.09 0 17.4 1.38 0.10 0.97
27 cemetery woodland 1.18 0 25.0 1.76 0.00 0.00
28 shore voyage 1.22 0 23.7 1.38 0.00 0.00
29 bird woodland 1.24 0 18.1 2.08 0.13 1.50
30 coast hill 1.26 94 10.8 2.76 0.53 6.19
31 furnace implement 1.37 93 15.8 2.50 0.18 1.85
32 crane rooster 1.41 0 12.8 2.08 0.58 8.88
33 hill woodland 1.48 93 18.2 2.50 0.14 1.50
34 car journey 1.55 0 16.3 1.28 0.00 0.00
35 cemetery mound 1.69 0 23.8 1.91 0.00 0.00
36 glass jewel 1.78 0 22.0 2.08 0.14 1.85
37 magician oracle 1.82 98 1.0 3.50 0.96 13.58
38 crane implement 2.37 94 15.6 2.76 0.27 2.90
39 brother lad 2.41 94 16.3 2.76 0.23 2.53
40 sage wizard 2.46 93 22.8 2.50 0.18 2.53
41 oracle sage 2.61 0 26.2 2.08 0.16 2.53
42 bird crane 2.63 97 7.4 3.08 0.70 8.88
43 bird cock 2.63 150 5.4 4.08 0.76 8.88
44 food fruit 2.69 0 10.2 2.28 0.22 1.50
45 brother monk 2.74 93 19.2 2.50 0.20 2.53
46 asylum madhouse 3.04 150 0.2 4.08 0.99 15.70
47 furnace stove 3.11 0 20.5 2.08 0.13 1.85
48 magician wizard 3.21 200 0.00 5.08 1.00 13.58
49 hill mound 3.29 200 0.00 5.08 1.00 12.08
50 cord string 3.41 150 2.2 4.08 0.89 9.25
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Table 1
Human and computer ratings of the Rubenstein–Goodenough set of word pairs (part 2 of 2).

# Pair Humans relHS distJC simLC simL simR

51 glass tumbler 3.45 150 5.9 4.08 0.79 11.34
52 grin smile 3.46 200 0.0 5.08 1.00 10.41
53 serf slave 3.46 0 19.8 2.28 0.34 5.28
54 journey voyage 3.58 150 5.2 4.08 0.74 7.71
55 autograph signature 3.59 150 2.4 4.08 0.92 14.29
56 coast shore 3.60 150 0.8 4.08 0.96 11.12
57 forest woodland 3.65 200 0.0 5.08 1.00 11.23
58 implement tool 3.66 150 1.1 4.08 0.91 6.20
59 cock rooster 3.68 200 0.0 5.08 1.00 14.29
60 boy lad 3.82 150 5.3 4.08 0.72 8.29
61 cushion pillow 3.84 150 0.7 4.08 0.97 13.58
62 cemetery graveyard 3.88 200 0.0 5.08 1.00 13.76
63 automobile car 3.92 200 0.0 5.08 1.00 8.62
64 midday noon 3.94 200 0.0 5.08 1.00 15.96
65 gem jewel 3.94 200 0.0 5.08 1.00 14.38
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Table 2
Human and computer ratings of the Miller–Charles set of word pairs.

# Pair Humans relHS distJC simLC simL simR

1 car automobile 3.92 200 0.0 5.08 1.00 8.62
2 gem jewel 3.84 200 0.0 5.08 1.00 14.38
3 journey voyage 3.84 150 5.2 4.08 0.74 7.71
4 boy lad 3.76 150 5.3 4.08 0.72 8.29
5 coast shore 3.70 150 0.9 4.08 0.96 11.12
6 asylum madhouse 3.61 150 0.2 4.08 0.99 15.70
7 magician wizard 3.50 200 0.0 5.08 1.00 13.58
8 midday noon 3.42 200 0.0 5.08 1.00 15.96
9 furnace stove 3.11 0 20.5 2.08 0.13 1.85
10 food fruit 3.08 0 10.2 2.28 0.22 1.50
11 bird cock 3.05 150 5.4 4.08 0.76 8.88
12 bird crane 2.97 97 7.4 3.08 0.70 8.88
13 tool implement 2.95 150 1.1 4.08 0.91 6.20
14 brother monk 2.82 93 19.2 2.50 0.20 2.53
15 lad brother 1.66 94 16.3 2.76 0.23 2.53
16 crane implement 1.68 94 15.7 2.76 0.27 2.90
17 journey car 1.16 0 16.3 1.28 0.00 0.00
18 monk oracle 1.10 0 22.7 2.08 0.18 2.53
19 cemetery woodland 0.95 0 25.0 1.76 0.00 0.00
20 food rooster 0.89 0 17.4 1.38 0.10 0.97
21 coast hill 0.87 94 10.9 2.76 0.53 6.19
22 forest graveyard 0.84 0 24.6 1.76 0.00 0.00
23 shore woodland 0.63 93 19.3 2.50 0.13 1.50
24 monk slave 0.55 94 18.9 2.76 0.21 2.53
25 coast forest 0.42 0 20.2 2.28 0.12 1.50
26 lad wizard 0.42 94 16.5 2.76 0.23 2.53
27 chord smile 0.13 0 20.2 1.62 0.18 2.23
28 glass magician 0.11 0 22.8 1.91 0.07 0.97
29 rooster voyage 0.08 0 26.9 0.91 0.00 0.00
30 noon string 0.08 0 22.6 1.50 0.00 0.00
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Figure 2
Human and computer ratings of the Rubenstein—Goodenough set of word pairs, with sparse
bands marked (see text). (a) Rubenstein and Goodenough’s human ratings. (b) The word pairs
rated by the Hirst—St-Onge similarity measure. (c) The word pairs rated by the Jiang—Conrath
distance measure. (d) The word pairs rated by the Leacock–Chodorow similarity measure. (e)
The word pairs rated by the Lin similarity measure. (f) The word pairs rated by the Resnik
similarity measure. 23
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Figure 3
Human and computer ratings of the Miller–Charles set of word pairs, with sparse bands marked
(see text). (a)Miller and Charles’s human ratings. (b) The word pairs rated by the Hirst—St-Onge
similarity measure. (c) The word pairs rated by the Jiang—Conrath distance measure. (d) The
word pairs rated by the Leacock–Chodorow similarity measure. (e) The word pairs rated by the
Lin similarity measure. (f) The word pairs rated by the Resnik similarity measure.
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Table 3
The absolute values of the coefficients of correlation between human ratings of similarity (by
Miller and Charles and by Rubenstein and Goodenough) and the five computational measures.

Measure M&C R&G
Hirst and St-Onge, relHS .744 .786
Jiang and Conrath, distJC .850 .781
Leacock and Chodorow, simLC .816 .838
Lin, simL .829 .819
Resnik, simR .774 .779

the comparison results by means of the coefficient of correlation of each computational

measure with the human ratings; see Table 3. (For Jiang and Conrath’s measure, the co-

efficients are negative because their measure returns distance rather than similarity; so

for convenience, we show absolute values in the table.) 9

4.4.1 Comparison to upper bound To get an idea of the upper bound on performance

of a computational measure, we can again refer to human performance. We have such

an upper bound for the Miller and Charles word pairs (but not for the complete set

of Rubenstein and Goodenough pairs): Resnik (1995) replicated Miller and Charles’s

experiment with 10 subjects and found that the average correlation with the Miller–

Charles mean ratings over his subjects was 0.8848. While the difference between the

(absolute) values of the highest and lowest correlation coefficients in the “M&C”column

of Table 3 is of the order of 0.1, all of the coefficients compare quite favorably with this

estimate of the upper bound; furthermore, the difference diminishes almost twofold as

we consider the larger Rubenstein–Goodenough dataset (column “R&G” of Table 3).10

9 Resnik (1995), Jiang and Conrath (1997), and Lin (1998b) report the coefficients of correlation between
their measures and the Miller–Charles ratings to be 0.7911, 0.8282, and 0.8339, respectively, which differ
slightly from the corresponding figures in Table 3. These discrepancies can be explained by possible
minor differences in implementation (e.g., the compound-word recognition mechanism used in collecting
the frequency data), differences between the versions of WordNet used in the experiments (Resnik), and
differences in the corpora used to obtain the frequency data (Jiang and Conrath, Lin). Also, the
coefficients reported by Resnik and Lin are actually based on only 28 out of the 30 Miller–Charles pairs
because of a noun missing from an earlier version of WordNet. Jarmasz and Szpakowicz (2003) repeated
the experiment, obtaining similar results to ours in some cases and markedly different results in others; in
their experiment, the correlations obtained with their measure that uses the hierarchy of Roget’s Thesaurus
exceeded those of all the WordNet measures.

10 None of the differences in either column are statistically significant at the .05 level.

25



Computational Linguistics Volume 1, Number 1

In fact, the measures are divided in their reaction to increasing the size of the dataset: the

correlations of relHS, simLC, and simR improve but those of distJC and simL deteriorate.

This division might not be arbitrary: the last two depend on the same three quantities,

logp(c1), logp(c2), and logp(lso(c1� c2)) (see Equations 16 and 20). (In fact, the coefficient

for simR, which depends on only one of the three quantities, logp(lso(c1� c2)), improves

only in the third digit.) However, with the present paucity of evidence, this connection

remains hypothetical.

4.4.2 Differences in the performance and behavior of the measures We now examine

the results of each of the measures and the differences between them. To do this, we will

sometimes look at differences in their behavior on individual word pairs.

Looking at the graphs in Figures 2 and 3, we see that the discrete nature of the

Hirst–St-Onge and Leacock–Chodorow measures is much more apparent than that of

the others: i.e., the values that they can take on are just a fixed number of levels. This is,

of course, a result of their being based on the same highly discrete factor: the path length.

As a matter of fact, a more substantial correspondence between the two measures can

be recognized from the graphs and explained in the same way. In each dataset, the

upper portions of the two graphs are identical: namely, the sets of pairs affording the

highest and second-highest values of the two measures (relHS 	 150, simLC � 4). This

happens because these sets are composed of WordNet synonym and parent-child pairs,

respectively.11

Further down the Y-axis, we find that for the Miller–Charles data, the two graphs

still follow each other quite closely in themiddle region (2.4–3.2 for simLC and 90–100 for

relHS). For the larger set of Rubenstein and Goodenough’s, however, differences appear.

11 More generally, the inverse image of the second highest value for simLC is a proper subset of that for
relHS, for the latter would also include all the antonym and meronym–holonym pairs. The two datasets at
hand, however, do not contain any instances from these categories.
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The pair automobile–cushion (22), for instance, is ranked even withmagician–oracle (37) by

the Hirst–St-Ongemeasure but far below bothmagician–oracle (37) and bird–crane (42) by

Leacock–Chodorow (and, in fact, by all the other measures). The cause of such a high

ranking in the former case is the following meronymic connection in WordNet:

automobile/. . . /car HAS-A suspension/suspension system (‘a system of

springs or shock absorbers connecting the wheels and axles to the chas-

sis of a wheeled vehicle’) HAS-A cushion/shock absorber/shock (‘a me-

chanical damper; absorbs energy of sudden impulses’).

Since relHS is the only measure that takes meronymy (and other WordNet relations be-

yond IS-A ) into account, no other measure detected this connection—nor did the human

judges, whose task was to assess similarity, not generic relatedness; see Section 4.1).

Finally, at the bottom portion of these two graphs, the picture becomes very differ-

ent, because relHS assigns all weakly-related pairs the value of zero. (In fact, it is this

cut-off that we believe to be largely responsible for the relatively low ranking of the

correlation coefficient of the Hirst–St-Onge measure.) In contrast, two other measures,

Resnik’s and Lin’s, behave quite similarly to each other in the low-similarity region. In

particular, their sets of zero-similarity pairs are identical, because the definitions of both

measures include the term log p(lso(c1� c2)), which is zero for the pairs in question.12 For

instance, for the pair rooster–voyage (M&C #29, R&G #2), the synsets rooster and voy-

age have different ‘unique beginners’, and hence their lso—in fact their sole common

subsumer—is the (fake) global root (see Section 2.5.3), which is the only concept whose

probability is 1:

cock/rooster (‘adult male chicken’) IS-A . . . IS-A domestic

12 Again (cf footnote 11), the former set actually constitutes a proper subset of the latter, as simL(c1� c2) will
also be zero if either concept does not occur in the frequency-corpus (see Equation 20). However, no such
instances appear in the data.
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fowl/. . . /poultry IS-A . . . IS-A bird IS-A . . . IS-A animal/animate be-

ing/. . . /fauna IS-A life form/. . . /living thing (‘any living entity’) IS-A en-

tity (‘something having concrete existence; living or nonliving’) IS-A

global root,

voyage IS-A journey/journeying IS-A travel/. . . /traveling IS-A change of

location/. . . /motion IS-A change (‘the act of changing something’) IS-A

action (‘something done (usually as opposed to something said)’) IS-A

act/human action/human activity (‘something that people do or cause to

happen’) IS-A global root.

Analogously, although perhaps somewhat more surprisingly for a human reader, the

same is true of the pair asylum–cemetery (R&G #16):

asylum/insane asylum/. . . /mental hospital IS-A hospital/infirmary IS-A

medical building (‘a building where medicine is practiced’) IS-A build-

ing/edifice IS-A . . . IS-A artifact/artefact (‘a man-made object’) IS-A ob-

ject/inanimate object/physical object (‘a nonliving entity’) IS-A entity

IS-A global root,

cemetery/graveyard/. . . /necropolis (‘a tract of land used for burials’) IS-

A site (‘the piece of land on which something is located (or is to be

located)’) IS-A position/place (‘the particular portion of space occupied

by a physical object’) IS-A . . . IS-A location (‘a point or extent in space’)

IS-A global root.

Looking back at the high-similarity portion of the graphs, but now taking into con-

sideration the other three measures, we can make a couple more observations. First, the

graphs of all of the measures except Resnik’s exhibit a ‘line’ of synonyms (comprising
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four points for theMiller–Charles dataset and nine points for Rubenstein–Goodenough)

at the top (bottom for Jiang and Conrath’s measure). In the case of Resnik’s measure,

simR(c� c)� � logp(lso(c� c))� � logp(c) (see Equation 8), and hence the similarity of a

concept to itself varies from one concept to another. Second, these ‘lines’ are not con-

tinuous, as one might expect from the graphs of the human judgments: for the Miller–

Charles set, for instance, the line includes pairs 1, 2, 7, and 8, but omits pairs 3–6. This

peculiarity is due entirely to WordNet, according to which gem and jewel (# 2) and ma-

gician and wizard (# 7) are synonyms, whereas journey and voyage (# 3), boy and lad (pair

4), and even asylum and madhouse (# 6) are not, but rather are related by IS-A :

voyage (‘a journey to some distant place’) IS-A journey/journeying (‘the

act of traveling from one place to another’),

lad/laddie/cub/sonny/sonny boy (‘a male child (a familiar term of ad-

dress to a boy)’) IS-A boy/male child/child (‘a young male person’),

madhouse/nuthouse/. . . /sanatorium (‘pejorative terms for an insane

asylum’) IS-A asylum/insane asylum/. . . /mental hospital (‘a hospital for

mentally incompetent or unbalanced persons’).

Although, as we saw above, already for two measures the details of their medium-

similarity regions differ, there appears to be an interesting commonality at the level of

general structure: in the vicinity of sim� 2, the plots of human similarity ratings for both

the Miller–Charles and the Rubenstein–Goodenough word pairs display a very clear

horizontal band that contains no points. For theMiller–Charles data (Figure 3), the band

separates the pair crane–implement (16) from brother–monk (14),13 and for the Rubenstein-

Goodenough set (Figure 2), it separates magician–oracle (37) from crane–implement (38).

13 For some reason, Miller and Charles, while generally ordering their pairs from least to most similar, put
crane–implement (16) after lad–brother(15), even though the former was rated more similar.
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On the graphs of the computed ratings, these empty bands correspond to regions

with at most a few points—no more than two points for the Miller–Charles set and

no more than four for the Rubenstein–Goodenough set. These regions are shown in

Figures 3(b)–(f) and 2(b)–(f). This commonality among the measures suggests that if

we were to partition the set of all word pairs into those that are deemed to be related

and those that are deemed unrelated, the boundary between the two subsets for each

measure (and for the human judgments, for that matter) would lie somewhere within

these regions.

4.4.3 The limitations of this analysis While comparison with human judgments is the

ideal way to evaluate ameasure of similarity or semantic relatedness, in practice the tiny

amount of data available (and only for similarity, not relatedness) is quite inadequate.

But constructing a large-enough set of pairs and obtaining human judgments on them

would be a very large task.14

Even more importantly, there are serious methodological problems with this ap-

proach. It was implicit in the Rubenstein–Goodenough andMiller–Charles experiments

that subjects were to use the dominant sense of the target words or mutually triggering

related senses. But often what we are really interested in is the relationship between the

concepts for which the words aremerely surrogates; the human judgments that we need

are of the relatedness of word-senses, not words. So the experimental situation would

need to set up contexts that bias the sense selection for each target word and yet don’t

bias the subject’s judgment of their a priori relationship, an almost self-contradictory

situation.15

14 Evgeniy Gabrilovich has recently made available a dataset of similarity judgments of 353 English word
pairs that were used by Finkelstein et al (2002). Unfortunately, this set is still very small, and, as Jarmasz
and Szpakowicz (2003) point out, is culturally and politically biased. And the scarcely larger set of
synonymy norms for nouns created by Whitten, Suter, and Frank (1979) covers only words with quite
closely related senses, and hence is not useful here either.

15 In their creation of a set of synonymy norms for nouns, Whitten, Suter, and Frank (1979) observed
frequent artifacts stemming from the order of presentation of the stimuli that seem to be due to the
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5 An application-based evaluation of measures of relatedness

We now turn to a different approach to the evaluation of similarity and relatedness

measures that tries to overcome the problems of comparison to human judgments that

were described in the previous section. Here, we compare the measures through the

performance of an application that uses them: the detection and correction of real-word

spelling errors in open-class words, i.e., malapropisms.

While malapropism correction is also a useful application in its own right, it is par-

ticularly appropriate for evaluating measures of semantic relatedness. Naturally occur-

ring coherent texts, by their nature, contain many instances of related pairs of words

(Halliday and Hasan, 1976; Morris and Hirst, 1991; Hoey, 1991; Morris and Hirst, 2004).

That is, they implicitly contain human judgments of relatedness that we could use in the

evaluation of our relatedness measures. But, of course, we don’t know in practice just

which pairs of words in a text are and aren’t related. We can get around this problem,

however, by deliberately perturbing the coherence of the text — that is, introduding

semantic anomalies such as malapropisms — and looking at the ability of the different

relatedness measures to detect and correct the perturbations.

5.1 Malapropism detection and correction as a testbed

Our malapropism corrector (Hirst and Budanitsky, 2005) is based on the idea behind

that of Hirst and St-Onge (1998): look for semantic anomalies that can be removed by

small changes to spelling.16 Words are (crudely) disambiguated where possible by ac-

cepting senses that are semantically related to possible senses of other nearby words.

If all senses of any open-class, non–stop-list word that occurs only once in the text are

practical impossibility of forcing a context of interpretation in the experimental setting.
16 Although it shares underlying assumptions, our algorithm differs from that of Hirst and St-Onge in its
mechanisms. In particular, Hirst and St-Onge’s algorithm was based on lexical chains (Morris and Hirst,
1991), whereas our algorithm regards regions of text as bags of words.
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found to be semantically unrelated to accepted senses of all other nearby words, but

some sense of a spelling variation of that word would be related (or is identical to an-

other token in the context), then it is hypothesized that the original word is an error and

the variation is what the writer intended; a user would be warned of this possibility.

For example, if no nearby word in a text is related to diary but one or more are related

to dairy, we suggest to the user that it is the latter that was intended. The exact window

size implied by “nearby” is a parameter to the algorithm, as is the precise definition of

spelling variation; see Hirst and Budanitsky (2005).

This method makes the following assumptions:

� A real-word spelling error is unlikely to be semantically related to the text.17

� Frequently, the writer’s intended word will be semantically related to nearby

words.

� It is unlikely that an intended word that is semantically unrelated to all those

nearby will have a spelling variation that is related.

While the performance of the malapropism corrector is inherently limited by these as-

sumptions, we can nonetheless evaluate measures of semantic relatedness by compar-

ing their effect on its performance, as its limitations affect all measures equally. Regard-

less of the degree of adequacy of its performance, it is a “level playing field” for com-

parison of the measures. Hirst and Budanitsky (2005) discuss the practical aspects of the

method and compare it with other approaches to the same problem.

5.2 Method

To test the measures in this application, we need a sufficiently large corpus of

malapropisms in their context, each identified and annotated with its correction. Since

17 In fact, there is a semantic bias in human typing errors (Fromkin, 1980), but not in the malapropism
generator to be described below.
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no such corpus of naturally occurring malapropisms exists, we created one artificially.

Following Hirst and St-Onge (1998), we took 500 articles from theWall Street Journal cor-

pus and, after removing proper nouns and stop-list words from consideration, replaced

one word in every 200 with a spelling variation, choosing always WordNet nouns with

at least one spelling variation.18 For example, in a sentence beginning To win the case,

which was filed shortly after the indictment and is pending in Manhattan federal court . . . , the

word case was replaced by cage. This gave us a corpus with 1408 malapropisms among

107,233 candidates.19 We then tried to detect and correct the malapropisms by the algo-

rithm outlined above, using in turn each of the five measures of semantic relatedness.

For each, we used four different search scopes, i.e., window sizes: just the paragraph con-

taining the target word (scope = 1); that paragraph plus one or two adjacent paragraphs

on each side (scope = 3 and 5); and the complete article (scope = MAX).

We also needed to set a threshold of “relatedness” for each of the measures. This is

because the malapropism-detection algorithm requires a boolean related–unrelated judg-

ment, but each of the measures that we tested instead returns a numerical value of relat-

edness or similarity, and nothing in the measure (except for the Hirst–St-Onge measure)

indicates which values count as “close”. Moreover, the values from the different mea-

sures are incommensurate. We therefore set the threshold of relatedness of eachmeasure

at the value at which it separated the higher level of the Rubenstein–Goodenough pairs

(the near-synonyms) from the lower level, as we described in Section 4.4.2.

5.3 Results

Malapropism detection was viewed as a retrieval task and evaluated in terms of preci-

sion, recall, and F-measure. Observe that semantic relatedness is used at two different

18 Articles too small to warrant such a replacement (19 in total) were excluded from further consideration.
19 We assume that the originalWSJ, being carefully edited text, contains essentially no malapropisms of its
own.
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places in the algorithm—to judge whether an original word of the text is related to

any nearby word and to judge whether a spelling variation is related—and success in

malapropism detection requires success at both stages. For the first stage, we say that

a word is suspected of being a malapropism (and the word is a suspect) if it is judged

to be unrelated to other words nearby; the word is a correct suspect if it is indeed a

malapropism and a false suspect if it isn’t. At the second stage, we say that, given a sus-

pect, an alarm is raised when a spelling variation of the suspect is judged to be related

to a nearby word or words; and if an alarm word is a malapropism, we say that the

alarm is a true alarm and that the malapropism has been detected; otherwise, it is a false

alarm. Then we can define precision (P), recall (R), and F-measure (F) for suspicion (S),

involving only the first stage, and detection (D), involving both stages, as follows:

Suspicion:

PS �
number of correct suspects

number of suspects
� (21)

RS �
number of correct suspects

number of malapropisms in text
� (22)

FS �
2� PS� RS
PS� RS

� (23)

Detection:

PD �
number of true alarms
number of alarms

� (24)

RD �
number of true alarms

number of malapropisms in text
� (25)

FD �
2� PD� RD
PD � RD

� (26)

The precision, recall, and F values are computed as the mean values of these statis-

tics across our collection of 481 articles, which constitute a random sample from the

population of allWSJ articles. All the comparisons that we make below, except for com-

parisons to baseline, are performed with the Bonferroni multiple-comparison technique
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(Agresti and Finlay, 1997), with an overall significance level of .05.

5.3.1 Suspicion We look first at the results for suspicion — just identifying words that

have no semantically related word nearby. Obviously, the chance of finding some word

that is judged to be related to the target word will increase with the size of the scope of

the search (with a large enough scope, e.g., a complete book, we would probably find

a relative for just about any word). So we expect recall to decrease as scope increases,

because some relationshipswill be found even formalapropisms (i.e., therewill bemore

false negatives). But we expect that precision will increase with scope, as it becomes

more likely that (genuine) relationships will be found for non-malapropisms (i.e., there

will be fewer false positives), and this factor will outweigh the decrease in the overall

number of suspects found.

Table 4 and Figure 4 show suspicion precision, recall, and F for each of the 5� 4

combinations of measure and scope. The values of precision range from 3.3% (Resnik,

scope = 1) to 11% (Jiang–Conrath, scope = MAX), with a mean of 6.2%, increasing with

scope, as expected, for all measures except Hirst–St-Onge. More specifically, differences

in precision are statistically significant for the difference between scope = 5 and scope

= MAX for Leacock–Chodorow and between 1 and larger scopes for Lin, Resnik, and

Jiang–Conrath; there are no significant differences for Hirst–St-Onge, which hence ap-

pears flat overall. The values of recall range from just under 6% (Hirst–St-Onge, scope

= MAX) to more than 72% (Resnik, scope = 1), with a mean of 39.7%, decreasing with

scope, as expected. All differences in recall are statistically significant, except between

scope = 3 and scope = 5 for all measures other than Resnik’s. F ranges from 5% (Hirst–St-

Onge, scope = MAX) to 14% (Jiang–Conrath, scope = 5), with a mean of just under 10%.

Even though values at the lower ends of these ranges appear small, they are still sig-

nificantly (p � �001) better than chance, for which precision, recall, and F are all 1.29%.
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Table 4
Precision (PS), recall (RS), and F-measure (FS) for malapropism suspicion with five measures of
semantic relatedness, varying the scope of the search for related words to 1, 3, or 5 paragraphs or
the complete news article (MAX).

Measure Scope PS RS FS
Hirst–St-Onge 1 .056 .298 .091

3 .067 .159 .089
5 .069 .114 .079
MAX .051 .059 .049

Jiang–Conrath 1 .064 .536 .112
3 .086 .383 .135
5 .097 .326 .141
MAX .111 .233 .137

Leacock–Chodorow 1 .042 .702 .079
3 .052 .535 .094
5 .058 .463 .101
MAX .073 .356 .115

Lin 1 .047 .579 .086
3 .062 .421 .105
5 .067 .350 .110
MAX .078 .253 .110

Resnik 1 .033 .727 .063
3 .038 .589 .070
5 .039 .490 .072
MAX .043 .366 .075

Moreover, the value for precision is inherently limited by the likelihood that, especially

for small search scopes, therewill bewords other than our deliberatemalapropisms that

are genuinely unrelated to all others in the scope.

Because it combines recall and precision, we focused on the results for FS by mea-

sure and scope to determine whether the performance of the five measures was signif-

icantly different and whether scope of search for relatedness made a significant differ-

ence.

Scope differences: For Jiang–Conrath and Resnik, the analysis confirms only that these

methods perform significantly better with scope 5 than scope 1; for Lin, that scope 3

is significantly better than scope 1; for Leacock–Chodorow, that 3 is significantly bet-

ter than 1 and MAX better than 3; and for Hirst–St-Onge, that MAX is significantly
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Figure 4
Precision (PS), recall (RS), and F-measure (FS) for malapropism suspicion by measure and scope.
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worse than 3. (From the standpoint of simple detection of unrelatedness (suspicion in

malapropism detection), these data point to overall optimality of scopes 3 or 5.)

Differences between measures: Jiang–Conrath significantly outperforms the others in all

scopes (except for Leacock–Chodorow and Lin at scope MAX, where it does better but

not significantly so), followed by Lin and Leacock–Chodorow (whose performances are

not significantly different from each other), in turn followed by Resnik. Hirst–St-Onge,

with its irregular behavior, performs close to Lin and Leacock–Chodorow for scopes 1

and 3 but falls behind as the scope size increases, finishing worst for scope MAX. Thus

the Jiang–Conrath measure does best for the suspicion phase (and is optimal with scope

= 5).

5.3.2 Detection We now turn to the results for malapropism detection. During the de-

tection phase, the suspects are winnowed by checking the spelling variations of each

for relatedness to their context. Since (true) alarms can only result from (true) suspects,

recall can only decrease (or, more precisely, not increase) from that for suspicion (cf

equations 22 and 25). However, if a given measure of semantic relatedness is good, we

expect the proportion of false alarms to reducemore considerably— far fewer false sus-

pects will become alarms than correct suspects — thus resulting in higher precision for

detection than for suspicion (cf equations 21 and 24).

Table 5 and Figure 5, show precision, recall, and F for each of the 5� 4 measure–

scope combinations, determined by the same method as those for suspicion. The val-

ues of recall range from 5.9% (Hirst–St-Onge, scope = MAX) to over 60% (Leacock–

Chodorow, scope = 1). While these values are, as expected, lower than those for suspi-

cion recall—RD for each measure–scope combination is from 1 to 16 percentage points

lower than the corresponding RS—the decline is statistically significant for only 3 out

of the 20 combinations.
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The values of precision range from 6.7% (Hirst–St-Onge, scope = MAX) to just under

25% (Jiang–Conrath, scope = MAX), increasing, as expected, from suspicion precision;

each combination increases from 1 to 14 percentage points; the increase is statistically

significant for 18 out of the 20 combinations. Moreover, the increase in precision out-

weighs the decline in recall, and thus F, which ranges from 6% to 25%, increases by 7.6%

on average; the increase is significant for 17 out of the 20 combinations. Again, even the

lower ends of the precision, recall, and F ranges are significantly (p � �001) better than

chance (which again is 1.29% for each), and the highest results are quite good (e.g., 18%

precision, 50% recall for Jiang–Conrath at scope � 1, which had the highest FD, though

not the highest precision or recall), despite the fact that the method is inherently lim-

ited in the ways described earlier (Section 5.1). (See Hirst and Budanitsky (2005) for

discussion of the practical usefulness of the method.)

Scope differences: Our analysis of scope differences in F shows a somewhat different

picture for detection from that for suspicion: there are significant differences between

scopes only for the Hirst–St-Ongemeasure. The F graphs of the other four methods thus

are not significantly different from being flat — that is, scope doesn’t affect the results.

(Hence we can choose 1 as the optimal scope, since it involves the least amount of work,

and Jiang and Conrath’s method with scope � 1 as the optimal parameter combination

for the malapropism detector.)

Differences between measures: The relative position of each measure’s precision, recall,

and F graphs for detection appears identical to that for suspicion, except for the pre-

cision and F graphs for Hirst–St-Onge, which slide further down. Statistical testing for

F confirms this, with Jiang–Conrath leading, followed by Lin and Leacock–Chodorow

together, Resnik, and then Hirst–St-Onge.
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Figure 5
Precision (PD), recall (RD), and F-measure (FD) for malapropism detection by measure and scope.
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Table 5
Precision (PD), recall (RD), and F-measure (FD) for malapropism detection with five measures of
semantic relatedness, varying the scope of the search for related words to 1, 3, or 5 paragraphs or
the complete news article (MAX).

Measure Scope PD RD FD
Hirst–St-Onge 1 .105 .286 .145

3 .107 .159 .117
5 .101 .114 .096
MAX .067 .059 .056

Jiang–Conrath 1 .184 .498 .254
3 .205 .372 .245
5 .219 .322 .243
MAX .247 .231 .211

Leacock–Chodorow 1 .111 .609 .184
3 .115 .499 .180
5 .118 .440 .178
MAX .132 .338 .177

Lin 1 .125 .514 .195
3 .145 .398 .201
5 .150 .335 .197
MAX .168 .242 .176

Resnik 1 .088 .562 .150
3 .087 .512 .146
5 .088 .454 .145
MAX .093 .344 .140

5.4 Interpretation of the results

In our interpretation, we focus largely on the results for suspicion; those for detection

both add to the pool of relatedness judgments on which we draw and corroborate what

we observe for suspicion.

The Resnikmeasure’s comparatively poor precision and good recall suggest that the

measure simply marks too many words as potential malapropisms—it ‘under-relates’,

being far too conservative in its judgments of relatedness. For example, it was the only

measure that flagged crowd as a suspect in a context in which all the other measures

found it to be related to house: crowd IS-A gathering / assemblage SUBSUMES house /

household / family / menage.20 Indeed, for every scope, Resnik’s measure generates

20 It is debatable whether this metonymic sense of house should appear in WordNet at all, though given that
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more suspects than any other measure—e.g., an average of 62.5 per article for scope

� 1, compared to a range of 15 to 47, with an average of 37, for the other measures.

The Leacock–Chodorow measure’s superior precision and comparable recall (the for-

mer difference is statistically significant, the latter is not), which result in a statistically-

significantly better F-value, indicate its better ability at discerning relatedness.

The same comparison can be made between the Jiang–Conrath and Lin measures.

Even though both use the same information-content–based components, albeit in differ-

ent arithmetic combinations, and show similar recall, the Jiang–Conrathmeasure shows

superior precision and is best overall (see above). The Lin and Leacock–Chodorowmea-

sures, in turn, have statistically indistinguishable values of F and hence similar ratios of

errors to true positives.

Finally, the steady downward slope that distinguishes the F-graph of Hirst–St-Onge

from those of the other four measures in Figure 4 evidently reflects the corresponding

difference in precision behavior: the Hirst–St-Onge suspicion precision graph is statisti-

cally flat, unlike the others. Ironically, given that this measure is the only one of the five

that promises the semantic relatedness that we want rather than mere similarity, this

poor performance appears to be a result of the measure’s ‘over-relating’—it is far too

promiscuous in its judgments of relatedness. For example, it was the only measure that

considered cation (a malapropism for nation) to be related to group: cation IS-A ion IS-A

atom PART-OF molecule HAS-A group / radical (‘two or more atoms bound together as

a single unit and forming part of a molecule’). Because of its promiscuity, the Hirst–St-

Onge measure’smean number of suspects for scope� 1 is 15.07, well below the average,

and moreover it drops to one-ninth of that, 1.75, at scope = MAX; the number of articles

without a single suspect grows from 1 to 93. By comparison, for the other measures, the

it does, its relationship to crowd follows, and, as it happens, this sense was the correct one in the context
for this particular case.
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number of suspects drops only to around a third or a quarter from scope� 1 to scope =

MAX, and the number of articles with no suspect stays at 1 for both Leacock–Chodorow

and Resnik and increases only from 1 to 4 for Lin and from 1 to 12 for Jiang–Conrath.

6 Related work

6.1 Other applications of WordNet-based measures

Since the first publication of the initial results of this work (Budanitsky and Hirst, 2001),

Pedersen and his colleagues (Pedersen et al., 2004) have made available a Perl imple-

mentation of the five WordNet-based measures (plus Wu and Palmer’s and their own;

see below) that has been used by a number of researchers in published work on other

NLP applications. Generally, these results are consistent with our own. For example,

Stevenson and Greenwood (2005) found Jiang–Conrath to be the best measure (out of

“several”, which they do not list) for their task of pattern induction for information ex-

traction. Similarly, Kohomban and Lee (2005) found Jiang–Conrath the best (out of “var-

ious schemes”, which they do not list) for their task of learning coarse-grained seman-

tic classes. In word-sense disambiguation, Patwardhan, Banerjee, and Pedersen (2003)

found Jiang–Conrath to be clearly the best of the five measures evaluated here, albeit

edged out by their own new “Lesk” measure based on gloss overlaps;21 and McCarthy

et al (2004) found that the Jiang–Conrath and Lesk measures gave the best accuracy in

their task of finding predominant word senses, with the results of the two being “com-

parable” but Jiang–Conrath being far more efficient. On the other hand, Corley and

Mihalcea (2005) found little difference between the measures when using them in an

algorithm for computing text similarity.

21 Patwardhan et al’s measure is based on the idea, originally due to Lesk (1986), of measuring the degree of
relatedness of two words by the number of string overlaps in their dictionary definitions or glosses.
Patwardhan et al extend this idea by also including overlaps with definitions of words that are one
WordNet edge away from the comparison words. It is thus a hybrid method, with characteristics of both
dictionary-based and network-based methods (see sections 2.1 and 2.3 above).
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6.2 Measures of distributional similarity as proxies for measures of semantic related-

ness

In Section 1.1, we mentioned that the lexical semantic relatedness or similarity that we

have dealt with in this paper is a notion distinct from that of lexical distributional or

co-occurrence similarity. However, a number of researchers, such as Dagan (2000), have

promoted the hypothesis that distributional similarity can act as a useful proxy for se-

mantic relatedness in many applications because it is based on corpus-derived data

rather than manually created lexical resources; indeed, it could perhaps be used to au-

tomatically create (first-draft) lexical resources (Grefenstette, 1994). It is therefore natural

to ask how distributional-similarity measures compare with the WordNet-based mea-

sures that we have looked at above.

Formally, by distributional similarity (or co-occurrence similarity) of two words w1 and

w2, we mean that they tend to occur in similar contexts, for some definition of context;

or that the set of words that w1 tends to co-occur with is similar to the set that w2 tends

to co-occur with; or that if w1 is substituted for w2 in a context, its “plausibility” (Weeds,

2003; Weeds and Weir, 2005) is unchanged. The context considered may be a small or

large window around the word, or an entire document; or it may be a syntactic rela-

tionship. For example, Weeds (2003; Weeds and Weir, 2005) (see below) took verbs as

contexts for nouns in object position: so they regarded two nouns to be similar to the

extent that they occur as direct objects of the same set of verbs. Lin (1998b; 1998a) con-

sidered other syntactic relationships as well, such as subject–verb and modifier–noun,

and looked at both roles in the relationship.

Given this framework, many differentmethods of measuring distributional similar-

ity have been proposed; see Dagan (2000),Weeds (2003), orMohammad andHirst (2005)

for a review. For example, the set of words that co-occur with w1 and those that co-occur

with w2 may be regarded as a feature vector of each and their similarity measured as
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the cosine between the vectors; or a measure may be based on the Kullback–Leibler di-

vergence between the probability distributions P(w �w1) and P(w �w2), as, for example,

Lee’s (1999) �-skew divergence. Lin (1998b) uses his similarity theorem (equation 19

above) to derive a measure based on the degree of overlap of the sets of words with

which w1 and w2, respectively, have positive mutual information.22

Words that are distributionally similar do indeed often represent semantically re-

lated concepts, and vice versa, as the following examples demonstrate. Weeds (2003),

in her study of 15 distributional-similarity measures, found that words distributionally

similar to hope (noun) included confidence, dream, feeling, and desire; Lin (1998b) found

pairs such as earnings–profit, biggest–largest, nylon–silk, and pill–tablet. It is intuitively

clear why these results occur: if two concepts are similar or related, it is likely that their

role in the world will be similar, so similar things will be said about them, and so the

contexts of occurrence of the corresponding words will be similar. And conversely (al-

beit with less certainty), if the contexts of occurrence of two words are similar, then

similar things are being said about each, so they are playing similar roles in the world

and hence are semantically similar — at least to the extent of these roles. Nonetheless,

the limitations of this observation will become clear in our discussion below.

Three differences between semantic relatedness and distributional similarity are im-

mediately apparent. First, while semantic relatedness is inherently a relation on con-

cepts, as we emphasized in Section 1.1, distributional similarity is a (corpus-dependent)

relation on words. In theory, of course, if one had a large-enough sense-tagged corpus,

one could derive distributional similarities of word-senses. But in practice, apart from

the lack of such corpora, distributional similarities are promoted exactly for applications

such as various kinds of ambiguity resolution in which it is words rather than senses

22 Do not confound Lin’s distributional similarity measure with his semantic relatedness measure, simL,
which has been discussed in earlier sections of this paper; but observe that both are derived from the
same theorem.
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that are available (see Weeds (2003) for an extensive list).

Second, whereas semantic relatedness is symmetric, distributional similarity is a

potentially asymmetrical relationship. If distributional similarity is conceived of as sub-

stitutability, asWeeds andWeir(2005) and Lee (1999) emphasize, then asymmetries arise

when one word appears in a subset of the contexts in which the other appears; for exam-

ple, the adjectives that typically modify apple are a subset of those that modify fruit, so

fruit substitutes for apple better than apple substitutes for fruit. While some distributional

similarity measures, such as cosine, are symmetric, many, such as �-skew divergence

and the co-occurrence retrieval models developed by Weeds and Weir, are not. But this

is simply not an adequate model of semantic relatedness, for which substitutability is

far too strict a requirement: window and house are semantically related, but they are not

plausibly substitutable in most contexts.

Third, lexical semantic relatedness depends on a pre-defined lexicographic or other

knowledge resource, whereas distributional similarity is relative to a corpus. In each

case, matching the measures to the resource is a research problem in itself, as this paper

andWeeds (2003) show, and anomalies can arise.23 But the knowledge source for seman-

tic relatedness is created by humans andmay be presumed to be (in a weak sense) “true,

unbiased, and complete”. A corpus, on the other hand, is not. Imbalance in the corpus

and data sparseness is an additional source of anomalous results even for “good” mea-

sures. For example, Lin (1998b) found “peculiar” similarities that were “reasonable” for

his corpus of news articles, such as captive–westerner (because in the news articles, more

than half of the “westerners” mentioned were being held captive) and audition–rite (be-

cause both were infrequent and were modified by uninhibited).

23 We have already remarked in Section 5.4 above on the promiscuity of the Hirst–St-Onge measure and its
tendency to find connections such as cation–group. Similarly, one of the poorer measures that Weeds
experimented with returned this list as the ten words most distributionally similar to hope: hem,
dissatisfaction, dismay, scepticism, concern, outrage, break, warrior, optimism, readiness.
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We now turn to the hypothesis that distributional similarity can usefully stand in for

semantic relatedness in NLP applications such as malapropism detection. Weeds (2003)

considered the hypothesis in detail. She carried out a number of experiments using data

gathered from the British National Corpus on the distribution of a set of 2000 nouns

with respect to the verbs of which they were direct objects, comparing a large number

of proposed measures of distributional similarity. She applied ten of these measures to

the Miller and Charles word-pairs (see Section 4.1 above); the absolute values of the

correlations with the Miller and Charles human judgments was at best .62 (and at worst

.26), compared with .74 to .85 for the semantic measures (table 3 above). Weeds also

compared these measures on their ability to predict the k words that are semantically

closest to a target word in WordNet, as measured by Lin’s semantic similarity measure,

simL. She found performance to be “generally fairly poor” (p. 162), and undermined by

the effects of varying word frequencies.

Last, Weeds experimented with distributional measures in real-word spelling cor-

rection, much as we have defined it in Hirst and Budanitsky (2005) and in Section 5.1

above, but replacing the semantic relatedness measures with distributional similarity

measures. However, she varied the experimental procedure in a number of ways, with

the consequence that her results are not directly comparable to ours: her test data was

the British National Corpus; scope was measured in words, not paragraphs; and relat-

edness thresholds were replaced by considering the k words most similar to the target

word (and k was a parameter). The most significant difference, however, arose from the

limitations due to data sparseness that are inherent in methods based on distributional

similarity: the very small size of the set of words that could be corrected. Specifically,

only malapropisms for which both the error and the correction occurred in the set of

2000 words for which Weeds had distributional data could be considered; and the abil-

ity to detect and correct the malapropism depended on other members of that set also
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being within the scope of the target word. It is therefore not surprising that the results

were generally poor (and so were results for simL run under the same conditions). This

severe limitation on the data means that this was not really a fair test of the principles

underlying the hypothesis; a fair test would require data allowing the comparison of

any two nouns (or better still, any two words) in WordNet, but obtaining such data for

less-frequent words (possibly using the Web as the corpus) would be a massive task.

7 Conclusion

Our goal in this paper has been to evaluate resource-basedmeasures of lexical semantic

distance, or, equivalently, semantic relatedness, for use in natural language processing

applications. Most of the work, however, was limited to the narrower notion of mea-

sures of similarity and how well they fill the broader role, because those measures are

what current resources support best and hence what most current research has focused

on. But ultimately it is the more-general idea of relatedness, not just similarity, that we

need for most NLP methods and applications, because the goal, in one form or another,

is to determine whether two smaller or larger pieces of text share a topic or some kind

of closeness in meaning, and this need not depend on the presence of words that de-

note similar concepts. In word sense disambiguation, such an association with the con-

text is frequently a sufficient basis for selecting or rejecting candidate senses (Banerjee

and Pedersen, 2003); in our malapropism corrector, a word should be considered non-

anomalous in the context of another if there is any kind of semantic relationship at all

apparent between them. These relationships include not just hyponymy and the non-

hyponymy relationships in WordNet such as meronymy but also associative and ad hoc

relationships. As mentioned in the introduction, these can include just about any kind
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Table 6
From Spellman, Holyoak, and Morrison’s (2001) list of associative semantic relations.

Name Example
IS-USED-TO bed–sleep
WORKS-IN judge–court
LIVES-IN camel–desert
IS-THE-OUTSIDE-OF husk–corn

of functional relation or frequent association in the world.24

For the last century, many researchers have attempted to enumerate these kinds of

relationships. Some elements from a typical list (that of Spellman, Holyoak, and Mor-

rison (2001)) are shown in Table 6. Morris and Hirst (2004; 2005) have termed these

non-classical lexical semantic relationships (following Lakoff’s (1987) non-classical cate-

gories), and Morris has shown in experiments with human subjects that around 60% of

the lexical relationships that readers perceive in a text are of this nature (Morris, 2005).

There is presently no catalogue of instances of these kinds of relationships let alone any

incorporation of such relationships into a quantification of semantic distance. Nonethe-

less, there are clear intuitions to be captured here, and this should be a focus for future

research.

But lists of such relationships can never be exhaustive, as lexical relationships can

also arise ad hoc in context (Barsalou, 1983; Barsalou, 1989) — in particular, as co-

membership of an ad hoc category. For example,Morris’s subjects reported that thewords

sex, drinking, and drag racing were semantically related, by all being “dangerous behav-

iors”, in the context of an article about teenagers emulating what they see in movies.

Thus lexical semantic relatedness is sometimes constructed in context and cannot always

be determined purely from an a priori lexical resource such as WordNet.25 It’s very un-

clear how ad hoc semantic relationships could be quantified in any meaningful way,

24 Don’t confound “frequent association in the world” with the lexical co-occurrences that underlie the
distributional similarity of Section 6.2.

25 Indeed Murphy (2003) has suggested that semantic relations (of all types) are best conceived of as
metalexical: derived from a (pre-existing) lexicon, but not part of it.
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let alone compared with prior quantifications of the classical and non-classical rela-

tionships. However, ad hoc relationships accounted for only a small fraction of those

reported by Morris’s subjects (Morris, 2005). Their fact of their existence does not un-

dermine the usefulness of computational methods for quantifying semantic distances

for non–ad hoc relationships, and the continued development of such methods is an

important direction for research.
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