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Abstract

Marvin Minsky (1986, p.18) writes at the beginning of The Society of Mind that “to explain
the mind, we have to show how minds are built from mindless stuff, from parts that are much
smaller and simpler than anything we’d consider smart.” In this dissertation, I develop a
model of a strictly quantitative (i.e., non-semantic) memory that can be used to specify a
conceptual analyzer for teuchistic (i.e., ‘constructionist’) text comprehension. I view this
model as a prototype of Minsky’s “agents of the mind”.

Most importantly, I acknowledge the real-time processing constraints derived from the
biological constraint (Feldman, 1984) and therefore, assume that linguistic comprehension
is a race defined in terms of time-constrained memory processes.

Because I do not model an adaptable memory, I partition memory into a static com-
ponent, which consists of a massively parallel network of simple computing elements whose
processes allow for the construction of clusters, and a dynamic component, where these
clusters reside. Through specification browsers, the user of the system can input and mod-
ify both the topology of the network and the individual behavior of each computing element
of static memory, which forms a ‘knowledge’ base. Clusters are built from the processing of
an input text with respect to this ‘knowledge’ base and constitute the output of the system.
Given that there is widespread disagreement on the nature, modus operandi, and use of in-
ferences in text comprehension, the focus in this work is not on the knowledge required for
comprehension, but rather on its specification in terms of constraints to satisfy through the
exchange of simple signals and sequences of primitive memory operations to execute upon
constraint satisfaction. I demonstrate at length how typical rules for the problems of syntax,
referential resolution, lexical and structural disambiguation, and bridging inferences can be
encoded in the proposed representational scheme, and thus illustrate how a theory of text

understanding may be ‘grounded’ into a more fundamental quantitative time-constrained

—



memory.
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Part I

A Model of Time-Constrained
Memory



Chapter 1

Rationale

1.1 Introduction

Since the early 1970s, significant advances have been realized in the field of natural language
processing (NLP). But research has mainly focused on user interfaces and the parsing of iso-
lated sentences; the processing of larger linguistic units has typically remained a stumbling
block (Habel, 1983; Winograd and Flores, 1986, chapter 9). More specifically, there are
currently few computational models that tackle the understanding (or equivalently, compre-
hension) of long, unrestricted, written tezt (henceforth, text). I use the term ‘text’ in the

broad sense in which Charles Muller (1977, p.5, Martin Phillips’s translation) defines it as:

any utterance or any succession of utterances, any use of speech or fragment of speech,

with no restriction on its extent, produced by a single speaker or writer and displaying

a certain unity.
This “certain unity” of text is taken to be central to comprehension: subject matter (or
equivalently, ‘aboutness’) is what gives a text this certain unity. It is generally accepted
that if we fail to perceive the subject matter of a text, we find it difficult, if not impossible,
to understand that text (Bransford and Johnson, 1973). In this dissertation, I address the
problem of text comprehension. and more specifically, the issue of the perception of subject
matter. I view the ezpression, as opposed to the perception, of subject matter as a distinct
problem, which has more to do with the tasks of language generation and memory recall
(Baddeley, 1976; Kintsch and van Dijk, 1978; van der Meer, 1987), which are not addressed

in this research.



Of the computational models that have been proposed over the last eighteen years
for text comprehension (e.g., Schank, 1972, 1982; Cullingford, 1978; Dyer, 1983; Wilen-
sky, 1978, 1983b), most are conceptual analyzers primarily concerned with the problem of
inference; they adopt what Peter Norvig (1989) calls “a strong method”, introducing com-
plex symbolic representational mechanisms and schema-matching sequential algorithms to
recognize specific classes of inferences. The disadvantage of these models is that new algo-
rithms and data structures have to be created every time a knowledge structure is proposed.
Moreover, it is commonly recognized that widespread disagreement exists about the nature,
classification, and generation mechanisms of knowledge structures for inference in text un-
derstanding (Graesser and Clark, 1985, p.1).

Rejecting methods tuned to process a particular set of knowledge structures, other
researchers have instead proposed conceptual analyzers that replace schema-matching by
marker-passing' (e.g., Hirst, 1987; Stallard, 1987; Charniak and Goldman, 1988; Hobbs,
Stickel, Martin, and Edwards, 1988; Pollack and Pereira, 1988). In particular, Norvig (1987,
1989) presents a model of text comprehension based on a marker-passing algorithm that
detects six general classes of inferences. Marker-passing systems typically combine a parallel
semantic network with a inherently sequential path evaluator: through the propagation
of markers, paths corresponding to inferences (Charniak, 1986b) are constructed in the
semantic network and submitted to the path evaluator. These systems typically suffer from
both (1) the computational inefficiency of either having to sequentially consider a large, if
not unmanageable, number of inferences suggested by their semantic network, or to depend
on an intractable evaluation process (e.g., abduction), and (2) the very little consideration
given to their representational and algorithmic complexity.

In contrast with the relative representational and processing arbitrariness of conceptual
analyzers, the connectionist paradigm proceeds from the computational constraints imposed

by neuronal modeling (Feldman, 1984, 1985a, 1985b). In the last five years, considerable

1Given a semantic representation of the next input, markers are passed from each concept of this rep-
resentation to adjacent nodes, following the links of the semantic network specified by the knowledge base.
Markers start out with a given amount of marker activation or energy, and are spread through the network,
spawning new markers with less energy, stopping when the energy value reaches a minimum. Markers are
information structures from which the path to the original concept, that is, the concept that initiated the
passing, can be requested. When two or more markers are passed to the same node, a marker collision
occurs. For each such collision, the associated path consists of one half originating from the initial represen-
tation, and one half that leads to the inferred node. Each collision denotes a poasible inference. Therefore,
the path associated with each collision must be evaluated according to some fixed @ priori criteria that cause
the inference to be either made, rejected, or even deferred.



effort has been expended in order to develop NLP systems built on the massively parallel
architectures and distributed processing that characterize connectionism. The resulting
models (e.g., Cottrell, 1984, 1985; Selman, 1985; Waltz and Pollack; 1985; McClelland
and Kawamoto, 1986; Selman and Hirst, 1987) are typically single-sentence parsers that
produce a pattern of activation corresponding to a parse tree. Some of these models can
tackle simple lexical and structural disambiguation, or very simple inferences (e.g., Eiselt
and Granger, 1987). With the notable exception of McClelland and Kawamoto’s work, these
models typically adhere to the ‘local connectionism’ paradigm (i.e., ‘one node equals one
concept’) that is distinct from the dominant parallel distributed processing (PDP) flavor of
connectionism (McClelland and Rumelhart, 1986). The fundamental feature of conceptual
analyzers, especially with respect to text comprehension, is that, contrary to neuronal
models and, in particular, to connectionist ones, they use symbolic data structures and
algorithms to build a representation of the input.

Most recently, a few researchers have attempted to integrate marker passing and local
connectionism by presenting hybrid systems that employ some elements of connectionism
within a marker-passing mechanism: e.g., link weights, activation values and thresholds
(Chun and Mimo, 1987; Lange, Hodges, Fuenmayor, and Belyaev, 1989; Lee, Flowers, and
Dyer, 1989), and microfeatures (Hendler, 1989). These models, however, are not directly
concerned with the computational constraints of neuronal modeling, and still generally rely
on complex symbolic data and processes (e.g., unique concept identifiers (e.g., Lange and
Dyer, 1989), complex markers, variable binding) and heuristics (e.g., rules of composition
for paths). Closer to ‘pure’ connectionism is George Berg’s proposal (1987) of an enhanced
parallel semantic network with nodes that have the ability to change links and add new nodes
to the network. Nodes of the network are activated by the energy spreading through the
underlying network eliminating the need for a centralized controller. Spreading activation
is also the basis for a simple conceptual analyzer.

The research presented in this dissertation constitutes another attempt at integrating
conceptual analysis with the computational constraints imposed by neuronal modeling.
Unlike previous research, I do not target my work to a particular cognitive task (e.g., schema
selection) nor to a specific implementation problem (e.g., the integration of connectionism
and marker passing, or Berg’s goal of obtaining a network with distributed control), but

rather construct the model from a more theoretical viewpoint, as will be explained below.



1.2 Human Memory as Basic Metaphor

The apparent dichotomy between conceptual analyzers a.pd neuronal models can be viewed
as an instance of the well-known and ubiquitous mind-body dilemma (Johnson, 1987). I
wish to bypass this dilemma by respecting the Aristotelean inseparability of these two enti-
ties. Acknowledging that one or more ‘basic metaphors’ (Mac Cormac, 1985) underlies any
theory of knowledge representation and processing, I therefore choose to root the cognitive
architecture I propose in the basic metaphor of human memory that is taken to embody this
inseparability.? ‘Yet, human memory constitutes a vast open interdisciplinary research field
in which controversies and contradictions abound (Baddeley, 1976, 1986; Tulving, 1983,
1984; Arbib, Conklin, and Hill, 1987), and it is not my intent to develop a model that
accounts for the latest evidence in all of the numerous relevant disciplines. In other words,
human memory® as a basic metaphor is too broad and must be further restricted within a
computational framework. This is my goal for the rest of this section.

The fundamental hypothesis of neuronal modeling, a basic metaphor rooted in the body,
is that if we acknowledge that the human brain is involved in the act of comprehension,
then the consideration of its anatomy and physiology may provide helpful insights for the
design of a computational model of cognition (Feldman, 1984, 1985a, 1985b). All neuronal
models proceed from the so-called ‘biological constraint’ (ibid.) that consists of the following

observations about the brain:
e Neurons are orders of magnitude slower than current electronic devices.
e Neurons exchange ‘simple’ non-symbolic signals.
e Neurons carry out ‘simple’ computations.

From these observations, neuronal researchers conclude that memory consists of a large net-
work of simple computing elements working in parallel and having properties that cannot be
captured at a ‘higher’ symbolic level. Conversely, proponents of conceptual analysis, a basic
metaphor rooted in the mind, typically ignore the biological constraint and parallelism, that
is, deny the importance of the ‘lower’ neuronal level, to develop instead arbitrarily com-

plex knowledge structures and algorithms that correspond to arbitrarily powerful processing

2Human memory is undeniably biological (Squire, 1987), but also acts as the medium for the storage and
processing of elusive mental entities such as ‘ideas’, ‘beliefs’, ‘dreams’, etc.
31 use hereafter the word ‘memory’ o refer to human memory as opposed to electronic storage.
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units engaging in arbitrarily complex communication. The perspective I take in this thesis
is that of the fundamental hypothesis of neuronal modeling: I assume that the biological
constraint imposes important processing constraints on cognition as a whole and therefore,
I adopt the consequent conceptualization of memory as a massively parallel network of sim-
ple computing units exchanging simple signals. Memory processes are constructed on top
of this network, and are taken to underlie the processes involved in cognitive tasks such as
linguistic comprehension. S

Conceptual and local-connectionist models are programmable, that is, their behavior
is controlled by the designer. In conceptual models, programmability is achieved through
the specification of data structures and algorithms. In ‘localist’ models, through the direct
modification of the weights of the connections of the network that, within the connectionist
paradigm, encode all knowledge in the network. Conversely, parallel distributed proces-
sing (PDP) models, once trained, are adaptable, that is, their behavior is controlled by
the network itself, which directly adjusts the weights of its connections. Conrad (1985)
observes that there is an inherent tradeoff between programmability and adaptability. In
this dissertation, it is not my .intent to develop a theory of human learning, but rather to
construct a tezt comprehension tool based on a model of memory that respects the biological
constraint. Therefore, I will not focus on the mechanisms that shape human memory into
the remarkable adaptable system it is, and I will not address the problems associated with
adaptable systems (e.g., learning, chunking, proceduralization, categorization). Instead, in
accordance with the reader-based strategy that will be introduced shortly, the proposed tool
will be highly programmable. More specifically, the user of the proposed tool will be able to
define and modify the major processing parameters and ‘knowledge’ (i.e., qualitative as op-
posed to quantitative data) used by this tool to generate an interpretation of an input text.
Also, just as connnectionist models use only highly idealized ‘neurons’, I will not present
a neuronal model of memory per se, that is, a model that accounts for all anatomical,
physiological, psychological, chemical, and neuropsychopharmacological evidence (among
the multitude of relevant fields).

The conceptualization of memory as a massively parallel network of simple computing
units exchanging simple signals says little about the modus operandi of memory. In general,
neuronal models are relaxation models (see Selman, 1985; McClelland and Rumelhart,

1986): once inputs have been entered in the network, the computation terminates when



the network reaches an equilibrium that is mathematically defined, typically as a global
function to minimize (Feldman, 1985b). In other words, there are no rules to define the
completeness of the computational process(es) used to solve a cognitive task or rules to
specify the correctness of the solution reached (Rumelhart, 1984): a solution emerges from
a constraint satisfaction process rather than from a search through a space of solutions. In
contrast, conceptual approaches rely on data structures, rules, heuristics, and algorithms
that must cover every possible input, and thus define in effect the completeness of the
understanding algorithm and the ‘correctness’ of the solution obtained.

Within the framework of linguistic comprehension, I feel close to Lindsay and Manaster-
Ramer’s (1987) teuchistic approach to cognitive processes:

Our view is that [natural language] use involves processes which are neither algorithmic
nor heuristic but, to coin a new term, teuchistic. Teuchistic processes construct a
solution rather than search for one.... We discard the concepts of language and gram-
mar, replace the customary notion of linguistic competence with a concept of potential
behavior, and view production and comprehension as nonmonotonic problem-solving
processes that satisfice rather than search out an optimal choice from a pre-established
theoretical set of possibilities. We further suggest that the multi-component constraint
satisfaction model serve as the basis of such problem solving. Comprehension is mod-
elled as a constraint driven satisficing process: information is selectively attended and
used to constrain the generation of an interpretation.
These authors present several general patterns of linguistic processing by human beings
supporting a teuchistic model. In particular, they remark that:
people produce and parse rapidly a vanishingly small proportion of the theoretically
possible utterances of a given language, and moreover, intend and understand only a
vanishly small proportion of the theoretically possible interpretations of those utter-
ances. Yet given sufficient time and effort, people seem to be able to increase these
proportions significantly.
Lindsay and Manaster-Ramer explicitly reject the concept of a ‘correct’ or ‘optimal’ inter-
pretation. The notion of a single determinate correct meaning to be retrieved from a text
can also be abandoned on hermeneutic grounds, as will be argued subsequently.

In this dissertation, I take a position that follows from the viewpoint of Lindsay and
Manaster-Ramer. In particular, I adopt a reader-based approach to text understanding,
one in which ‘meaning’ is constituted by the interaction between text and reader (Holub,
1984). The reader is not seen as an idealized competent entity, but rather as an individual

(with all the idiosyncrasies implied by this term) that comes to a personal interpretation

of a text with respect to a private idiolect. Therefore, the concept of linguistic competence



(which is inaccessible by definition) is abandoned at both the sentential and textual levels
of interpretation, as will be explained subsequently. Thus no claims are to be made about
‘linguistic knowledge’ or about the comprehension model itself; we focus only on actunal
performance, which is taken to be idiosyncratic. It follows that the only object of scientific
study in my work is the suggested computational model of memory, not the ‘knowledge’ it
manipulates (which is taken to be idiosyncratic): all qualitative rules (e.g., rules of syntax,
semantic definitions of ambiguous words, schemata, etc.) presented in this dissertation will
be strictly illustrative and no claim will be made with respect to ill-defined metrics such as
the ‘correctness’ or ‘normality’ of these rules. In other words, I focus on the form, rather
than on the content, of the ‘knowledge’ required for text comprehension. Throughout the
dissertation I will put the word ‘knowledge’ between quotes in order to emphasize that
the user of the proposed comprehension tool specifies all qualitative data necessary for
understanding. This includes ‘rules’ that extend beyond the symbolic rules of conceptual
analyzers.

I'abandon the notion of a’correct interpretation of a text and thus, I forsake the quest for
rules, algorithms, and heuristics—a standpoint shared by connectionism, teuchistic models,
and reader-based approaches to linguistic comprehension. Yet memory, which is taken to
underlie linguistic comprehension, must follow some functional principle corresponding to

an algorithm. Charles von der Malsburg (1985) solves this dilemma when he remarks that:

o There is a very clear division between the qualitative and the quantitative aspects
of an algorithm.

e With the abandonment of algorithmic control, the brain can be hypothesized to
follow a strictly quantitative ‘trivial algorithm’ that fixes only the general form
of operations; all qualitative information (e.g., rules, concepts, etc.) is treated as
data.

It follows that within the framework of my basic metaphor:

e All memory processes are taken to be strictly quantitative i.e., mechanical and de-

prived of any linguistic and semantic knowledge.

o All ‘knowledge’, that is, all qualitative information, manipulated by the proposed

comprehension tool is assumed to be strictly user-specifiable.

*Interestingly, I have noticed that, as a native speaker of French and a second-language user of En-
glish, my rules of parsing, especially for prepositional phrase attachment, can differ considerably from those
learned or idiosyncratically constructed by native English speakers. Other informants informally confirm
this observation.



o The processes of linguistic comprehension must be defined only in terms of quantita-
tive memory processes that manipulate user-specified qualitative data.

In other words, the goal of this research is not to develop rules and algorithms for com-
prehension, but, rather, to present a quantitative model of memory ‘on top’ of which a
conceptual analyzer can be specified.

Lindsay and Manaster-Ramer suggest that linguistic comprehension consists in a teuchis-

tic (i.e., construction) process constrained by:

a variety of factors, only some of which bear a close resemblance to the linguistic knowl-
edge as normally conceived, whereas others involve factors such as the past processing
that has been done by the system, interaction with other users of the langunage, and
even physical characteristics of the langnage user.

Of the multitude of possible factors that constrain linguistic comprehension, I focus pri-
marily in this work on the role and importance of quantitative time, that is, time as it
pertains to memory management and memory processes such as retrievals, (see Corriveau,
1987). More specifically, the fundamental and most pervasive hypothesis of this disserta-
tion is that, generally, linguistic comprehension is a time-constrained process—a race. The
idiosyncrasies of interpretation observable between readers stem, in part, from differences
between the private time constraints of these readers, that is, from differences in the compre-
hension time allocated by each one. This hypothesis proceeds not only from the biological
constraint that emphasizes the short response times of humans for hard cognitive tasks
(Feldman, 1985a; Gigley, 1985a, 1985b), but also from psychological evidence suggesting
that humans feel a determinative pressure to understand quickly (e.g., Mdrkus, 1983, for
inference; Norris, 1986, for word sense disambiguation; van Dijk and Kintsch, 1983, for text
comprehension), possibly as the result of social demands and struggles (Peckham, 1979).
From this viewpoint, the hypothesis considers both body and mind, in accordance with the
postulate about the inseparability of these two entities.

The idea of linguistic comprehension as a time-constrained process eliminates the need
to choose between relaxation mechanisms and arbitrary rules to stop the understanding
process. Instead, time becomes the essential stopping criterion: there is no correct interpre-
tation, but rather an interpretation that is reached given a certain private knowledge base
and a set of time-related memory parameters that characterize the “frame of mind” (Gard-
ner, 1983) or “horizon” (Gadamer, 1976) of a particular individual. The ‘acceptability’ of
this jnterpretation, a metric that could be captured through a global multi-variable function

9



to minimize (much like relaxation models), is not addressed in this work for it depends on
a multitude of factors (e.g., social criteria) that lie beyond the scope of my basic metaphor.

At this point of the discussion, let me recapitulate my main working hypotheses and
limitations:

e Memory is a massively parallel network of simple computing units that exchange

simple signals.

o Mechanisms that shape human memory into an adaptable system will not be ad-
dressed.

e The notion of a single determinate correct meaning to be retrieved from a text is

abandoned in favor of a reader-based approach to text understanding.

e Memory follows a irivial algorithm, that is, a strictly quantitative algorithm that
fixes only the general form of memory operations. All memory processes are strictly

quantitative.

e All ‘knowledge’, that is, all qualitative information manipulated by the proposed

comprehension tool, is strictly user-specifiable.

o Linguistic comprehension is a teuchistic process that must be defined in terms of

quantitative memory processes.

e Of the multitude of possible factors that constrain linguistic comprehension and its

underlying processes, the focus is on the importance of quantitative time.
o The notion of the acceptability of interpretation will not be addressed.

Given these assumptions, the task at hand is to develop a model of memory, that takes
into account the computational constraints imposed by neuronal modeling and can be
used for conceptual analysis. Such a model, called IDIoT (for Idiosyncratically Directed
Interpretation of Text), has been developed. Let me briefly summarize it. Through spec-
ification tools, the user of IDIoT can input, browse, and modify both the topology of the
memory network and the individual behavior of each computing element in memory. The
network constitutes the repository for all qualitative data, that is, the ‘knowledge’ ba.se that

the tool uses during the interpretation of a text. The comprehension process consists of the

10



construction of cognitive structures in memory. These structures represent the output of
IDIoT and can be inspected by the user. In order to initiate an interpretation by IDIoT,
the user selects a ‘knowledge’ base and an input text. Each word of the text activates some
computing element(s) of the network (e.g., word ‘meanings’, parsing rules, inferences, etc.).
Upon its activation, each network element may send signals to other network elements,
construct new cognitive structures in memory, or modify the existing ones at that point
in time. Except for the network elements directly activated by the words of the text, all
computing elements of memory are triggered by certain signals received from other memory
elements and require a small amount of time to become activated. (Details are provided in
chapter 3.) _

At this point of the dissertation, I must emphasjze that to assume that the biological
constraint imposes computational constraints on cognition is not to claim the biological
plausibility of the proposed model of memory. Indeed, such a claim would seem to inher-
ently presuppose a solution, which we do not have, to the mind-body problem. In the same
vein, I remark that this thesis is not concerned with the representational debate between
information-processing and connectionism, nor with semantic considerations such as the
correspondence between the semantic network specified by the user of IDIoT and formal
semantics (e.g., default logic, Etherington and Reiter, 1985). The object of study of my
work is the model of quantitative time-constrained memory and I do not focus on the char-
acteristics of the possible semantic representations that a user of IDIoT might adopt. In
other words, the representational level of the proposed memory is ‘lower’, more quantita-
tive (i.e., mindless), than typical ‘semantic’ networks. The model distinguishes itself from
connectionism in both its programmability and its consideration of processing time. From
my viewpoint, IDIoT constitutes a prototype of Marvin Minsky’s (1986, p.18) “agents of
the mind”:

To explain the mind, we have to show how minds are built from mindless stuff, from
parts that are much smaller and simpler than anything we’d consider smart. Unless we
can explain the mind in terms of things that have no thoughts or feelings of their own,
we’ll only have gone around in a circle. But what could those simpler particles be—
the “agents” that compose our minds? There are many questions to answer. ... These
questions all seem difficult, indeed, when we sever each one’s connection to the other

ones. But once we see the mind as a society of agents, each answer will illuminate the
rest.

This dissertation illustrates how mind (and its semantic rules, which form a conceptual
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analyzer) can emerge from a society of mindless agents, that is, more specifically, from the

interactions of strictly quantitative memory processes.

1.3 Overview of the Dissertation

In part 1 of this thesis, I develop the proposed model of memory.

Chapter 2 encompasses the theoretical foundations of the work. It begins with a review
of the currently dominant position in the cognitive sciences and of the existing approaches
to text understanding, and then argues that the information-processing paradigm rests on
a structuralist and objectivist theory of interpretation in which text is seen as the repository
of a single determinate meaning, placed in it by the writer; a ‘competent’ reader merely
retrieves this meaning. My contention is that this is too restrictive an approach and that
the notion of ‘readerly competence’ leads to a normative and self-validating theory of com-
prehension that merely begs the question. From this standpoint, I abandon attempts at
specifying a correct set of rules of comprehension and, instead, argue for a reader-based
approach to text understanding. Within the framework of my basic metaphor, this choice
is shown to constrain the design of an algorithm for linguistic comprehension, that is, the
specification of a formal a priori computation, to the quantitative aspects of memory. The
research relating to IDIoT is discussed throughout this chapter.

In chapter 3, I develop a model of time-constrained memory from the working hypotheses
presented above. First, memory is partitioned into a user-specified static component and
a dynamic, temporally organized, component that holds the cognitive structures (called
clusters) constructed by the teuchistic process of comprehension. The internal structure and
behavior of the elements of static memory, called knowledge units (KUs), is then presented.
In essence, a KU acts as a feature detector and as a cluster builder. A feature is a qualitative
entity and its detection consists of satisfying a local constraint of a KU. The qualitative
data of the model is not in the connections of the network, but rather in the KUs, which
are small strictly quantitative finite state machines implementing forward and backward
chaining. Each KU contains an ezpansion procedure, which is a sequence of primitive cluster
operations. Once a KU satisfies a local constraint, its expansion procedure is executed by the
memory manager, which is responsible for the manipulation and management of clusters.

Through the execution of its expansion procedure, a KU can modify the contents of the
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dynamic memory, allowing for both the enforcement and applica.tibn of the rule(s) associated
with the detected feature. The chapter proceeds with a discussion of the implementatibn
of the model. I then present an annotated example. To conclude, I summarize the different
programmable facets of the proposed model and discuss some of the insights gained from
experiments with the current prototype.

In part 2, I address the specification of a conceptual analyzer over time-constrained mem-
ory. In chapter 4, I first review three prototypical models of text understanding from which
the different tasks of lingnistic comprehension are identified. Then, in the next five chapters,
for each of the tasks of syntactic processing, reference resolution, word-sense disambiguation,
structural disambiguation, and bridging inferences, I argue for the omnipresent importance
of time-constrained memory and demonstrate how a user of the proposed tool can specify
rules that capture simplified solutions to these problems. I must emphasize again that the
goal is not to specify ‘correct’ rules, but to illustrate how typical rules can be encoded in
IDIoT. Several of the 89 examples running with the current prototype will be presented in
scenarios that consist of sequences of events summarizing the actual sequences of messages
exchanged.

Finally, the last chapter summarizes the main goals, achievements, and limitations of
this work. The dissertation closes with a brief discussion of several possible enhancements

to the proposed model.

1.4 Terminology and Conventions

For convenience, I will list here some of the terms used thronghout this work:

s Cluster: An element of dynamic memory. A cluster holds a set of features, each

feature governing a set of clusters.

Feature: A qualitative entity detectable by one or more knowledge units.

Knowledge base (KB): The repository of all qualitative data defined by the user.

Knowledge unit (KU): A user-defined element of static memory, that is, of the KB.

¢ Short Term Memory (STM): Short-term memory in the conventional psychological

sense.
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A few conventional abbreviations are also employed for syntactic categories:
» ‘'NP: noun phrase.
o PP: prepositional phrase.
e VP: verb phrase

In a grammar rule, a superscript asterisk on an item means that the item may be repeated
zero or more times; square brackets denote optionality.

The name of a feature appears in bold. Names follow the Smalltalk-80 (Goldberg, 1984)
convention: they may be arbitrarily long and consist of a single word in which some letters

may be capitalized to simplify reading.
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Chapter 2

Models of Understanding

2.1 The Conduit Metaphor

According to the Webster’s Ninth New Collegiate Dictionary', “language is a systematic
means of communicating ideas or feelings by the use of conventionalized signs, sounds,
gestures, or marks”. Martin Phillips (1985, p.3) observes:
There is one ultimate fact about text. This is that it consists of elements of linguistic
substance juxtaposed in linear sequence. In the case of written text, the ...reader
zgg.ehow internalises from the encounter with graphic substance ...the meaning of the
For written text, the marks (or graphemes) recorded on a certain medium (e.g., paper) are
physical (graphical) instantiations of linguistic elements. These linguistic elements do not
have physical substance per se: they belong to the reader’s mind, that is, the entity or set of
entities that controls abilities such as understanding, feeling, perceiving, thinking, willing,
and reasoning. For example, the letter ¢ does not exist in a three-dimensional blot of ink
on a piece of paper, but rather in the mind of a cognitive agent. By looking at the blot of
ink, the cognitive agent may perceive (or equivalently, apprehend) a t, or may fail to do so.
The linguistic elements that form a text have a symbolic nature: they symbolize other
mental (or equivalently, cognitive) entities typically called ideas or meanings. It is generally
accepted that the perception of the subject matter of a text involves the perception of the
meaning of the constituents of the text. In other words, it is typically assumed that the

perception of the subject matter of a text requires the ability to perceive the meaning of

1Merriam-Webster Inc., 1981, Springfield, MA, p.641.
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the smaller linguistic elements that form the text. For simplicity, let us appeal momentarily
to the intuitive notions of word, phrase, and sentence to refer to these smaller lingnistic
elements.

Many researchers have attempted to explain the relation of language to meaning. Michael
Reddy (1979) has suggested that a complex metaphor, which he calls the conduit metaphor,
underlies most current linguistic theories. This metaphor disposes us to think of linguistic

communication as follows:
o Ideas are mental objects.
o Linguistic expressions are containers.
e Communication is sending.

To effect communication, a speaker puts ideas into words and then sends them to a hearer
who takes the ideas out of the words. What a linguistic expression means depends solely
on what the speaker put into the container (Plantinga, 1986).

For written text, the conduit metaphor is writer-based; the reader merely retrieves the
determinate meaning that the author put in the sentences. John Searle (1979, pp.117-119)

has summarized the most common view of meaning that proceeds from this metaphor:

Sentences have literal meanings. The literal meaning of a sentence is entirely determined

by the meaning of its component words (or morphemes) and the syntactical rules ac-

cording to which these elements are combined. A sentence may have more than one

literal meaning (ambiguity) or its literal meaning may be defective or uninterpretable

(nonsense). ... . The literal meaning of the sentence is the meaning it has independently

of any context whatever; and diachronic changes apart, it keeps that meaning in any

context in which it is uttered.
Assuming that each word in language has a few possible meanings that are readily accessible
greatly simplifies the task of sentence understanding: the meaning of a sentence is deter-
mined by the meaning of the words that form it. Words are taken to refer to ‘reality’ and
therefore the meaning of an utterance can be obtained by evaluating the correspondence of
the meaning contained in its words to reality. With the ‘correct’ algorithm, ‘the’ meaning of
a sentence is obtained. Similarly, it is hoped that with the ‘correct’ algorithm, ‘the’ meaning
of a text will be computable from the meaning of the words and sentences of the text. To put
this another way, the linguistic elements that form the text carry their own meaning, they

constitute information, and the reader receives meanings contained in words. According
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to this viewpoint, the reader uses an information-processing algorithm: by recognizing the
rules of composition of meaning used by the author, the reader is able to retrieve the subject
matter of the text. Meaning and subject matter are objectified through the words of the
text, comprehension is normalized with respect to the set of rules of composition used by
the writer. As Edwin Plantinga (1987) observes, “the individual has been banished from
contemporary linguistics. . .linguistics studies language but not komo loguens™.

This concern with normalized understanding by a competent comprehender, one who
possesses and uses the correct set of rules, can be traced back to Ferdinand de Saussure
(1916), who was the first of the few modern linguists who has achieved fundamental insight
into the problem of meaning. The first principle of his Cours de Linguistique emphasizes the
arbitrariness of the linguistic sign: the linguistic sign consists of an arbitrary relationship
between a signifiant (or symbol) and a signifié (or referent). In other words, Saussure
asserts that there is no necessary correspondence between the systems of language and our
experience of phenomena. But if the relationship is arbitrary, it must also be conventional
“for if the relationship between ‘signifiant’ and ‘signifié’ were not conventional, there could
be no question of exercising stylistic choice or of creativity of the poetic work which attaches
new and unexpected meanings to familiar words” (Phillips, 1985, p.7).

Phillips remarks that the crucial consequence of the principle is that signs are not
mutually substitutable and that, therefore, a system has to be established to keep them
distinct in use. Both extreme homonymy (i.e., multiple referents mapping into identical
signs)~and extreme synonymy (i.e., a single referent realized by a multitude of signs) would
lead not to an unworkable system, but to the absence of system. Thus, with the acceptance
of the fundamental Saussurian tenet, the rest of linguistics can be seen as a specification of
the limits to arbitrariness.

The information-processing paradigm, I repeat, focuses on the conventions of linguistic
comprehension and ignores the arbitrariness of linguistic communication. The paradigmatic
goal is to find the systems of language and meaning, that is, sets of rules for understanding.
Since the relation of language to meaning is highly complex, several separate classes of sys-
tems have been proposed. Let me review these different classes and discuss their adequacy

for text comprehension.
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2.2 Information Processing and Text Comprehension

2.2.1 On Story Grammars and Discourse Analysis

The definition of language quoted above suggests that a certain systematicity is generally
accepted for linguistic communication. Typically, langnage is viewed as consisting of a
number of interrelated systems operating at different levels of analysis. The commonly
recognized levels of linguistic analysis are the phonological, the graphological, the morpho-
logical, the lexical, the syntactic, the semantic, the pragmatic, and the discourse level. For
the comprehension of written text, the phonological level of analysis does not enter into
consideration. “Nor does the graphological one since typographical features do not operate
at a unique level of linguistic analysis, but rather cut across a number of different levels.
Moreover, although such features make some contributions to the overall semantics of the
text, it is a relatively superficial one. The morphological level of analysis is also inappro-
priate to the investigation of text[:] word morphology relates to the function of words in
syntactic frames; that is, it largely reflects syntactic structuring.” (Phillips, 1985, p.30-32).
Within the information-processing paradigm, it is generally agreed that the percep-
tion of subject matter depends on “global semantic structures of text-as-whole”, known in
psychology as macrostructures (van Dijk, 1980):
We should distinguish between the (general) form of a narrative and its (actual) con-
tent, which is of course an old insight. ... We will call a story any discourse which has a
narrative structure. Hence, we distinguish between a discourse type (stories), its narra-
tive global form (superstructure[)], its narrative global content (macrostructures; which

may be conventionalized[)] and, of course, the actual linguistic expression of these in
the form of a sequence of sentences: a discourse.

Phillips (ibid., pp.3—4) explains:

It seems, then, that appreciation of textual meaning is a large-scale phenomenon which
does not depend directly on those structures which are responsible only for the local
organisation of linguistic expressions. ... It is widely accepted that ...non-linear con-
ceptual structures are elaborated by the reader and are the mechanism which underlies
the reader’s ability to summarise, paraphrase and generally state what the text is about.
This aBility raises some interesting problems. It has been pointed out that to be able to
state what a book is about depends on the processing of thousands of sentences which
cannot normally be memorised individually by the reader. ... In general, it is the ‘gist’
of a text which is recalled rather than the wording.

In modern theoretical linguistics, syntactic concerns occupy the center of attention in in-

vestigations of grammar (i.e., the set of rules required to assemble meaningful symbols into
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a meaningful utterance). In particular, the theory of generative grammars, whose most
notable proponent is Noam Chomsky (1965, 1980, 1982), introduces powerful notational
mechanisms that can be carried over to the textual level. It has therefore been suggesfed
that the meaning of a text can in some sense be accounged for within the framework of
grammatical theory.

Story grammars were initially proposed to reformulate Vladimir Propp’s (1968) theory
of Russian folktales. David Rumelhart (1975) suggested the first more general grammar.

This grammar’s first rewrite rule was:
Rule 1: story — setting + episode

This rule states that a story is composed of an element called a ‘setting’ followed by an
element called an ‘episode’. Each of these components is defined by subsequent rules: a
setting, as a sequence of stative propositions, and an episode, as an event followed by some
reaction of the protagonist of this episode. Each rewrite rule is associated with a semantic
constraint. For example, for the rule above, the semantic constraint specifies that the setting
must ‘enable’ the episode.

Some researchers (e.g., Johnson and Mandler, 1980) have presented more elaborate
grammars in which transformations specify the passage from the surface structure of a
story to its base (or deep) structure. It is generally assumed among story grammarians (the
notable exceptions being Nancy Johnson and Jean Mandler) that the proposed grammars
characterize cognitive schemata used during comprehension (van Dijk, 1980). The realiza-
tion of these schemata in language is of no import to these researchers (see comments of
Allen in Wilensky, 1983a).

A very critical review of the story grammar paradigm can be found in Robert Wilensky’s
(1983a) article “Story Grammars versus Story Points” and the comments of his peers that
follow the paper. Allan Garnham (1983) also vigorously argues against the approach. The
immediate difficulty with a story grammar is that it ultimately relies on the intuitions of
the grammarian himself for the definition and recognition of its terminals (e.g., ‘event’).
Furthermore, the relevance of the grammatical framework to text comprehension is rather
dubious: perception of subject matter is not an issue of grammaticality, that is, of well-
formedness, but of what a text is about.

From my point of view, discourse analysis (see de Beaugrande, 1980, for reviews) is

very similar to story grammars in that it focuses on the techniques used by the writer to
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introduce the topic, rather than on the perception of the subject matter of a text itself.
Though these techniques are relevant to understanding, how something is presented is not
sufficient to account for what is presented. Phillips (1985, p.35) elaborates:

I am left with the uncomfortable feeling that not only is the propositional content of

text relevant to [its understanding], but is the central issue and one which in discourse

analysis is necessarily avoided.... Moreover, the highest umit of analysis at present

generally recognised within discourse analysis is the ‘event’.... The unit is, however,

not very well defined and seems to depend for its recognition on the analyst’s intuitions

in particular circumstances. .
In summary, both story grammars and discourse analysis provide intuitive insights with
regards to the techniques used to assemble a text’s subject matter. These considerations,
however, are not sufficient in order to explain what a text is about, or how it is compre-

hended.

2.2.2 Text Linguistics

Story grammars constitute an early attempt at characterizing macrostructures in terms of
cognitive schemata. These schemata are psychological constructs that orient the reader to
the text and guide his interpretation of it.2 In psychology, several researchers (e.g., Rumel-
hart, 1975; Kintsch and van Dijk, 1978; Haberlandt, 1980; Kintsch, 1980; van Dijk and
Kintsch, 1983; Britton and Black, 1985; Graesser and Clark, 1985) have proposed a mul-
titude of different schemata.and corresponding comprehenders for textual analysis. These
models assume that the text-understanding process is controlled by a macrostructure, and
rely on complex, purely semantic, mechanisms (e.g., coherence graphs, supervised applica-
tion of macrorules, etc.) lacking computational principles.

Research on text comprehension in psychology and NLP has been combined under the
umbrella term tezt linguistics and generally adopts schema-based models. Christopher Habel
(1983) points out:

Most of the work done ... involving the investigation of larger textual units, i.¢., beyond
the level of sentences, has to do with ‘stories’. But these ‘stories’ are different from those
texts which literary critics study. ... Most of the stories are not authentic, i.e., they were
produced by the researchers themselves in order to test the system in question. [Also,]

*Kintsch and van Dijk (1978, p.373) remark that “if a reader’s goals are vague, and the text that he or
she reads lacks a conventional structure, different schemata might be set up by different readers, essentially
in an unpredictable manner. ... In many cases, of course, people read loosely structured texts with no clear
goals in mind. The outcome of such comprehension processes, as far as the resulting macrostructure is
concerned, is indeterminate.”
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they are restricied with respect to several important parameters, among others: the
length of the text, the vocabulary used, and the domain of the stories.

The difficulty with schema-based models that use macrostructures to account for a text’s
structure and subject matter is that ad hoc conceptual constructs (the macrostructures)
and algorithms are postulated to fit the text and then used to explain it. In other words,
the description of macrostructures is conflated with an explanation of the comprehension
process.

For example, let us consider the distinction (Garnham, 1983; Vipond and Hunt, 1984)
between a story and a narrative. In his work, Wilensky (1982, 1983a, 1983b) introduced
the notion of story points to try to enforce this dichotomy. Points are schemata that
specify those things that a story can be about. They characterize the content that can
constitute ‘reasomable’ stories and account for the existence of a story as an item to be
communicated. A person tells, or listens to, a story because it has a content of some
intrinsic interest. The content that bears this interest value is termed the point. A text
that does not possess story points is not considered to be a story. Two kinds of poini;s can
be distinguished. An ezternal point is some goal that a storyteller may have in telling a
story (e.g., to entertain). An internal or content point is some part of the story itself that
generates interest. Wilensky’s model is limited to content points. Other researchers have
focused on external points (e.g., Schank, Collins, Davis, Johnson, Lytinen and Reiser, 1982).
Story points constitute the macrostructures of Wilensky’s model of comprehension: they
define relevance and, therefore, they implicitly specify what a text may be about (i.e., its
subject matter).

BORIS, the program written by Michael Dyer (1983), relies on no less than seven-
teen different types of conceptual structure. In particular, the same way story points are
the macrostructures of Wilensky, Dyer’s thematic abstraction units (TAUs) are predefined
macrostructures that enumerate the possible gists of a narrative. Terry Winograd and

Carlos Flores (1986, p.122) comment:
If we examine the workings of BORIS we find a menagerie of script-like representa-

tions that were used in preparing the system for the one specific story it could answer
questions about.

All schema-based approaches to text comprehension share common technical problems
(Norvig, 1983a, 1983b; Birnbaum, 1985). Some researchers (e.g., Thorndike and Yekovich,
1980; Alba and Hasher, 1983) also criticize the corresponding theories of human linguistic
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memory. Text linguistic models of understanding all view a text as consisting of a coherent
sequence of sentences. Coherence is a semantic relation, that is, it applies to meaning;
cohesion is a siructural one (i.e., it applies to the symbols). From this viewpoint, schema-
based models are primarily semantic approaches to language and meaning.? Each sentence is
considered as expressing one or more ideas. Coherence of the text means that these ideas are
related one to another and ‘make sense’ together. Often, these relations are conditional: one
idea will make another possible, probable, or necessary. Local coherence allows the reader
to perceive parts of the sequence of sentences as a set of related ideas; global coherence
emphasizes the notion of a text as a whole, and thus is directly related to subject matter.
It is generally agreed that to preserve the local impression of coherence, the reader must
constantly use prior knowledge to infer the implicit information that is necessary to ‘bridge’
from one sentence to another. Arthur Graesser and Leslie Clark, who use the term bridging
inferences (1985, pp.28-30), remark that there is a consensus regarding the existence of
such inferences.* Let me illustrate this notion of bridging inference using one of Wilensky’s
(1983b) examples: |

Example 2.2.1 Willa was hungry. She picked up the Michelin guide.

Here is a possible sequence of bridging inferences assumed to be necessary to understand

these sentences:
o The word ‘hungry’ represents an instance of the concept HUNGER.
e HUNGER creates the goal of EATING.
o The EATING goal must be satisfied by the EATING plan.
¢ The EATING plan requires knowing the location of FOOD.
e FOOD is available at a RESTAURANT.

o EATING at a RESTAURANT requires finding one.

3With the exception of Steven Lytinen’s (1984) work, schema-based text linguistics models have generally
ignored the role of syntax during comprehension (e-g., van Dijk and Kintsch, 1983; Dyer, 1983).

4See Graesser and Clark (1985, pp.17-32), Rickheit, Schnotz, and Strohner (1985), and Norvig {1987,
chapter 2) for a review of the different types and taxonomies of inferences proposed in psychology and arti-
ficial intelligence for text understanding. A survey of these references will demonstrate the multitude of dif-
ferent models proposed even for a specific type of bridging inference (e-g., temporal and causal connectives).
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o The MICHELIN GUIDE satisfies the goal of finding a RESTAURANT’s location.

In fact, this sequence could be even more fine-grained and by no means are bridging infer-
ences limited to this type of inference. The point is that bridging inferences are the rules
of composition of schema-based approaches: the meaning of a word is determined by the
set of (syntactic and semantic) schemata it refers to, and the meaning of a larger linguistic
eclement is determined by the rules of composition (i.e., the bridging inferences) used to
combine the schemata referred to by the words that form this linguistic element.

With respect to bridging inferences, existing computational schema-based models of
text comprehension can be partitioned into two principal categories: the first uses models
in which bridging inferences are predefined in schemata (e.g., Schank, 1972, 1982; Culling-
ford, 1978; Lebowitz, 1980, 1988; DeJong, 1982; Dyer, 1983). In this case, understanding is
reduced to matching the input against an a priori set of schemata, but few schema-based
models have schemata that account for the global coherence and gist of a text. Gener-
ally, schema-based models can process only texts that closely match their schemata, and
they fail badly unless there is a close match. Recognizing these flaws, Alex Kass (1986)
and David Leake and Christopher Owens (1986) propose a system, SWALE, that ‘learns’
schemata by modifying old ones in order to understand ‘anomalous’ events in stories. Like
all programs in the Schankian tradition (see Schank, 1982), SWALE heavily relies on the
notion of ‘anomaly’ (e.g., goal failure) and failure-driven memory. In fact, SWALE con-
sists of a schema-matching model in which some schemata are ‘meta-schemata’ used to
tweak (i.e., modify) simpler ones. (The tweaking schemata cannot modify other tweaking
schemata). Leake (1989) uses the notion of anomaly to develop ACCEPTER, yet an-
other schema-based story understanding program, which uses gradual anomaly detection
strategies.

The other group of schema-based models builds and evaluates inference chains at reading
time (e.g., Rieger, 1975; Charniak, 1983; Granger, Holbrook, and Eiselt, 1983; Wilensky,
1983b; Alierman, 1985; Riesbeck and Martin, 1985; Norvig, 1987, Martin, 1989). Infer-
ence chaining is based on marker-passing architectures (see section 1.1 and, Anderson,
1983; Hendler, 1987, 1989), that is, models of associative semantic memory in which the
information (i.e., the markers) exchanged between the elements of memory is either very
simple as is the case of Fahlman’s NETL (1979), or complex (possibly including control
information) (e.g., Charniak, 1983, 1986a, 1986b; Hirst, 1987). Some inference-chaining
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models, for example Norvig’s FAUSTUS (1987), proceed directly frorp Wilensky’s PAM,
in that they specify the knowledge required for the evaluation of paths in schemata. Others
(e.g., Stallard, 1987; Charniak and Goldman, 1988; Hobbs, Stickel, Martin, and Edwards,
1988; Pollack and Pereira, 1988) postulate a path checker module that provides a formal
truth-based algorithm for evaluating inference chains.

The basic strategy for inference chaining consists of generating chains (or paths) of
bridging inferences at reading time and somehow evaluating these paths to decide which
provide a ‘good’ explanation. For example, Wilensky’s PAM program attempts “to match
inputs to known goals [and plans] of the actor, and to backward-chain to these goals if they
[can’t] be matched directly” (Kass, 1986).

Inference-chaining models are typically limited to local coherence and do not address
the problems of global coherence or of subject matter. Also, recall that these models can
be intractable or may generate an unmanageable number of useless inferences while trying

to obtain ‘relevant’ (or ‘important’) inference paths (Norvig, 1989).

2.2.3 Lexical Statistics

The basic problem with the methodologies reviewed above is that either they are restricted
to the local séa.le, or they arbitrarily specify a set of a priori gists. Researchers interested in
computer-assisted literary analysis resort instead to a ‘knowledge-free’, statistical approach
to subject matter. The fundamental postulate of lezical statistics is that the choice of
vocabulary in a text is largely a function of subject matter. More precisely, these researchers
assume that the distribution of lexical patterns over large amounts of text directly correlates
to subject matter (e.g., Muller, 1977; Phillips, 1985; Ide, 1986).

In the simplest form of lexical statistics, the patterns are individual words and the
statistics are limited to frequency counts. This technique is problematic. For example, a
certain word may be repeated ad nauseam in one chapter of a book without having any
major impact on the perception of the subject matter of the whole text. In other words,
the problem inherent to any straightforward frequency-count approach is that there is not
sufficient justification to correlate frequency of occurrence to subject matter. Conversely, a
strictly distributional approach, that is, one that measures the distribution of a pattern over
a text, is also inadequate, as a certain lexical pattern may appear throughout a text and yet

not often enough to affect aboutness. Thus, researchers in lexical statistics typically use a
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combination of both frequency of occurrence with distribution. This methodology is taken
to be more meaningfully reflective of the subject matter of a text than the consideration of
either characteristic alone.

~ In order to interpret the results of such statistical analyses, researchers require the ab-
solute probability of use of each pattern. For example, a word with low absolute probability
of use need not appear as often as one with high probability to be marked as relevant.
The notion of probability of use, however, is problematic. Consider Muller’s (1977, p.46)
warning:

Tlhie notion of probability of use should be applied only to a lexis of situation, and not
to the lexis of the individual, still less to the lexis of the collectivity.

In other words, “the notion of an individual word, without regard for its context, as the
identifiable signifier for a particular concept or meaning is problematic” (Ide, 1986). (This
fundamental observation is not restricted to lexical statistics but, as we shall see in the
next section, concerns the whole information-processing paradigm.) Since lexical statistics
operates at the lexical level of analysis, the notion of situation (or equivalently, contezt)
must be defined only in terms of lexical items. Consequently, the concepts of node, span,
and collocation are introduced (Phillips, 1985, pp.43—-44):

The node refers to the lexical item in the focus of attention, span relates to the number
of items in the immediate [linear] context of the node and collocation is the term used
to denote a common co-occurrence of items within a given span, that is, the joint
occurrence of a node and a particular collocate.

With regards to the notion of span, Phillips (ibid.) remarks that “it is crucial to have a
clear idea of how far the ‘influence’ of a word extends into its syntagmatic environment
since this determines the limits within which patterns of association are to be sought. It
was found that a span setting of four orthographic words on either side of the node yields
optimum results.”

The immediate difficulty with lexical statistics is that the determination of its analytical
categories (i.e., the nature and length of the lexical patterns to be scrutinized) is typically
carried out by hand. In other words, the task of identifying patterns that refer to a common
concept or theme ultimately depends on the intuitions of an expert. The interpretation of
the statistical results also rests on an expert. And, most importantly, lexical statistics
presents the problem of ignoring subtle (semantic) relations among the words of a text that

may significantly affect the perception of subject matter. For example, neither pronoun
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comprehension (Hirst, 1981; Stevenson, 1986) nor lexical disambiguation can be tackled
without some semantic ‘knowledge’.

In summary, in dealing only with the surface text, that is, with the stream of characters
that constitutes the text, lexical statistics is inherently restricted to analyses of the frequency
and distance between configurations of lexical items. The point I want to stress is that
lexical statistics consists in an a posteriori knowledge-free analysis of a text and thus cannot
serve as a cognitive model of text comprehension. For this reason, I shall not discuss this

methodology any further.

2.3 On the Existence of Macrostructures

I have already stated that, within the information-processing paradigm, all cognitive ap-
proaches to the perception of subject matter assume the existence of certain global patterns
of textual organization that have been called macrostructures (section 2.2.2). The analyti-
cal categories and the postulated macrostructures of these approaches stem from a strictly
psychological methodology: the schemata, which capture the rules of a given model, are
derived from empirical methods. In other words, statistical analysis directs the design of the
rules. This is particularly obvious in Dyer’s (1983) and Graesser and Clark’s (1985) work.
Beyond methodological issues, the problem with this approach is that it is not clear that
laboratory experiments do not set up an artificial environment that can affect the results.
Rand Spiro (1980), for example, argues that if the experimenter tells the reader what he
intends to ask after the reading of a text, then the reader may obtain different results for
recall and interpretation. (Also see Mitchell, 1982, pp.102-103.) Spiro’s conclusions have
important repercussions.

Text linguists assume a priori that there is a unique, small, correct set of macrostruc-
tures (e.g., Dyer’s thematic abstraction units, Lehnert’s (1981) plot units). According to
them, the perception of subject matter simply consists in finding out which macrostruc-
ture(s) the text corresponds to. From this viewpoint, comprehension is normalized. Nor-
malization implies an authoritative ezpert who sets the standard, that is, who decides what
is normal and what is not, what constitutes a correct interpretation and what does not.
In other words, an expert is needed to interpret the results and specify rules from them.

Spiro’s claim is that the expert can condition the results (that is, how a reader reports his or
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her comprehension of a text) through the design and control of the experience itself. From
this observation, George Dillon (1980) simply rejects the existence of macrostructures. For
him, only the expert (as opposed.to a ‘natural unconditioned’ reader) seeks macrostructures
(i.e., rules of interpretation) in a text.

The point to be grasped is that researchers generate rules that may not directly apply
to comprehension, but rather to an a posteriori or an artificial ezpression of meaning and
subject matter. It is important not to confuse information that is actually stored in memory
with reconstruction of information on the basis of inferential reasoning (Wagenaar, 1988).
Also, the difficulty with the notion of macrostructure stems from the absence of a validation
method to guide the specification of rules encoded in a model. This situation is reflected in
the following comment from Graesser and Clark (1985, p.1):

There is widespread disagreement about what inferences are generated, when inferences

are generated, how many inferences are generated, and what knowledge sources con-

tribute to the generation of inferences.
Elke van der Meer (1987, figure 6, p.51) makes another important remark in arguing that
the types of bridging inferences used during comprehension (especially inferences about
time as it pertains to the story line) are not the ones that researchers in text linguistics
have been studying (e.g., causality, consequence, finality, and superordination).

In summary, the existence of a small, correct set of macrostructures on which existing

information-processing models of text comprehension depend is problematic.

2.4 General Objections to the Conduit Metaphor

2.4.1 Beyond Literal Meaning: Tractability and Context

I previously stated that, in the framework of the conduit metaphor, a common view holds
that a sentence has a literal meaning. Some researchers reject the assumption that obtain-
ing the literal meaning of an utterance is a necessary step on the path to understanding.
Raymond Gibbs (1984), for example, writes that “the literal meaning of a sentence is an
inadequate place to start figuring out an utterance’s meaning”. Searle (1979) argues that
literal interpretation can only account for the meaning of some sentences. Consider, for

example:
Example 2.4.1 John quickly cut through the red tape.

27



John may literally be cutting a red tape in order to unwrap his Christmas gift, or John may
be particularly efficient in his dealings with bureaucracy.
Graesser and Clark (1985, p.27) report that:
There has been some debate in psychology about the time course of interpreting the lite-
ral meaning of a request versus the intended (illocutionary) meaning of a request. ... Ac-
cording to one alternative, the comprehender first interprets the literal meaning and
subsequently infers the illocutionary meaning by integrating the literal meaning with
the context of the speech act. A second alternative is that the process of constructing
a literal meaning and the process of constructing an illocutionary meaning are exe-
cuted simultaneously. A third alternative is that the illocutionary meaning is directly
interpreted and that the literal meaning may not be interpreted in some contexts.
From the above example, it seems that the issue is not limited to requests but, in fact,
extends to any utterance whose meaning may depend on context (see Dascal, 1989; Gibbs,
1989).
A most fundamental problem hides behind the immediate methodological puzzle: mean-
ing comes from rules and it seems that some rules must consider context since the signifiant
and the literal meaning are not enough in certain cases to obtain the signifié. It follows

that the ‘single-sentence’ paradigm is oversimplistic. Consider the following example:
Example 2.4.2 It is certainly geiting hot in here.

This sentence has at least four interpretations!® It can be understood literally, but this
‘provides no clue as to which interpretation is adequate. The question then is to know
where meaning comes from. The conduit metaphor explicitly claims that the meaning is
in the words, but apparently this is not the case: words are not enough, we need context.
This remark is not limited to the meaning of sentences, but also applies to the meaning of

individual words. For example, consider the word red in the following idioms:

¢ Red carpet, red tape, red light, red light district, red meat, red wine, redhead, red

herring.

e To see red.

5For example,

1. Literal: It’s hot in here.

2. Speech act: It’s too hot in here, could you open a window.

3. Irunical speech act: It’s freezing in here could you close the door.
4. Figurative: This discussion is degenerating into a bitter argument.
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e To be in the red.
e To catch someone red-handed.

In these examples, the meaning of the idiom does not proceed from the individual meanings
of its elements; the idiom must be treated as an indivisible semantic whole. The problem
then is to recognize an idiomatic meaning from a literal one. For example, as explained

above, red tape can be taken literally or idiomatically; only context may allow one to

discriminate between the two usages.
I want to emphasize that contextual influence on meaning is not restricted to a small set

of idioms, but on the contrary permeates language. Consider, for example, the utterance:
Example 2.4.3 Wylbur is a jzig.

A dictionary (e.g., Webster, 1981, p.862) suggests some possible interpretations; for exam-
ple:

¢ Wylbur is a young swine not yet sexually mature.
e Wylbur is an immoral woman.
s Wylbaur is a policeman.

But a dictionary does not exhaustively list all possible uses of the word pig and, therefore,
typically provides an extremely vague definition such as “one resembling a pig”® to account
for these idiosyncratic uses. Consider, for example, other possible interpretations of the

above utterance:
s Wylbur eats like a pig.
e Wylbur is some sort of sexual maniac.
o Wylbur has poor bathing habits.
e Wylbur simply did something I resent.

The contextual view of meaning is associated, in British linguistics, with the name of

J.R. Firth. For him, language is essentially a social and conventional phenomenon. Text

 An analogical definition is problematic because the perception of the soundness or felicity of an analogy
largely depends on the comprehender.
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is viewed as the only immediate component of a context of situation that lends itself to
analysis. Context of situation, which Firth regards as the prime analytical category, is an
abstraction of a system of relations from the life of humans in society. Firth (1957) argues
that the complete meaning of a word is always contextual. Phillips (1985, p.14) observes
‘that this leads Firth to the apparently extreme position of considering each use of a word

in a new context as an occurrence of a new word. Similarly, Firth (ibid.) remarks:

An isolated word which does not function in a context of experience has little that can
be called meaning.

Contextual meaning is highly problematic within the conduit metaphor in which typi-
cally meaning is decontextualized and comprehension is reduced to an invariant algorithm
that ignores all subjective (or equivalently, private or idiosyncratic) aspects of the act of
interpretation itself. Let me justify this observation. Within the information-processing
paradigm, it is generally assumed that the meaning of a sentence can be ‘reasoned out’,
that is, obtained by means of rules of inference (that can be content-blind, as in the case of
modus ponens, or content-dependent as in “if you are hungry then you need food”). These
rules of inference operate on symbals that are taken a priori to be context-dependent (or
equivalently, domain-dependent). The difficulty with such an approach is that the postu-
lated rules only have an a posteriori explicative nature, that is, they do not address the
problems, first, of deciding which symbols (words and sentences) may have a non-literal
meaning, and second, of discriminating between the several possible contextual meanings
of a symbol. In other words, the context (or domain of discourse) is a given and the issue
of recognizing it is altogether bypassed. Some researchers (e.g., Schank and Abelson, 1977;
Dyer, 1983) tackle the problem of contextual meaning by advocating the use of a scriptal
lezicon, which tries to specify rules of recognition for all possible contexts. This approach

is still problematic, as Lawrence Birnbaum (1985) remarks:

No single explanatory inference rule can be expected to attend to all the aspects of a
situation which might affect the truth or relevance of the explanation it offers.

In other words, it is quite frequently (if not always) possible to present an example that
violates a context-recognition rule. Therefore, within the conduit metaphor, the problem
of contextual meaning is typically transferred to the individual words of a sentence.

The first difficulty with doing that comes from the lack of availability of an accepted

ezhaustive list of meanings for words. Dictionaries constitute one possible source for the
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definition of words. But Firth (1957) argues vigorously against the view of meaning as
somehow ‘contained’ in words that ‘express’ the meanings enshrined against their written
forms in dictionaries. Assuming that words have lexical meanings that anyone can access
by consulting a dictionary offers only a very partial solution to the problem of meaning,
for people seldom use words in such a rigid way, as the preceding examples demonstrate.
Moreover, the organization of a dictionary and, consequently, of the lexicon of a model, is
problematic (Miller, 1985). Ultimately, we require an expert to standardize meaning, that
is, to specify an a priori lexicon. This is a.formidable, if not impossible task. ‘Abstract’
words such as love and freedom generally have vague definitions. Indeed, the definition of
language that is quoted at the beginning of this chapter uses the term idea, whose meaning
has been debated by philosophers for centuries (Adler, 1985, chapters 1-3)! (The meanings
of the words meaning and understanding are themselves problematic!) In other words,
the ezplicit, precise definition of certain words seems very difficult—and impossible when
we acknowledge that, despite the existence of dictionaries, the actual uses of a multitude
of ‘concrete’ words seem to escape characterization. Consider, for example, the verb fly
in the following hypothetical dialogue (Stephen Regoczei and Edwin Plantinga, personal
communication):

How can you tell a bird from another animal? Birds fly.

Do birds fly all the time? No.

Do little chicks fly? No.

Do dogs fly? No.

Do dogs on airplanes fly? Well, yes. ...

Do I fly? No.

Do I fly when I am flying to Montreal. Well, yes...

Do fiying squirrels fly? Yes.
Do bats and insects fly? Yes.

Does the above dialogue merely play on two clear, distinct meanings of the word fiy? Ety-
mological considerations suggest that, typically, an often lost and mostly analogical shared
element of meaning underlies most uses of a word. If this was not the case, a rich vocabulary
would generally provide more-precise words to distinguish these uses. In other words, it is
not clear whether the example above illustrates two different meanings or two shades of a
same meaning.

In the same vein, John Sowa (1984, p.346) observes that “even the boundary between

[a] tree and [its] environment may be indistinct: the tree may have started as a sprout from
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the root of another tree and may still share a root system with its parent and siblings.”
Does a tree growing from another one constitute a different tree? Generally, the semantic
distinctions we make are not adequate in ‘boundary cases’. The notion of death in its
common, medical, and legal uses exemplifies this remark.

The need to avoid an a priori static classification of the uses of words is echoed in the

following four principles of language taken from Jack Odell’s (1984) list of twelve:

e Open Tezture: Even if we legislate sets of necessary and sufficient conditions to
govern what [words] mean, we can’t be sure that our legislations preclude the
existence of contexts where we will be uncertain what our words mean, that is,
we can still imagine cases where we wouldn’t know whether or not a given word
applied.

e Creativily: We use language in inventive and innovative ways to amuse, clarify,
convince, annoy, insult, etc. Punning, poetry, word play, and pre-eminent prose
all depend on our ability to use language with a certain impunity.

e Family Resemblance: [(Wittgenstein, 1953)): What most, if not all, general empir-
ical terms mean in natural language, as opposed to what we might mean by them
on specific occasion, cannot be specified formally, that is, in terms of necessary
and sufficient conditions.

e Non-Functionality: What a given string of words means is not a function of the
formal characteristics that string possesses. “Why not?” can be used to make a
request, even though its form is that of a question.
In summary, it is not clear that an exhaustive list of all possible contextual uses of an
extended set of linguistic elements may be achievable.

The second problem with having to resort to such an exhaustive lexicon is that it leads to
an inescapable trade-off between representational blindness and algorithmic intractability,
which I will now briefly explain. On the one hand, all possible (literal, idiomatic, and
figurative) meanings of a word must be stored in some explicit representations (either in
the schemata of the lexicon or the rules of the understanding algorithm). Even if we
restrict ourselves to the definitions given in a dictionary, each word will ‘point’ (or refer)
to a large number of meanings. On the other hand, if a word does not point to a small
number of meanings, the model will be faced with an intractable number of inferences
(i.e., compositions of meanings) at understanding time.

In a computational framework, intractability is totally unacceptable. It follows that
the implemented models of linguistic comprehension restrict the number of meanings of
each word in one way or another. Schema-matching models simply use small lexicons.
Inference-chaining models typically postulate the sort of context-blind interpretation rules
(e.g., Wilensky’s (1983b) meta-plans) that I have criticized above. The difficulty with such
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solutions to the problem of contextual meaning is that they lead to an artificial (i.e., fixed-
patterned) language outside of which ‘comprehension’ is impossible. Though in computer
science it is usually the case that the human user must resort to an artificial langnage
to communicate with the machine, this is not acceptable in the case of natural language
processing. Winograd and Flores discuss this issue at length and conclude that models
that legislate contextual meaning merely create “a narrowed microworld that reflects the
blindness of [their] representation[s]” (1986, p.123).

The trade-off between intractability (resulting from an exhaustive lexicon) and blindness
(of the representations used in models that considerably limit contextual meaning) is best
exemplified by a most counterintuitive feature of all schema-based models: the more these
models ‘know’, the slower they become. This is in direct contradiction with the commonly
accepted assumption that the more familiar an input is, the quicker it should be processed.

Recapitulating, I remark that the consideration of the role of context appears to lead to
a tremendous increase in the number of rules or schemata that an information-processing
model must specify. In turn, the resulting increase in processing complexity leads to a

choice between inherent intractability and representational blindness (i.e., oversimplicity).

2.4.2 On the Existence of Rules: The Connectionist Attack

All theories of language and meaning that proceed from the conduit metaphor postulate
that linguistic comprehension involves rules of composition (e.g., grammars, schemata, in-
ference engines) over symbols. From this point of view, these theories consist of a priori
symbolic manipulations. Recently, the existence of such rules of language and rules of
thought has been challenged by the connectioniist paradigm (Rumelhart, 1984, McClelland
and Rumelhart, 1986).

The fundamental hypothesis of the connectionist approach (Feldman, 1984, 1985a,
1985b) is, as mentioned in section 1.1, that if we acknowledge that the human brain is
involved in the act of understanding, then the consideration of its anatomy and physiology
may provide helpful insights for the design of a computational model of cognition.

Feldman (1984) summarizes the connectionist attack on the information-processing pa-
radigm:

One consequence of taking [biological] computational constraints seriously is a profound
reservation on the ultimate viability of many of the information-processing models cur-
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rently dominating the field. Any paradigm that depends on central control, data struc-
tures or symbol manipulation presents the problem of having no obvious reduction to the
underlying computational system. Researchers motivated by biological constraints have
tended to work on positive results rather than argue paradigms and have been exploit-
ing insights gained through traditional approaches. But it does seem likely that many
problems that appear intractable in conventional information-processing paradigms will
be accessible in a more natural formalism([.]
Indeed, some connectionist models appear to handle contextual meaning in a most natural
way, which contrasts with the trade-off inherent to schema-based approaches.

The small number of computational steps assumed for hard recognition problems (such
as letterform recognition) has led connectionist researchers to postulate the existence of
large, pre-connected networks of simple computing elements operating in parallel. It is gen-
erally accepted that the human brain also works in a highly parallel fashion. Conversely,
the von Neumann computer uséd by most existing computational models of NLP is sequen-
tial. But the issue at hand is not whether parallelism is essential for understanding but, as
Zenon Pylyshyn (1984a, 1984b) remarks, whether or not cognition should be characterized
in terms of a formal computation, that is, in terms of symbols and rules.

The on-going debate between information-processing and connectionism is not directly
relevant to this dissertation and I will discuss it only briefly. First, it has been observed
that some connectionist models are rule-based symbolic systems in disguise (Derthick and
Plaut, 1986). Second, connectionist researchers use highly idealized models of neurons.
Third, several technical problems (e.g., variable binding, frame selection) have been identi-
fied with connectionist architectures (Barnden, 1983; Birnbaum, 1985; Pinker and Prince,
1988). In particular, Fodor and Pylyshyn (1988) argue that connectionist representations
are unstructured, atomic, and bounded. These claims have been rejected (e.g., Elman, 1989)
and solutions for problems such as variable-binding and multi-place predicates have been
recently proposed (e.g., Ajjanagadde and Shastri, 1989; Anandan, Letovsky and Mjolsness,
1989). Fourth, as mentioned in section 1.1, connectionist models for linguistic comprehen-
sion (e.g., Cottrell, 1984, 1985; Selman, 1985; Waltz and Pollack; 1985; Berg, 1987; Selman
and Hirst, 1987; McClelland and Kawamoto, 1986) are typically single-sentence parsers that
produce a pattern of activation corresponding to a parse tree, and few can tackle simple lex-
ical and structural disambiguation, or even very simple inferences (e.g., Eiselt and Granger,
1987). Finally, there have been recent attempts to integrate connectionism with symbolic

marker-passing (e.g., Chun and Mimo, 1987; Hendler, 1989; Lange and Dyer, 1989; Lange,
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Hodges, Fuenmayor, Belyaev, 1989; Lee, Flowers, and Dyer, 1989), but these models are, in
fact, information-processing models that are not directly concerned with the computational
constraints of neuronal modeling, and they still generally mostly rely on complex symbolic
data or processes.
The debate between connectionism and information-processing is a specific instance of
a more general and philosophical question, the mind-body problem (Johnson, 1987), which
Paul Thagard (1986) describes:
The currently dominant position in the philosophy of mind is functionalism, which says
that mental states are to be understood in terms of their functional relationships to
other mental states, not in terms of any material instantiation.... The rejection of a
direct mind-matter link distinguishes functionalism from the mind-body identily theory,
according to which types of mental states such as thoughts are identical to types of
states in the brain.... In computational terms, functionalism is the claim that only
software matters to the mental. The argument for multiple instantiation fon which
functionalism is based] says that we can ignore hardware in characterizing the mental,
since the same software can run on any number of different kinds of hardware: It is the
functional performance of the software which is crucial.

The information-processing paradigm corresponds to a functionalist approach, whereas the

mind-body identity theory underlies connectionism.

Functionalism has not been without its critics, even in philosophy. For example, Paul
Churchland (1985) advocates eliminative materialism, which claims that advances in neu-
roscience will lead us to a very different set of categories for describing mental states, elim-
inating the old ones. Is there an obvious, verifiable solution to the mind-body problem?
Thagard (1986) writes:

My conclusion is that we currently know too little about the human mind a.n& brain and

about the range of possibility of other kinds of intelligence to form a plausible solution

to the intelligence-matter [or equivalently, mind-body] problem. Any answer offered at

this point would be a generalization from one ill-understood instance, the brain.
In other words, our current understanding of the brain allows us only to assume a certain
organization for the mind and the brain of a reader; experimental psychology, genetics,
and neurology are a long way from verifiable and unanimously accepted cognitive theories.
Indeed, each of the exis;:ing theories of comprehension has a basic metaphor underlying it
and Earl Mac Cormac (1985, p.17) warns us that “metaphors can be dangerous not only in
bewitching us into thinking that what they suggest really does exist but also in leading us
to believe that the attributes normally possessed by any of the referents in the metaphor

are possessed by the others.”
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The computational metaphor (ibid., pp.9-22) underlies most, if not all, existing research
in linguistic comprehension. Under this metaphor, the brain is viewed as a computational
device similar to a computer, and the mind emerges as a series of algorithms by means of
which the brain functions. Algorithms are the essence of the ‘word expert’ approach adopted
by Steven Small (1980, 1983; Small and Rieger, 1982) for sentence parsing: each word in
the lexicon is represented by a procedure and the parsing and semantic interpretation of
a sentence are performed through the interactions of the concurrently running procedures.
A general mechanism of comprehension is abandoned in favor of a very large number of
loosely related experts (Hirst, 1987, section 4.2.4).

I investigate the repercussions of the computational metaphor on a theory of interpre-

tation in the next section.

2.5 Beyond Algorithmic Competence

2.5.1 Text Linguistics as a Structuralist Theory

The conduit metaphor views linguistic expressions as containers for meanings. The role of
the reader is to retrieve the determinate meaning placed in a text by the writer. To do 80,
it is postulated that the reader must bridge from one sentence to the other by generating
inferences: “the crucial problem of story understanding is inference” (Kass, 1986). Most
of the existing computational NLP models consider only these bridging inferences. In the
context of text comprehension this assumption presents the disadvantage of being too com-
partmentalized, that is, of ignoring the problem of the perception of subject matter: the
bridging inferences presented in those models are restricted to the level of local coherence.
This is not enough, as Dyer (1983, Preface) remarks:
In-depth understanding means being able to do more than simply extract the facts of a
narrative and infer causal connections between them. An in-depth understander must
be able to recognize what was memorable about a narrative, what episodes were of
significance, and what the point of the narrative was—that is, why the narrative was
worth telling in the first place. Finally, if a narrative is significant in some way, the
memory must be updated so that it will come to mind in appropriate future situations.
I previously observed that current information-processing theories that consider the problem

of subject matter postulate a fixed set of macrostructures that, in essence, specify the

possible gists of a text. The use of macrostructures constitutes a structuralist approach to
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comprehension. Let me first quote at length Christopher Norris’s (1982, p.2) summary of
what structuralism is generally taken to be:

The concept of structure serves to immobilize the play of meaning in a text and reduce
it to a manageable compass. This process can be seen at work in the reception of a
book like Jonathan Culler’s Structuralist Poetics (1975), regarded ...as a sound and
anthoritative guide to the complexities of structuralist thought.... The proper task of
theory, in [Culler’s] view, is to provide a legitimating framework or system for insights
which a ‘competent’ reader should be able to arrive at and check against his sense of
relevance and fitness. . . . His argument becomes strained when it tries to link this notion
of readerly ‘competence’ with an account of the manifold conventions—or arbitrary
codes—that make up a literate response. On the one hand, Culler appeals to what seems
a loose extension of ...Chomsky’s argument: that linguistic structures are innately
programmed in the human mind and operate both as & constraint upon language and
as a means of shared understanding. Thus Culler puts the case that our comprehension
of literary texts is conditioned by a similar ‘grammar’ of response which enables us
to pick out the relevant structures of meaning from an otherwise inchoate mass of
competing detail. On the other hand, he is obliged to recognize that literary texts
. ..involve certain specialized codes of understanding which have to be acquired.

Existing information-processing theories of comprehension correspond to a structuralist

methodology in that they try to produce a set of rules that would encapsulate this innate
readerly competence. These theories are also objectivist (Winograd and Flores, 1986, p.28):

For the objectivist school of hermeneutics, the text must have a meaning that exists
independently of the act of interpretation. The goal of a hermeneutic theory (a theory
of interpretation) is to develop methods by which we rid ourselves of all prejudices
and produce an objective analysis of what is really there. The ideal is to completely
‘decontextualize’ the text.
I have already mentioned Dillon’s (1980) rejection of the notion of macrostructure per se.
Let us investigate, in the next subsection, two fundamental problems that pertain to the

notion of ‘innate readerly competence’.
2.5.2 On Readerly Competence

On Innatism

According to Culler’s (1975) most conservative view of structuralism, the reader possesses
an innate competence that allows him to perceive what is relevant and what is not. From this

point of view, Culler is indeed very close to Chomsky’s position on language and cognition

(in Piatelli-Palmarini, 1980, p.10):

The environment per se has no structure, or at least none that is directly assimilable
by the organism. All laws of order, whether they are biological, cognitive or linguistic,
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come from inside, and order is imposed upon the perceptual world, not derived from it.

These laws of order are assumed to be species-specific, invariant over time and across

individuals and cultures.
Do the apparent regularities in lingunistic comprehension originate in innate rules or are they
derived from the environment (and, in particular, from a culture and one or more lingnistic
communities)? A biological discussion of the merits of the innatist hypothesis lies beyond
the scope of this dissertation. Let me simply remark that the debate between innatists
(or equivalently, nativists) and researchers who postulate some assimilation of ideas from
the environment started more than 2500 years ago (when Aristotle rejected the forms, or
universal archetypes, of Plato and advocated a tabula rasa) and still rages (see Piatelli-
Palmarini, 1980; Lakoff, 1987). Jean Piaget (1970) concisely summarizes the issue when he
remarks that the boundary between the phenotype and the genotype, that is, between the
acquired (from the interaction of genetics with the environment) and the innate, is floue
(fuzzy). In the end, the biological debate reduces roughly to an interpretation of the role of
random mutations, that is, to a debate on the paradoxical notion of probability “which has
puzzled philosophers ever since Pascal initiated that branch of mathematics—and which von
Neumann, the greatest mathematician of our century, called ‘black magic’” (Koestler, 1978,
p.266).

The above discussion suggests that the innatist hypothesis merely constitutes yet an-

other basic metaphor. Let me repeat Thagard’s (1986) warning: “any answer [to the
mind-body problem] offered at this point would be a generalization from one ill-understood

instance, the brain”.

Structuralism and Skepticism

Immanuel Kant claimed that man must possess certain innate faculties of mind by virtue
of which he imposes law and order on his experiences. The laws man discovers in nature
are those he puts there himself. It is almost as if man created nature, subject to one
important proviso. Kant believed that underlying man’s experiences are unknowable things-
in-themselves, which would continue to exist even if there were no minds left. The role of the
mind is to organize the things-in-themselves into forms that make experiences intelligible.
The result is man’s perception of nature. Kant regarded the active but unconscious mental

powers of man to be a priori, that is, to exist in the mind prior to experience, although
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not as ideas since, he claimed, the content of ideas can come only from sensory experience.
Norris (1982, pp.4-5) remarks:

It is not hard to see the parallels between Kantian thought and the structuralist outlook
presented by a theorist like Culler. Both have their origins in a sceptical divorce between
mind and the ‘reality’ it seeks to understand. In structuralist terms this divorce was
most clearly spelled out by the linguist Ferdinand de Saussure. He argued that our
knowledge of the world is inextricably shaped and conditioned by the la.nguage that
serves to represent it. Saussure’s insistence on the ‘arbitrary’ nature of the sign led to
his undoing of the natural link that common sense assumes to exist between word and
thing. ... In his view, our knowledge of things is insensibly structured by the systems
of code and convention which alone enable us to classify and organize the chaotic flow
of experience. This basic relativity of thought and meaning ...is the starting-point of
structuralist theory.

The theme of the relativity of langnage and meaning is typified in what has come to be
known as the ‘Sapir-Whorf’ hypothesis. Benjamin Whorf (1956, p.213) writes:

We dissect nature along lines laid down by our native languages. The categories and
types we isolate from the world of phenomena we do not find because they stare every
observer in the face; on the contrary, the world is presented in a kaleidoscopic flux of
impressions which has to be organized by our minds—and this means largely by the
linguistic systems in our minds. We cut nature up, organize it into concepts, and ascribe
significances as we do, largely because we are parties to an agreement to organize it in
this way—an agreement that holds throughout our speech community and is codified
in the patterns of our language.

The Sapir-Whorf hypothesis (e.g., Anderson, 1980, pp.384-386) claims that the language
of an individual partially determines the world view and the conceptual system of this
individual. Whorf became convinced of this hypothesis after studying Hopi Indians who
apparently had no implicit or explicit concept of time. In the same vein, Sowa (1984,
p-347) observes that English speakers can easily talk about hypothetical situations that
have not happened, but Chinese has no syntactic form for expressing them and, therefore,
the comprehension of conditionals (e.g., in English) is harder for a native Chinese speaker.

Against the Sapir-Whorf hypothesis Brent Berlin and Paul Kay (1969) claim that the
color vocabularies of various languages form a fixed pattern. Eleanor Rosch (1974) has ex-
tended this notion of ‘prototypicality’ beyond color to other categories (e.g., facial expression
of emotions), arguing that humans categorize according to innate prototypes rather than
by analyzing the features of objects and classifying them abstractly (see Mac Cormac, 1985,
pp.71-72). From this evidence, most researchers dismiss the hypothesis. John Anderson
(1980, p.386), for example, observes:

The evidence tends not to support the hypothesis that language has any significant
effect on the way we think or on the way we perceive the world. It is certainly true that
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language can influence us, ... but its effect is to communicate ideas, not to determine
the kind of ideas we can think about.

Most importantly, rejecting linguistic relativity does not solve the problem of concep-
tual (or mental) relativity that results from placing structure in mind. The information-
processing and structuralist paxadigmé exemplify the Kantian response “which strives to
keep skepticism at bay by insisting on the normative or somehow self-validating habits of
readerly ‘competence’ ” (Norris, p.5). Let us focus on this fundamental remark, which states
that structuralist ‘readerly competence’ is self-validating.

Ultimately, the rules used in a structuralist model of interpretation are grounded in the
ezpert and his ability to abstract (or classify) from data, that is, to extract relevant patterns
that are assumed to exist independently of the expert’s act of interpretation. Meaning
comes from this objective recognition of distinctive features and significant contrasts. The
expert can be viewed as creating a master code for the interpretation of text. Structuralism
becomes in effect a natural extension or legitimating theory of what it is to read a text
properly. It is hoped that the rules of a complete model will capture the structure of the
competent reader, that is, the master code he uses to impose meaning.

Roland Barthes (1977) remarks that the language of the expert, what he terms the
meta-language, is itself an object of study. Norris (pp.9-10) explains:

Barthes is well aware of the dangers and delusions implicit in a discourse that claims
the last word in explanatory power. The semiologist may seem to exercise ‘the objective
function of decipherer’ in relation to a world which ‘conceals or naturalizes’ the meanings
of its own dominant culture. But his apparent objectivity is made possible only by a
habit of thought which willingly forgets or suppresses its own provisional status. . .. The
dream of total intelligibility, like ‘structure’ in its metalinguistic sense, belongs (he
implies) to a stage of thinking that is self-blinded by its own conceptual metaphors.
In other words, the rules of interpretation (especially the macrostructures), that define a
readerly competence can only be ‘grounded’ in the self-validating basic metaphor(s) of an
‘expert’. This inadequate response to the basic relativity of language and thought, which
underlies structuralism, leaves the door open for the radical skepticism of the deconstruc-

tionist movement (see Norris, 1982).

2.5.3 Beyond Algorithmic Control

The rules of interpretations postulated in the existing NLP models come to form an ‘un-

derstanding algorithm’ that defines what it is to correctly understand a text, and what
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is understandable and what is not. An algorithm specifies a formal computation that it-
self defines a competence, that is, an implicit normative metric. Von der Malsburg (1985)
remarks that:

It is the essence of an algorithm that all its qualitative aspects are premeditated and

tested so that during its execution no ideas are necessary [and] no qualitative questions

are left open.... Only quantitative decisions must be met, which can be handled in

a mechanical way.... There is a very clear division between the qualitative and the

quantitative aspects of an algorithm: The former is invented by the human mind and

formulated as rules, the latter refers to the data handled by rules.
The point I want to make is that most existing NLP models treat their rules of interpretation
as components of an algorithm (as opposed to treating them as data). In other words, the
algorithms of these models constitute mechanical encodings of (typically static) sets of
rules more or less arbitrarily established by the programmers. This creates the illusion of
understanding (Winograd and Flores, 1986, p.123):

It must be stressed that we are engaging in a particularly dangerous form of blind-

ness if we see the computer—rather than the people who program it—as doing the

understanding.
Some philosophers (e.g., Odell, 1984; Searle, 1984) have argued against artificial intelligence
as a whole on the basis of this observation. The difficulty with a structuralist hermeneutical
approach that is limited to the normative aspect of Culler’s theory is that it is blinded
by its own basic metaphor(s): the ‘readerly competence’, that is, the postulated rules of
interpretation cannot be validated. Therefore, an algorithmic encoding of such rules is also
unacceptable. In other words, I abandon both the hypothesis that a priori macrostructures
are necessary for text comprehension and the idea that understanding can be characterized
by a normative algorithm.

Von der Malsburg observes:

This conclusion [the abandonment of algorithmic control] creates a dilemma because

surely the brain must follow some functional principle and surely this principle can be

put into the form of an ‘algorithm’.. .. The solution to this dilemma lies in the scheme of

a trivial algorithm. All .. .rules, values, concepts, methods, procedures, etc., are treated

by the trivial algorithm as data. The algorithm fixes the general form of operations on

a fundamental level, and makes sure that organized states instead of chaos arise.
The strategy adopted in this dissertation, that is, the use of a ‘trivial’ algorithm for a model

of text comprehension, represents a fundamental shift in concern with respect to existing

research. A trivial algorithm is trivial solely in the sense that it is strictly quantitative, that
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is, free of heuristics (read ‘educated guesses’) and rules of interpretation. Consequently,
there is no @ priori absolute readerly competence, no a priori macrostructures that are
specified once and for all in an algorithm: comprehension depends on the data supplied to
the trivial algorithm. Within the framework of my working hypotheses, the trivial algorithm
corresponds to the modus operandi of memory, and, I insist, it is this modus operandi that
is the object of study of my work. And, although the previously discussed problems of
information-processing models are not the issue here, some can be addressed within the

scope of a quantitative model of memory for reader-based comprehension:

e The ‘blindness’ of the user-specified data is inescapable, but can be viewed as partly

accounting for the idiosyncratic knowledge of the user.
o The use of parallel networks for memory can help in reducing the risk of intractability.

e The notion of ‘context’ can be built into memory, as we shall see in the next chapter.

2.6 An Introduction to Reader-Based Understanding

In the framework of the conduit metaphor, the meaning of a text is placed in the words of
the text by its author. As I have already explained, contextual meaning is problematic for
this approach and, therefore, it is postulated that text has a single determinate meaning
that is obtained by a ‘competent reader’, that is, one who possesses the correct set of a prior:
codes of interpretation. In other words, meaning is decontextualized and objectified, com-
prehension is reduced to an invariant algorithm that ignores all subjective (or equivalently,
private or idiosyncratic) aspects of the act of interpretation itself.

The idiosyncratic facet of linguistic comprehension is well recognized in psycholinguis-
tics. Mitchell (1982, chapter 7), for example, discusses at length the following individual

differences in reading;:
e Acquired dislexia.
e Other physiological deficits (e.g., eye movement control, iconic memory).
¢ Differences in word recognition.

o Differences in phonetic recoding.
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o Differences in the use of syntactic and semantic constraints.
o Differences in the accessing or knowledge of word meanings.
o Differences in constructing and combining propositions.

o Differences associated with the interaction of reading subskills (p.173):

The more fluent readers may be capable of completing some of the subprocesses rel-
atively automatically.. . . If so, they may be free to devote more processing capacity
to other critical aspects of the task.

He concludes his study with the following remark (p.175):

There are remarkable differences between the levels of skill attained by people with
many years of practice in reading.

Thus a normative and self-validating approach to meaning is questionable. Consider, for

example, this remark by Northrop Frye (quoted in Hirsch, 1967, p.1):

It has been said of Boehme that his books are like a picnic to which the author brings
the words and the reader the meaning. The remark may have been intended as a sneer
at Boehme, but it is an exact description of all works of literary art without exception.

“Among the many developments in literary criticism in the past two decades has been
the emergence of a group of German critics, who operate under the banner of reception
theory, and a less cohesive group of American critics, who operate under the umbrella
term reader response criticism. Both German and American critics of this persuasion have
displayed a shift in concern from the author and the work to the text and the reader”
(Plantinga, 1986). Robert Holub (1984, p.149) elaborates:

The conception of an objective and eternal work of art with a unique structure and a
single, determinate meaning was replaced by a variety of models in which the essence
of the work is a never-completed unfolding of its effective history, while its meaning is
constituted by the interaction between text and reader.

In other words, the act of interpretation becomes central; comprehension is taken to proceed
from the private response of a reader to a text: this constitutes a reader-based approach to
understanding. For example, Hans-Georg Gadamer (1976) suggests that the act of inter-
pretation be understood as an interaction between the horizon provided by the text and
the horizon that the interpreter brings to it. Gadamer insists that every reading of a text
(whether ‘literary’ or not) constitutes an act of giving meaning to it through interpreta-

tion. From this perspective, the text acts as a stabilizing factor in comprehension: the
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techniques emplqyed by the author (e.g., the spacing of related episodes), may constrain
the idiosyncratic interpretation of a reader. But this comprehender is never seen as an
autonomous, idealized individual; “he is neither an abstract phenomenological subject nor
an ideal perceiver” (Holub, p.32).

This individualized act of comprehension can be modeled with a trivial algorithm since
the qualitative data, that constitutes a reader’s private horizon, is completely separated
from the algorithm itself. The trivial algorithm merely defines a computational model that
encodes the quantitative aspects of comprehension. The algorithm fixes the general form
of operations on a fundamental level and thus, affects the quantitative organization and re-
trieval of the data. But understanding is neither in the algorithm, nor in the text alone, nor
in a reader’s horizon alone: it results from the interactions between these three entities. It
follows that the notion of an ‘optimal reading’ is abandoned: comprehension is not viewed
as a problem for which there exists a (correct) solution, but rather, as the idiosyncratic
response of a reader to a text. Each comprehender brings his or her private horizon to
the act of interpretation, the text providing a factor of uniformity across responses. An-
other important factor of uniformity stems from the linguistic and conceptual conventions
a reader inevitably acquires. In other words, even though all ‘knowledge’ in IDIoT, the
proposed comprehension tool, is user-specified, it is highly probable that two distinct users
would construct knowledge bases that share a significant number of knowledge units corre-
sponding to the numerous conventions that they were taught, either explicitly or implicitly,
as members of a social community. Deciding whether or not these conventions are innate
lies beyond the scope of my research. And, since even a well-established convention (e.g., a
metaphor but also a grammatical rule), can be modified with time and by usage, I do not
claim that the rules and concepts presented in the rest of this work form a corpus of conven-
tionalized knowledge or any sort of set of correct rules for comprehension. The suggested
rules and concepts are merely illustrative, and the issue of their ‘correctness’ must not dis-
tract us from the object of study, namely, the modus operandi of a quantitative memory
for reader-based comprehension, a type of memory that all human brains are assumed to
share.

Recapitulating, we have seen that within the conduit metaphor, that underlies the
prevailing information-processing paradigm for text comprehension, it is postulated text

has a single determinate meaning that is obtained by a competent reader, that is, one
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who possesses the correct algorithm of interpretation. The existence of the rules, called
macrostructures, that form the interpretation algorithm, has been questioned. I have aban-
doned this approach, in which understanding is reduced to an invariant algorithm, in favor
of a reader-based strategy that acknowledges the idiosyncratic aspects of linguistic compre-
hension. More specifically, I have suggested that the individualized act of comprehension
can be modeled with a ‘trivial’ (i.e., strictly quantitative) algorithm. My task now is to
develop a model of memory based .on such an algorithm.
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Chapter 3

Data Representation and
Processing in a Time-Constrained

Memory

3.1 Introduction

In the first chapter of this dissertation, I introduced a set of working hypotheses for the
development of a model of memory which takes into account the computational constraints
imposed by neuronal modeling and can be used for conceptual analysis. The motivations
for my choice of human memory as my basic metaphor, of a reader-based approach for text
understanding, and of the notion of a ‘trivial’ algorithm for the specification of my model,
have been presented in the preceding chapters. In this chapter, I will discuss the organization
and modus operandi of my model of time-constrained memory, a quantitative (i.e., non-
semantic) model of memory on top of which a conceptual analyzer can be constructed, as
will be described in part 2 of this thesis.

I want to emphasize once more that the fundamental postulate of this work is the
assumption that ]inguiétic comprehension and its underlying memory processes are time-
constrained. Also recall that the mechanisms that shape human memory into an adaptable
system are not addressed in this research. Thus, the following set of hypotheses constitutes

the starting point for the proposed model of memory:

e Memory is a massively paralle] network of simple computing units that exchange
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simple signals.

o Mechanisms that shape human memory into an adaptable system will not be ad-
dressed.

o Memory follows a trivial algorithm, that is, a strictly quantitative algorithm that
fixes only the general form of memory operations. All memory processes are strictly

quantitative.

e All ‘knowledge’, that is, all qualitative information manipulated by the proposed

comprehension tool, is strictly user-specifiable.

e Linguistic comprehension is a teuchistic process that must be defined in terms of

quantitative memory processes. -

e Of the multitude of possible factors that constrain linguistic comprehension and its

underlying processes, the focus is on the importance of quantitative time.

The conceptualization of memory as a massively parallel network of simple computing
units exchanging simple signals leads to the following topics to be addressed in the next

sections:
1. The organization of memory.
2. The structure and behavior of the computing units of the network.
3. The nature of signals and communication within the network.

Throughout this discussion, the omnipresent role of quantitative time (i.e., time as it per-
tains to memory management and memory processes such as retrievals) will be emphasized.
I will also suggest how the teuchistic procesé that underlies linguistic comprehension need
not be implemented as a global network algorithm but rather as a distributed process, that
is, described with respect to the behavior of each computing unit of the network. Also,
assuming that all knowledge is strictly user-specifiable requires a tool for the specification
of knowledge. Such a tool, called the knowledge browser, will be presented in section 3.5.
In the next sections, memory processes will be discussed in isolation of one another.
Details of the algorithms and processes of the model will be summarized in section 3.6. In

order to clarify the interaction of the memory processes and recapitulate the characteristics
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of the model, I follow with an annotated trace of the processing of the sentence “John
drinks gin”. To conclude this chapter, I summarize the different programmable facets of
the proposed model of time-constrained memory and briefly discuss some of the insights
gained from experiments with the current prototype.

3.2 The Organization of Time-Constrained Memory

As mentioned earlier, much like connectionist researchers, I view memory as a massively
parallel network of simple computing units. This functional conceptualization is essential
to the proposed model of time-constrained memory, yet incomplete in that it ignores the
fundamental feature of conceptual analyzers, namely, the ability to construct ‘new’ cognitive
structures through processing. A construction process in memory suggests an intuitive and
commonly accepted dichotomy between a priori ‘static’ knowledge and ‘dynamically built’
structures, that is, between a static and a dynamic memory. However, since these dynamic
structures are ultimately composed of elements of static memory, the dichotomy is tennous.
Indeed, as Hinton and Plaunt (1987) suggest, static memory can be thought of as a set of
stable ‘slow’ links between memory elements, whereas dynamic memory could consist of a
set of fast, impermanent connections over the same memory elements.

In the current prototype of IDIoT, the knowledge specified by the user is completely
static, that is, remains unchanged throughout the processing of an input text. The elements
of the knowledge base (hereafter KB) are called knowledge units (KUs); they form the
contents of the static atemporal memory. In contrast, the ‘created’ structures, which shall be
called clusters, exist in a separate dynamic memory and cannot be automatically integrated
with static memory. This simplified organization could be abandoned in favor of a truly
homogeneous model of memory, as will be suggested in chapter 10 of this dissertation.

Dynamic memory must also be organized with respect to time, that is, dynamic mem-
ory must be partitioned into temporal stages, as suggested by both neurological evidence
(Squire, 1987) and psychological (Baddeley, 1976) evidence. Generally, a short-term mem-
ory (STM) and a long-term memory (LTM) are postulated. STM is assumed to have a,
limited capacity and its elements are taken to be, by definition, more readily accessible
than those of LTM. In the simplest form, limits on STM capacity are captured by stipulat-

ing its maximum size, though more sophisticated approaches to STM capacity are possible
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(e.g., Schweickert and Boruff, 1986). An element’s belonging to STM is constantly reviewed
with respect not only to STM capacity but also to the duration of the membership itself.
More specifically, it is commonly assumed that the elements of the STM have a certain ‘en-
ergy’ (or activation) level that quickly (exponentially) decays with time. Once the energy
level of a member of STM falls below a certain threshold, it is either ‘moved’ to LTM or
forgotten (Graesser and Clark, 1985). Conversely, elements of LTM decay at a very slow
rate over days or years—a process that is irrelevant from a computational perspective.

1 adopt this common characterization of memory but, following the ideas of Baddeley
(1986), I also identify a working memory (WM), which is the subset of STM whose elements
are “immediately’ and simultaneously accessible. In other words, the elements of WM are
necessarily accessible. Furthermore, I assume that WM has a very limited capacity. I have
adopted the traditional ca.pa.cify of seven elements for WM.

Clusters ‘move’ between WM, STM, and LTM. To ‘move’ does not consist in a physical
transfer between partitions of mel;lory, but rather in a change of membership from one
partition to another. I assume a cluster is constructed in WM and eventually decays to STM
and LTM, if it is not entirely forgotten (i.e., deleted from dynamic memoi-y). Elements of
STM all start with the same activation level and the same decay rate. Therefore, for memory
management (i.e., enforcement of capacity limits and decay thresholds), it is sufficient to
organize the elements according to their time of arrival in STM (not WM): the ‘oldest’
clusters in STM are also the ‘weakest’ (with respect to their level of activation), and thus
the ones most likely to be ‘moved’ to LTM during memory management. An ordering is
not required in LTM, for which there is no capacity limit or decay, nor in WM, in which, by
design, all elements are equally accessible. And since the proposed model of memory is to
be strictly quantitative, there is no need for qualitative partitions of memory (e.g., semantic
versus episodic memory, see Tulving, 1983, 1984).

At any time, a cluster can be retrieved from LTM or STM and ‘moved’ to WM. I
postulate that a cluster must be in WM before a construction process can manipulate it.
Following Baddeley’s (1986, chapter 10) idea of a centralized executive, I hypothesize the
existence of a memory manager responsible, among other duties, for verifying the member-
ship of a cluster in WM and STM, and for ‘transferring’ clusters back and forth between
WM, STM, and LTM. In IDJoT, retrieval is viewed as an atomic operation performed by
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the memory manager, which hides all details of memory management.! The focus is placed .
instead on the notion of reachability: given a time-constrained process, that is, a process
that must complete its execution before a certain deadline, a cluster can be retrieved by
the process if and only if it can be accessed before the deadline. In other words, within
the paradigm of a time-constrained xhemory, the issue is not how a cluster is retrieved, but
whether or not it can be reached for retrieval before the execution deadline of the particular
process that wants to use it. The notion of reachability only applies to clusters (not KUs)
and ties in with the organization of dynamic memory into temporal stages. By definition,
all elements of WM are always reachable. For STM, the ordering of elements with respect
to their time of arrival defines an ordering for reachability, the ‘cldest’ clusters being the less
reachable ones. This chronological ordering does extend to LTM though, typically, clusters
in LTM are seldom reachable (Markus, 1983).

The temporal partitions of dynamic memory need not correspond to anatomical or
physiological separations in the brain, and clusters need not be physically moved from
one temporal partition to another. Indeed, as previously mentioned, it merely suffices to
have the memory manager keep track of the membership for the WM and STM. More
Precisely, wht;n the memory manager decides that a certain cluster must be moved from
one partition to another, it merely updates its internal membership list for STM and/or
WM. For example, when moving a cluster from LTM to WM, the memory manager updates
its membership list for WM and stores the time of arrival. Let me summarize the rules for

‘moving’ between the partitions of dynamic memory:
® A cluster moves from WM to STM when it has sufficiently decayed.

® Upon retrieving a cluster from STM or LTM, if the capacity limit of WM has already
been reached, the ‘oldest’ cluster of WM is moved to STM to ‘make room’ for the new
arrival in WM.

® A cluster moves from STM to LTM when it has sufficiently decay.

¢ Upon ‘receiving’ a cluster from WM, if the capacity limit of STM has already been
reached, the ‘oldest’ cluster of STM is moved to LTM to ‘make room’ for the new

!Models of retrieval (or access) for human memory, whether psychological or neurological, can involve
complex notions such as those of engram and synergy (see Tulving, 1983; Squire, 1987). Such details lie
beyond the scope of this research.
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arrival in STM.

o A cluster in STM or LTM may be retrieved, that lis, put in WM, if and only if this
cluster is reachable by the retrieval process.

e A cluster is said to be forgotten when it is deleted from STM and not moved to LTM.

Clusters are cognitive structures built while processing an input. Without immediately
describing their exact nature, let me note that clusters are ultimately ‘composed’ of elements
of the KB. I use the word ‘ultimately’, for I assume that the ‘components’ of a cluster can
be other clusters, but that, if we think of a cluster as a hierarchical (tree-like) structure,
its leaves ‘correspond’ to KUs. Because KUs permanently reside in static memory, they
cannot be, in the current prototype, genuine components of clusters, which are elements of

dynamic memory. Therefore, the leaves of a cluster merely refer (or point) to KUs.

3.3 Communication in the Network

Having adopted the conceptualization of the knowledge base as a static memory in the form
of a massively parallel network of simple computing units, let us briefly focus on the exchange
of signals between KUs. (The clusters of dynamic memory are not computing elements, but
merely constructed cognitive structures, and therefore do not exchanges signals. In other
words, communication is restricted to static memory.)

Knowledge units communicate through what I shall call input and output ‘ports’. The
role of time during processing is greatly emphasized by the assumption that, in IDIoT, the
exchange of a signal between two KUs consumes time. More precisely, if the user specifies
that a KU z sends a signal to a KU y, then the user must specify (in the KB) a time delay
(or cost) for this exchange. Another (possibly different) delay may be incurred if y sends a
signal to z. In other words, communication links are not necessarily symmetric with respect
to their time delays. Furthermore, I introduce the intuitive notion of familiarity to define
an @ priori static order of ‘retrieval’, with respect to communication, for the elements of the
KB. Each KU needs a user-specified retrievability coefficient. If a KU sends a signal to two
others, with the same communication delay for both, then the ‘most familiar’ of the two
receivers, that is, the one with the lowest retrievability coefficient, will receive the signal

before the other one. More specifically, the actual (as opposed to the user-specified) delay
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of an exchange at time ¢ is computed as the product of the a priori delay of the exchange
with the retrievability coefficient of the receiver at .

Two ‘high priority’ signals, ‘forced activation’ and ‘forced inhibition’ are assumed to have
a priority greatly superior to the other signals used in IDIoT, that is, to ‘instantaneously’
reach their destination (regardless of the retrievability of this destination). ‘Instantaneous’
communication, that is, communication that requires zero time, is only asymptotically
possible and thus actually requires a minimum time quantum, which I call ‘epsilon’.

Another fundamental time quantum used in IDIoT is the ‘character quantum’, that is,
the time it takes to read and recognize a character. In IDIoT, the time it takes to read
and recognize a word is taken to be equal to the product of the number of characters in
this word with the character quantum. Consequently, a text of n characters is processed in

n character quanta, thus emulating real-time processing.

3.4 The Internal Structure and Behavior of Knowledge Units

3.4.1 Knowledge Units As Feature Detectors
Forward Chaining Feature Detection

As mentioned above, KUs are the construction material for the distributed teuchistic process
that builds clusters and is taken to underlie the task of linguistic comprehension. Neuro-
logical evidence suggests thinking of the elements of the network forming static memory
as feature detectors (Squire, 1987), a viewpoint also adopted by connectionist researchers
(e.g., Feldman, 1985b). A feature is a qualitative entity (e.g., a phoneme, a sememe, a
syntax rule, an inference rule, etc.) and each computing element of the network, that is,
each KU, is capable of recognizing several ‘configurations (or patterns) of features’. It is
left to the user to decide whether a localist representational scheme (which associates one
KU to one feature) or a distributed one (which associates several KUs to one feature or
several features to one KU) is more adequate. In this dissertation, I have adopted, for both
clarity and simplicity, a one-to-one mapping between KUs and features. Consequently, in
the rest of this work, these two terms will be used interchangeably.

A commonly accepted conceptualization in both connectionism and psychology (e.g., Nor-
ris, 1986) is thinking of a ‘co_nﬁgura.tion of features’ as a weighted sum of the features. A

constraintis formed of such a configuration together with a numeric threshold; the constraint
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is said to be satisfied once the weighted sum exceeds the associated threshold of detection.
From local connectionism (Feldman, 1985b), I adopt the following characteristics:

o Each KU has an input port for each distinct feature used in its constraint.

o The value of a constraint at time ¢; is computed using the value at t; of the input

port associated with each feature of the constraint.

® Once a constraint is satisfied, its associated computing unit z notifies all other units
whose constraints refer to the feature associated with z by sending out a presence
signal whose ‘strength’ varies from 0 to 1 and denotes the degree of presence of the

feature.

In IDIOT, the KUs whose associated feature is referred to in a constraint of a KU z are
called the suppliers of z; similarly, those that have a constraint that refers to the feature
associated with a KU z are called the customers of z. It follows that a KU has supplier and
customer ports. For now, we will assume that KUs exchange only presence signals, that
is, signals between 0 and 1 (inclusive) denoting the degree of presence (or detection) of a
feature.

I make several enhancements to the local connectionist model; some are discussed in the
paragraphs below; others will be introduced throughout this section. I must emphasize that
these enhancements merely simplify the data specification task of the user (by providing
intuitive labels for certain data), but do not improve the model of memory itself in any
way. In particular, no claims are made about the biological plausibility of the proposed
enhancements.

First, in order to be capable of detecting several configurations of features, an element
of the network, that is, a KU in IDIoT, is allowed to have several constraints. The order in
which these constraints are specified by a user is important, for it defines the order in which
the constraints will be evaluated for satisfaction: the first constraint will be considered
before all others, and so on. Once a constraint is satisfied, the KU is said to be activated
and its associated feature(s) to be detected.

Second, I assume that all constraints in static memory are evaluated with respect to
a unique detection threshold (across the KB) initially specified by the user. Typically, a
bigher initial detection threshold will result in fewer features being detected, and thus far

less material being available for the construction process.
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Third, I distinguish iriggers and ezceptions from the other suppliers of a constraint,
which are simply called inputs. Triggers are those features that must be present in order for
the constraint to be satisfied. They act as the preconditions of a constraint and therefore,
need not be weighted. Triggers can be ordered, in which case presence signals from their
corresponding suppliers must be received in the specified order. (A presence signal that
is not in order is simply ignored.) A constraint that has received all its triggers is said
to be triggered. Only the first triggered constraint of a KU can be satisfied, and thus,
I repeat, the order in which constraints are specified is extremely important. Ezcepiions
are those features of a constraint whose presence decreases the possibility of satisfying the
constraint. Exceptions are weighted, as the presence of an exception does not necessarily
prevent the satisfaction of a constraint (e.g., the comprehension process manages to parse
and understand ‘ungrammatical’ sentences). As explained below, exceptions also delay the
satisfaction process.

Fourth, decay is integrated with constraint satisfaction. More precisely, each supplier
port of a KU is taken to hold a queue of presence signals received from its corresponding
supplier (see section 3.6). A presence signal starts decaying as soon as it is received. Signals
that decay below a certain threshold are considered obsolete and are automatically purged
from their queue. The value of a port at time %; is computed as the sum of all presence
signals stored in its queue at ¢;. In other words, constraint satisfaction is implicitly limited
by time: all required presence signals must be received within a short interval of time
otherwise some will have decayed so much that the constraint cannot be satisfied unless
they are received again.

Finally, within the framework of time-constrained memory, feature detection is also
made explicitly time-constrained by implementing it as a race process that is given a fixed
amount of time to execute. More specifically, once a KU has one of its constraints triggered,
it becomes a candidate (much as in the model proposed by Norris, 1986) and is given a fixed
amount of time to satisfy the constraint. During a candidacy, only the triggered constraint
can be satisfied and its sum is recomputed each time a new presence signal from a supplier is
received. If the triggered constraint has exceptions, then the sum is checked and satisfaction
is possible only at the end of the candidacy’s delay, in order to allow any signal from an
exception sufficient time to reach the candidate KU. Otherwise, satisfaction is possible at

any time within the interval of candidacy. At the end of the candidacy, regardiess of success

54



Figure 3.1: A simple example

(i.e., satisfaction) or failure (i.e., the sum of the triggered constraint is below the detection

threshold), a KU resets all its constraints by emptying the quenes of izs supplier ports.
We are now ready to consider a simple example illustrated in figere 3.1. The notation

is that of the implementation.

KU x:
censtraint ci:
Triggers: tril, tTr2
inputs:
i1 has a weight of 0.9
i2 has a weight of 0.1
constraint c2:
triggers: tri, tr2
inputs:
il has a weight of 0.5

n
(1]



‘i3 has a weight of 0.5

KU y:
constraint ci:
triggers: tr3
inputs:
i3 has a weight of 1

KU z:
constraint ci:
inputs:
x has a weight of 0.5
¥y has a weight of 0.5

KU z has two constraints, each one becoming triggered as soon as it has received a presence
signal from both KUs tr; and ¢r; (in any order). Constraint ¢; of = has two inputs #; and 4,.
In the current prototype of IDIoT, the sum of the weights of the inputs of a constraint must
be less than or equal to 1. Intuitively, the weight of an input defines its relative ‘necessity’
with respect to the current detection threshold. In c; of z, the inputs carry the same weight,
and thus are equally ‘important’ for the satisfaction of the constraint. Conversely, in ¢; of
z, 11 is far more needed than iz; with a detection threshold at 80 percent of the maximum
detection threshold, ¢; could be satisfied with only a presence signal from #;.

If z and y receive a presence signal on all of their trigger ports and on all their input
ports, then they become activated and send a presence signal to z that, in turn, becomes
activated. Because of the ordering of its constraints, z becomes activated through the

satisfaction of its constraint c;.

Backward Chaining Feature Detection

The process of constraint satisfaction described so far requires only one signal, namely, the
presence signal (whose value varies from 0 to 1), but only allows for the forward chaining of
feature detections: a constraint cannot be satisfied and, thus, a feature cannot be detected
unless its suppliers have been activated. I now introduce the notions of submission, con-
firmation, and reinforcement, in order to accommodate the backward chaining of feature
detections. Intuitively, as soon as a feature has one of its constraints triggered (i.e., satisfies
one of its sets of preconditions), it need not wait for signals from its inputs, but ra.thgr it

may immediately ask the latter for ‘positive feedback’, that is, for some confirmation of
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its “felicity’ if it were a.ctiva.ted: More specifically, I propose that when at time ¢; a KU =
becomes a candidate, it verifies the value of all the supplier ports referred to in its trig-
gered constraint. A missing feature is one whose corresponding port in z has no queue of
signals at ;. A submission signal is sent by z to all the missing features of its triggered
constraint. This signal acts as a conditional presence of z. Upon receiving such a signal,
any KU y associated Wi‘[h a missing feature of z treats the signal as a maximum presence
signal (i.e., the value 1) from z and checks whether one of its constraints would be satisfied
by this input. If one would be satisfied, then y sends back a confirmatipn signal to z and
starts waiting (for a short fixed amount of time) for a reinforcement signal from z; but the
feature associated with y does not become detected. If, on the other hand, y has one of its
constfa.ints triggered but not satisfied by the submission signal from z, then g, in turn, sends
a submission signal to the missing features of its triggered constraint. In all other cases,
the submission signal to y is ignored. Each KU 2z that is not the originating candidate and
that sends a submission signal to the set of its missing features waits for a fixed amount of
time for a confirmation signal from each member of this set. Once z receives all the required
confirmations, it sends a confirmation signal to the KU from which it received a submis-
sion signal. If the candidate z receives a confirmation signal from all its missing features
before the deadline of its candidacy, its triggered constraint is considered satisfied and the
feature associated with z is detected. Intuitively, z has received enough ‘positive feedback’,
" confirmation of its felicity if it were activated. Upon its detection, z not only notifies its
customers, but also sends a reinforcement signal to its missing features. Upon the reception
of this reinforcement signal, the missing features first relay this reinforcement signal to the
KUs that sent them confirmation signals, and then become themselves detected.

This process of submission/confirmation/reinforcement is somewhat similar to the spread-
ing activation mechanisms of marker-passing models (e.g., Hendler, 1989; Norvig, 1989) but
presents some advantages. Since only the missing features of would-be triggered constraints
are used to relay submission signals, the number of possible chains or paths (of submis-
sion/confirmation signals) is far more constrained than in marker-passing systems, and, by
design, a path of confirmation signals is always a ‘useful’ path. Furthermore, there is no
need for an often arbitrary or intractable mechanism for evaluating paths: for each miss-
ing feature, the path (of confirmation signals) that ‘wins’ is simply the first one to send a
confirmation signal back to the originator of the initial submission signal. Since the pro-
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posed scheme is time-constrained, the only restriction for a candidacy is that all required
confirmation signals arrive at the initiating candidate before the deadline of the candi-
dacy is reached Also, the proposed scheme does not use complex markers, but only three
numeric signals (for submission, confirmation, and reinforcement). And, finally, the submis.-
‘sion/confirmation/reinforcement mechanism does not impose restrictions on the lengths of
paths and captures the intuition that the most ‘reconstructable’ knowledge is not necessar-
ily put in dynamic memory. Let me explain. In IDIoT, contrary to typical marker-passing
systems, a path of features does not become activated as a whole but, rather, is incremen-
tally constructed, through reinforcement signals, starting with the originating candidate 2.
Given a path of confirmation signals between a candidate z and a KU y (that sent back the
first confirmation signal of the path), y waits a fixed amount of time for a reinforcement
signal from the KU to which y sent a confirmation signai. Again, since communication
consumes time, the longer the path (in terms of KUs) between z and y is, the longer the
confirmation signal originated by y will take to be relayed to z, and thus provided z becomes
activated, the longer a reinforcement signal originated by z will take to be relayed to y. It
is therefore possible that y (as well as some of the KUs that precede it in the path bet‘;veen
z and y) will not receive the reinforcement signal it is waiting for before its waiting race
expires, that is, before y stops ‘listening’ for the signal. It follows that it is possible that
only a few of the KUs forming the path between z and y become activated. But this is not
a problem for, given the same ‘context’ (i.e., the same contents of dynamic memory and
the same parameters of memory), the path can be reconstructed through the same process.
Also, the more of the path that is already detected when attempting the reconstruction,
the faster the missing features will be detected since, in essence, part of the construction is
already present.

To clarify this discussion, let us consider a simple exchange of signals (illustrated in
figure 3.2):

1. In the sentence “John eats caviar”, the word ‘caviar’ is recognized and triggers the

candidacy of the feature caviar associated with the concept of caviar.

2. Feature caviar submits (i.e., sends a submission signal to) its only missing feature

noun.

3. Feature noun relays the submission signal it receives from caviar to its customer
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10.

11.

NP.

. Feature NP (noun phrase) relays the submission signal it receives from noun to its

customers including directObject, indirectObject, PP, etc.

. Feature directObject had its constraint triggered earlier by the detection of a sub ject-

verb relationship satisfied by the submission signal received from NP. In essence, an
NP following a verb is treated as the initial direct object. Feature directObject does
not become detected, but instead sends a confirmation signal back to NP.

. Feature NP relays the confirmation signal it receives from directObject to noun.

Feature noun relays the confirmation signal to caviar.

. Having received a confirmation signal from all its missing features, caviar becomes

detected. It sends a presence signal to its customer food and a reinforcement signal

to noun.

. Feature noun receives the reinforcement signal of caviar, becomes detected, and

sends a reinforcement signal to NP.

Feature NP receives the reinforcement signal of noun, becomes detected and sends

a reinforcement signal to directObject.

Feature directOb ject receives the reinforcement signal of NP and becomes detected.

It sends a presence signal to its customers.

If the candidacy of caviar expires before it receives a confirmation signal from noun, then

the path between caviar and directObject is not used and the candidacy fails. If, while

waiting for reinforcement, noun, NP, or directObject have their time expire, then they

will not become activated and the reinforcement signal that will eventually reach them

will be ignored. If we assume that this was the case for directObject, then given the

same context, that is, the prior detection of a subject-verb relationship and the detection of

caviar and noun and NP, directObject is readily reconstructable as its constraint can

be directly triggered and satisfied.
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Figure 3.2: A simple exchange of signals
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Other Enhancements

The race processes and constraints briefly described in the previous sections form the essence
of the internal organization and behavior of KUs. Several other enhancements to the con-
ceptualization of KUs as feature detectors are made in the current prototype of IDIoT in
order to simplify the knowledge specification task for the user. None are truly required since
‘tricks’ can be typically used to replace them. However, these enhancements are included
in the proposed model not only for simplification, but also to make visible some common
intuitions about knowledge organization and use, rather than relying implicitly on the exact
modus operandi of IDIoT.

First, I assume that every exchange of signals is routed through the memory manager
(introduced in section 3.2). This is totally invisible to the user and has the advantage of
bypassing the difficult problem of the implementation of an addressing scheme in memory.
More specifically, it is not reasonable to assume that arbitrarily long links between all
communicating KUs physically exist in the brain. Indeed, there is speculation that the
cortex may play the role of an addressing mechanism for human memory (Squire, 1987).
Using the memory manager has the advantage of abstracting away from neurology and
preserving the locality of information by having the memory manager, rather then the
sender, compute the actual delay it takes a signal to reach its destination.

Second, as mentioned earlier, there are two high priority signals, namely, the ‘forced
detection’ signal and the ‘forced inhibition’ signal (hereafter ‘inhibition’). At any point in
time, a KU that receives a forced detection signal immediately becomes activated (i.e., its
feature becomes detected) and sends a presence signal to its customers. Conversely, at
any point in time, a KU that receives an inhibition signal immediately stops its current
process and reverts to its initial mode, which shall be called the idle mode (:.e., the KU
does not have any process executing). Inhibition is taken to have precedence over forced
detection. Both signals take epsilon time to be sent from their sender to their receiver,
regardless of the retrievability of the receiver and of the a priori delay between both KUs.
This is made possible by the previous assumption that all signals are routed through the
memory manager (which simply assigns an epsilon delay to these high priority messages).
Furthermore, in order to be instantaneously processed by their destinations, these signals
are received on a special input port, called the manager port, that every KU has. As soon

as a high priority signal is received on this port, it is immediately processed, regardless of
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the state of the KU at that point in time. And, for convenience, I allow the user of IDIoT
to distinguish associations from the other customers of 2 KU. The associations of a KU
are those customers to which it sends a forced detection signal upon its activation. For
example, the feature food could be an association of caviar since caviar is necessarily an
instance of the cbncept food. Although not 'a.Bsolutely necessary, associations have been
found t:) be very helpful for implementing a generalization hierarchy, as illustrated by the
examples of word sense disambiguation shown in chapter 7.

Third, in order to account for the important phenomenon of expectations (which is akin
to priming, see Tulving, 1983), I introduce one last special signal, the ezpectation signal. I
view expectations as a mechanism for the speed-up of the detection of a feature. In other
words, a feature that is expected will become activated more readily than a non-expected
feature. Within the framework of time-constrained memory, I suggest that, for a short fixed
amount of time, the receiver of an expectation signal need not satisfy any of its constraints,
but rather merely obtain all triggers for one of its constraints in order to become detected.
Intuitively, receiving an expectation signal guarantees the felicity of the receiver, which

therefore, merely has to assemble its preconditions. Let us consider a simple example:
Example 3.4.1 John eats at Mazim’s. He orders caviar.

Let us assume that the feature actionDine (associated, among others, with the action

of eating at a restaurant) sends, upon its detection, an expectation signal to the feature
orderFood. Then:

1. Having the verb actionEat with a well-known restaurant as a complement of location
causes the eventual detection of the feature actionDine, which sends an expectation

signal to orderFood.
2. Feature orderFood receives an expectation signal.

3. The word ‘orders’ triggers the feature orderFood, which immediately becomes de-
tected, as it has received an expectation signal and merely needs to have one of its

constraints triggered.

As a fourth enhancement, I propose associating an output strategy, which can possibly
be empty, with each constraint of a KU. So far, upon its detection, a KU sends a forced

detection signal to its associations and a presence signal to its other customers. The user
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maust specify for each non-association customer a default signal to send. The enhancement
consists in allowing the user to override the default output to be sent to a particular non-
association customer of a KU z if a particular constraint ¢ of z becomes satisfied. This
overriding is achieved by associating a set of (customer—signal) pairs to one or more of
the constraints of 2. Upon its detection, z checks which of its constraints was satisfied. If
this constraint has an associated output strategy, then, for each customer referred to in the
output strategy of the satisfied constraint, z sends the output signal specified by the output
strategy rather than the default signal for this customer. This enhancement has been found
to be extremely useful for a feature z in which a customer should be sent an inhibition
signal or an expectation signal for only a few of the constraints of z.

Finally, I allow the user of IDIoT to specify the candidates of a KU. Recall that in the
submission/confirmation /reinforcement mechanism introduced above, the chaining process
is initiated by a candidate missing one or more features in its triggered constraint, that is,
in the constraint the candidate must satisfy in order to become detected. In this process a
submission signal is not sent to the customers of the candidate for the simple reason that
receiving a confirmation from a feature that would become detected if feature f were active
does not entail that f ought to become detected. In other words, a confirmation from a
customer is not sufficient evidence to cause the detection of a feature if it has a triggered
constraint to satisfy. But what if the triggered constraint has only triggers? In this case,
the constraint is satisfied as soon as all triggers are received. If this is generally acceptable,
there may be features for which triggers are not enough and a confirmation (necessarily
from a customer, as there are no missing features to the triggered constraint) is required.
Such features are called the candidates of their trigger(s).2 f KU z has KU y declared as
a candidate, thén when z becomes detected, it sends a confirmation signal to y. Once y
has all its triggers, it sends a submission signal to each of its customers and waits for a
fixed amount of time for a confirmation signal from one of them. The KU y becomes active
as soon as such a confirmation signal is received. The customers of y act exactly like any

KU that receives a submission signal. In other words, the chaining process is the same as

2 Anticipating on the next part, I remark that the notion of candidates is especially intuitive and useful
for word sense disambiguation. For example, the two KUs alcoholicBeverageGin and cardGameGin
are candidates of their sole trigger, the KU gin. The presence of gin is not sufficient to have either of
these candidates become detected. Instead, each must receive a confirmation from ome of its customers.
Candidates have also been used as a possible approach to prepositional phrase attachment.
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for backward chaining, only how this chaining is initiated differs: whereas, for backward
chaining, the candidate is a KU sending a submission signal to its missing features (in
order to satisfy its triggered constraint), in the case of an explicit candidate z, z sends a
submission signal to each of its customers as soon as it has received a confirmation signal
from all its triggers, and z becomes detected as soon as it receives a confirmation signal

from one of its customers.

These enhancements will be illustrated at the end of this chapter, as well as in part 2.

3.4.2 Knowledge Units as Cluster Builders

Again, let me recall that KUs are the construction material for the distributed teuchistic
process that builds clusters and is taken to underlie the task of lingunistic comprehension.
The set of clusters constructed during the reading of the text constitutes the output of
IDIoT, the interpretation that the user can examine. In this subsection, I focus on the

process of the construction of clusters.

Organization of a Cluster

Let me start by elaborating on the nature of clusters. Recall that the proposed model of
memory is strictly quantitative, that is, deprived of any qualitative information. Clusters
must be general enough to allow the user to construct almost any kind of representation
(e.g., parse trees, scripts, etc.) that is hypothesized for comprehension. Of the multitude
of possible organizations for clusters, I have selected a very simple one: a cluster is defined
as a non-empty set of features, each feature governing a (possibly empty) set of clusters. In
other words, a cluster is a hierarchical structure whose ‘leaves’ are features. Consider, for

example, the cluster associated with the noun phrase “a park”:

cluster <identifieri> with features:
KU NP
KU NPhead that governs:
cluster <identifier2> with features:
KU ‘park’
KU singular
KU park
KU noun
KU 3rdPerson’
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KU NPquant that governs:
cluster <identifier3> with features:
KU determiner
KU singular
KU adjectives

I emphasize that the contents of this cluster are assembled from the knowledge specified by
the user, as shall be explained shortly. The ‘correctness’ or ‘completeness’ of a representation
is not the object of study in this dissertation.

The clusters governed by a feature are called its subclusters. Also, each cluster has an
identifier, that is, a unique address in dynamic memory, given in the form of a number, and
can be shared as a subcluster by other clusters, as in the actual structure produced for the
sentence “John watched the rabbit in the park”, in which the prepositional phrase “in the
park” is taken to be ambiguous and is therefore attached to both the verb “watched” and
the noun “rabbit”:

cluster 16436 in working memory with features:
KU newFact that governs:
cluster 17620 in working memory with features:
KU VP
KU mainVerb that governs:
cluster 15957 in working memory with features:
KU ‘watch’
KU pastForm
KU action0bserve
KU verd
KU activeMood
KU verbComplemented
KU location that governms:
cluster 18999 in working memory with features:
KU NP
KU NPhead that governms:
cluster 16207 in working memory with features:
KU ‘park’
KU singular
KU park
KU noun
KU 3rdPerson
KU NPquant that governs:
cluster 7987 in STM with features:
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KU determiner
KU NPmods
KU VPmods that governs:
cluster 150056 in STM with features:
KU ‘close’
KU adverb

KU subject that goverms:

cluster 10935 in STM with features:
KU NP
KU NPhead that governs:
cluster 17028 in STM with features:
KU singular
KU ‘John’
KU proper
KU person
KU male
KU rational
KU animate
KU 3rdPerson
KU NPquant
KU NPmods
KU directObject that governs:
cluster 16183 in working memory with features:
KU NP
KU NPhead that governs:
cluster 15035 in working memory with features:
KU ‘rabbit’
KU singular
KU noun
KU rabbit
KU animate
KU 3rdPerson
KU location that governs:
cluster 18999
KU NPquant that governs:
cluster 17872 in STM with features:
KU determiner
KU singular
KU NPmods

In this structure, the cluster 18999 corresponding to the prepositional phrase “in the park”
is a subcluster of feature location in both cluster 15957 corresponding to the main verb
and in the cluster 16183 corresponding to the direct object. The reader will also notice that
the verb ‘to watch’ has been interpreted as ‘to observe’ with the modifier ‘close’ and in the

cluster 16183 corresponding to the direct object.
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The levels of indentation of the structure correspond to the level of nesting of clusters.
The structure consists of one cluster (16436) having only the feature newFact, which
corresponds to the whole sentence. This feature governs one cluster (17620), which has
the four features VP, mainVerb, VPmods (for the modifiers of the VP), subject and
directObject. Feature mainVerb governs cluster 15957, whose features mainly capture
the fact that the main verb is actionObserve in the active mood and that this verb
has a location specified in cluster 18999. Feature subject governs cluster 10935, which
corresponds to the NP “John”. The feature NPquant is used to hold a determiner, if
any. Feature NPmods keeps a list of the adjectives of the head of the NP. The knowledge
inferred from the feature John, namely that this is a male rational animate, has been added
to the cluster for the head of the NP. Similarly, feature directObject governs cluster 16183,
" whose features capture the fact that the object being observed by the subject is a rabbit in
a park. Finally, the trace indicates the xﬁembership of each cluster in one of the temporal

partitions of dynamic memory.

Expansion Procedures

Having briefly shown what a cluster looks like, I will now turn to the problem of cluster
construction. I suggest that once a KU becomes activated, it asks the memory manager
to execute its ezpansion procedure. An expansion procedure is an ordered sequence of
cluster operations that modifies the current contents of the dynamic memory. The cluster
operations, which are introduced below, provide the basic functionality required for generic
data structures: access, addition, deletion, comparison, traversal, etc. A KU does not
execute its expansion procedure itself, for two reasons. First, having each KU able to
execute cluster operations would violate the assumption that KUs are simple computing
units. Instead, the use of a memory manager hides the details of complex processes such as
cluster retrieval (e.g., with respect to memory management) within a single abstract entity.
Second, having a single entity be able to execute expansion procedures avoids the complex
problems associated with several KUs simultaneously modifying the contents of memory.
The memory ma.na.gér executes a single expansion procedure at a time, in the order in
which the corresponding KUs become activated. If two KUs are activated simultaneously,
the memory manager executes their respective expansion procedures in a random order.

(The parallel execution of expansion procedures is possible, in theory, provided ‘critical’
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mutually exclusive segments of procedures can be identified.)

Cluster operations do not refer to the actual addresses in memory of features and clus-
ters. For features, the procedure refers to the name of the corresponding KU. And in order
for two instructions of a procedure to refer to the same cluster, the supplied retrieval oper-
ations bind the retrieved cluster to a user variable, which consists of a short alphanumeric
string. As a whole, an expansion procedure is given a fixed amount of time to execute, and
either succeeds or fails. An expansion procedure fails as soon as any of its operations fails
and succeeds if none do.

I will now present a list of these operations. I use the following notation: 1) an item
between square brackets is optional, 2) (feature) is a feature name, and 3) (uvl) and (uv2)

are user variables. Here are the operations:

o addFeature (feature) to (uvl)
Given the cluster uvl, add the specified feature to it. As a side effect, a forced

detection signal is sent to the feature to ensure that it becomes detected, if it is not
already.

e addFeaturesOf (uvl) to (uv2)

The features of cluster uvl are added to the features of cluster uv2.

o addFirstSubCluster (uvl) to (feature) in (uv2)
Given the cluster uv2 with the specified feature, the cluster uvl is added to the set
of clusters governed uv2. In fact, a feature governs a collection of subclusters that
defines an order of traversal. This instruction makes uvl the first element of the
ordered collection of clusters governed by the specified feature.

e addLastSubCluster (uvl) to (feature) in (uv2)
Analogous to the previous operation.
e exit
Terminate with success the expansion procedure.
e findExactReference (uvl) to (uv2)

Search dynamic memory for a cluster with the exact same set of features and governed

subclusters as uv2. If found, this cluster is bound to uvl. FindExactReference fails if
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multiple reachable referents are found during its time-span or if no reachable referent

can be found within the time-span allocated to its expansion procedure.

findInclusiveReference (uvl) to (uv2)
Search dynamic memory for a cluster with a set of features which includes all features
and governed subclusters of uv2. If found, this cluster is bound to uvl. Failure

conditions are the same as for findExactReference.

getCluster (uvl) governedBy (feature) in (uv2)
Search dynamic memory for the first cluster that is a subcluster of the given feature

in uv2.

getCluster (uvl) governing (feature) [in (uv2))
Search dynamic memory for the first cluster that governs the given feature. I the
optional part of the operation is specified then the search is limited to the subclusters

of uv2.

getNewCluster [(uv1))
Create an empty new cluster in WM and bind it to uvl. i no argument is specified,

then the predefined user variable ‘newCluster’ is used.

moveFeature (feature) from (uvl) to (uv2)

Move the specified feature and its subclusters from cluster uvl to cluster uv2.

moveSubClustersFrom (featurel) to (feature2) in (uvl)

Move the subclusters of featurel to become those of feature2 in cluster uvl.

removeCluster (uvl)

Remove the cluster uvl, without its subclusters, from dynamic memory.

removeFeature (feature) in (uvl)
First delete all subclusters governed by the specified feature and then delete the feature
from the cluster.

renameFeature (featurel) to (feature2) in (uvl)

Self-explanatory.
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o substituteCluster (uvl) for (uv2) .
Cluster uvl is given the dynamic memory address of cluster uv2 which is then removed.

o testAbsenceOf (feature) in (uvl)
Succeeds if the specified feature is not in uvl.

o testDifferenceOf (uvl) and (uv2)

Fails if uvl and uv2 recursively have the same features and the same subclusters.

o testEquivalenceOf (uvl) and (uv2) '

Succeeds if uvl and uv2 recursively have the same features and same subclusters.

o testPresenceOf (feature) in (uvl)

Succeeds if the specified feature is in uvl.

A great deal of flexibility is introduced in expansion procedures by having conditional

instructions of the form:
if (constraint name) then (cluster operation)

In such an instruction, the specified cluster operation is attempted only if the specified
constraint was the one whose satisfaction led to the activation of the KU that owns the exe-
cuting expansion procedure. In other words, within the same executing expansion procedure
of a KU z, different cluster dpera.tions can be attempted according to which constraint of z
was satisfied.

The traversal of a cluster is performed breadth first, that is, each level of a cluster is
visited completely before the next one is accessed. Each level costs increasingly more time
to access, and thus, the deeper the structure, the more time it takes to reach the ‘lower’
levels. Therefore, the time it takes to reach a cluster is determined by which partition of
dynamic memory it resides in and by the number of levels that have to be traversed in
order to reach it. Given that any expansion procedure is allocated a fixed amount of time
to execute, a getCluster operation fails if it cannot find a reachable satisfactory cluster in
time.

Finally, memory management is made completely invisible to the user of IDIoT by
being encapsulated in the operations getNewCluster, getCluster, and removeCluster. In its

present form, the memory management algorithm implements a simplistic first-in first-out
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storage/retrieval system for dynamic memory. Enhancements to the management of mem-
ory are discussed chapter 10. For now, the point to be grasped is that, most importantly, all
the complexities of the modus operandi of time-constrained memory (e.g., the complex im-
plementation of the findInclusiveReference operation) are completely hidden from the user
of IDIoT who specifies KUs without regard to this modus operandi. The effect is that users
believe that IDIoT is a simple, if not trivial, access system to the rules and concepts they
specify. This is a most desirable illusion, because it favors the specification of knowledge
completely independently from the exact workings of time-constrained memory. But it is
also very important to understand that this illusion is just that, an illusion, for the clusters
built during comprehension do not proceed solely from the knowledge base, but also depend
on the parameters of memory (e.g., race deadlines, decay factor) and on the context, that
is, on the contents of dynamic memory at a given point in the reading. In other words, the
interpretation of a text results from the interactions between the knowledge base and the
time-constrained memory.

Up to this point in the discussion of time-constrained memory, constraints have been
specified by the user and depend on receiving signals from suppliers. In order to have the
detection of a KU depend alternatively on the contents of the dynamic memory, I introduce
the notion of a buildable feature. A buildable feature is a feature whose expansion procedure
acts as a dynamic constraint that can be satisfied within a short time interval with respect to
the contents of dynamic memory. If the expansion procedure of a KU does not include a test
operation, then the KU is not buildable, and an error is reported to the user if its expansion
procedure fails. The constraints of a buildable feature have only triggers and its expansion
procedure must include at least one of the following test operations: findExactReference,
findInclusiveReference, testAbsence, testDifference, testEquivalence, testPresence. Once a
constraint of a buildable feature z has received a presence signal for all its triggers, z does
not become activated, but rather attempts, for a fixed amount of time, to have its expansion
procedure succeed. Within the time interval allocated by z, the memory manager attempts
the execution of the expansion procedure of z each time a new feature is detected, until
either the procedure succeeds or time runs out. H the expansion procedure succeeds, z
immediately becomes activated; if it fails, nothing happens, and if the deadline is reached,
then z reverts to idle mode.

Two other types of special KUs are now introduced. First, innate features are KUs that
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are not buildable and do not have any constraints. These KUs become activated by the
presence of a string in the input text. Intuitively, the innate features are the recognizable
(i.e., known a priori) words of the KB. Second, relays are KUs that have no constraints and
no expansion procedure, just supplier and customer ports. Their role is limited to relaying
the signal received from a supplier to all their customers. A relay groups a set of features
under a common name that can be referred by a constraint, thus avoiding specifying a
constraint for each member of the group. In the current prototype, it is left to the user to
specify whether a KU is innate or a relay.®

3.4.3 Examples of Knowledge Units

Here are a few examples of definitions for KUs. A line starting with a % is a comment and
the ellipsis (...) is used to omit irrelevant details:

innate KU ’caviar’:
% This innate feature recognizes the word ’caviar’
% and constructs a cluster with that feature for it.
associations: caviar
expansion:
% Use the built-in user variable called ’newCluster’ which
% is set by the getNewCluster instruction with no argument.
getNewCluster
addFeature ’caviar’ to newCluster

KU caviar:
% Food is a generalization of caviar.
% The concept of caviar is triggered by the word
% ’caviar’. The constraint uses input noun to
% enforce the felicity of a noun at that point
% in the processing of the sentence.
% If the concept is detected, then the cluster that
% includes ’caviar’ is updated to reflect the new
% information.
associations: food
constraint ’caviar’:
triggers: ’caviar’
inputs: noun has a weight of 1
expansion:

3In the fature, however, it is conceivable that the implementation of IDIoT could identify such KUs by
itself.
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getCluster ul governing ’caviar’
addFeature caviar to ul
addFeature noun to ul
ports:
‘caviar’ has a delay of 1 and is a supplier
noun has a delay of 1 and is a supplier

relay KU noun: .
% This relay has all nouns as suppliers and
% only NP as a customer. All rules concerned with a
% noun refer to this relay rather than to each noun.
ports:

bench has a delay of 1 and is a supplier

box has a delay of 1 and is a supplier

gin has a delay of 1 and is a supplier

NP has a delay of 1 and is a customer

innate KU ’ate’:
% The word ’ate’ is associated with the verb eat.
associations: actionEat
expansion:
getNewCluster ul
addFeature ’eat’ to ul
addFeature pastForm to ul
ports:
pastForm has a delay of 1 and is a customer

KU actionBEat:
% Most of the constraints of actionEat capture the different
% morphological forms of this concept.
constraint ’ate’:
triggers: ’ate’
inputs: verb has a weight of 1
constraint ’eats’:
triggers: ’eats’
inputs:
verb has a weight of 1
% However, the concept can be activated by other KUs that
% denote more specialized actions as ’to dine’ which has feature
% restaurant as an expectation.
constraint dine:
triggers: actionDine
outputs:
restaurant is sent signal expectationSignal
expansion: *
% We use conditional instructions to handle the feature actionDine.
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% The next 3 instructions are executed only if constraint dine
% was satisfied. In this case, the concept actionEat is added
% to the word ’dine’.
ifConstraint dine then getCluster ul governing ’dine’
ifConstraint dine then addFeature actionEat to uil
ifConstraint dine then exit
% If we are not dealing with actionDine then we want to associate
% the concept actionEat with the word ’eat’ and mark it as a verb.
getCluster ul governing ’eat’
addFeature actionEat to ui
addFeature verb to ui
ports:
‘ate’ has a delay of 1 and is a supplier
’eats’ has a delay of 1 and is a supplier
actionDine has a delay of 1 and is a supplier
verb has a delay of 1 and is a supplier
eatFood has a delay of 1 and is a customer

KU missingDirectObject:
% Once at the end of a sentence, detect whether an obligatory tramsitive
% verb is missing its directObject. If so, flag a syntactic conflict.
% This feature captures a dynamic rule and thus is buildable as indicated
% by the following line that is automatically generated by the system.
is buildable:
% syntacticConflict is a feature used to capture all
% syntactic violationms.
associations: syntacticConflict
constraint ci:
ordered triggers:
compulsoryTransitive endDfSentence
expansion:
getCluster ul governing newFact
goetCluster u2 governing mainVerb in uil
getCluster u3 governedBy mainVerb in u2
testPresencelf compulsoryTransitive in u3
getCluster u2 governing VP in ul
testAbsencelf directObject in u2
ports:
compulsoryTransitive has a delay of 1 and is a supplier
end0fSentence has a delay of 1 and is a supplier

KU alcoholicBeverage:

% This is another example of conditional instructions. More

% importantly, it illustrates the organization of a is-a

% hierarchy of concepts: the parent is triggered by its children.
% This organization of communication links must not be

% conflated with issues of retrieval. In particular,
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% this organization DOES NOT imply that a parent can readily
% enumerate all its children.
associations: aboutAlcoholicBeverages beverage
constraint gin:
triggers: alcoholicBeverageGin
constraint scotch:
triggers: alcoholicBeverageScotch
expansion:
ifConstraint gin then getCluster ul governing alcoholicBeverageGin
ifConstraint scotch then getCluster ul governing alcoholicBeverageScotch
addFeature alcoholicBeverage to ul
ports:
alcoholicBeverageGin has a delay of 1 and is a supplier
alcoholicBeverageScotch has a delay of 1 and is a supplier

3.5 The Specification Tools

Let us now briefly consider the current prototype of IDIoT, implemented in Smalltalk-80
version 2.3.%

Recall that all knowledge in IDIoT is user-specifiable. To input this knowledge, three
different browsers (in the Smalltalk-80 sense of this word, see Goldberg, 1984) are used for
this task. Roughly put, a browser is a menu-driven interactive window allowing for both
the inspection and modification of information. I remark that both the choice of Smalltalk-
80 as the language of implementation for IDIoT, and of browsers for the specification of
knowledge, proceed from the intuitive object-oriented perspective suggested by the parallel
distributed nature of the network in which the computing units are the main object of study.

The knowledge base browser allows the user to create a KU and assign it a retrievability
coefficient. Through the command ‘verify’, the whole KB can be scanned to ensure that no
KU refers to a nonexistent one. The commands ‘load’ and ‘save’ allow a verified KB to be
loaded from or saved to disk. The knowledge base browser consists of a single scrollable list
pane providing a view on the KB. It has a single menu.

Having selected a KU in the knowledge base browser, a knowledge unit browser can be

4Smalltalk-80 is a trademark of ParcPlace Systems. The current prototype of IDIoT was developed on
both a Macintosh II and a Sun 3/60. The program uses 200K, and its associated knowledge base, 500K
for about 300 knowledge units. Given the simplicity of the example texts (both in terms of syntax and of
inferences), the latter number suggests that a knowledgé base for the interpretation of even ‘children stories’
would be several orders of magnitnde larger than the current one.
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opened. It allows the user to define the associations, candidates, expansion procedure, and
ports of a KU, and indicate whether the KU is innate or not, a relay or not. The user can
also specify the names and order of constraints. Automatic checks force the user to enter
a syntactically correct expansion procedure. In particular, the system verifies that a user
variable is bound to a cluster (through a getCluster or getNewCluster operation) before it
is referred in another operation. For conditional instructions, the specified constraint must
already exist. The system also verifies that all KUs referred to in the constraints of a KU
have delays assigned to them. The knowledge unit browser consists of five top buttons, two
‘bottom buttons, and a large scrollable list pane in the middle. The mutually exclusive top
buttons drive both the menu and contents of the list pane. The two bottom buttons merely
act as on/off toggles.

Selecting a constraint, the user can open a constraint browser, which allows the specifi-
cation of the triggers, inputs, exceptions, and outputs of a constraint. The triggers can be
marked as ordered or not. When defining an output, the user is prompted for a target KU
and then for a signal to send.

Snapshots of the three browsers, displaying all menus, are included in figures 3.3 to 3.9.
Menu entries should be self-explanatory and I will not elaborate on the use of these tools
that operate much like the Smalltalk-80 browser (Goldberg, 1984).

3.5.1 The Knowledge Base Browser

See figure 3.3.

3.5.2 The Knowledge Unit Browser

See figures 3.4 to 3.8.
3.5.3 The Constraint Browser

See figure 3.9.

3.6 Details of IDIoT

In this section, I present the details of the processing of a text by IDIoT. First, I describe
the task of ‘knowledge’ specification by the user through the browsers introduced in the
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previous section. Then I explain some of the network processes executed by the memory
manager. Finally, I summarize the algorithms that control the behavior of an individual
knowledge unit. I must emphasize that, as in the rest of this chapter, design decisions
regarding the representational scheme (e.g., necessity of triggers and exceptions, of an ex-
pectation signal) and its corresponding algorithms (e.g., precedence of inhibition over forced
detection, redundant states) do not necessarily proceed from psychological evidence, but
rather from the engineering goal of getting a programmable comprehension tool that works.

3.6.1 ‘Knowledge’ Specification

The user of IDIoT inputs both.the structure and the behavior of individual KUs, which
are stored in a knowledge base (KB). The user may specify several knowledge bases but
must select a single one at the start of each interpretation. The selected KB constitutes the
contents of the static memory of the system for the current interpretation. The ports of all
KUs in the selected KB define the topology of the network of KUs forming static memory.

The information specified in a KU is strictly local to it, that is, independent of any other
KU and of any global (network-wide) information. The knowledge base browser (figure 3.3)
allows the user to create a new KU in a KB by giving it a unique name. A new or existing
KU can have its definitions modified by opening a knowledge unit browser (figures 3.4 to 3.8)
on it.

Once opened on a KU z, the knowledge unit browser allows the following actions:

o By selecting the ‘Associations’ button, the user can see the list of associations of z,
KUs to which a forcedDetection signal is sent upon the detection of z. The user may

add or delete associations to the list.

o By selecting the ‘Candidates’ button, the user can see the list of candidates of z, KUs
to which a confirmation signal is sent upon the detection of z. The user may add or
delete candidates to the list.

s By selecting the ‘Constraints’ button, the user can see the ordered list of the names
of the constraints of z. A constraint browser (figure 3.9) must be opened to examine
the contents of a specific constraint. The user may add a constraint to the beginning

or the end of the list. Constraints may also be deleted.

84



o By selecting the ‘Expansion’ button, the user can see the ordered list of memory
operations that form the expansion procedure of z. The user may add an instruction
to the beginning or the end of the procedure, or after a selected instruction. An
instruction is inserted in the procedure if and only if it has valid syntax (as defined in
subsection 3.4.2). A conditional instruction must refer to an existing constraint of z,
and all non-retrieval operations (i.e., all instructions except for the getCluster series)
must refer to user variables for which a retrieval operation existed in the procedure
previously. (The first user variable of a ‘find’ instruction does not obey this rule

because it is set to a retrieved cluster.) For example, the instruction
addFeature actionEat to ul
is valid only if
getCluster ul ...

precedes it in the expansion procedure. This rule is also enforced when an instruction
is deleted from an expansion procedure. Failure to comply with this rule results in
the display of an appropriate warning to the user, as well as the rejection of the

instruction.

s By selecting the ‘Ports’ button, the user can see the list of ports of z. The customer
ports of a KU are those ports that are used to send out a signal to another KU;
the supplier ports, to receive a signal from another KU. From the constraints of z,
the system can infer which ports are suppliers (corresponding to the triggers, inputs,
and exceptions of the constraints of z) and which are customers (corresponding to
the output strategy of the constraints). Additional customer ports corresponding to
KUs not referred to in the constraints of z may be specified: regardless of the satisfied
constraint, a presence signal is sent to these ports upon the detection of z. Also, a KU
may receive a signal from itself, in which case the port is considered to be a supplier
port. Modifications to the constraints of z cause the system to recategorize all its
ports. A delay must be specified for each port of a KU before the knowledge unit
browser can be closed. Ports can be added or deleted, or have their delays modified.

e By selecting the ‘innate’ button, the user indicates that the KU corresponds to an

innate feature, that is, to a feature that is automatically activated (i.e., becomes
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detected) if its name is found as a string of characters (delimited by spaces or punc-
tuation signs) in the input text. For example, the feature *John? is an innate feature

that is automatically activated when the word ‘John’ is read from the input text.

An innate feature has no constraints, as it is directly activated by the input text. It
may have associations, to which a presence signal, not a forcedDetection signal, is
sent. At least one association must be specified before the knowledge unit browser
of an innate feature can be closed. An innate feature may also have candidates, an

expansion procedure, and ports.

® By selecting the ‘relay’ button, the user indicates that the KU is a relay, and thus
must only consist of ports. Therefore the system only allows the specification of
ports, which must be explicitly identified as either supplier or customer ones. .An
innate feature cannot be a relay.

The system automatically establishes whether a KU is buildable from the presence of
‘test’ or ‘find’ instructions in its expansion procedure. A buildable feature may have only
triggers and outputs in its constraints. The system writes the phrase “is buildable” when a
buildable feature is printed.

The knowledge base browser cannot be closed if any KU refers to an non-existent KU.
In other words, the system enforces referential integrity throughout a knowledge base.

Finally, the constraint browser (figure 3.9) of a KU allows the user to specify the trig-
gers, inputs, exceptions, and output strategy of a particular constraint. Triggers may be
considered ordered or not through the use of the ‘ordered’ button. And to specify an output
of a constraint, the user must give the target KU and the signal to send it. A constraint

browser cannot be closed unless at least one trigger is specified.

3.6.2 Network Processing

The specification browsers operate within a ST-80 image (Goldberg, 1984) in which also
resides the code that implements IDIoT. In order to start an interpretation, the user
selects an input text (in an ASCII file) and a knowledge base. The default settings for
the different system parameters (see section 3.7) of the time-constrained memory of IDIoT
can then be altered. Once these parameters have been specified, a special event is sent

to the memory manager to start the reading. The memory manager reads the input text
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one character at a time, each character ‘costing’ one character quantum of time. A word
is considered to be a string of characters delimited by spaces or punctuation signs. Each
time a word is found, the memory manager checks whether an innate feature of that name
exists. If not, a warning stating that the word is unknown to the system is displayed, and

- the reading continues. Conversely, if the word is recognized, the memory manager sends a
forcedDetection signal to its corresponding innate feature. This signal will cause the innate
feature to send signals to its customers and request the execution of its expansion procedure
by the memory manager. In turn, the signals sent out by the innate feature will eventually
lead to the activation of other KUs, which, upon their detection, will send out signals to
their customers and have their respective expansion procedures execute. The execution of
an expansion procedure constructs or modifies clusters in dynamic memory. Once the text
has been completely input, a browser opens on the interpretation generated for the text,
that is, on the contents of the dynamic memory at the end of processing.

In order to handle sentences in a simple way, the current input process of the mem-
ory manager considers that a sequence consisting of a period followed by one or more
spaces, followed by a capital, indicates the end of a sentence and the beginning of a new
one. The current prototype requires that the user define the features endOfSentence and
startOfSentence in the knowledge base in order for the system to recognize these features
automatically. Features corresponding to the punctuation signs must also be specified by
the user if they are to be processed automatically by the system rather than ignored.

Each exchange of signals in the system is routed through the memory manager, which
computes the actual arrival time of a signal from:

e The delay associated with the port on which the signal is sent.
o The retrievability coefficient of the receiver.
o The nature of the signal.

A forcedDetection or forcedInhibition signal takes epsilon time to reach its destination.
In other cases, the actual delay is computed as the product of the specified delay with
the retrievability coefficient of the receiver. The memory manager keeps a schedule of all
signals to be received and their time of arrival to their destination. This schedule is used

to simulate real-time processing of communications in memory.
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Independently of reading in the text, the memory manager has the ability to execute
sequentially the expansion procedures of the KUs that become detected. Procedures are
executed on a first-requested—first-executed basis. In order to execute an expansion pro-
cedure, the memory manager attempts the instructions of the procedure in order. Should
an error occur (e.g., failed getCluster operation, non-existent feature in a moveFeature,
non-existent cluster in a removeCluster operation), the system will report to the user the
simulated time of the error, the KU whose expansion procedure crashed, and the guilty
instruction. It will then open a browser on the contents of the dynamic memory in order
for the user to debug the procedure. The current prototype abandons further processing of
the text in the event of such an error.

An expansion procedure has the ability to create new clusters (by means of the getNew-
Cluster operation) and to access existing ones (using the getCluster operations). All data
structures and algorithms for these tasks are specific to the implementation of IDIoT, and
thus are taken to be of little interest to the reader. The rules controlling the membership
of a cluster to one of the partitions of dynamic memory have been explained in section 3.2.
These rules are enforced by the memory manager, which has the ability to directly modify
the membership of a cluster to one of the partitions of dynamic memory. Both the capacity
and membership constraints of the partitions of dynamic memory are reviewed only for get-
Cluster and removeCluster operations. As previously mentioned, these operations, as well
as the findInclusiveReference and findExactReference instructions, also involve traversing
dynamic memory (going through clusters in a breadth-first manner), a process that con-
sumes time (see subsection 3.4.2). All other operations of an expansion procedure are taken
to execute in epsilon time.

The memory manager is also responsible for trying to execute the expansion procedure
of a buildable feature (ibid.) that has a triggered conmstraint. Recall that a buildable
feature is one whose expansion procedure comprises ‘test’ or “find’ instructions. Requests
from a buildable feature to the memory manager asking to attempt to execute its expansion
procedure are treated much like requests from non-buildable features to have their expansion

procedure executed, but with the following differences:

o If the expansion procedure of a buildable feature succeeds, the memory manager sends
the KU a forcedDetectionSignal and the feature does not request, upon its detection,

the execution of its expansion procedure.
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o If the expansion procedure of the buildable feature fails, then the manager registers the
feature on a list of buildable features waiting to be built, marking down the time after
which the feature should be purged from the list. In other words, the manager ensures
that a buildable feature has a short amount of time to have its expansion procedure
succeed. Failureto do so, and thus to become detected, intuitively corresponds to the

situation in which the dynamic constraint that the buildable feature embodies fails.

e If the expansion procedure of a buildable feature fails, the memory manager has
the ability to ‘restore’ the contents of dynamic memory to what they were before
the unsuccessful attempt. In the current prototype, trying to execute the expansion
procedure of a buildable feature creates a set of ‘temporary links’ between clusters. I
the expansion procedure succeeds, then these temporary links graduate to the status
of ‘permanent’ links; otherwise they almost instantly vanish because of decay. In
other words, without going into implementation details, the current prototype uses
a mechanism that does not involve backtracking when attempting to execute the

expansion procedure of a buildable feature.

e Within the time allocated to a buildable feature to be successfully expanded, the
memory manager will attempt to execute the expansion procedure of the buildable
feature each time a new feature has its procedure executed, that is, each time the

contents of the dynamic memory change.

Finally, the memory manager may receive a request to attempt to execute the expansion
procedure of a buildable feature that has all its triggers but not a satisfied constraint because
a submission signal was received for some of its triggers. In this case, the memory manager
attempts the expansion procedure of the buildable feature only once and sends back a
forcedDetection signal in case of success, or a forcedInhibition signal in case of failure. In
other words, whereas a buildable feature with a satisfied constraint can have its expansion
procedure attempted several times, a buildable feature that has received some submission

signal for one or more of its triggers is given only one chance of succeeding.

3.6.83 Detailed Algorithms of a Knowledge Unit

The tasks of the memory manager represent only one of the two facets of the ‘trivial’

algorithm of time-constrained memory. The other facet is the signal processing algorithm
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that all knowledge units run asynchronously and in parallel. This algorithm is detailed
below. It uses only information local to each KU and involves only simple operations on
the signals each KU receives. A knowledge unit can be in one of several modes, each mode
recognizing certain inputs and ignoring all others.

Each KU executes the following basic reception algorithm each time it receives one or

more new signals:

1. Receive all new signals at time t. Once the memory manager has computed the actual
time of arrival of a signal, it places the signal and its time of arrival in the queue of
incoming signals of the receiving port. Each KU keeps a queue of pairs of the form
(incomingSignal, arrivalTime) for each of its supplier ports. A KU receives all new
signals at time ¢ by retrieving all signals of its input port queues that have ¢ as their
arrival time. The signals received at ¢ are called the current signals.

2. Independently of its current mode, the KU verifies that it has not exceeded the current
deadline of its mode. If it has, it immediately reverts back to idle mode. In other
words, at a given point in time, a KU is in a certain mode. All modes, except idle
mode, last a fixed amount of time. Once the time allocated to a mode has been
reached, the KU automatically reverts back to idle mode.

3. If the current signals include a forcedInhibition signal, then the KU immediately
reverts back to idle mode and ignores all other current signals.

4. Elself the current signals include a forcedDetection signal, then the KU immediately
goes to detected mode. Both forcedInhibition and forcedDetection signals are always
routed by the memory manager to the manager‘s port of a KU.

5. Else, the KU goes to the algorithm of its current mode.

The algorithm for the detected mode is:

1. If the KU is a relay feature, it sends a presence signal to its its customers.

2. I the KU is an innate feature, it sends a presence signal to all its associations. Oth-
erwise, it sends a forcedDetection signal to all its associations.

3. The KU sends a confirmation signal to all its candidates.

4. The KU sends a reinforcement signal to all KUs to which it sent initially a submission
signal and that have sent back a confirmation signal. This step corresponds to the
reinforcement of all missing features of the triggered constraint, if any.

5. The KU sends the specified signals to the customers listed in the outputs of the
satisfied constraint, if any.
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6. The KU sends a presence signal to customers to which it is not sending a reinforcement
gignal and that are not part of the outputs of the satisfied constraint.

7. The KU requests the execution of its expansion procedure by the memory manager

and reverts back to idle mode.

The algorithm for the idle mode follows:

1. If the current signals include expectation signals, then follow the algorithm of the
ezpecting mode.

2. Elself the current signals include submission signals, then execute the ‘process sub-
mission input’ method.

3. Elself the current signals include confirmation signals, then execute the ‘start candi-
dacy’ method.

4, Else, execute the ‘process all presence signals’ method.
5. If the KU is a marker, then relay the current signals to the customers.

6. Elself a constrajnt is triggered (i.e., has received a signal for one or more triggers),
then execute the ‘start satisfaction race’-method.

7. Else, remain in idle mode.

All preseﬁce signals received by a KU start decaying upon reception. Each supplier port of
a KU keeps a queue of presence signals individually associated with their time of reception.
The ‘value’ of a supplier port for constraint satisfaction purposes is the sum of all its decayed
presence signals at a particular point in time. Presence signals that decay below a certain
threshold are automatically purged from their queue. The ‘process all presence signals’
method consists in computing the new value of all customer ports of a KU that receive new
presence signals.

The ‘process submission input’ method follows:

1. Set submission mode deadline.
2. Process all presence signals.

3. If a constraint is fully triggered (i.e., has a presence or submission signal for all its
triggers), then:

(a) If this is a buildable KU, then:

i. Request an attempt to execute the expansion procedure.
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ii. If the attempt is successful, then:

A. Send confirmation signal to submitters, that is, to the KUs from which
a submission signal was received.

B. Set mode to toBeReinforced.

ili. Else (the attempt failed): Ignore submission signal and continue the idle
mode algorithm.

(b) Else (this is not a buildable):
i. If the triggered constraint is satisfied, then:
A. Send confirmation signal to submitters.
B. Set mode to toBeReinforced.
ii. Else (the triggered constraint is not satisfied):

A.-Send submission signal to the missing features of the triggered constraint.
B. Set mode to toBeConfirmed.

4. Else (no fully triggered constraint): Stay in idle mode and continue the idle mode
algorithm.

The ‘start candidacy’ method follows:

1. Set candidacy mode deadline.

2. Process all presence signals.

3. If there is no fully triggered constraint, then stay in idle mode.
4. Else (there is a fully triggered constraint), then:

(a) If this is a buildable KU, then request attempt to execute the expansion proce-
dure.

(b) Else: Send a submission signal to customers.

5. Set mode to directImmediateCandidate.

The ‘start satisfaction race’ method follows:

1. Set satisfaction race deadline.
2. Process all presence signals.
3. If the triggered constraint has exceptions, then:

(a) I this is a buildable KU, then:

i. Request attempt to execute the expansion procedure.
ii. Set mode to toBeBuiltImmediate.

(b) Else (this is not a buildable KU):
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i. Send submission signal to missing features and to customers.
ii. Set mode to endCandidate.

4. Else (the triggered constraint has no exceptions):

(a) X buildable, then:

i. Request attempt to execute the expansion procedure.
ii. Set mode to toBeBuiltImmediate.

(b) Else (not buildable):
i. Send submission signal to missing features and to customers.
ii. Set mode to immediateCandidate.

The algorithm when in directImmediateCandidate mode has the KU waiting for a confirma-
tion signal from a customer. Upon reception of such a signal, the KU becomes detected;
All other signals are ignored.

The algorithm when in directEndCandidate mode is the same as the preceding one except
for the fact that input signals are processed only at the end of the time allocated to the
race of this mode.

The algorithm when in immediateCandidate mode follows:

1. Process only confirmation signals.

2. If a constraint has received a confirmation signal from each of the suppliers it sent a
submission signal to, then it becomes detected.

3. Else remain in this mode.

The algorithm when in endCandidate mode is the same as the preceding one except for
the fact that input signals are processed only at the end of the time allocated to the race
of this mode.

The algorithm when in toBeReinforced mode ignores all signals but reinforcements sig-
nals. Once the KU has received a reinforcement signal, it relays this signal to the KUs from
which it received a confirmation signal and changes its mode to detected.

The algorithm when in toBeConfirmed mode follows:

1. Ignore all signals but confirmations signals.
2. For each confirmation signal:

(a) If this is the last confirmation needed then:
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i. Send confirmation signal to submitters.
ii. Set mode to toBeReinforced.

(b) Else (this is not the last confirmation): Take it out of the list of KUs from which
the KU still needs confirmations.

The algorithm when in toBeBuiltImmediate mode simple ignores all signals except for a
forcedDetection signal from the memory manager.

When in ezpecting mode, a KU ignores all signals but presence signals for its triggers.
The KU goes to detected mode as soon as it has received all the triggers for any of its
constraints.

Finally, I remark that even though the ‘user specifies an order among the constraints of
a KU, the system tries to satisfy all constraints in parallel. Only then does the system refer
to the user-specified order to decide which of the satisfied constraints is the one that causes
the detection of the KU. Therefore, the number of constraints in a KU does not correlate
to the complexity of the constraint satisfaction step. In other words, we avoid the problems

that could result from the sequential processing of a large number of constraints.

3.7 An Annotated Example

To recapitulate the different facets of the proposed model of time-constrained memory, let
us consider the processing of the sentence “John drinks gin”. All linguistic examples follow
a simple grammar derived from that of Winograd (1983). For the sake of simplicity, I will
consider only two of the meanings of ‘gin’: the card game and the drink. Some of the
KUs used in this example have been listed in subsection 3.4.3, and the structure of most
others can be inferred from the exchange of messages. Also, I want to highlight only the
most important aspects of the processing, and thus I have taken out several exchanges of
messages not germane to the discussion at hand.®

Once the user of IDIOT has started the system and given an input text, he or she can
modify the defaults of the different parameters of time-constrained memory. Here are the

default settings for the examples of this dissertation:

e Candidacy length = 200

5The actual trace is verbose, listing every message exchange and state change (see appendix A). For all
the running examples of the current prototype, traces total more than 10 megabytes of text.
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e Expectation length = 100

Submission length = 50

Decay factor =0

Epsilon quantum = 0.01

Character quantum = 10

Detection threshold = 1

e STM capacity = 50
o Working memory capacity = 7

I emphasize that these values are arbitrary and do not proceed from psychological evidence.
They have been chosen to simplify the procéssing as much as possible by having a large

STM, long races, and no decay.

The values for the different special signals are the following;
o forced detection signal = —1

o confirmation signal = —-2

expectation signal = —3

inhibition signal = —4
e reinforcement signal = -5
e submission signal = —6

Again, for the sake of simplicity, the presence signals used by the KUs of this example have
systematically been given their maximum value of 1.

The system is designed to automatically insert a special innate feature called startOf-
Sentence at the beginning of the text and after each period. Another special innate feature,
endOfText, is inserted at the end of the text. The processing of the text thus starts, at time
0, with the recognition of startOfSentence which sends a presence signal to its customers.

Then, at time 3, the word ‘John’ is recognized. Here is its simple definition:
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innate KU ’John’:

associations: johnPerson

expansion:
getNewCluster uil
addFeature singular to ul
addFeature proper to ul
addFeature person to ul
addFeature male to uil
addFeature ’John’ to ui

ports:

The features singular, proper, person, and male are defined elsewhere in the KB. For
example, proper is a relay with all known proper nouns as suppliers and all rules relevant
to proper nouns as customers.

All features referred to in the expansion of *John’ are sent a forced detection signal:

innate XU ?John’ read in at 3
is recognized

manager expands

manager sends forcedDetectiomSignal from manager to singular arriving at 3.01
banager sends forcedDetectionSignal from manager to proper arriving at 3.01
manager sends forcedDetectionSignal from manager to person arriving at 3.01
manager sends forcedDetectionSignal frem manager to male arriving at 3.01

Throughout the trace, ‘manager’ refers to the memory manager and the phrase ‘manager
expands’ means that the memory manager executes the expansion procedure of the corre-
sponding KU.

The feature person will in turn lead to the detection, at 3.02, of its two associations
rational and animate. At 3.01, feature proper becomes detected and sends a Presence
signal to its customers, one of which is NP. Given an a priori delay of 1 between these
two features (as with the vast majority of KUs in this example), at 4.01, NP receives this
signal, which triggers and satisfies its constraint called proper. Among the many customers
of NP that are sent a present signal is the feature s-Start. This feature was triggered
by startOfSentence. Once the presence signal from NP is received, s-Start becomes
detected, capturing the fact that the sentence starts with an NP (as opposed, for example,
to a verb that could indicate the imperative mood). Through the expansion of s-Start,
the cluster associated with the NP has features topNP and subject added to it. (The
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feature topNP keeps track of the most referable NP of a sentence.) The feature subject
captures the intuition that the first NP of a non-imperative sentence will be assumed to
be the subject unless subsequently proven otherwise. At this point in time (5.01), dynamic
memory contains a cluster for the NP with NPhead governing the cluster associated with
John.

Each letter of the word ‘John’ takes a character quantum, in this case, 10 time units, to
read. Hence the next word is input 40 time units after ‘John’, at time 43. The innate feature
*drinks’ sends a presence signal to the feature actionDrink, whose definition follows:

KU actionDrink:
constraint ’drinks’:
triggers: ’drinks’
inputs:
verb has a weight of 1
expansion:
getCluster ul governing ’drink’
addFeature actionDrink to uil
addFeature verb to ul
ports:
‘drinks’ has a delay of 1 and is a supplier
drinkBeverage has a delay of 1 and is a customer
verb has a delay of 1 and is a supplier

Feature actionDrink receives the presence signal from ’drinks’ at 44 and becomes a
candidate. It sends a submission signal to its missing feature verb. Feature verb simply
relays the submission signal to its customer VP. This is used for encapsulation, that is,
in order to avoid having every known verb of the system have VP as a customer. This
constitutes a typical role for relays.

VP relays the submission signal received from verb to its numerous customers including
feature subj-verb-rel which captures the subject-verb relationship. The latter feature has
already been triggered by the feature subject and, once it receives the submission signal
from its input VP, has one of its constraints satisfied. At that point, subj-verb-rel does not
become activated, but rather sends a confirmation signal back to VP. This confirmation
signal is relayed from VP to verb to actionDrink. Since the triggered constraint of

actionDrink does not have exceptions, actionDrink can become detected as soon as it
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receives a confirmation signal from all features to which it sent a submission signal, that is,
from verb. At this point, actionDrink checks the deadline of its candidacy and forgets
it since it has not been exceeded, becomes detected, and sends a reinforcement signal to
verb and a presence signal to its customer drinkBeverage. The features verb, VP, and

subj-verb-rel eventually become activated:

KU actionDrink in mode immediateCidndidate woxks at 50
receives confirmationSignal on verb
confirmers are verb
manager sends reinforcementSignal from actionDrink to verb arriving at 51
becomes detected at: 50
forgets end of race deadline
manager expands
manager sends presenceSignal from actionDrink to drinkBeverage arriving at 51
KU drinkBeverage in mode idle works at 51
Treceives presenceSignal on actionDrink
KU verb in mode toBeReinforced works at 51
receives reinforcementSignal on actionDrink
managar sends reinforcementSignal from verb to VP arriving at 52
becomes detacted at: 51
KU VP in mode toBeReinforced works at 52
receives reinforcementSignal on verb
manager sends reinforcementSignal fram VP to subj-verb-rel arriving at 53
becomes detacted at: 52
manager expands
manager sends forcedDetectionSignal from manager to activeMood arriving at 52.01
manager sends forcedDetectionSignal from manager to mainVexdb arriving at §2.01
manager sends forcedDetectionSignal from manager to VPmods arriving at 52.01

KU suobj-verb-rel in mode toBeReinforced works at 53

receives forcedDetectionSignal on VP
becomes detected at: 53

manager expands

manager sends forcedDetectionSignal from manager to clause arriving at 53.01
manager sends presenceSignal from subj-verb-rel to directlbject arriving at 54
manager sends presenceSignal from subj-verb-rel to newFact arriving at 54
manager sends presenceSignal from subj-varb-rel to sva~1 arriving at 54
manager sends presenceSignal from subj-verb-rel to sva-2 arriving at 54

As a result of the expansion of subj-verb-rel, dynamic memory contains a cluster having
the single feature clause. This feature governs a subcluster corresponding to the VP and
another subcluster corresponding to the subject. The two customers sva-1 and sva-2 of
subj-verb-rel are buildable features used to verify that the subject and the verb agree.
They are discussed in chapter 5. As for feature directObject, it has its constraint triggered
by the presence signal received from subj-verb-rel.

At time 103, the word ‘gin’ is input and sends a presence signal to gin. Feature gin
sends a submission signal to noun, which relays it to NP, which sends a submission signal

to directObject. The definition of directOb ject follows:
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KU directObject:
% This feature takes the most reachable NP and makes
% it the directObject of the verb if the latter is not
% intransitive. It also makes this NP the top NP of the clause.
% The next line is automatically generated by the system
% to indicate the KU is buildable.
is buildable
constraint ci:
ordered triggers: subj-verb-rel NP
expansion:
getCluster ul governing VP
getCluster u2 governing topNP in ul
removeFeature topNP in u2
getCluster u2 governedBy mainVerb in ul
testAbsence0f intransitive in u2
addFeature verbComplemented to u2
getCluster u2 governing NP
addFeature directObject to ul
addSubCluster u2 to directObject in ul
addFeature topNP to u2
ports:

Feature directObject is buildable and therefore, upon receiving the submission signal from
NP and having one of its constraints satisfied, requests that the memory manager check
whether directOb ject’s expansion procedure succeeds. This procedure succeeds if the verb
admits of a direct object. In the example, the expansion of directObject succeeds and
directObject sends a confirmation signal back to NP:

KU directObject in mode idle works at 107
receives submisaionSignal on NP
manager Port is O
in submission, a triggered comstraint is ci
satisfaction of ¢l against threshold 1
manager attempts dynamic construction for sutmission at 107
manager sends confirmationSignal from directObjact to HP arriving at 108.26

The confirmation signal will ripple from NP to noun to gin, which becomes detected.
Feature gin has two candidates, cardGameGin and alcoholicBeverageGin to which
it sends a confirmation signal in order to have their candidacies start. Each candidate
sends a submission signal to its customers. The submission path alcoholicBeverageGin,

alcoholicBeverage, beverage, drinkBeverage will eventually be built and lead to the
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confirmation of alcoholicBeverageGin, whereas a path from card GameGin will reach a dead
end with feature actionPlayAGame. Further explanations are provided in part 2 of this
thesis. At the same time that these candidacies occur, the features noun, and then NP,
will be reinforced and become activated. Feature NP will reinforce directObject, which

also becomes detected. The following segment of the trace captures this sequence of events:

KU gin in mode jmmediateCandidate works at 110.26

Treceives confirmationSignal on noun

manager Port is 0

confirmers are noun

manager sends reinforcementSignal from gin to noun arriving at 111.26

becomes detected at: 110.26

forgets end of race deadline

manager expands 1

manager sands confirmationSignal from gin to cardGameGin arriving at 111.26

mansger sends confirmationSignal from gin to alcoholicBeverage@in arriving at 111.26
KU alcoholicBeverageGin in mode idle works at 111.26

receives confirmationSignal on gin

manager Port is 0

start direct candidacy race ending at 311.26 for constraint gin

manager sends submissionSignal from alcoholicBeverageGin to alcoholicBeverage arriving at 112.26
KU card@ameGin in mode idle works at 111.26

Teceives confirmationSignal on gin

manager Port is 0

start direct candidacy race ending at 311.26 for constraint gin

manager sends submissionSignal from cardGameGin to cardGame arriving at 112.26

manager sends submissionS8ignal from cardGame@in to rules0fGin arriving at 112.26
KU noun in mode toBeReinforced works at 111.26

receives reinforcementSignal on gin

manager sends reinforcementSignal from noun to NP arriving at 112.26

becomes detected at: 111.26
KU alcoholicBeverage in mode idle works at 112.26

Teceives submisaionSignal on alcoholicBeverageGin

manager Port is O

in snbmission, a triggered constraint is alcoholicBeverage@in

satisfaction of alcoholicBeverage@in against threshold 1

manager sends submissionSignal from alcoholicBeverage to aboutidlcoholBeverages arriving at 113.26

manager sends submissionSignal from alcoholicBeverage to beverage arriving at 113.26
KU P in mode toBeReirforced works at 112.28

receives reinforcementSignal on noun

manager sends reinforcementSignal from EP to directObject arriving at 113.26

becomes detected at: 112.26

manager expands

manager sends forcedDetectionSignal from manager to HNPhead arriving at 112.27

manager sends forcedDetectionSignal from manager to NPquant arriving at 112.27

manager sends forcedDetectionSignal from manager to FPmods arxiving at 112.27

manager sends forcedDetectionSignal from manager to 3rdPerson arriving at 112.27

menager tries dynamic construction of sva-1 at 112.26

manager tries dynamic comstruction of sva-2 at 112.26

KU cardGame in mode idle works at 112.26

receives submissionSignal on cardGame@in

menager Port is O

in submission, a triggered constraint is cardGameGin

satisfaction of cardGameGin ageinst threshold 1

manager sends submissionSignal from cardGame to game arriving at 113.26

manager sends submissionSignal from cardGame to aboutPlayingCards arriving at 113.26
KU rules(fGin in mode idle works at 112.26

Taceives submissionSignal on cardGameGin

manager Port is O

in submission, a triggered constraint is cardGameGin
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satisfaction of cardGameGin against threshold 1
KU game in mode idle works at 113.26
receives submimsionSignal on cardGame
manager Port is O
in submission, a triggered constraint is cardGame
satisfaction of cardGame against threshold 1
manager sends submissionSignal from game to actionPlayAGame arriving at 114.26
KU beverage in mode idle worka at 113.26
Teceives sulmissionSignal on alcoholicBeverage -
manager Port is 0 A
in submission, a triggersd constraint is alcokolicBeverage =
satisfaction of alcoholicBeverage against threshold 1
manager sends submissionSignal from beverage to drinkBeverage arriving at 114.26
manager sends submissionSignal from beverage to liquid arriving at 114.26 -
KU aboutAlcoholBeverages in mode idle works at 113.26
receives submissionSignal on alcoholicBeverage
manager Port is 0
in submission, a triggered constraint is ci
satisfaction of ci against threshold 1
KU azboutPlayingCards in mode idle works at 113.26
receives submissionSignal on cardGame
manager Port im 0
in submission, a triggered constraint is ci
satisfaction of c1 against threshold 1 5
XU directlbject in mode toBeReinforced works at 113.26
receives reinforcement8ignal on WP
becomes detected at: 113.26
manager expands
manager sends forcedDetectionSignal from manager to verbComplemented arriving at 1138.27
manager sends forcedDetectionSignal from manager to topiP arriving at 113.27
manager sends presenceSignal from directObject to coi arriving at 114.26
manager sends presenceSignal from directDbject to newFact arriving at 114.26
XU drinkBeverage in mode idle works at 114.26
receives submissionSignal on beverage
menager Port is 0
in submission, a triggered comstraint is ci
satisfaction of ¢1 against threshold 1
manager attempts dynamic construction for submission at 114.26
manager sends confirmationSignal from drinkBeverage to beverage arriving at 116.52
KU actionPlayAGame in mode idle works at 114.26
receives submissionSignal on game
menager Port is O

Eventually, the path of features that led to the detection of alcoholicBeverageGin will
also become detected and the period of the sentence combined with the innate feature

endOfText, will complete the processing. The resulting structure in dynamic memory is

as shown below:

KU newFact that governs:
cluster 12665 in working memory with features:
KU VP
KU mainVerb that governs:
cluster 14282 in working memory with features:
KU ‘drink’
KU 3rdPersonSingForm
KU actionDrink
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KU verdb
KU activeMood
KU verbComplemented
KU VPmods
KU subject that governs:
cluster 10317 in working memory with features:
KU NP '
KU NPhead that governs:
cluster 257 in working memory with features:
KU singular
KU ‘John’
KU proper
KU person
KU male
KU rational
KU animate
KU 3rdPerson
KU NPquant
KU NPmods
KU directObject that governs:
cluster 10186 in working memory with features:
KU NP
KU NPhead that governs:
cluster 76562 in working memory with features:
K‘U ¢ gin!
KU singular
KU gin
KU noun
KU 3rdPerson
KU alcoholicBeverageGin
KU tastelfGin
KU alcoholicBeverage
KU aboutAlcoholBeverages
KU beverage
. KU liquid
KU aboutLiquids
KU NPquant
XU NPmods

3.8 Observations from Experiments

To conclude this chapter, I wish to summarize the different programmable facets of the
proposed model of time-constrained memory and, with respect to their usage, briefly discuss

some of the insights gained from experiments with the current prototype.
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Becaﬂ that in the current prototype of IDIoT, memory is partitioned into a static
and a dynamic component. Static memory acts as the ‘knowledge base’ (KB), whereas
dynamic memory serves as the repository for the clusters constructed during understanding:
the user specifies KUs, sets up the parameters of the memory model, and then starts
an interpretation for a selected text. In accordance with a reader-based comprehension
strategy, not only different sets of KUs (i.e., different KBs), but also different settings of
the parameters may lead to different interpretations.

Let us first investigate this assertion with respect to ‘knowledge’ specification. Static
memory proceeds from the conceptualization of memory as a massively parallel network of
simple computing units, the KUs. The connectionist characterization of this network as a
graph with weighted links and with nodes that sum up their inputs to compare them to an
activation threshold is enhanced in three ways:

1. In order to increase the programmability of the model (subsection 3.4.1):

o A KU is permitted to have several constraints associated with it. These con-
straints are to be organized by the user in strict decreasing order of precedence

so that only one may be satisfied at once.

e The intuitive notions of triggers, inputs, and exceptions are introduced for con-

straint specification. For flexibility, triggers may or may not be ordered.

o The intuitive notions of associations and candidates are introduced to identify

specific relationships between a KU and some of its customers.

o Weights are not associated with the links of the network, but rather with the

inputs and exceptions of constraints.

¢ Communication is asynchronous and an e priori communication delay is associ-
ated with each link, more precisely with each port sending a signal to another
KTU.

2. In order to model the generative ability of memory (i.e., the construction of clusters),

KUs may possess expansion procedures (subsection 3.4.2).

3. In order to model the assumption that KUs are ordered with respect to the intuitive

notion of familiarity, each KU is assigned a retrievability coefficient (section 3.3).

Given this model of static memory, the specification of the KB is entirely left to the user:
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s Organizing KUs on the retrievability axis: Recall that the actual delay associ-

ated with an exchange of a signal is computed as the product of the a priori delay
with the retrievability coefficient of the receiver. The coefficient is not an integer
but a floating point number. Because the current prototype does not support the
dynamic modification of a KU’s coefficient by another KU, the user can set the re-
trievability of KUs by following a simple heuristic such as assigning a coefficient of 1
to ‘independent concepts’ and only using this coefficient to define an ordering among
‘related concepts’. For example, the words ‘pen’ and ‘plane’ are likely to be equally
retrievable, but the interpretation of ‘pen’ as a male swan may be far less familiar
than other ‘meanings’ of the word, granting it a significantly higher retrievability
coefficient (e.g., a value of 2 to make it twice as long to retrieve as more ‘common’
senses). Experiments suggest that the difference between the values of two coefficients
must be several times (i.e., at least an order of magnitude) larger than the epsilon
quantum (see section 3.3) in order to become significant with respect to processing.
Also, depending on the time-span of candidacies, too high a retrievability coefficient
may make a KU systematically unreachable, and thus i'rreleva.nt for the interpretative

process.

From a quantitative viewpoint, tracking the ‘relatedness’ of two KUs is a difficult
task. At a superficial level, it simply consists in checking whether or not their re-
spective transitive closures of reachable suppliers and customers KUs intersect. But
this is not sufficient; for example, KUs that access the same cluster may also be con-
sidered as ‘related’ (e.g., the KUs for recognizing the direct and indirect object of
a bitransitive verb, see chapter 5). A fundamental goal of the familiarity axis is to
minimize, through ordering, the risks of conflicting concurrent detections of ‘related’
KUs. This is particularly important for a problem such as word sense disambiguation
(see chapter 7). Other strategies to avoid such conflicts include refining or reordering
constraints, using inhibition signals to implement a winner-take-all strategy, and using
exceptions, as discussed in part 2 of the dissertation. The point is that ordering KUs
along the familiarity axis constitutes a simple approach to reducing the risk of erro-
neous interactions resulting from a large number of simultaneous ‘related’ detections.
The .ordering also affects the interpretative process by indirectly creating an order of

reachability (e.g., for syntactic and semantic preferences) on which the construction
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of clusters is based.

Using associations: Experiments suggest that associations are best limited to ar-
chetypical generalizations along the conceptual ‘is-a’ hierarchy. For example, the fact
that a cat is a mammal suggests that the KU cat have the KU mammal as an as-
sociation. A presence signal of varying strength (see below) should be used otherwise
to capture the ‘strength’ of the generalization.

Recall that associations are sent forcedDetection signals, and exceptions, forcedIn-
hibition signals. These priority signals take epsilon time to reach their destination.
An inherent danger in the abuse of associations and exceptions is the creation of
a communication network where all timing aspects are in essence bypassed because
of an excessive dependence on priority signals at the detriment of the user-specified

communication delays and retrievability coefficients.

Using candidates: Experiments suggest that the use of candidates is best limited
to sets of mutually exclusive KUs. They are particularly appropriate for word sense
disambiguation (chapter 7).

Using buildable features: Buildable features do not follow the forward or backward
chaining strategies proposed for constraint satisfaction (subsection 3.4.1), and thus
do not lead to a sequence of detections (through paths of reinforcement signals).
Therefore, their use should be limited to features whose detection relies on the contents
of dyna.mic memory (e.g., reference resolution features, see chapter 6). One difficulty
with using a buildable feature is that the time of its detection is less predictable than
that other features because it depends on the dynamic (i.e., unpredictable) context.

Varying the strength of a presence signal output: In order to notify a cus-
tomer of its presence, a KU typica.].ly.sends it a presence signal varying from 0 to 1,
corresponding to the ‘strength’ of the sender’s presence with respect to the receiver.
For example, along the conceptual ‘is-a’ hierarchy, it is possible that a child would
‘strongly’ classify (e.g., send an output of 0.8 or more) a dolphin as a mammal and
‘weakly’ classify (e.g., send an output of 0.3 or less) it as a fish. Experiments suggest
that the user avoid ‘in-between’ presence signals (e.g., between 0.3 and 0.8) so that
an accumulation of relatively weak signals does not lead too gquickly to the satisfac-
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tion of a constraint. Choosing the strength of presence signals, the weights to use
in constraints, and the delay to assign to exchanges constitute the trickiest tasks for
the user of IDIoT, tasks I have found quite akin to the ‘tweaking’ of weights in local
connectionist networks. However, only the setting of communication delays has been
found to have an immediate and significant effect on the processing of the current

examples.

Variations in the internal structure of KUs and in the delays of the communication network
may modify the likelihood of detection of a KU, and thus the sequence of cluster operations,
ultimately resulting in potentially different interpretations. Another source of divergence
during the interpretative process of IDIoT is the specificity of KUs, which affects the length
of paths of reinforcement signals. Recall that the longer the path, the more risk there is
of having some part of it not have sufficient time to become reinforced and detected (see
subsection 3.4.1). The specificity of human knowledge is still a controversial issue but it
appears that we acquire both extremely specific rules (e.g., the parsing rules of a child) as
well as some more ‘abstract’ rules (e.g., generalizations, schemas).

The scope of action of the user of IDIoT is not limited to ‘knowledge’ specification but
also involves the setting of thé parameters of the memory model. First, let us consider the
user-specified parameters pertaining to the time-span of the different states of a KU. The
values of these parameters directly constrain the chances of acfiva.tion of KUs, and thus the

interpretative process itself:

e Candidacy Length: This delay applies to constraint satisfaction, that is, defines
the amount of time a KU has to satisfy its triggered constraint and become activated.
Experiments suggest that a ‘short’ candidacy length typically reduces the number of
detections dramaitically, and thus the extent of the final interpretation. Conversely, a
long candidacy length has little effect, specially if there is some decay, in that there
is an upper bound on the time required for a chain of clusters to become activated.
Because both word recognition (i.e., recognition of innate features) and exchange of

signals consume time, the length of a candidacy should be several orders of magnitude
larger than the epsilon quantum in order to take into account the next word(s) of the

input.
o Expectation Length: This delay defines the amount of time a KU has to receive
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one of its triggers and become activated. The setting of this parameter depends
entirely on the role that the user is willing to grant to expectations. An excessively
short delay (i.e., close to the epsilon quantum) will not allow any expectations. An
average delay (e.g., a few orders of magnitude larger than the epsilon quantum) will
allow consideration of further input and some immediate expectations (e.g., semantic
priming effects, see chapter 7). A longer delay will allow for more complex expectations
(e.g., involving inferences). An extremely long delay may lead to the detection of
somewhat ‘far-fetched’ conceptual links.

e Submission Length: This delay defines the amount of time a KU has to receive
all appropriate confirmation signals from a set of suppliers and send a confirmation
signal to the KU that initially sent it a submission signal. Experiments suggest setting
this delay, which defines the time-span of backward-chaining, to the same order of
magnitude as the candidacy length, which defines the time-span of forward chaining.
Because of the larger number of exchanges of signals required by backward-chaining, I
typically have set the length of a submission to twice the candidacy length. Variations
have basically the same effect as with the candidacy length. In both cases however,
arbitrarily long delays seem psychologically implausible.

Second, despite the fact that, during the processing of a text, the user has no direct control
on where a cluster resides in dynamic memory, the construction of clusters, that is, the in-
terpretative process, is constrained by the values of the user-specified parameters pertaining

to memory management:

o Epsilon Quantum: All memory parameters pertaining to time are based on the
epsilon quantum that, in essence, defines the unit of granularity of time for mem-
ory. Further investigation of psychological and neuronal evidence is required before
establishing a non-arbitrary value for this parameter.

o Character Quantum: The character quantum defines the cost of inputting and
recognizing a letter. In the current prototype, this quantum is oversimplistic in that
it is arbitrarily set to be an order of magnitude larger than the epsilon quantum, and
also because it is uniform across letters, which does not seem to be psychologically

plausible.
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* Decay: Both psychological and biological evidence suggests the importance of de-
cay. From a linguistic viewpoint, it is an essential facet of the convergence problem
(Graesser and Clark, 1985). Experiments Bﬁggest leaving it at a rate of zero until
all other parameters have been ‘tweaked’ to the user’s satisfaction. This will make
for traces whose sequences of events are a lot simpler to fallow. Once an acceptable
interpretation is generated, i:he user may want to introduce decay in order to find out
which conceptual links are more tenuous, that is, which links will be removed from
the interpretation because of decay. Only truly exponential decay is psychologically
plausible but experiments demonstrate that, though ‘slow’ decay is basically insignifi-
cant, ‘fast’ decay has dramatic repercussions on the final interpretation. Indeed, “fast’
decay seems to implicitly define a time-span upper bound for all memory processes in
that clusters become unreachable far more quickly, thus significantly constraining the

interpretative process.

* Working Memory Capacity: This capacity limit defines the number of ‘instanta-
neously’ reachable clusters (section 3.2). A minimum value of 1 is required in order
to handle retrievals correctly. Though implausible, a high hm.lt (e.g., more than 50
percent of STM) will not greatly affect understanding because, in the current pro-
totype, access of clusters in STM is only one order of magnitude slower than access
in Working Memory. Further investigation of the role of Working Memory, but also
consideration of the ‘size’ of clusters is required before suggesting a plausible value

for this parameter.

¢ Shori-Term Memory Capacity: Because in the current prototype access to LTM
is considerably ‘slower’ than access to STM, the capacity limit of STM seems to define,
much like decay, an upper bound on all memory processes inasmuch as once in LTM,
clusters become typically unreachable. Experiments suggest that a limit of less than 25
clusters does not allow for the interpretation of a short ‘simple’ sentence. Conversely,
a psychologically implausible, extremely large STM (e.g., a few hundred clusters) will
possiBly generate an ‘in-depth’ interpretation (i.e., an interpretation in which even
complex inferences have been used) but, unless qualitative data is extremely well-
organized, will most likely lead to unexpected and undesirable interactions between

KUs that incorrectly remain reachable. For example, an erroneous inference may
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be drawn between the current word and one that was encountered several sentences
back. Much as with the capacity of working memory, further investigation is required
in order to understand the tradeoff between solving the convergence problem and

unduly limiting the interpretation (because of overly fast unreachability).

During experiments with the current prototype, geveral configurations of parameters were
systematically tried with the input texts. All assumed, for simplicity, an insignificant rate
of decay and an STM of 50 clusters. Separate experiments were conducted to assess the
repercussions of variations of decay rate and of STM capacity on understanding. These
repercussions have been briefly discussed above. Let me now summarize my observations

regarding the ‘standard’ configurations of parameters I used with the examples:

e Reader 1 has an ‘average’ KB (i.e., a KB that does not includes KUs for some of the
complex inferences required in some of the examples) and is given ‘average’ time (in
terms of time-spans of races). This configuration generated the interpretation against

which those resulting from more extreme configurations of parameters were compared.

e Reader 2 has the same KB as reader 1 but extremely short races. This reader
generated interpretations that lacked all of the more ‘time-consuming’ conceptual
relationships such as causal inferences. In essence, this reader could barely do more

than the simplest parsing.

s Reader 8 has the same KB as reader 1 and long races. This reader generated
interpretations that were similar to those of reader 1, mostly because there were
no complex inferences in the KB to be detected, regardless of the time available.
Furthermore, the longer races led to the discovery of some undesirable interactions

between KUs that do not occur with reader 1.

o Reader 4 has a ‘poor’ KB (i.e., a KB with only the simplest parsing rules). Regard-
less of the values of the memory parameters. the interpretations generated by this

reader were extremely superficial and incomplete with respect to those of reader 1.

e Reader 5 has a ‘rich’ KB (i.e., one that includes complex inferences) and is given
‘average’ time. Because of lack of time, the ‘richness’ of the KB is not systematically
exploited and interpretations are typically similar or marginally more ‘complete’ than
those produced by reader 1.
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o Reader 6 has a rich KB and extremely short races. This reader is identical to

reader 2.

o Reader 7 has the same KB as reader 5 and long races. This reader generates the
most ‘complete’ interpretations of all the readers, but also required the most ‘rule
. tweaking’ because of unwanted interactions. Also recall that arbitrarily long races

violate the initial assumption that comprehension is a real-time process.

A more extensive discussion of the results lies beyond the scope of this work because it.
involves complex psychological phenomena such as the use of causal inferences (van der
Meer, 1987) and loss of surface information (Gernsbacher, 1985). Moreover, there are still
too many unanswered questions to suggest what ‘good’ values for the different parameters
of the model may be. But experiments with the current prototype have confirmed the

importance of quantitative time with respect to a reader-based approach to understanding.
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Part 11

A Model of Rleader-Based

Comprehension

111



Let us briefly review part 1. In the framework of the conduit metaphor that underlies
existing approaches to text comprehension, it is postulated that a text has a single deter-
minate meaning, which is obtained by a competent reader, that is, one who possesses the
correct set of @ priori codes (or rules) of interpretation. I have argued that this strategy
is normative and self-validating. Instead, I have proposed a reader-based approach to lin-
guistic comprehension, one where ‘meaning’ is constituted by the interaction between text
and reader. This reader is never seen as an idealized (i.e., ‘competent’) entity, but rather
as an individual with all the idiosyncrasies implied by that term. Choosing reader-based
hermeneutics represents a significant shift in concern from existing approaches to natural
langnage processing. In particular, the quest for the ‘correct’ set of rules of interpretation
must be abandoned: there is no correct, or optimal, or near-optimal ‘understanding algo-
rithm’. Following this approach, I have developed, in chapter 3, a model of memory that
is designed independently of semantic considerations, although the data it manipulates is
retrieved from the idiosyncratic ‘knowledge’ base assembled and ezclusively controlled by a
specific user of IDIoT, the proposed comprehension tool.

In chapters 4 to 9, I demonstrate the use of the proposed model of memory and data
specification tool for reader-based text comprehension. It must be emphasized that the user
of IDIoT is the sole judge of the adequacy of the information placed in memory. Therefore,
my goal is not to establish what ‘knowledge’ (i.e., qualitative data) must be defined, but
rather to consider the tasks generally taken to underlie text interpretation and to explain:

o How the typical rules assumed for these tasks could be captured with IDIoT. In other
words, all examples of this part of the thesis are strictly illustrative and no claim is
made with respect to some arbitrary ‘correctness’ criterion. Also, all examples only

focus on the aspects relevant to the problem at hand.

o How the time-constrained quantitative processes assumed for memory correlate with

the modus operandi of these tasks.

In other words, throughout part 2, I want to demonstrate that IDIoT can be used to
specify a conceptual analyzer and, also, that quantitative time plays an omnipresent role
in comprehension. The focus is not on the rules themselves, but rather on how they can
be specified in IDIoT and how they interact with time-constrained memory in order to

construct an interpretation of the input text.
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Finally, since I postulate that the perception of subject matter cannot be grounded
solely in the text, but also involves the horizon of the reader, 1 address, at the end of
chapter 9, some of the idiosyncratic facets of the act of reading that I take to significantly

affect comprehension.
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Chapter 4

Three Models of Comprehension

Existing research in text linguistics was reviewed in subsection 2.2.2. I want to now focus
more extensively on three archetypical models, from which I will establish the list of prob-
lems to be addressed in the rest of the thesis. I emphasize that these linguistic considerations
awere deliberately ignored when designing the quantitative Pprocesses of the time-constrained
memory of IDIoT.

4.1 Dyer’s Thematic Abstraction Units

Dyer’s (1983) BORIS system uses a demon-based control structure to match many different
classes of knowledge structures in a text, corresponding to different types of inferences. Each
input must search memory in order to explain itself, rather than wait for some top-down
process to interpret it. BORIS first builds a conceptual dependency (CD) representation
(ibid., pp.379-382) of the current proposition in the working memory by accessing the
lexicon. The selected lexical entries or the current configuration of the CD representations
may trigger the recognition of a higher level of representation for the current input. For
example, the word ‘restaurant’ will trigger the ‘restaurant’ scenario, the ‘restaurant’ MOP
(memory organization packet), and a service triangle knowledge structure. In total, BORIS
has seventeen knowledge structures and twenty-eight legal interactions between them. Fach
link between two knowledge structures corresponds to a group of demon processes: whenever
a knowledge structure is recognized (i.e., matched), demons are spawned for each of its
links. If a demon fires (i.e., has its Ppreconditions satisfied), then the old representation

is reinterpreted in terms of the new one. This strategy allows BORIS to infer multiple
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connections between concepts in the story. In other words, there are no principles (such
as Wilensky’s (1983b) ‘story understanding principles™, see section 2.2.2) that constrain
the inferencing process. However, Dyer’s set of heterogeneous knowledge structures and
associated links have been criticized as being ad hoc, incomplete, and incorrect (Norvig,
1987, p.38).

For Dyer, ‘understanding’ is organized around situations in which “failures’ occur due to
error(s) in planning. Those situations are represented in thematic abstraction units (TAUs),
each of which represents a possible failure and its outcome. TAUs organize cross-contextual
episodes that involve similar failures in planning: provided the correct TAU is selected,
BORIS is ‘reminded’ of old expectations from previous similar narratives. More precisely,
a TAU consists of the plan used, its intended effect, the reasons for failure, and knowledge of
how to avoid or recover from this type of failure. Goal and expectation failures and planning
choices may trigger the matching of TAUs. To decide whether or not a planning failure
has occurred, Dyer proposes eleven planning metrics (e.g., RISK, VULNERABILITY,
LEGITIMACY, etc.). When a character in a story selects a plan, each of these metrics
is checked against an a priori norm, and the resulting analysis determines the presence or
absence of a planning error. For example, if John owes money and can either take out a loan
or play Russian roulette to pay it back, a planning error will be detected, under the RISK
metric, if he elects to go for the second alternative. The determination of these metrics is
context-sensitive in that it highly relies on how much of the story has been processed up to
that point in time. This approach is taken to be more powerful than strict metaplanning
(see Wilensky, 1983b): the inherent trade-offs are defined within the narrative rather than
as general principles; a bad solution can sometimes be the only alternative.

‘Stories’ are assumed to deal with characters and their reactions to events. Dyer claims
that affective reactions of the characters reveal the underlying goal situations at an abstract
level. Therefore, since BORIS must track these goal situations, it must somehow represent
‘emotions’. For this task, Dyer suggests an AFFECT structure (1983, chapter 4). which
allows the (positive or negative) emotional affective state of a character to be represented.

More precisely, as with the detection of a planning error, a priori rules define how an

1Namely, the principles of coherence, concretion, least commitment, exhaustion, parsimony, and
poignancy. Norvig (1987, p.40) remarks that “the difficulty with applying these principles to any particular
text is that they contradict each other, and it is mever clear how to resolve the contradictions.”
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affective state can be computed by comparing metrics to norms: eomplex psychological
Phenomena, and their bodily facets, are reduced to a simple a priori computation by ad

hoc metrics.

4.2 Ndrvig’s Unified Theory of Inference for Text Under-

standing

Peter Norvig (1987, 1989) rejects models, such as Dyer’s, that concentrate on particular
types of knowledge structures (such as TAUs) and construct an algorithm fitted to process
those particular types of structures. Instead, Norvig advocates a unified approach to in-
ference, one, similar to mine, in which the complexity is shifted from the algorithm to the
knowledge base. This approach is formalized in a program named FAUSTUS, which is ca-
pable of drawing the proper inferences, that is, the ones intended by the author of the text,
and avoiding improper ones. A proper inference is taken to be an assertion that is implicit,
plausible , relevant, and ‘easy’ (i.e., obtained without conscious effort). It is also stated
that a ‘suitable’ KB is a prerequisite to making proper inferences.. Consequently, a dis-
tinction is claimed between proper and idiosyncratic inferences. Such a dichotomy is quite
irreconcilable with reader-based hermeneutics, since the notions of plausibility, relevance,
and ease are relative to the reader, as Norvig admits himself (ébid., p.3).

"When FAUSTUS is given a text, input sentences are first converted to representations
by a conceptual analyzer or by hand. The understanding component, FAUSTUS, takes
in representations and immediately stores them in a story memory. In addition, it makes
inferences, based on what is known about the story so far, as well as what is in the general
knowledge base. More precisely, FAUSTUS’s algorithm (ibid., pp.8-9) consists of the

following steps:

® Step 0: Construct a'knowledge base.
® Step 1: Construct a semantic representation of the next piece of the text.

» Step 2: Pass markers (see subsection 2.2.2) from each concept in the semantic repre-
sentation of the input text to adjacent nodes, following along the links in the semantic

network.

® Step 3: Suggest inferences on the basis of marker collisions. For each collision, look
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at the sequence of links along which markers were passed. Each link has a primitive
link type associated with it, and the list of primitive link types determines the shape
of the marker path that led to the collision. H the total path shape matches one of the
pre-specified shapes (see below), then an inference is suggested by placing the path in
the agenda. i

e Step 4: Evaluate the potential inferences that are on the agenda. The result is either
to make the suggested inference, to reject it, or to defer the decision by keeping the
suggestion on the agenda. If there is explicit contradictory evidence, an inference
can be rejected immediately. If several potential inferences are competing with one
another, as when there are several possible referents for a pronoun, then the decision
is deferred if none of them is more plausible than the others. If there is no reason to
reject or defer, then the suggested inference is accepted, and new concepts are added

to the model of the text.
o Step 5: Repeat steps 1 to 4 for each piece of the text.

o Step 6: At the end of the text there may be some suggested inferences remaining on

the agenda. Evaluate them to see, as in step 4, if they lead to any more inferences.

Unlike the Conceptual Dependency primitives that underlie Dyer’s Thematic Abstraction
Units, KODIAK (Wilensky, 1986), the representation language _used by Norvig, is both
language- and application-independent and has no semantic primitives per se. Represen-
tations in the KODIAK language are composed of instances of three types of primitive
objects and eight primitive associations between objects. The primitive object types are
(#bid., p.59):

e Absolutes - concepts, e.g., person, action, purple, government.

e Relations - relations between concepts, e.g., actor-of-action.
e Aspectuals - formal parameters for the relations, e.g., actor.

The primitive link types are:

e Dominate — a concept is a subclass of another class.

o Instance — a concept is an instance of some class.

e View — a concept can be seen as another class.

e Constrain - fillers of an aspectual must be of some class.
e Argument - associates aspectuals with a relation.
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o Fill - an aspectual refers to some absolute.
¢ Equate - two concepts are co-referential.
o Differ - two concepts are not co-referential.

From these eight types of links, five different path shapes and six inference classes are
established (bid., p.101). The path shapes are regular expressions (in the sense used in
formal langnage and automata theory) that each specify a valid sequence of links. An
inference class consists of a pair of path shapes that must be matched to the two halves of
the total path of a marker collision.

Throughout his dissertation, Norvig insists on the fact (¢bid., p.7) that:

Declarative knowledge, when organized properly, can be used in several ways, while
procedural knowledge by definition can only be used one way. ... Because the knowledge
base and the possible inferences are in a declarative form, it is relatively easy to combine
them, to consider several inferences at the same time (as when two or more possible
inferences each suggest a referent for the same pronoun). If the knowledge needed to
make inferences were represented procedurally, it would be more difficult to inspect,
compare, and merge inferences together. If the procedures were going to have any
interaction, they would have to be written as co-routines, and would have to know
some of the details of other procedures. This is often confusing and difficult, and
would probably require the knowledge base modeler to modify existing inference rules
to interact with new rules as they are added. ... The complexity has not disappeared;
it has just moved from the algorithm to the knowledge base.

Reader-based hermeneutics leads to an extreme version of this strategy: in IDIoT all

qualitative data required for an interpretation is specified by the user.

Another important point made by Norvig (gbid., p.77) is that views, that is, the links that
support the idea of viewing one concept as another?, need to be represented explicitly, rather
than have the modeler rely on some general processing mechanism that would derive such
analogical or figurative interpretations. However, such general mechanisms for mapping one
concept into another have been proposed by several researchers in philosophy, psychology,
and artificial intalligence (see Mac Cormac, 1985). Much like the debate between Small’s
(1980, 1983) word expert pérsing and general parsing mechanisms, this is a ‘religious’ debate
(Hirst, 1987, section 4.2.4), which ultimately depends on one’s belief in the existence of
general rules.

Views may be chained. Consider, for example, the sentence (Norvig, 1987, p.76):

*Norvig acknowledges the fact that several Al systems provide support for such an idea and claims that
“KODTAK is the first representational langnage that [he knows] of to have [as] a design goal the explicit
representation of views that prescribe how certain concepts can be interpreted as others.”
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Example 4.2.1 The Kremlin took offense at Reagan’s latest remarks.

The word ‘Kremlin’ should be explicitly mapped to the concept ‘soviet-government’ using
the view link ‘place-for-organization’, and ‘goviet-government’ to ‘soviet-leaders’ by applying
the ‘organization-for-people’ view, rather than having a single general rule that would create
this conceptunal connection.

A major drawback of FAUSTUS is that it fails for ambiguous input, though it may

succeed for vague sentences. Norvig explains this distinction by considering the sentence:
Example 4.2.2 They saw her duck.

He suggests (ibid., p.79) that the sentence is ambiguous inasmuch as there are two possible

interpretations for it:
o They saw a water fowl belonging to some female.
o They saw a female quickly bow.

And, even if we make the assumption that “duck refers to a water fowl],] the sentence is
still vague, in that it does not specify if the duck is male or female, large or small, alive
or cooked.” (ibid.). In other words, from my understanding, a concept is vague if some
of its attributes are left unspecified. Norvig blames FAUSTUS’s strict pipeline process
of syntactic analysis first, inference second, for this limitation, and acknowledges that the
representation of an ambiguous input was bypassed by typically hand-coding his “best guess
as to what the semantic analysis would have been, had [the parser] been able to make the
correct choice” (#bid., p.80).

Another important limitation of FAUSTUS, and of spreading activation models in
general, is that the number of possible inferences dramatically increases with the complexity
of the knowledge base. Charniak (1986b) sugge,sts not passing markers to nodes that exceed
a maximal number of links. Instead, Norvig adopts the dynamic anti-promiscuily solution
(ibid., p.98):

First run the algorithm on a representative sample of texts. Then count the markers
that accumulate at each concept, and declare the m concepts with the most markers as
promiscuous concepts. ... Both solutions have an element of arbitrariness.

Also, FAUSTUS is based on the assumption that the input will be coherent. The

program does not generate expectations, has no forward or top-down inferencing, and does
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not tackle the problem of global coherence. The important conclusion of N orvig’s research
is that “both script- and goal-based processing can be reproduced by a system that has
no explicit processing mechanism aimed at one type of story or another, but just looks for

connections in the input as they relate to what is known in memory” (bid., p.139).

4.3 Graesser and Clark’s Model of Comprehension

I previously remarked that, typically, the few schema-based models that address the problem
of global coherence specify a small set of a priori macrostructures. In contrast, Graesser and
Clark (hereafter, G&C) (1985) have recently presented an extensive model of comprehension
that focuses mainly on the generation and management of bridging inferences. Though they
" do not directly tackle the problem of the perception of subject matter, they suggest, much
like Kintsch and van Dijk (1978, 1983), that coherence relies on, among other things, a
schema for the narrative ‘genre’. The existence of such a macrostructure is briefly justified
(G&C, 1985, p.249):

Adults have knowledge about the general composition of narrative passages. A typical

story starts out with a description of the setting, including information about characters,

the time frame, the spatial scenario, and some background episodes. Then the story

proceeds with the plot. The order of episodes usually follows the chronological order

of the episodes that the characters enact. Stories usually have a point which may be

summarized in the form of an adage.
This obvious dependence on an ‘omniscient’ (with respect to the set of possible structures
of a text) reader (which explains the necessity of the word ‘adult’) directly proceeds from
earlier schema-based approaches to subject matter such as story grammars and thematic
abstraction units. Indeed, G&C claim that their model includes most of the previous
research done on the comprehension of simple narratives. It is not my intent to discuss
at length their (strictly cognitive) model of understanding. However, since their model
is very gemeral (mostly, as with Kintsch and van Dijk’s work (1978, 1983), because it
is not implemented computationally), in this section I focus on some of jts fundamental
characteristics.

G&C propose procedures to model comprehension, recall, summarization, and question

answering. These procedures work on generic knowledge structures (GKSs) represented by
conceptual graphs (see Sowa, 1984) that they traverse and match in order to generate the

bridging inferences that make a text locally coherent, as well as other inferences (called
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projections) that capture the reader’s ezpectations. “GKSs are structured summaries or
abstractions of sets of exemplars[; each one] constitutes an atheoretical data base with
general knowledge about a concept” (ibid., p.34). (Due to the use of conceptual graphs,
the components of a GKS are referred to as nodes and can be thought more or less of
as propositions.) The fundamental claim made is that most inferences produced during
comprehension match information contained in those GKSs. Finally, in order to minimize
the role of the componenté left out (e.g., reader’s horizon, language, global coherence), G&C
must resort to passages .tha.t are short (less than 15 lines and 10 propositions) and ‘simple’
(read ‘artificial’). Thus, like other information-processing approaches, non-artificial text
and its possible differences in interpretation are banished in order to discover processing
regularities.
The foremost characteristic of the model is the claim that (ibid., p-41):

Narrative comprehension is best viewed as a mechanism which dynamically composes

a knowledge structure from nodes and structured chains that already exist in the as-

gsociated GKSs. Existing GKSs “rub up against each other” in systematic ways and

eventually converge on a reduced set of nodes which end up being the passage infer-

ences.
In other words, comprehension is a dynamic process that constructs a representation of
what is understood. This construction process does not reduce (at least in theory) to the
ezact matching of a predefined schema, but instead results from the inieractions between
several GKSs. From this viewpoint, G&C’s proposal is mostly a schema-matching model
with some limited inference-chaining abilities. What sets their work apart is the fact that
they address the convergence problem, that is, they provide a description of the mechanisms
they assume in order to explain how a small set of adequate bridging inferences is eventually
generated.® Most importantly, their solution is plausible from a psychological point of view,
for it is primarily rooted in the dichotomy between a working memory and a less accessible
‘secondary memory’ (ibid.):

Our model of comprehension adopts the distinction between working memory and sec-

ondary memory. Secondary memory is a vast storehouse of specific knowledge struc-

tures, generic knowledge structures, and active symbolic procedures. Working memory

is a limited capacity workspace where procedures and processes are executed when a
person interacts with the world. For example, the process of constructing a passage

3 As with the vast majority of jnformation-processing models, the issue of the algorithmic complexity of
the proposed model is not discussed.
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structure during comprehension takes place in working memory; the new passage struc-

ture is eventually passed to secondary memory.. .. Given that working memory is limited

in capacity, there are limits to the number of GKSs that can occupy working memory

at any point in time.
Specifically, G&C assume that at a given point in time, the reader processes one clause
(in the intuitive linguistic sense of the word); all the GKSs associated with that clause are
said to be active in the working memory. To Jjustify the activation (and the transfer to the
working memory) of all these GKSs, G&C observe that “a GKS is usually an automatized,
overlearned conceptualization, at least those GKSs that are relevant to simple narrative
Ppassages” (ibid.). In other words, familiarity has bound the GKSs associated with a concept
together, and thus they are accessed as a unit. G&C also assume that both the GKSs of
the previous clause and a ‘topic’ list (which contains automatically ‘recycled’ GKSs such
as those concerning spatio-temporal or ‘genre’ information (ibid., p.198)) are kept in the
Joreground of the working memory. Finally, the structures obtained for the other clauses
and ‘episodes’ processed so far are stored in the background, which is separate from the
working memory.

Comprehension consists in constructing both bridging inferences and ‘some’ Projection
inferences between the active GKSs and the ones in the foreground or, on very few occa-
sions, the ones in the background. Convergence relies mostly on the content and capacity
constraints of the working memory to limit the generation of inferences: “comprehension
suffers when the comprehender is expected to reinstate explicit propositions and infefences
from several clauses earlier” (ibid., P-42). In other words, the strictest linear coherence
between clauses is required.

A second source of convergence comes from the fact that the GKSs have intersecting
nodes: G&C claim that 90 percent of the bridging inferences involve nodes that intersect
or are close to an intersection between one active GKS and another GKS. In other words,
convergence is possible because the reader possesses all the GKSs necessary to match or
chain the current clause to some existing knowledge.

The third and final source of convergence involves text coherence and bridging inferences.
It is assumed that bridging inferences are generated during comprehension and that the
projection inferences resulting from the reader’s expectations play only a minor role at

reading time.

122



Now that we have enumerated the principal assumptions of the model, let me quote at

length G&C’s description of the comprehension process (ibid., p-43):

When an incoming clause N is interpreted, the old passage structure (created from
clauses 1 to N — 1) is modified and a new structure is constructed. According to
our model, four procedures accomplish this modification. These four procedures may
be accomplished in the order that we list and describe them. During procedure 1,
a check is made for a direct match between clause N and an existing node in the
old structure. For example, a match occurs when a prior expectation is confirmed
by the incoming clause N. During procedure 2, a set of bridges are formed between
clause N and the old passage structure jn working memory. When a bridge cannot be
formed, the comprehender attempts to reinstate old passage nodes in working memory
and then construct a set of bridges. Alternatively, the comprehender concludes that
a new topic or episode is introduced. After the bridging procedure is executed, the
pruning procedure is executed (procedure 3). The erroneous nodes in the old structure
are deleted in light of new information and constraints posted in working memory.
During procedure 4, projection nodes are constructed. The projection nodes include
expectations and elaborations. The construction of projection nodes is particularly
gensitive to the comprehender’s goals and many of these nodes may not be constructed
during comprehension. When the four procedures are considered as a whole, we refer
to the construction mechanism as the maiching-bridging-pruning-projection mechanism
(abbreviated MBPP).

The final structure produced by the MBPP algorithm consists of a set of separate and
distinct ‘epi'sodes’; the scope of an episode entirely depends on the linear coherence assumed
between the clauses of a text. Since the model is not implemented, it is difficult to grasp
the exact nature and scope of an episode. It appears that the final representation of each
episode consists of all the GKSs and the bridging inferences that were still active at the
end of the processing of tha.t.episode. This aspect of the model is not explicitly dealt with
since, from my standpoint, the four simplistic passages used as examples each consist of a
single episode. Thus, I repeat, G&C’s model can only account for the strictest linear form
of clausal coherence. _

Tt is clear that the MBPP algorithm does not deal with the perception of subject
matter. Indeed, this problem is postroned to retrieval time: the reader is assumed to
reconstruct subject matter only when asked to recall, summarize, or answer questions about
the narrative. This reconstruction process assumes an a priori macrostructure for the text
and a central content selector that traverses the (extremely rich) passage structure obtained
(for each episode) at comprehension time and selects nodes and bridging inferences with
respect to their content. Although this selection is content-dependent, G&C assume the

existence of three general prineiples that underlie this process:
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o Principle of inferability: typically, information that can be inferred or reconstructed
is not selected (Kintsch and van Dijk, 1978, 1983).

e Principle of structural centrality: pivotal information (Lehnert, 1983) is selected.

e Principle of pragmatic communication: information that conveys a major message or

point (Wilensky, 1982, 1983a) is selected.

In summary, G&C’s model of comprehension consists in ‘the generation and pruning of a

multitude of bridging inferences in working memory.

4.4 The Problems of Text Interpretation

The models of understanding summarized in the previous sections introduce most of the
typical issues that must be addressed by a theory of linguistic comprehension. In this
section, I wish to establish a list of some of these issues.

First, I must remark that none of the reviewed models draw on work in formal seman-

tics, a field that currently occupies a large portion of the research spectrum in philosophy

. and artificial intelligence. Indeed, the relevance of formal semantics to text understanding

is generally rejected (e.g., Norvig, 1987, p.20; Graesser and Clark, 1985, p.23). In fact,
several researchers (e.g., Minksy, 1975; Braine, 1978; Johnson-Laird, 1982) emphasize the
inadequateness of logical formalization with respect to the fundamental goal of cognitive
science, that is, the understanding (by modelling) of cognition: formal reasoning is taken to
account only for a small portion of adult thinking. From my standpoint, ‘human reasoning’
seems to consist in the ability to apply an inferential schema that specifies a rule defined
over abstract symbols. The immediacy of the application of such a rule depends on:

o The individual’s ability to abstract.

e The intellectual resources that may be brought into play by an individual in order to
apply the rule. Intuitively, it appears that the more abstract (or complex) a mental
operatjon is, the more memory resources it requires (up to the point where pencil and
paper become necessary), and the more time it takes to execute (possibly due to the

hypothesis that the manipulation of abstract symbols is inherently sequential).

o The retrievability of the rule itself.
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In other words, I suggest that the ease and frequency of use of reasoning techniques can be

somewhat idiosyncratic. Since reading does not allow, in general, sufficient time to make

such complex inferences (see Garrod, 1985), I will not investigate this topic further.
Second, certain hypotheses of the reviewed models are not relevant to hermeneutic

considerations, but rather to the underlying representational scheme:

o Though FAUSTUS (Norvig, 1987) does not handle expectations, they are typically
assumed to play a role in comprehension. For Graesser and Clark (1985), projections,
which result from the reader’s expectations, are extremely idiosyncratic with respect
to the reader and thus constitute only a minor facet of their MBPP algorithm. Con-
versely, expectations are omnipresent in BORIS (Dyer, 1983). They are crucial, for
example, for the detection of a planning error or the determination of an affective sta-
tus. In IDIoT, expectations are taken to constitute a quantitative phenomenon that
is directly modelled in the proposed time-constrained memory, rather than tackled at
the qualitative level.

o The problem of convergence, which is typically ignored by schema-matching ap-
proaches to text understanding but central to Graesser and Clark’s discourse, does
not pertain to text interpretation so much astoa model of memory. Indeed, both the
working memory constraints and the dichotomy between a foreground and a back-
ground in this working memory that Graesser and Clark postulate correlate to a
discussion of the organization and management of memory. Recall that, in IDIoT, .
the partitioning of memory follows a temporal distinction rooted in the retrievability

of the memory elements.

o The complex markers and very sequential evaluation step hypothesized by inference-
chaining models such as FAUSTUS implement another form of a convergence strat-
egy, one that implies the transmission of complex data structures across a network of
memory elements, as well as a procedural component that manipulates these struc-
tures and seems to operate in vacuo, that is, completely outside of the assumed spread-
ing activation memory architecture. Such an approach, which violates the biological
constraint (see subsection 2.4.2), is rooted in a particular model of memory that ought
to be, from a reader-based viewpoint, designed independently of any hermeneutic con-

sideration, as in chapter 3. Recall that, according to the proposed time-constrained
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memory, there is no need for complex markers or for the ad hoc anti-promiscuity. rules
of inference-chaining models (e.g., Charniak, 1986b; Hendler, 1987 , 1989; Norvig,
1987, p.97).

e FAUSTUS and BORIS are both limited to bottom-up processing: an inference can
only be made if all ifs premises are present. In IDIoT, however, a mechanism has
been introduced to allow for both forward and backward chaining of inferences (see
section 3.4.1). The point is that the modus operandi of the inference engine should
be discussed at a strictly quantitative level.

IDIoT proceeds from the ‘trivial algorithm’ design philosophy (see chapters 1 and 2) that
stems from a reader-based approach to text interpretation. Such an approach can be viewed
as Norvig's design philosophy carried to its extreme: no sema.nti.cs are to be statically
encoded in procedures, all the qualitative complexity of comprehension is shifted to the
knowledge base. My goal in the rest of this dissertation is to illustrate how some of the
typical rules and knowledge structures assumed in the reviewed models could be coded using
the suggested representational scheme.

An investigation of text comprehension cannot, however, simply consist in explaining
how existing models can be almost entirely ‘de-proceduralized’. There are several specific
qualitative problems that must be addressed:

* The role of grammar, which is significantly downplayed, if not entirely bypassed, in

the surveyed models?, is too central to modern linguistics to be ignored.

e Similarly the general problem of disambiguation (Hirst, 1987), which involves, at least,
the issues of lexical and structural disambiguation, must be considered at length, for
it constitutes an essential part of comprehension. Indeed, from my sfa.ndpoint, it
appears disambiguation is the most pervasive task of linguistic comprehension at the

clausal and sentential levels.

o It is a common view that inferencing is central to linguistic comprehension (Kass,
1986). Although I abandon Norvig’s notion of a ‘proper’ inference (as opposed to

an idiosyncratic inference), I must explain how bridging inferences are drawn during

*Like most ‘semantic’ parsers, Dyer’s McDYPAR parser (1983, Appendix III) has some serious limitations
(Marcus, 1984), and parsing is not addressed at all by Norvig or by Graesser and Clark.
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reading. A fundamental characteristic of IDIoT is that the quantitative mechanisms
of the suggested time-constrained memory correlate directly to the reader’s behavior
in both the disambiguation and the bridging tasks.

e All of the models reviewed assumed that if contradictory evidence exists for a potential
inference, then the inference should be rejected. Human reading is not that simple.
For example, Granger and Holbrook (1983) investigate the notion of an ‘inferencing
strategy’ to manage the semantic conflicts triggered by contradictory evidence. I shall
suggest how such a strategy may be specified in IDIoT.

o As mentioned in chapter 2, some approaches to text interpretation often rely on the
intuitive notions of “fact’, ‘event’, and ‘episode’. For completeness, the perception of

such categories must be discussed.

e Within the framework of reader-based comprehension, I shall also focus on other issues

that I assume to account, in part, for the idiosyncratic nature of comprehension.

A recurring theme of this part of the thesis is that the modus operandi of time-constrained
memory underlies almost all facets of the proposed model of text interpretation, and ul-
timately, the perception of subject matter. In particular, the suggested model of memory
offers a solution to the convergence problem: through the management of STM and of se-
mantic conflicts, and, most importantly, because of the role of time as a stopping criterion
for inferencing, only a limited number of clusters are constructed during reading. The set
of clusters constructed during the reading of the text constitutes the output of IDIoT, the
interpretation that the user can examine. Thus, I emphasize, the perception of subject
matter is not postponed to (post-reading) retrieval time, as assumed by several researchers,
but instead directly results from this convergence on a limited set of inferences. Any re-
construction that would result from a posteriori tasks such as recall, summarization, or

question answering, is not considered in this research.

4.5 Preliminaries for Clausal Interpretation

A text consists of a sequence of sentences. In turn, each sentence is composed of one or
more clauses. Recall that most research in NLP has focused on the artificial tinderstanding

of a single sentence in vacuo, that is, as a linguistic object deprived of any context. The
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processing of larger linguistic units has generally remained a stumbling block (Habel, 1983).
Within the sentential framework, it is typically assumed that a sentence is first analyzed
syntactically, then the process of semantic interpretation maps the resulting parse tree to a
representation of the sentence’s ‘meaning’. Some researchers (e.g., Schank and Birnbaum,
1984; Birnbaum, 1989) have argued against such undue emphasis on syntax in isolation
and instead advocated a more semantic and integrated set of rules of interpretation. Also,
recall that the existence of rules altogether has been attacked by connectionist researchers
(e.g., Rumelhart, 1984). Finally, I remark that existing computational models of NLP can
account only with difficulty for basic psychological phenomena such as the loss of surface
information (see Gernsbacher, 1985).

In the following chapters, I will discuss the linguistic problems generally considered.
when addressing the comprehension of a few clauses and sentences. First, in chapter 5, the
problem of syntax is considered in order to present IDIoT’s unified approach to clausal
interpretation. Then, the general problems of referential resolution, lexical and structural
disambiguation are studied at length respectively in chapters 6, 7, and 8. The problems of
idioms and ‘non-literal’ interpretation are very briefly investigated at the end of chapter 7.
The issue of figurative language requires an extensive discussion that lies beyond the scope
of this dissertation. In chapter 9, I discuss bridging inferences in IDIoT, and conclude with
a recapitulation of the linguistic issues addressed in part 2 of the thesis.

Finally, I remark that in the current prototype for IDIoT, the words of the input text
are treated as innate features, that is, features that are automatically detected from the
presence of a string of characters in the input (see chapter 3). The task of word recognition,
which is typically assumed to involve the issues of phonology and morphology, is therefore
bypassed. However, it appears that the proposed model of memory is especially well-suited
for Norris’s (1986) ‘checking model’, which is based on the notion of multiple candidacies
over a short interval of time.
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Chapter 5

On Grammar and Syntax

5.1 Syntax with IDIoT

The psychological reality of a linguistic grammar and of a parsing mechanism is fairly well
established. Regardless, several researchers have criticized the relevance for linguistic com-
prehension of the conceptualization of a grammar as a set of consistent rules defining the
well-formedness of a parse tree: as explained when story grammars were discussed (subsec-
tion 2.2.1),'text interpretation is not an issue of well-formedness. Moreover, existing theories
of grammar are typically grounded in the conduit metaphor and its implied inaccessible (and
self-validating) gotions of competence and language, which have been abandoned in favor

of reader-based comprehension. For example, Lindsay and Manaster-Ramer (1987) write:

Almost all computational work on natural languages, in and out of Al, has adopted the
conception of language, derived from traditional grammar and structural linguistics, ac-
cording to which there exists a body of knowledge which defines the primitives of which
the language is composed, the principles by which these primitives may be combined,
and the meanings associated with each primitive and with each principle of composi-
tion. This conceptual homogeneity has been obscured by the controversies surrounding
virtually every other question in NL processing, such as the debate over models which
postulate syntactic and/or logical levels of analysis in addition to the meaning (concep-
tual) representation, ... as opposed to models which relate utterances to meanings in an
integrated fashion, ... which has sometimes been viewed as involving a contrast between
grammar-based and knowledge-based methodologies. . . . [Allmost all models purport to
simulate the idealized user of a given language, conceived as an expert on his native
language, . .. and consequently assume that there is such a thing asa definite knowledge
of what a native speaker does in the way of assigning some structural representations.

It should be clear from the discussion of chapter 2, that I discard the notions of linguistic
competence of an idealized user, and of a correct set of rules of understanding, and thus, of

a grammar as a set of consistent rules of composition. In this thesis, I focus on the idiosyn-
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cratic performance of a reader. That, in essence, I favor user-specified ‘word experts’ (see
chapter 2 and Small, 1980, 1983) for clausal interpretation, as shall become evident in the
following chapters, does not modify this position: my technical standpoints regarding the
form and organization of qualitative data do not alter the fact that I abandon the notion of
linguistic competence, that is, the existence of a correct (and definitive) corpus of knowl-
edge for linguistic comprehension, at both the sentential and textual levels. In other words,
from my viewpoint, regardless of its expression, knowledge, including grammar, is always
idiosyncratic in that it is acquired, owned, and managed by a specific individual who is
the sole judge of the acceptability of an interpretation. The mind’s ability to often under-
stand so-called ‘ungrammatical’ sentences and to misunderstand or simply not understand
grammatical sentences seems to reinforce this standpoint.

Because I adopt this perspective, there’s no paint in reviewing existing theories of syntax
(which typically ignore the arbitrarily separated ‘semantics’). I do not develop a grammati-
cal theory, and I do not consider the complexities studied by linguists. From my standpoint,
grammar is not a system of consistent rules of composition, but merely an acquired system
consisting of often-inconsistent conventions used to constrain the arbitrariness between sié—
nifiant and signifié that Saussure (1916) took as the fundamental principle of linguistic
communication. It is essential that a majority of the users of a language share a large num-
ber of graphological, grammatical, and even lexical conventions, in order for the inherent
arbitrariness of communication to be constrained, and thus for comprehension to be made
possible. This sharing of conventions does not imply an innate ‘competence' but merely
attempts to limit the arbitrariness of reading to the ‘semantic’ level(s), and does not nec-
essarily eliminate it at the grammatical and lexical levels. In other words, I suggest that
grammar merely constitutes a conventionalized linguistic mechanism to speed up the recog-
nition of certain semantic cues. Since I view éomprehension as a time-constrained process
for which past processing plays an important role, I feel particularly close to Lindsay and
Manaster-Ramer (1987) when they explain that:

If there is such a thing as a grammar, only parts of it will be accessed at any given
point in time in real-time processing. As a result we would be able to explain how a
speaker can consider a sentence ungrammatical for a time and then decide, upon further

refiection (i.e., when more of the grammar is considered) that it is grammatical, or vice
versa.
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Within the framework of IDIoT, any grammatical rule must be specified by means of the
associations, candidates, constraints, and expansion procedures of one or more features (see
chapter 3). Since knowledge units (which implement features) and their communications
both consume time (to be retrieved and to transmit a signal respectively), it is possible
to model rules that require a long time to retrieve and therefore, can be missed if the
time-span allocated to produce an interpretation is too short, the phenomenon described
by Lindsay and Manaster-Ramer. Furthermore, it is important to understand that all rules
are treated equally in IDIoT, that is, as data for the trivial algorithm (see chapters 1

"and 2). Thus, there is no need to assume separate algorithms and data structures for
the processing of syntax. Indeed, the organization of short-term memory in the proposed
model of time-constrained memory implements de facto a stack, which is often used in
conventional parsers. Also, since candidacies span an interval of time after having been
triggered, they can consider subsequently processed information without having to resort
to counterintuitive look-ahead mechanisms. In other words, some of the characteristics
hypothesized for conventional parsers can be found at the quantitativelevel of IDIoT. Most
importantly, there is no need to assume that syntax is processed before semantics or vice
versa, as the distinction between syntax, semantics, and pragmatics becomes irrelevant in
the framework of reader-based comprehension, and more specifically, of a trivial algorithm.
It follows that, contra Lytinen (1984), it is not even necessary to keep syntactic and semantic
knowledge in separate KBs.

Let us focus on the specification of a gra.mmaticai rule using IDIoT. The triggering .
mechanism of any KU allows the user to specify the static preconditions of a rule. The
possibly-ordered triggers are those features that must always be present in order for a rule to
apply (i.e., become detected). Through the use of the testEquivalenceOf, testDifferenceOf,
testPresenceOf, and testAbsenceOf instructions, the dynamic preconditions of a rule may
be checked using buildable features. For example, the candidacy :of a feature, called say
forcedPP-Attach, which attaches a locative PP (e.g., ‘on the beach’) to a verb, may
be triggered by the presence of a verb and of such a PP but may require that the verb
in question does not have another locative PPattached to it at that point in time. I we
assume that a locative PP is attached as a subcluster under feature location in the cluster
ul associated with the verb, then forcedPP-Attach can verify this dynamic constraint

using the instruction:
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testAbsencelf location in ul

which ensures that if feature location is absent from ul, then the expansion procedure of
forced PP-Attach proceeds; otherwise, this procednre immediately fails.

The use of weights, especially for exceptions, allows a rule to admit a certain degree
of ‘ungrammaticality’. For example, a constraint that attaches the subject and verb of a
clause may be specified in such a way that it can become detected even if the feature SVA
that detects a subject-verb agreement is absent (i.e., has not been detected): all that is
necessary is for a smaller weight (with respect to the detection threshold) to be assigned to
SVA.

Any transformation of the current context (which consists of a set of reachable clusters)
can be specified through the expansion procedure of a rule, the proposed set of instructions
for such procedures allowing for all the basic data structure operations. Let me elaborate.
Recall that a particular cluster can be accessed through one of the features it contains. For
example, all verbs denoting an action could have feature actionVerb put in the cluster

constructed by their expansion procedure. Then, using the instruction:
getCluster ul governing actionVerb

a rule can access the most reachable cluster associated with an action verb, independently
of the actual verb itself. Once ul is bound to this cluster, it is possible to add features
and subclusters to it, rename features, etc. Since an expansion procedure can access several
clusters, it is possible for a single detected feature to arbitrarily modify all the clusters
it accesses. Experimentation with the current prototype of IDIoT suggests that access
to the relevant clusters of a rule constitutes one of the tasks that must be well thought
out by the user. For example, as will be illustrated in the examples of the next section,
the clusters associated with the different NPs of a sentence should contain features that
precisely identify the role of each NP in the sentence: a feature that captures a rule does
not want to access the direct object of the verb or the noun phrase of a PP if it is the subject
NP that is relevant to the rule. Experimentation also suggests that relays (i.e., KUs that
simply relay signals from their suppliers to their customers; see chapter 3) are very useful to
handle more ‘general’ rules. For example, if feature actionVerb is a relay with all action
verbs as suppliers and all rules relevant to such verbs as customers, then each time an action

verb becomes detected, all the rules that apply to action verbs in general will be notified
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through actionVerb. For example, if the word ‘eat’ eventually leads to the detection of
actionEat, then all rules specific to actionEat will be notified because of this detection,
and all rules for action verbs in general will be subsequently notified through the detection
of actionVerb that results from the detection of actionEat.

It should be clear that these considerations are not limited to grammatical rules, but,
in fact, hold for all rules. Thus, there is no need to postulate a separate methodology for
grammar: all grammatical rules are specifiedby means of features and the parse tree, if
any, is fully integrated with the clusters constructed and modified through the expansion
procedure of the featﬁes which become detected during the reading. Furthermore, gince
rules are implemented as KUs of a time-constrained memory, parsing is necessarily a time-
constrained process.

Incidentally, the importance of punctuation must .be stressed with respect to such time-
constrained parsing: not only does a punctuation sign require some time to process, but it
may also provide a clue with regards to the end of a clause. For example, a period followed
by a space and a capital can denote the end of a sentence and the start of another one.
Upon detecting the end of a sentence, some of the existing candidacies could be interrupted
and a particular parse adopted.

Finally, I remark that some syntactic cues such as the tense of verbs will play an im-
portant role for text interpretation (which is taken to mostly depend on the perception of
change of time frame and/or location; see section 9.2) and that the phenomenon of the loss
of surface information (Gernsbacher, 1985) will be very simply explained by having most
syntactic rules being more retrievable, and thus more readily detectable, than complex

thematic rules (again, see details in section 9.2).

5.2 Examples of Syntactic Processing with IDIoT

In IDIOT, several approaches to parsing are possible. For example, the use of relays and
confirmation paths in the following examples could be replaced by a set of rules in which
detection is possible only through the satisfaction of expectations. It is not my goal to
explore the different representational strategies, but, instead, to propose an approach to
some typical problems associated with syntax.

Let us start with the first steps involved in the processing of a word. For example,
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consider the words ‘woman’ and ‘women’, to which correspond the innate features *woman’
and ‘women’. Let us assume that the words are associated with a single concept, namely
feature woman. There are several different ways of specifying these features. Here are
three possible sets of definitions:

Possibility 1: Using the ‘empty’ feature rootWoman to capture the morphological

root shared by the two words and ignoring agreement rules:

innate KU ‘woman’:

associations: woman

expansion:
getNewCluster ui
addFeature rootWoman to ul
addFeature singular to ul

innate KU ’women’:

associations: woman

expansion:
getNewCluster uil
addFeature rootWoman to uil
addFeature plural to uil

KU woman:
constraint ci: .
triggers: ’woman’
inputs:
noun has a weight of 1
constraint c2:
triggers: ’women’
inputs:
noun has a weight of 1
expansion:
getCluster ul governing rootWoman
addFeature person to ul
addFeature female to uil

KU rootWoman:

Possibility 2: Identical to possibility 1, but moving the constraints from woman to root-

Woman for which the former becomes a customer port:
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innate KU ’woman’:

associations: rootWoman

expansion:
getNewCluster uil
addFeature rootWoman to ul
addFeature singular to ul

innate KU ’women’:

associations: rootWoman

expansion:
getNewCluster ul
addFeature rootWoman to ul
addFeature plural to ul

KU woman:
constraint ci:
triggers: rootWoman
inputs:
noun has a weight of 1
expansion:
getCluster ul governing rootWoman
addFeature person to ul
addFeature female to ul

KU rootWoman:
constraint ci:
triggers: ’woman’
constraint c2:
triggers: ’women’
port:
woman has a delay of 1 and is a customer

Possiblity 3: Using conditional instructions and eliminating root Woman:

innate KU ’woman’:

associations: woman

expansion:
getNewCluster ul
addFeature ’woman’ to ul
addFeature singular to uil

innate KU ’women’:

associations: woman
expansion:
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getNewCluster ul
addFeature ’women’ to ui
addFeature plural to ui

KU woman:

constraint gi:

triggers: ’woman’

inputs:
noun has a weight of 1

constraint c2:

triggers: ’women’

inputs:
noun has a weight of 1

expansion:
ifConstraint ci then getCluster ul governing ’woman’
ifConstraint c2 then getCluster ul governing ’women’
addFeature person to ul
addFeature female to ul
addFeature noun to ul

Each set of possible definitions corresponds to a different level of data specificity, but also
to a different sequence of exchanges of signals. In the first set, the feature rootWoman
is detected through the expansion procedure of *woman’ or *women’. More specifically,
since rootWoman is not specified anywhere else in the definition of these innate features
but in an addFeature instruction of their expansion procedure, rootWoman is sent a forced
detection signal and immediately becomes detected upon receiving this signal. In the second
set, since rootWoman is explicitly specified as a ‘forced detection’ of the innate features,
it is merely sent the presence signal of the detected innate feature.! Upon receiving this
presence signal, rootWoman does not immediately become detected, but instead starts
its candidacy. Since the constraints of rootWoman have only triggers, and since it is not
buildable, the triggered constraint will necessarily be immediately satisfied, thus leading to
the detection of rootWoman. The third set of definitions illustrates the use of conditional
instructions to regroup in a single expansion procedure the actions associated with the
detection of a several distinct features. In this set, the clusters constructed by woman’®
and *women’ do not shate a feature, and thus conditional accesses (i.e., combinations of
ifConstraint and getCluster instructions) are required in the expansion procedure of woman

in order to access the cluster of its triggering feature.

I An innate feature sends a presence signal, not a forced detection signal to its associations.
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In all three sets of definitions, woman has the limitation that it can be detected only if
its syntactic category, that is, the feature noun, is felicitous at that point in the processing
of the clause. Feature noun is a relay with all possible nouns as suppliers, and all general
rules of valid nonn usages {e.g., NP) as customers. The latter rules capture where a noun
(any noun) is felicitous in a clause: after a determiner, after an adjective, after a transitive
verb, etc. Such valid sequences can be detected using ordered triggers, expectations, and,
if necessary, even buildable features. 3

In all three sets of definitions, the problem of number agreement is ignored, number
information being directly constructed by the innate features. One solution could consist
in having woman submit nounSingular if triggered by ‘woman’, and nounPlural, if
triggered by *women’. Such features cannot be submitted by the innate features them-
selves since, by definition, innate features do not have constraints. The difficulty with this
.approach is that the syntactic category and the number agreement of a word do not seem
to have the same importance: a sentence can be intelligible even if number agreement is
violated. As an alternative, woman could submit noun with a weight of 0.9, for example,
and singular with ; weight of 0.1. This approach may be more intuitive, but still has a
flaw: singular and noun are treated as equals when, in fact it seems to me that the de-
tection of singular should only be relevant once noun has been detected. In other words,
number agreement first requires establishing the syntactic category of a word. In view of
these observations, I suggest that agreement be handled after word recognition. Again,
several strategies are possible: are agreements detected, or disagreements, or both?

A disagreement constitutes an ungrammaticality. On the one hand, some models of NLP
attempt correcting these ungrammaticalities but, as remarked by Lindsay and Manaster-
Ramer (1987, p.101), such corrections are hazardous if they ignore the context. On the
other hand, linguists simply reject the sentence. In the case of the human mind, the reader
‘may notice (i.e., become aware of) a disagreement, possibly infer a correction or re-read the
passage in question, and continue reading. From that viewpoint, a syntactic disagreement
constitutes one kind of conflict in the interpretation. This topic will be investigated in
subsection 9.4.1. The point for now is that the detection of a disagreement will lead to the
detection of a conflict feature that handles such problems. Let us focus on how a disagree-
ment may be detected. Continuing with our example, let us study number disagreement

for this sentence
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Example 5.2.1 A women cries.
1 suggest the following scenario:

1. Feature startOfSentence is detected. This feature captures the processing of a new

sentence, as explained in chapter 3.

2. The word ‘A’ leads to the detection of aArticle whose cluster contains features sin-

gular and determiner, which also become detected.
3. Feature determiner is a trigger of NP.

4. The word ‘women’ constructs a cluster including plural, and triggers woman which

submits noun.
5. Feature NP is a customer of noun and thus receives a submission signal from noun.

6. Feature NP has one of its constraints consisting of the ordered triggers determiner
and noun satisfied, and thus sends a confirmation signal back to noun, which becomes

detected and sends a reinforcement signal to NP.

7. Upon receiving reinforcement from noun, NP becomes detected and notifies, among
others for example, numberAgreement, numberDisagreement, validNPUsage
and invalidNPUsage. :

8. Feature numberDisagreement is a relay with NP as its supplier and singularDis-

agreement as one of its customers.

9. Feature singularDisagreement is a buildable feature with customer syntactic-
Conflict:

KU singularDisagreement:
4 This feature checks that a singular determiner and
% a plural noun are in the same NP.
is buildable
associations: syntacticConflict
constraint ci:
triggers: NP
expansion:
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getCluster ul governing NP
getCluster u2 governing determiner in NP
testPresencelf singular in u2
getCluster u3 governing noun in ul
testPresence0f plural in u3

ports:

Other disagreement features (if any) and the corresponding agreement feature(s) (if
specified) are all similar to singularDisagreement.

10. Feature singularDisagreement has its expansion procedure successfully built in the
current context, and thus becomes detected, leading to the perception of a conflict

(i.e., to the detection of syntacticConflict).

11. Feature validNPUsage is a relay with NP as its supplier and validSentenceStart

as one of its customers.

12. The ordered triggers startOfSentence, NP satisfy a constraint of validSentence-
Start which becomes detected.

The proposed scenario also addresses the syntactic felicity of an NP in a sentence by the
features validNPUsage and invalidNPUsage. The latter could have NPfollowingln-
transitive as a customer. In its simplest form, this feature would have a constraint with
only the ordered triggers intransitive and NP. It would become detected if an intransitive
verb was followed by an NP, and would lead to the perception of a syntactic conflict. -

It should be noted that the handling of number agreement is designed independently
of adjectives that could be inserted between the determiner and the noun. Consider, for

example, the NP ‘a short beautiful young women’, for which I suggest the following scenario:

1. The word ‘A’ and its number agreement with the word ‘women’ are handled exactly

as in the previous example.
2. The word ‘short’ leads to the candidacy of short, which submits adjective.
3. adjective is a relay with adjectivesStart as a customer.

4. The sequence determiner, adjective satisfies a constraint of adjectivesStart, which

sends a confirmation signal to adjective.
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5. Features short, adjective, and adjectivesStart all eventually become detected.

6. The expansion procedure of adjective makes the cluster associated with short a

subcluster under feature adjectives in the cluster associated with the determiner.
7. The word ‘beautiful’ leads to the candidacy of beautiful, which submits adjective.

8. Another customer of adjective is adjectivesSuite, which has one of its constraints
satisfied from the co-occurrence of adjectiveStart and adjective. Thus, adjec-

tivesSuite sends a confirmation signal back to adjective.
9. Features beautiful, adjective,.a.nd adjectivesSuite all eventually become detected.

10. Again, the expansion procedure of adjective makes the cluster associated with beau-
tiful another subcluster under feature adjectives in the cluster associated with the

determiner.

11. The word ‘young’ is processed like the previous adjectives, with the only difference
being that adjectivesSuite would send a confirmation signal to adjective through
the satisfaction of another of its constraints with only the ordered triggers adjec-
tivesSuite, adjective. In other words, the sequencing of adjectives is handled by a

recursive constraint.

12. Upon the eventual detection of NP, the clusters associated with the determiner, the
adjectives, and the noun can be reorganized into a single cluster that is easier to

manipulate.

Anticipating the chapter 7 on lexical disambiguation, I suggest the following (still very
incomplete) definitions? for the more complex case of the words ‘man’ and ‘men’ (‘man’ can

be a noun or a verb):

innate KU ’man’:
% This feature handles the Tecognition of the word ’man’

?Possible agreement and disagreement features for verbs, with respect to person, tense, etc., are not
considered.
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associations: noﬁnMan, actionMan
expansion:

getNewCluster ul

addFeature ’man’ to ul

innate KU ’manned’
Y This feature handles the recognition of the word ’manned’
% which is known to be a verb in the past form.
associations: actionMan
expansion:
getNewCluster ul
addFeature ’man’ to ul
addFeature pastForm to ul

innate KU ’mans’:
% This feature handles the recognition of the word ’mans’
Y% which is known to be the third singular person of a verb.
associations: actionMan
expansion:
getNewCluster ul
addFeature ’'man’ to ul
addFeature 3rdPersonSingularForm to ul

innate KU ’men’:
% This feature handles the recognition of the word ’‘men’
% which is known to be a plural.
associations: nounMan
expansion:
getNewCluster uil
addFeature ’man’ to ul
addFeature plural to ul

KU nounMan:
% This feature corresponds to the concept of man as a noun.
Y% The different morphological forms of the concept define
% its constraints.
% If 'man’ leads to the detection of nounMan,
% then actionMan can be inhibited.
constraint ’man’:
triggers: ’man’
inputs:
noun has a weight of 1
outputs:
sends inhibitionSignal to actionMan
constraint ’‘men’:
triggers: ’men’
inputs:
noun has a weight of 1
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expansion:
getCluster ul governing ’man’
addFeature noun to ul
addFeature person to ul
addFeature male to ul

ifConstraint ci1 then addFeature singular to ul

ports:

KU actionMan:

% The different morphological forms of the verb define
% its constraints. The different meanings of the word

% are the customers of this feature.
constraint ’mans’:
triggers: ’mans’
inputs:
verb has a weight of 1
constraint ’‘man’:
triggers: ’man’
inputs:
verb has a weight of 1
outputs: X
sends inhibitionSignal to nounMan
constraint ’manned’:
triggers: ’manned’
inputs:
verb has a weight of 1

expansion: 0
getCluster ul governing ’man’
addFeature actionMan to uil
addFeature verb to ui

addFeature compulsoryTransitive to ui

ports:

‘man’ has a delay of 1 and is a supplier

‘mans’ has a delay of 1 and is a supplier

‘manned’ has a delay of 1 and is a supplier

manAShip has a delay of 1 and is a customer
actionSupplyWithMen has a delay of 1 and is a customer

If desired, these definitions could handle more details at the expense of being more complex.
For example, the expansion procedure of nounMan could build a more complex structure
to reflect that male is a type of sex.

The problem of subject-verb agreement should probably not act as a gating factor for
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the detection of a subject-verb relationship, and can be treated much in the same way as
number agreement: once the subject and the verb have been established, features similar
to singularDisagreement can be used to check that the number of the subject agrees
with the person of the verb. Consider the following two features for detecting subject-verb

disagreements:

KU sva-1i:
% This feature becomes detected if the subject is in the 3rd
% person and the verb is not and is not in past tense form.
is buildable
associations: syntacticConflict
constraint ci:
triggers: subj-verb-rel
expansion:
getCluster u0 governing clause
getCluster ul governing subject in u0
getCluster u2 governedBy subject in ui
getCluster u3 governedBy NPhead in u2
testPresencelf 3rdPerson in u3
testPresence0f singular in u3
getCluster u3 governedBy mainVerb in uil
testAbsence0f pastForm in u3
testAbsence0f 3rdPersonSingularForm in u3
ports:
subj-verb-rel has a delay of 1 and is a supplier

KU sva-2:
% This feature becomes detected if the verb is in 3rd person
% form, but the subject is not.
is buildable
associations: syntacticConflict
constraint ci:
triggers: subj-verb-rel
expansion:
getCluster u0 governing clause
getCluster ul governing mainVerdb in u0
getCluster u2 governedBy mainVerd in ul
testPresence0f 3rdPersonSingForm in u2
testPresence0f singular in u3
getCluster ul governing subject in u0
getCluster u2 governedBy subject in ul
getCluster u3 governedBy NPhead in u2
testAbsencelf singular in u3
ports:

143



subj-verb-rel has a delay of 1 and is a supplier

Syntactic disagreement (e.g., subject-verb disagreement) should not prevent the establish-
ment syntactic categories and semantic relationships; ungrammaticality should not prevent
understanding. Also, fhe several different types of syntactic conflicts can be captured in
the constraints of a few KUs, if not of a single one.

The problem of recognizing the direct object of a verb was discussed in the example of
section 3.7.

For the sentence:
Example 8.2.2 John likes.

with no implicit direct object in context, the candidacy of missingDirectObject is trig-
gered. This buildable feature, whose definition is given in section 3.4.3, will have its expan-
sion procedure succeed and will become detected.

And for the sentence:
Example 5.2.3 John gives the girl red roses.

once the direct object has been detected, the sequence actionVerb, directObject, NP
triggers indirectObject. Feature indirectObject would be a buildable feature that checks
that the verb is bitransitive and already has a direct object. Upon its detection, indirec-
tObject has its expansion procedure first move the existing direct object cluster under the
new feature indirectObject, which is added to the cluster governing the verb, and then
add the most reachable NP cluster (i.e., ‘red roses’) under feature directObject. Here is

a possible expansion procedure to achieve this:

getCluster ul governing mainVerb

getCluster u2 governedBy mainVerd

testPresencelf bitransitive in u2

testPresencelf directObject in ul

addFeature indirectObject to ul

moveSubClustersFrom directObject to indirectObject in ul
getCluster u2 governing NP

addSubCluster u2 to directObject in ui
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Note that since there is no look-ahead in IDIoT, the cluster associated with the words
‘the girl’ is first assumed to be the direct object, and then, as a result of the detection
of the indirect object, is corrected to being governed by feature indirectObject. As an
alternative, it is possible that the indirect object rule becomes detected and inhibits the
not-yet-detected direct object rule if the former is specified as an exception of the latter.
In other words, the indirect object rule would be faster and would establish both the direct
and the indirect objects by relying on the fact that the most reachable NP is the direct
object, and the second most reachable one, the indirect object. A different natural language
could have a different rule.

Once the syntactic cues direct- and indirect-object have been established, word expert
feature(s), that is, features associated specifically with actionGive (much like Small’s ap-
proach, 1980, 1983), can be used to modify the cluster of the verb. For example, the indirect
object is the recipient of the action, and the direct object, the given. Even the subject
feature could be remamed to giver. The point is that since no definitive and exhaustive
list of syntactic cases exists, each verb may establish its own. These modifications can be

trivially implemented with the renameFeature instruction as follows:

KU giveTo:

constraint cil:

triggers: actionGive

expansion:
getCluster u0 governing clause
getCluster ul governing actionGive in u0
testPresencelf indirectObject in uil
renameFeature indirectObject to recipient in ul
testPresencelf subject in uo0
renameFeature subject to giver in u0
testPresencelf directObject in w0
renameFeature directObject to given in u0

It is also possible that other rules associated with actionGive bypass completely the
need for directObject and indirectObject to be detected and instead, directly recog-
nize given, giver, and recipient.

Finally let me briefly address the handling of a simple prepositional phra;e attachment

in the sentence:
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Example 5.2.4‘ The cat sits on the mat
I propose the following very sketchy scenario:
1. The words ‘the cat’ cause an NP cluster to be built.
2. The word ‘sits’ leads to the detection of actionSit and of the subject-verb relationship.

3. The word ‘on’ leads to the detection of onPreposition which triggers the candidacy
of all its possible interpretations. The feature prepositionNP becomes expected.

4. The words ‘the mat’ lead to the construction of an NP cluster. Through this process,
the feature prepositionNP is triggered and becomes detected as it was expected.
As a consequence, the cluster associated with ‘the mat’ is made a subcluster of the
cluster constructed for ‘on’. In other words, the cluster resulting from the processing

of the words ‘the mat’ is attached to the cluster of preposition ‘on’.

5. All candidate interpretations of onPreposition fail except onObject Location, which
eventually causes (directly or through a general attachment feature) the cluster as-
sociated with ‘on’ to be attached as a subcluster under feature location in the verb

cluster.

Without going into linguistic considerations that are beyond the scope of this disser-
tation, I remark that all the features that were presented above are still very simplistic,
especially in light of hard problems such as ambiguity and ellipsis, but also due to the prob-
able intricacy of grammar and comprehension strategies for both local and global coherence
(see van Dijk and Kintsch, 1983, chapter 5). Moreover, this intricacy is independent of a
user’s preference for word experts (Small, 1980, 1983) or, instead, for more general rules.

In conclusion, it appears that the proposed representational methodology of IDIoT
allows for the specification of an adequate approach to syntax. Since features can be detected
at any point in time, there is no need to hypothesize an order of processing between syntax
and semantics: given a particular context, some semantic rules may be faster and thus
apply more readily to the context than certain syntactic rules. Indeed, the usual distinction
between syntax, semantics, and pragmatics becomes superfluous in the context of reader-

based comprehension: any rule is merely a piece of data processed by memory.
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Chapter 6

Reference Resolution

6.1 Introduction to Reference Resolution

The problem of establishing a reference relationship between two NPs constitutes an es-
sential facet of linguistic comprehension, especially with regards to the perception of local
coherence. Several models, most of them theoretical, have been proposed, in particular for
the problem of pronoun comprehension. Typically, these models address a single aspect
of reference resolution. Within the framework of text comprehension, the problem is often
ignored (e.g., by schema-matching models such as D}Irer, 1983, and Grasser and Clark, 1985)
or oversimplified (e.g., Norvig, 1987, reduces it to a single rather simplistic inference class).

A typical system is that of Alshawi (1987, sections 3.2 and 6.5) who proposes a general
“context mechanism” that is used to find references: first, the constraints of the referent are
derived and marked in a semantic spreading-activation network; second, if these constraints
do not lead to a single referent (i.e., a node where all the activated markers intersect),
then the context mechanism is used to choose between the possible candidates. This simple
and elegant mechanism can be thought of as a generalization of Grosz’s notion of ‘global
focus’ (1977).! In essence, the initial candidates for reference resolution are the nodes with
an activation level above a certain threshold in the network. If the search in this initial
set fails, then the search is widened to nodes outside this ‘focus space’. More precisely,

the focus space is augmented with nodes that are taken to be implicitly in focus (e.g., all

11n Grosz’s work, focus information is used for resolving definite references made in task-oriented dialogues
between an expert and a novice being taught how to construct an air compressor. Focus consists of a set of
nodes in the semantic network that are highlighted on the basis of relevance. For a detailed discussion of
the advantages of Alshawi’s model over Grosz’s, see Alshawi (1987, pp.64-66).
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subparts of the objects or participants that are in focus). The most serious flaw of this
approach stems from this notion of implicitness that corresponds to a sort of a priori
semantic priming of relevant features. For example, Alshawi explains (1987, p.102) that for
a noun in focus, all entities below it in both the assumed specialization and ‘correspondence’
hierarchies are deemed implicitly in focus, and that for the pronoun ‘it’, all entities below
the concept ‘inanimate’ are also considered implicit. Such a tactic is not only ad hoc but
fundamentally irreconcilable with the philosophy of reader-based comprehension, which
rejects any form of a priori relevance rules. Moreover, given a large knowledge base, it seems
probable that an unmanageable number of features would have to be marked, especially

when considering the purpose of Alshawi’s correspondence hierarchy, which is to capture

_ correspondences of the form ‘role C1 of owner D1 is a role-specialization of role C2 whose

owner is D2'. Consequently, the approach appears to be somewhat implausible from a
cognitive viewpoint.?

Moreover, ini‘erence-chajning models in general (including marker-passing models such
as Alshawi’s) do not correlate ‘focus’ to the notion of reachability (and to STM constraints),
and, most importantly, cannot consider clues that come after the reference in the text.

Rejecting the quest for the solution to reference resolution, van Dijk and Kintsch (1983,
p.161) argue instead for the strategic nature of the task:

Our view of the processes of pronoun comprehension should be seen as an integral part
of our model of strategic discourse comprehension, and in particular as a part of the
local coherence strategies of such a model.... However, the strategies determining the
understanding of pronouns require some more specific principles. As there is much
confusion in the literature about these principles, we will briefly enumerate the major
ones[.]

Their proposed list comprises the following principles (ibid., pp.161-164):
"o Grammatical constraints: e.g., number and gender agreement.
o Textual constraints: e.g., referents must be ‘in focus’.
o Referential constraints: pronouns do not refer to their antecedents but to individuals.

e Cognitive principles: role of situation models, capacity limitations of short-term mem-

ory.

2 Alshawi states clearly that cognitive plausibility is not one of his goals.
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These researchers also stress that the search for a referent must be performed with respect to
a situation model (ibid., subsection 10.1.1), that is, with respect to a schema that captures
the topicality of a text. Finally, it is commonly accepted that it is most unlikely that
language users will process full sentence pairs before establishing some coherence relation.
Yet Kintsch and van Dijk (ibid., p.164) add that “whatever the strategic operations for fast
provisional interpretation, final interpretation is possible only following the interpretation of
the whole clause or sentence, ... (and sometimes even of later sentences)”. This observation
has been generally ignored in existing computational models. The same authors also discuss
several experimental results that they take to confirm the importance of expectations in
reference resolution (especially for pronoun comprehension).

A complete review of the existing literature on reference resolution is beyond the scope
of this dissertation (see Hirst, 1981). In the rest of the chapter, I just want to use simple

examples to illustrate the adequacy of IDIoT for simple reference resolution.?

6.2 Reference Resolution with IDIoT

Let us first consider the problem of pronoun comprehension, for which I suggest the following

general strategy in IDIoT. When a pronoun is read:

e Check its syntactic felicity at that point in the clause. In other words, verify the

syntactic constraints associated with the pronoun.

o Use a findInclusiveReference instruction to establish whether there is one or several
possible referents for it. A possible referent is a cluster that matches the pronoun’s

‘essential’ features (e.g., number, gender, etc.).

o If there is a single referent, replace the pronoun’s cluster with the cluster of the
referent. Then check for semantic disagreements (e.g., the referent must be a person

in the case of a personal pronoun). These disagreements capture ungrammaticalities,

3Complex examples such as the treatment of cataphoric or deitic pronouns are beyond the ecope of most
of the existing models. However, cataphoric pronouns can be tackled in IDIoT, since candidacies last a short
amount of time, thus making it possible to have the referent after its referring NP. As for deitic pronouns,
van Dijk and Kintsch (1983, p.162) claim that the treatment of this type of pronoun is quite similar to that
of more usual ones. Finally, I emphasize that the features presented below are simplistic in that they do
not model, in particular, the complexities resulting from a hypothesis/verification approach to resolution.
More precisely, the proposed features do not model a reader who would commit to an interpretation based
on expectations and then wait for confirmation or contradiction of this decision.
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that is, features that do not prevent referent resolution but whose violation signals a
conflict.

e H there are several possible referents, treat the pronoun as an ambignous word (see
next chapter). During the short interval of time associated with the disambiguation
feature, information from subsequent words and clauses may lead to the selection of

one of the possible referents.

Possible definitions for the pronoun ‘he’ implementing this tactic follow:

innate KU ’he’:
% This feature recognizes the word ’‘he’
associations: hePronoun
expansion:
getNewCluster
addFeature 'he’ to newCluster

KU hePronoun: :
% This feature verifies the syntactic felicity of a pronoun at that
% point in a sentence. If the pronoun is felicitous, the feature
% marks the cluster of ’he’ as a unreferenced (ie toBeMatched) pronoun.
constraint 1:
triggers: ’he’
inputs:
personalPronoun has a weight of 1
expansion:
% Add a cluster, under feature toBeMatched, that will contain the
% features that must be matched by a referent to the pronoun. Also
% add feature unsolvedPersonalPronoun to the pronoun cluster to allow
% subsequent retrieval.
getCluster ul governing ’he’
renameFeature ’he’ to hePronoun in ul
addFeature toBeMatched to ul
getNewCluster
addFeature noun to newCluster
addFeature male to newCluster
addFeature singular to newCluster
addSubCluster newCluster to toBeMatched in ui
addFeature unsolvedPersonalPronoun to ul
ports:
personalPronoun has a delay of 1 and is a supplier
personalPronounMatch has a delay of 1 and is a customer
personalPronounDisagreement has a delay of 1 and is a customer
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KU ambiguousPersonalPronoun
% A pronoun is ambiguous iff feature personalPronounMatch fails, in
% fact saying that a unique reference for the pronoun was not found.
% In this case, further inferences will have to
% disambiguate this pronoun.
% The use of personalPronounMatch constitutes a typical use of
% exceptions in IDIoT.
constraint ci:
triggers: personalPronoun
exceptions: personalPronouMatch

expansion:
ifConstraint ¢1 then getCluster ul governing unsolvedPersonalPronoun
removeFeature toBeMatched from ul

ports:
personalPronoun has a dalay of 1 and is a supplier
personalPronounMatch has a delay of 1 and is a supplier

KU personalPronounMatch:
% This feature tries to find a single referent for an unsolved

% pronoun. It could also inhibit ambiguousPersonal explicitly.
is buildable

constraint 1:

triggers: hePronoun

constraint 2:

triggers: shePronoun

constraint 3:

triggers: iPronoun

constraint 4:

triggers: himPronoun

expansion:
getCluster ul governing unsolvedPersonalPronoun
getCluster u2 governedBy toBeMatched in ul
findInclusiveReference u3 to u2
substitute u3 to ul
ports:
ambiguousPersonalPronoun has a delay of 1 and is a customer

KU personalPronounDisagreement:
% This feature is triggered only if a personal pronoun has been solved.
% In this case, it checks whether the referent is a person. If it is not,
% a syntactic conflict is detected.
is buildable
associations: syntacticConflict
constraint 1: ;
ordered triggers: hePronoun, personalPronounMatch
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constraint 2:
ordered triggers: himPronoun, personalPronouMatch
expansion:
% the most reachable NP is necessarily the referent at this point. The
% noun of this NP must be a personm.
getCluster ul governing NP
getCluster ul governing noun in ui
testAbsencelf person in u2
addFeature syntacticConflict in ui
ports:

The purpose and details of these features are given in their comments. Moreover, these
definitions do not tackle the role of expectations in reference resolution, since there is
currently no agreement on the importance of syntactic and topical expectations. Also, in
the case of an ambiguous pronoun, the problem is left to be solved by inference.

To illustrate this tactic, let us look at a few simple examples, starting with a passage,

in which there is only one possible referent:
Example 6.2.1 John eats. He sleeps.

Once the resolution has terminated, the cluster associated with ‘he’ will be replaced for the
cluster of ‘John’. I remark, however, that this resolution may not be as immediate as it
may appear and that, in fact, in this example, it may depend on establishing an implicit
temporal inference between the two clauses (e.g., John sleeps after eating). This observation
suggests that, in general, a non-referential inter-clausal relationship (such as this temporal
inference) may be required in order to enable or to confirm the actual resolution. In other
words, the definition of personalPronounMatch would have to include code to check
that tﬁe action of the referent comes before the action oi: the pronoun. The specification of

such inferences is discussed in section 9.2. Compare with the passage:
Example 6.2.2 John eats. He then sleeps.

In this passage, the temporal inter-clausal relationship is made explicit by the connective
‘then’. In this case, it appears that the resolution of ‘he’ to ‘John’ is ‘stronger’ (i.e., less
provisional, more readily confirmed) than in the preceding example, mostly because the

explicit temporal link necessitates less time to establish than its implicit counterpart.
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Temporal relationships are not the only inter-clausal links that may confirm or enable

reference resolution. Consider the passage:
Example 6.2.3 John eats at a restaurant. He orders caviar.

The semantic link between the concepts ‘eating at a restaurant’ and ‘ordering food’ may
help in associating ‘he’ with ‘John’.

The definitions given above could easily be enhanced to take inter-clausal relationships
into account. The importance of these inter-clausal relationships becomes more apparent

in examples with multiple referents, such as this one:

Example 8.2.4 From his hotel room, John watched the old man in the park. He envied
his freedom.

In this case, syntactic expectations (especially for agentive NPs that start clauses; see van
Dijk and Kintsch, 1983, p.167) may lead the reader to disambiguate ‘he’ to ‘John’. Similarly,
topical expectations could favor ‘John’ as the referent. Yet, the actual resolution should
only be confirmed through further inference and it is possible a reader may ;;erceive the
passage as being ambiguous.*

The tactic suggested above also works for relative pronouns, though these are typically
simpler to disambiguate than personal pronouns since they are generally limited to prior

referents. Consider, for example, a sentence in which there is only one antecedent:
Example 6.2.5 John, who is hungry, eats.

Again, in this case, the cluster associated with ‘who’ is replaced with the cluster for ‘John’.
As with personal pronouns, the substitution will be carried out even in the case of ungram-

maticalities such as these:

Example 6.2.8 The elephant who is hungry eats.
Example 6.2.7 John which I hate eats.

The difficulty is in identifying which features are required for a resolution and which merely

need to be checked afterwards by a disagreement feature. Consider the passage:

Typically though, since John is the agent of ‘watch’ and since it is not necessarily the case that the old
man also watches John, ‘he’ will be taken to refer to John.
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Example 6.2.8 A man with a red hat, who was jogging nearby, saw the burglar escape.

It is clear that the referent should at least be an animate entity in order for ‘red hat’ to
not be considered as a possible referent. In other words, ‘animate’ needs to be matched but
‘person’ may be checked only for noticing disagreement with a convention.

Let us now turn to the more general problem of definite NP resolution. IDIoT may use
a tactic quite similar as the one suggested for pronoun comprehension: each definite NP
triggers the candidacy of the buildable feature referredNP, whose expansion procedure
tries to find a reference (i.e., a complete and unique cluster match). If several clusters are
found as possible referents, the findInclusiveReference instruction fails, the candidacy of
referredNP aborts, and the definite NP is left ambiguous. There can be several concurrent
candidacies of referredNP, one for each definite NP to be resolved. ‘Moreover, when a PP
(or any other syntactic unit) is attached to a definite NP, the resulting complex definite NP
needs to be resolved as a whole. Thus, the attachment of an NP as a subcluster of another
NP inhibits the search for a reference for either initial NPs and triggers a new candidacy of
referredNP for the new complex NP. In other words, it is the cluster associated with the
complex NP (and which includes as a subcluster, the cluster associated with the PP) that
will be matched.

Here are possible definitions:

KU definitelNP:
% A definite NP is an NP that starts with ’the’.
constraint 1:
ordered triggers: theArticle, NP
ports:
referredNP has a delay of 1 and is a customer

KU referredNP:

constraint 1:

triggers: definitelNP
% The second constraint recognizes the attachment of a PP to a
% definite NP. Note that the NP that is part of the PP does not
% have to be a definite NP and is not resolved by this case.
% Other similar constraints are not shown.

constraint 2:

ordered triggers: definiteNP, NP, attachPPtoNP

expansion: .

getCluster ul governing NP
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Figure 6.1: The context for Haddock’s example

findInclusiveReference u2 to ul
substitute u2 for ul

(The actual reference resolution scheme of the current prototype is somewhat more com-
plex.)
To illustrate this discussion, let us first consider Nicholas Haddock’s (1987) complex NP:

Example 6.2.9 the rabbit in the hat

in a context in which there are three rabbits (R1, R2, and R3), two hats (H1 and H2), and
one box (B1), where R1 is not in any container, R2 is in H1, and R3 in B1 (see figure 6.1).
Despite the fact there are several rabbits.in context, the NP is taken to have a unique
referent. Haddock remarks that “any compositional accounts of NP semantics,... would
judge [6.2.9] to be infelicitous” because they would fail to consider the referential context.
Instead, he proposes an incremental interpretation stemming from a strictly word-by-word,
left-to-right evaluation of the phrase (as is psychologically and intuitively well supported):
If we assume that a hearer incrementally evaluates a semantic representation—after each
word, say— the empty hat in the scene will never really be considered a viable candidate
for the inner NP. When the word rabbit is reached, a hearer can collect together in his
mind the set of rabbits in the context. After the preposition, this set can be refined
to contain only rabbits which are in something and. most important, the hearer can
start thinking about another set of objects, those which have rabbits in them. There
is only one hat in this new set and so by the time the inner NP is processed a definite
determiner sounds natural.
Haddock’s approach seems to depend heavily on the unambiguous attachment of ‘in’

to ‘the rabbit’ since it is suggested that the preposition immediately restricts the set of

rabbits to those that are in something. From my viewpoint, this restriction should not
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occur before the attachment of ‘in’ to ‘the rabbit’ is estabﬁshed. Therefore, to the best of

my understanding, it is not clear how, in the same context, the two sentences:

Example 6.2.10 Put the rabbit in the car.
Example 6.2.11 Put the rabbit in the hat.

would be disambiguated by Haddock. In the first one, because the NP ‘the rabbit in the car’
has no referent in context, but also because the verb ‘put’ requires a direct object, the PP
should not be immediately attached to the NP ‘the rabbit’, but to the verb ‘put’, and thus
anyone of the three rabbits is a possible referent for the NP ‘the rabbit’. In other words,
the syntactic and semantic constraints of the verb must be considered by the reference
resolution process. Similarly, in the second sentence, if the PP is attached to ‘the rabbit’,
then the NP ‘the rabbit in the hat’ has a unique referent but the verb ‘put’ is left without
an obligatory direct object. Alternatively, if the PP is attached to the verb, then the NP
‘the rabbit’ has several possible referents and is therefore ambiguous.

IDIoT’s strategy does not require the complex symbolic mechanisms assumed by Had-
dock (e.g., extension variables, combinatory grammar and its functions and arguments, etc.)
and does not resolve definite NPs by set attrition. Instead, I have specified KUs that grant
precedence to verb constraints over referential felicity, but otherwise use the referredNP
feature to disambiguate NPs. Using the same context as in the preceding examples, here is

a rough scenario in IDIoT for the sentence:

Example 6.2.12 The rabbit in the hat is young.

1. The definite NP ‘the rabbit’ triggers the candidacy of referredNP. Since there are
multiple possible referents for this NP, this candidacy fails.

2. Another candidacy of referredNP is triggered by ‘the hat’. Again, since there are
several hats in context, this candidacy fails.

3. When, and only when, the PP ‘in the hat’ is attached to ‘the rabbit’, a new candidacy
of referredNP corresponding to ‘the rabbit in the hat’ is triggered from the second
constraint of referredNP. A unique referent is found for this complex NP and the
expansion procedure of referredNP replaces the cluster constructed for ‘the rabbit

in the hat’ with the cluster found as a reference. This substitution ipso facto resolves
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both definite NPs involved in the example. From this perspective, the suggested
resolution strategy is not incremental in Haddock’s sense, even though it proceeds in

a word-by-word left-to-right order.

4. The rest of the sentence is processed.

Here is a list of similar examples working with the current prototype of IDIoT:

o Example 6.2.18 R! is the rabbit. R2 is the rabbit. The rabbit eats.

There is just one rabbit found. Much like the NP ‘the mayor’ corresponds to a unique

role, the two first sentences are taken to refer to the same unique rabbit.

Example 6.2.14 RI is a rabbit in a hat. The rabbit in the hat eats.

In the second sentence, the PP is attached to the NP ‘the rabbit’ and then a unique

referent is found.

Example 6.2.15 R1 is a rabbit. R1 is in a hat. The rabbit eats.

A unique referent is found.

Example 6.2.16 RI is a rabbit. R2 is a rabbit. The rabbit eats.

Multiple referents are found, and thus there is no resolution.

Example 6.2.17 R1 is a rabbit. R2 is in a boz. R1 is in a hat. R2 is a rabbit. The
rabbit in the boz eats.

A-unique referent is found for ‘the rabbit in the box’, not just for ‘the rabbit’.

Example 6.2.18 The young rabbit eats. The rabbit sleeps.

A unique referent is found. The resolution process currently ignores adjectives.

Example 6.2.19 R1 is a rabbit in a hat. Put the rabbit in the hat.

In the second sentence, a reference is found for ‘the rabbit’ and the PP is attached to

the verb. The PP is not attached to ‘the rabbit’.

Example 6.2.20 Put the rabbit.

A syntactic conflict is detected.
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o Example 6.2.21 Put the rabbit in the hat.

Simple VP-PP attachment occurs, which blocks, in this case, the NP-PP attachement.

o Example 6.2.22 R1 is a rabbit. R2 is a rabbit. Put the rabbit in the boz.

In the third sentence, no referent is found, and there is only simple VP-PP attachment.

o Example 6.2.23 R1 is a rabbit in a hat. R2 is a rabbit. Put the rabbit in the hat in
the boz.

The third sentence is interpreted as: ‘Put in the box the rabbit that is in the hat’.

As with pronoun comprehension, inferences are extremely important for the task of

definite NP reference resolution. Consider:

Example 6.2.24 John was pale: the boy was sick.
Example 6.2.25 John was pale. The boy was sick and John feared he would die.
Example 6.2.26 John was pale. The boy was sick and ..Iohn feared his son would die.

In the first example, ‘the boy’ could be taken to refer to John, especially given the role of the
colon. But this becomes less probable in the second example, in which the explicit reference
to John appears to eliminate the possibility of having John refer to ‘the boy’. In the third
example, it is even more unlikely that John could refer to ‘the boy’, mostly because of the
additional probable inference that ‘the boy’ is John’s son. Such subtle inferences greatly
complicate the reference resolution process.

Finally, I want to emphasize that schema-matching should not be confused with a dif-

ferent kind of inference that is frequent in reference resolution. In the passage:
Example 6.2.27 John enters the park. He sits on a bench.

I suggest there may exist a semantic link between park and bench, possibly captured in a
feature parkBench that would be a specialization of bench. A reader may expect a bench
after having read the word ‘park’. But I propose that this expectation not be considered an
occurrence of schema-matching, which I limit to the detection of ‘steps’ (i.e., component

‘subactions’) of an action, as in:

Example 6.2.28 John dines at the restaurant tonight. He orders caviar and savors it

slowly. He then leaves a big tip and walks out.
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The features orderFood, eatFood, payFood, and exitRestaurant are perceived as sub-
steps of the schematic feature eat AtRestaurant, that is, are organized as subclusters of

the latter feature.
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Chapter 7

Word Sense Disambiguation

7.1 Introduction to Lexical Disambiguation

A word (or a sequence of words) may have more than one interpretation. For example,
the noun ‘ball’ can be interpreted as ‘spherical object’, ‘baseball’, ‘testis’, and ‘formal
dance’, among other definitions. This problem of lexical disambiguation raises two difficult
psycholinguistic questions:

e The problem of lezical access: “Do people consider (unconsciously) some or all of
the possible meanings of an ambiguous word, or do context and/or expectations take

them straight to the ‘correct’ meaning?” (Hirst, 1987, p.85).

o The problem of the decision point: “H more than one meaning is accessed, how and

when is a choice made?” (ibid.).

Alternative hypotheses (Hirst, 1987, section 4.3) for the lexical access problem are the
following: 1) the context may limit the process to a single access or influence disambigunation
only after all possible interpretations have been accessed, or 2) interpretations are accessed
in order of frequency of usage, the disambiguation process stopping as soon as an acceptable
meaning is found. As for the decision-point problem, there are three possibilities: “that the
choice is virtually immediate; that it does not happen until the end of the clause (or some
smaller syntactic unit), with the several meanings remaining around until then; and that it
happens as soon as enough information is available, whether this be immediately or later”

(Hirst, 1987, p.85).
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In concluding his review of a representative sample of the large body of literature on
this topic, Hirst (1987, pp.94-95) writes:

There are clearly many questions yet to be resolved in the study of human lexical

access and disambiguation. However, this much seems clear: in many cases, more than

one meaning of an ambiguous word is accessed. Semantic priming and frequency of

a particular sense can facilitate lexical access and disambiguation, and in some cases

cause one meaning to be accessed to the exclusion of others.
As we shall see subsequently, a time-constrained memory seems particularly well-suited
to develop an approach to lexical disambiguation that has similar properties to Hirst’s
approach, which is summarized below. But first, let us consider existing research in artificial
intelligence on this problem. For recent results in psycholinguistics on this topic, refer to
Gorfein (1989).

Lexical disambiguation is typically reduced by schema-matching approaches to the recog-
nition of a particular context with respect to a set of knowledge structures that specify
a priori all recognizable contexts. For example, in BORIS (Dyer, 1983, p.181) the word
‘gin’ is interpreted as LIQUID if the context ‘involves’ the semantic primitive INGEST,
and as CARD-GAME, if the context involves COMPETITIVE-ACTIVITY. Dyer (bid.)
adds that a word may be disambiguated in either a top-down or a bottom-up fashion. In
the top-down case, disambiguation corresponds to the satisfaction of an expectation set up
by the words preceding the ambiguous one. In the bottom-up case, the ambiguous word is
assumed to spawn a disambiguation demon that searches the current context for a match .
-with one of its disambiguation rules. Hirst (1983, section 4.1) explains that the choice of
the knowledge structure(s) (e.g., scripts, MOPS, etc.) corresponding to a given context
constitutes the major difficulty of such an approach to disambiguation in that it ignores the
local syntactic and semantic cues provided by nearby words.

Several models of lexical disambiguation that take into account local disambiguating
cues have been proposed in artificial intelligence. For example, Hiyan Alshawi (1987) has
proposed a computational model for disambiguation that is reviewed elsewhere (Corriveau,
1988). The work is not concerned with human processing at all and, in essence, describes
marker-passing algorithms used to select between possible candidates for disambiguation
using simple examples in a very limited domain. The ad hoc nature of most of these al-
gorithins and of the flags used by the representational scheme (Alshawi, 1987, chapter 2)

constitutes the major drawback of this research. Hirst (1983, section 4.1) reviews four other

161



models. Some of these models specify more or less complex rules of disambiguation using
templates (e.g., Wilks’s (1975) preferences). Conversely, Steven Small (1983) rejects gen-
eral disambiguation rules in favor of a vast number of loosely related sets of rules associated
with each individual word: the word expert approach. In his work on semantic interpre-
tation, Hirst (1987, 1988a, 1988b) proposes the notion of Polaroid Words', which are fully
integrated with his Absity semantic interpreter; upon reading an ambiguous word, Absity
is given a ‘fake’ semantic object that acts like a self-developing Polaroid photograph of the
disambiguated concept. Hirst elahorates (1987, p.97):

By the time the sentence is complete, this photograph will be a fully developed picture

of the desired semantic object. And even as the picture develops, Absity will be able

to manipulate the photograph, build it into a structure, and indeed do everything

with it that it could do with a fully developed photograph, except look at the final

picture. Moreover, like real Polaroid photographs, these will have the property that as

development takes place, the partly developed picture will be viewable and usable in

its degraded form. :
A Polaroid Word (hereafter PW) consists of a disambiguation procedure, one PW existing
for each syntactic category. When a new PW is needed, an instance of the appropriate type
is cloned and is given a packet of knowledge about the word for which it will be responsible.
These packets contain only lexical knowledge in the case of nouns but include some ‘world
knowledge’ in the case of verbs, since these “can get quite idiosyncratic about their case
flags™ (Hirst, 1987, p.106). Upon its instantiation and, if required, each time a new word is
input, the PW attempts to narrow down its possible interpretations by looking for ‘strong’
paths built by the marker passing component of the model and by communicating with
its ‘friends’.2 The PW eliminates any of its meanings that are incompatible with those of
its friends. As for the paths supplied by the marker-passing component, their ‘strength’ is
evaluated with respect to ‘magic numbers’ set with respect to the two following heuristics

(#bid., subsection 5.6.3):

o The shorter the path, the stronger the path.

1 Polaroid is a trademark of the Polaroid Corporation.

3«Verbs are friends with the prepositions and nouns they dominate; prepositions are friends with the
nouns of their prepositional phrase and with other prepositions; and noun modifiers are friends with the
noun they modify. In addition, if a prepositional phrase is a candidate for attachment to a noun phrase, then
the preposition is a friend of the head noun of the NP to which it may be attached. ... The intent of friendship
constraints is to restrict the amount of searching for information that a PW has to do; the constraints reflect
the intuition that a word has only a very limited sphere of influence with regard to selectional restrictions
and the like” (ibid., subsection 5.3.2). Also, the rules of friendship can become somewhat complex when
dealing with bound constituents (ibid., subsection 5.3.5).
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o The more arcs that leave a node, the weaker the connections through that node.
Summarizing, Hirst (sbid., p.111) writes:

Polaroid Words with marker passing are not a replacement for inference and pragmatics

in word sense and case disambiguation; rather, they serve to reduce substantially the

number of times that these must be employed.
The current implementation of Polaroid Words does not have such an inference or pragmat-
ics system available to it and does not use syntactic cues nor the *global context’ (for which
there is no representation). Also, the treatment of figurative language remains problem-
atic in that such usage typically violates the rules of disambiguation postulated for literal
English (ibid., section 5.4).

From my viewpoint, the major drawback of Hirst’s work is that the complex algo-
rithms and data structures used for Polaroid Words may be acceptable in the framework of
semantic interpretation (an approach I abandon, as explained earlier) but are somewhat ir-
reconcilable with the reétrictions and considerations imposed by cognitive modeling.® And,
as is generally the case with marker-passing systems, Polaroid Words rely heavily on ‘magic

numbers’ (ibid., subsection 5.6.3).

7.2 Lexical Disambiguation with IDIoT

As mentioned in chapter 2, and in accordance with reader-based hermeneutics, this research
does not focus on some abstract language as incompletely specified by a dictionary, nor on
some ‘literal English’ resulting from an artificial distinction, but rather on the idiolect of
a specific user. In other words, the notion of a ‘universal lexicon’, that is, a correct and
exhaustive list of all possible meanings for any given word in a language, is abandoned. It is
the user who must decide on the ‘boundaries’ (or conceptual distance) between concepts.*

Similarly, it seems that existing algorithms, which statically capture rules for disam-
biguation, are limited to a literal interpretation of words and can never take into account
the actual run-time context of a reading. Small (1983) views language as being too irregular
for generalizations above the lexical level. Instead, he suggests the coding of an individual

3For a discussion of the psychological reality and non-reality of PWs, see Hirst, 1987, section 5.6.

*Do pigs fly? Yes they do, when on board an airplane. How close is this meaning of the verb ‘fly’ to the
ones in the sentences “Time flies” and “Birds fiy”? Concepts are often thought of as well-defined objects
when, in fact, they encapsulate ‘shades’ of meaning. Conceptualization has its limits (Sowa, 1984, chapter 7).
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and large disambiguation procedure for each word, an approach that requires a lot of time,
reflecting the idiosyncratic nature and long apprenticeship of linguistic communication; this
displeases those researchers who search for regularities in language. Though Small’s strat-
egy is undeniably inconvenient from an engineering point of view, I feel very close to it for,
in the spirit of reader-based comprehension, it is based on the acceptance of human idiosyn-
crasies rather than on the quest for the correct set of rules and algorithms. The fundamental
difference between IDIoT and Small’s work is that I attempt to ‘de-proceduralize’, that is,
to avoid the use of a priori static algorithms for the specification of his word experts by
having the user express them by means of the representational scheme presented in chap-
ter 3. Furthermore, as will be shown below, there is nothing to prevent the user of IDIoT
specifying in the KB the rules of disambiguation that, as an individual, he assumes to be
correct.

In the same vein, the notions of polysemy, homonymy, and categorial ambiguity are
not considered useful in this discussion, for they introduce a semantic distinction that
is irrelevant to a trivial algorithm. It is left to the user of IDIOT to specify features
corresponding to rules that would or would not take this distinction into account.

I repeat that, as with grammar, the specification of the ‘correct’ set of rules of dis-
ambiguation is taken to be highly problematic, for it would ignore both the presence of
a context that cannot be specified a priori, and the effects of real-time processing, which
stipulates that certain rules are more retrievable than others. In this chapter, the problem
of disambiguation is addressed from a quantitative viewpoint and, as in the rest of this
thesis, no claim is made on how concepts should be codified.

The proposed model of memory is particularly well-suited to implement a disambigua-
tion strategy similar in spirit to Hirst’s (1987) Polaroid Words. In IDIoT, words are
disambiguated over a period of time, that is, the set of the concepts that are candidate in-
terpretations for a given word w may shrink over time. I develop below IDIoT’s approach
to disambiguation, not with respect to a particular corpus of examples, for this typically
leads to an algorithm fitted to the data, but at a more abstract level, that is, in terms of
w, an unspecified ambiguous word in some language.

If the word wis ambiguous, then, at the time of its detection, all possible interpretations
of w are notified and can become candidates for detection. This is easily realized by having

these interpretations specified as the candidates (see chapter 3) of w. Recall that each
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candidate has a certain retrievability at that given point in time, and that communication
is taken to be asynchronous. Therefore, all possible interpretations of w become candidates,
but these candidacies do not necessarily start at the same time. And, in the case where one
of the possible interpretations of w is already being expected, if the signal received from
w triggers it, then it immediately becomes detected. Also, the expectation mechanism in
IDIoT can be used to model the phenomenon of semantic priming, as illustrated in the
next section.

If candidate z has candidate y specified as an exception of its triggered constraint,
then the candidacy of z necessarily takes its maximum time-span in order for y to be
given the opportunity to become detected and possibly inhibit z. Since exceptions are
not automatically reciprocal, y may not have z as an exception and therefore may become
detected at as soon as it can be. Thus, the user may specify through the exceptions of the
possible interpretations of w a disambiguation strategy that favors some candidates over
others by having the former being immediately detectable while the latter must take the
maximal time allocated to a candidacy. The ability for one KU to dynamically modify the
retrievability of another, an enhancement discussed in chapter 10, would make this strategy
more dynamic.

Once triggered, a candidate has a fixed amount of time to become detected, as explained
in chapter 3. Disambiguation may also occur through the process of reference resolution.
Detection by referencing is possible only if the ambiguous word is explicitly repeated after

having been disambiguated in the nearby context, as in the following example:
Example 7.2.1 John poured the gin but Mary refused: she had always hated gin.

The first occurrence of ‘gin’ is disambiguated to the feature alcoholicBeverageGin by
constructing a path to the verb ‘pour’ (as in the example of section 3.7). H STM ca-
pacity allows for a context that spans at least a few words, then a reference is quickly
found for the second occurrence of ‘gin’, which is thus also disambiguated to the feature
alcoholicBeverageGin. This referencing ability, which does not appear to exist in the
previously overviewed models of lexical disambiguation, seems to be a plausible psycholog-
ical approach, one where a repetition sufficiently ‘close’ (with respect to time and STM
capacity) to the original disambiguation, is not treated as an ambiguity but as a readily
detectable reference. Hirst has pointed out that using a content word with two different

senses in the same sentence usually leads to a garden path.
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Since candidacies may span the processing of a few words (or even clauses) after the
input of w, they are not limited to considering the context existing at their start, but in fact
can take into account the context as it is modified over their time-span. In other words,
both the evidence existing at the start of a candidacy and the information established from
subsequent words can affect disambiguation.

In IDIoT, the act of disambiguation per se proceeds from the execution of the expansion
procedure of a possible interpretation that becomes detected. This procedure first accesses
the cluster with the original ambiguous word w, and then proceeds to modify this cluster.
At an abstract level, if z is a possible interpretation of w that becomes detected, then the
expansion procedure of z could either rename the feature w to x, or simply add x to the
cluster of w.

Subsequent instructions of the expansion procedure of z could typically add the features
that define z, as well as specialize some of the features associated with w. For example,
disambiguating the word ‘gin’ to the alcoholic beverage could replace the innate feature
’gin’ with feature alcoholicBeverageGin in the cluster created by ’gin’ and add some
information about alcoholicBeverageGin. Since all qualitative data is user-specified,
the word ‘gin’ may be disambiguated to a more general feature alcoholicBeverage that
would govern another cluster capturing the kind of alcoholic beverage, as in the following

expansion procedure:

getCluster ul goveraing ’gin’
addFeature alcoholicBeverage in uil
getNewCluster u2

addFeature kind0f to u2
addSubCluster u2 to ul
getNewCluster u3

addFeature gin to u3
addSubCluster u3 to u2

In summary, the disambiguation step per se simply consists of accessing the cluster of w and
modifying it to reflect the disambiguation of w to z; the specificity of the resulting cluster
depends entirely on a specific user’s KB.

Similarly, it is left to the user of IDIoT to decide on a feature-by-feature basis which

candidates ‘know’ about and can affect the candidacy of the others. More precisely, if
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candidate z is an exception of the triggered constraint of candidate y, or if z is explicitly
sent an inhibition signal by the output strategy of the triggered constraint of , then the
detection of y will inhibit the candidacy of z.

Possible disambiguation scenarios include the following:

e Winner-take-all: a candidate becomes detected and causes all other candidacies to
fail. |

e Insufficient conclusive evidence: all candidacies fail.

e Mutually exclusive detections: several candidacies can succeed, reflecting an am-
biguity.
e Successive disambiguations: several candidacies successively succeed.

H, for example, IDIoT’s user systematically specifies all possible interpretations of w as
mutual exceptions, then the first scenario will be followed: the first possible interpretation
z to become detected inhibits all other candidacies. This case is possible as long as z has
the exceptions and output strategy of its triggered constraint send inhibition signals to all
the other candidates. Recall, however, that, as always, it is up to the user to judge the
merits of such an approach. The second scenario is always possible: none of the candidates
manages to become detected for lack of evidence. In this situation, w is left ambiguous.
The third scenario is the trickiest and corresponds to the less frequent situation where the
ambiguity may be consciously perceived, possibly by having several possible interpretations
come to mind. I suspect that an adequate solution to the latter case involves nothing
less than a theory of self-awareness, which is absent from IDIoT. The fourth scenario is
always possible, although it can be made somewhat infrequent through the judicious use of
exceptions which, I repeat, have the advantage of forcing candidacies to take their maximal
time-span, and thus of minimizing the risk of a conflict between an interpretation that
would ignore other candidates and become quickly detected, and a less retrievable one that
would nonetheless become detected in light of its existing context.

IDIoT’s approach to disambiguation is similar to Hirst’s (1987) Polarcid Words in that:

1. A semantic object, namely the cluster constructed by w, is initially associated with

the ambiguous word w.

167



»s

2. This semantic object is just another element of STM, and thus is fully integrated with
the rest of the context and can be manipulated by other KUs.

3. This semantic object ends up containing a developed picture, that is, the disam-

biguated feature, if any.

However, in IDIoT, there is no need for a priori rules constraining how much of the context
can be considered.

In conclusion, I remark that IDIoT’s approach to disambiguation does not fit any of
the hypotheses mentioned earlier for the problems of lexical access and decision point, but
rather synthesizes all of them through the modus operandi of time-constrained memory.

First, for lexical access:

e A single access is possible according to a winner-take-all scenario (e.g., resulting from

a triggered expectation or a quickly retrieved candidate which inhibits all others).

e An all-readings approach is possible if all candidacies overlap in time and yet lead to

a single winner.

o Frequency of usage is accounted for in the retrievability coefficient of the possible

interpretations of w on which the whole disambiguation process ultimately depends.

As for the decision-point problem, there is no need to postulate either the highly prob-
lematic ‘immediate decision’ approach or any arbitrary semantic criterion, since the actual
decision point may vary from feature to feature and according to an unpredictable context.
The purely quantitative detection mechanism of the time-constrained memory handles the

problem by simply limiting the time that may be spent disambiguating.

7.3 Examples of Lexical Disambiguation

Let us start by considering the problem of semantic priming. I emphasize again that, in
view of recent criticism by Dennis Norris (1986), no claim is made with regards to the

psychological reality of this phenomenon. Let us consider the sentence:

Example 7.3.1 John plays gin.
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A feature z is said to prime a feature y if, upon the detection of z, an expectation signal
is sent from z to y, which lowers the retrievability coefficient of y and places it in expectation
mode. -

Let us make the following assumptions regarding the KB:

o Innate feature ’plays’ eventually triggers actionPlay.

e Feature &ction'Play primes cardGame.’

o Feature cardGame is an association of cardGameGin; game is an association of

cardGame.
o Feature ’gin’ has alcoholicBeverageGin and cardGameGin as candidates.
e Both alcoholicBeverageGin and cardGameGin are triggered by ’gin’.

Upon the detection of actionPlay (from the word ‘plays’), cardGame is primed and be-
comes expected. After the word ‘gin’ is input and detected, alcoholicBeverageGin and
cardGameGin are triggered and become candidates. Feature cardGameGin sends a
submission signal to its association cardGame. Upon receiving this signal, card Game
is triggered, has its expectation satisfied, and thus, since this a submission, sends a con-
firmation signal to its submitter cardGameGin. After receiving this confirmation signal,
cardGameGin becomes detected and disambiguates, by means of its expansion proce-
dure, the cluster governing ’gin’. The detection of cardGameGin leads to the detection
of cardGame, which, in turn, leads to the detection of the more abstract feature game.

If cardGameGin were directly primed by actionPlay, no submissions would be nec-
essary as it would become immediately detected by being triggered by ’gin’ while being
expected. And if actionPlay primed game instead of cardGame, the chain of submis-
sions would go from cardGameGin to cardGame to game, reflecting the cost of a more
abstract (i.e., less specific) KB.

Let us consider the same sentence, but without any priming in the KB. Let us adopt,

for example, the following KB assumptions:

¢ Innate feature *plays’ eventually triggers actionPlay.

5Thus, actionPlay would also probably prime all other types of games, which would result in a KB with a
high degree of specificity. The KB could be even more specific if actionPlay directly primed cardGameGin
and all other known games, as may be the case for a child.
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o Feature cardGame is an association of cardGameGin. game is an association of

cardGame.

¢ Both alcoholicBeverageGin and cardGameGin are possible interpretations of
gin’.

o Feature actionPlayA Game and actionPlay AMusicallnstrument are possible in-
terpretations of actionPlay.

o Feature actionPlayAGame has a constraint that consists of the two triggers ac-

tionPlay and game.

o Feature game is a relay with, among others, cardGame as a supplier and action-

Play AGame as a customer.

The word ‘plays’ eventually leads to the detection of actionPlay, which triggers the can-
didacy of actionPlayAGame and actionPlay AMusicalInstrument. It is assumed the
latter will not have enough eviden;:e to become detected and eventually have its candidacy
expire. As for actionPlayAGame, it is still missing the trigger game after receiving
the signal from actionPlay. From the input of the word ‘gin’, ’gin’ is recognized, which
eventually leads to the candidacies of alcoholicBeverageGin and of cardGameGin. It
is also assumed that alcoholicBeverageGin will not have enough evidence to become
detected and eventually have its candidacy expire. Upon receiving the signal from ’gin’,
cardGameGin becomes a candidate and a submission signal is sent from cardGameGin
to cardGame to game to the customers of game. These customers include action-
PlayAGame, which is satisfied by this submission signal and sends a confirmation signal
back to game, eventually leading to the detection of this chain of features.

I have used a relay for game to suggest that the ‘highest’ (i.e., most general) feature
of a particular generalization hierarchy of objects (implemented by the associations of the
concerned features) can often be too general to require an expansion procedure and therefore
can be specified as a relay. It is left to the user to avoid a deadlock where game would
need actionPlayAGame to become detected and vice versa. Experimentation with the
current prototype has shown that such deadlocks can be prevented through the judicious

use of relays for such ‘abstract’ features.
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A strictly conceptual approach to disambiguation has its disadvantages. In the last
hypothesized KB, actionPlayA Game becomes detected merely from the co-occurrence of
game and actionPlay and, therefore, could erroneously specialize actionPlay to action-
PlayAMusicallnstrument in the following example:

Example 7.8.2 The baby played with the guitar. (Hirst, 1987, p.78)
or to actionPlay AGame in the sentence:
Example 7.3.3 John plays with his gin.®

A simple rule to prevent this would be to insist that the verb ‘play’ have a direct object if
it is to be specialized to actionPlay AGame or actionPlayAMusicalInstrument. Such
a syntactic check can be enforced by having these features as buildable features with the

following check at the start of their respective expansion procedure:

getCluster ui governing actionPlay
testPresencelf directObject in uil

In this case, the co-occurrence of the required triggers would not be sufficient and the ex-
isting context would be checked by means of a testPresenceOf instruction. Disa.mbigua.tion
of actionPlay to one of its possible interpretations would depend on this check.

But this check is not sufficient for a sentence like:

Example 7.38.4 John plays Hemlet with a gin in his hands.

The co-occurrence of the required triggers and the presence of a direct object still lead to an
erroneous interpretation. A more demanding rule may insist that, for example, actionPlay
be disambiguated to actionPlay A Game only if the game in question is the direct object
of the verb ‘play’. In other words, actionPlay A Game, for example, could require another
check in its expansion procedure to verify that the cluster associated with the direct object,
let’s call it DO, denotes (i.e., has some features that denote) a game. Such an approach
is problematic in that DO will not denote a game until ’gin’ has been disambiguated, but

SFor example, John makes noises while drinking his gin, or John toys with his glass.
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’gin’ being disambiguated to cardGameGin necessitates a confirmation from feature ac-
tionPlay AGame, which has its syntactic check on the direct ob ject fail because ’gin’ is
not yet detected. In other words, the detection of card GameGin would need a confirma-
tion from actionPlayAGame, whose syntactic check would require that cardGameGin
have been detected.

This chicken-and-egg problem is typical of lexical disambiguation, and syntactic rules
are unhelpful, in this specific case, for they can only establish that the word ‘gin’, not the
concept cardGameGin, is the direct object of the word ‘play’. Clearly, the specification
of such a detection cycle must be avoided. The key to the problem is deciding which of the
words ‘play’ and ‘gin’ is to be disambiguated first. I present below a possible solution in
which ‘play’ is disambiguated only once ‘gin’ has been specialized to the card game, and
leave the reciprocal alternative as an exercise for the reader. The ‘trick’ is to have the
syntactic check(s) and chain of features that will allow the detection of cardGameGin
involve not actionPlayAGame (which will become detected only once cardGameGin
has been disambiguated) but actionPlay. In other Wt;rds, since it is assumed ‘play’ is
disambiguated after ‘gin’, the disambiguation process relies on the co-occurrence of the
concept actionPlay with sbmel ‘playable’ direct object.

Here is a possible KB that summarizes this discussion and combines both syntactic and

conceptual considerations:
e Innate feature ’plays’ eventually triggers actionPlay.

o Innate feature ’gin’ eventually leads to the detection of the relay noun and of a

feature directObject, which governs the cluster associated with ‘gin’

e Feature cardGame is an association of cardGameGin:; game is an association of

cardGame.

Features alcoholicBeverageGin and card GameGin are possible interpretations of

gin’.

Features actionPlayAGame and actionPlayAMausicallnstrument are possible

interpretations of actionPlay.

Feature actionPlayAGame has a constraint that consists of the two triggers ac-

tionPlay and game.
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o Feature game is a relay with, among others, cardGame as a supplier and actionPlay

as a customer. This modification circumvents the problematic cycle.

o Feature objectGin has a constraint with the triggers ’gin’ and directObject, and

has the following expansion procedure:

getCluster ul governing directObject
testPresencelf ’gin’ in ul

e Feature cardGameGin has a constraint with only the triggers *gin’ and objectGin.

The word ‘plays’ eventually leads to the detection of actionPlay, which triggers the can-
didacy of actionPlayAGame and actionPlay A MusicalIlnstrument. It is assumed the
latter will not have enough evidence to become detected and eventually have its candidacy
expire. As for actionPlay AGame, it is still missing the trigger game after receiving the
signal from actionPlay. From the input of the word ‘gin’, *gin’ is recognized and notifies
objectGin. Also, the constructed cluster of gin becomes the direct object of ‘play’. The
feature directObject becomes detected in this process of establishing the direct object
and sends its presence signal to objectGin, which, in turn, becomes detected and notifies
cardGameGin. Feature alcoholicBeverageGin becomes a candidate from the presence
of ’gin’, but again it is assumed that alcoholicBeverageGin will not have enough evidence
to become detected and eventually have its candidacy expire.

When card GameGin receives the signal from objectGin, a submission signal is sent
from cardGameGin to cardGame to game to the customers of game. These customers
include actionPlay, which is satisfied by this submission and sends a confirmation signal
back to game, eventually leading to the detection of this chain of features. Then, and only
then, does the detection of game lead to the detection of actionPlay AGame.

I remark that the proposed solution illustrates a case- or role-based approach to con-
ceptualization that is often taken to be pervasive to human cognition (see Sowa, 1984): the
specification of a particular concept involves the role of the concept. Finally, I claim that
a strategy for disambiguation that would flag the word ‘gin’, and only this word, as having
multiple possible interpretations would miss the fact that the word ‘play’ itself requires
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a lot of knowledge to interpret (as suggested by Small’s (1983) approach). For example,
the following sentence is deemed to be nonsensical by some of my informants while quite

understandable by others:
Example 7.3.5 The game plays well.

If we admit the inchoative ‘play’ ought to be disambiguated to actionPlayA Game, then
we realize that another constraint of game or of actionPlay must account for ‘game’
being the subject (or agent) of the verb ‘play’, which precisely reinforces the two previous

observations, namely:

e Importance of case- or role-based conceptualization.

¢ Frequent need for individual word experts.

Let us now consider the case of an homonymous word such as ‘submarine’ in the sentence:
Example 7.3.8 The sailor ate the submarine. (Hirst, 1987, p.88) .

This sentence can trigger a garden-path effect if the idiosyncratic processing of a compre-
hender has the word ‘sailor’ strongly prime the concept of the undersea ship rather than
the concept of the sandwich. Hirst (personal communication) has tried similar sentences on
informants and reports that most found the sentences ‘funny’ and could not ‘see’ the literal
interpretation.

Let us assume that the verb ‘eat’ has no figurative interpretation.” Paths from the
possible interpretations of ‘submarine’ (e.g., sandwich or undersea ship) are buildable to
both ‘sailor® and ‘ate’, yet only the latter seems relevant to disambiguation. An explanation
of this intuition may involve the retrievability of the concerned features: if the sandwich
interpretation is very unfamiliar and very long to retrieve, or if the undersea ship meaning is
extremely retrievable, then it is possible that disambiguation will fail (leading to the garden
path effect).

If we assume equal retrievability, then it is very possible that the path between ‘ate’
and submarineSandwich (e.g., submarine-sandwich—food—eat) is the shortest to establish

(with respect to processing time) and then inhibits the undersea ship candidacy. However,

7This is not always the case, e.g., “to eat one’s words”, “the sea eats ships and submarines®, etc.
8 A sailor is a type of person. A person eats food. A sandwich is a type of food.
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if we ppstulate that the undersea ship interpretation is unacceptable simply because a un-
dersea ship cannot be the direct object of the literal verb ‘eat’, an inhibition path® between
submarineShip and eat could be specified: submarineShip would become a candi-
date triggered by objectSubmarine!® and inhibited by a path such as submarineShip—
metalConstruction-nonEdibleObject—-actionEat. Again, however, we would have to assume
this path is necessarily built before a path is constructed between ‘sailor’ and ‘submarine’.
Furthermore, as usual, the presented chains of features are simplistic and the user must
specify a real word expert in order to account far the disambigunation of ‘submarine’ in the

following passage:

Example 7.3.7 Each Easter, it seems one can find more and more bizarre objects fashioned
in chocolate. This year, the Pentagon released miniatures of its arsenal in milk chocolate.

Yesterday, my son ate a submarine but he still prefers an F-14.

In this paragraph, the attribute of ‘submarine’ that made it inedible is replaced (in the
corresponding cluster through a series of complex inferences) by chocolate, a kind of food.
Therefore, an inhibition path between ‘submarine’ and ‘eat’ becomes unlikely. In other
words, the previous rule suggested for disambiguation is too simple.

It is important that, through the interval of time of a candidacy, information that follows

the ambiguous word also be taken into account, as in the sentence:
Example 7.3.8 John eats a submarine made out of chocolate.

This example also illustrates the possible dangers of inhibition paths (which are not cur-
rently available in IDIoT): if, after reading ‘submarine’, the candidacy of submarineShip
is immediately inhibited as a result of the inhibition path between submarineShip and
actionEat, then subsequent information that would block this path (i.e., prevent its cre-
ation) would be ignored. The point of these examples is that the disambiguation process
ultimately depends on the idiosyncratic inferences of the comprehender.

Let us continue with an example of categorial ambiguity, as the word ‘sink’ in the

sentence:

®In the case of an inhibition path, proper confirmation to the original submitter would inhibit the latter,
rather than have it become detected.
194 feature, similar to ubjectGin, which is used to make sure that *submarine’ is the direct object of
actionEat.
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Example 7.3.9 John emptied the sink of its water.

The word ‘sink’ can, in theory, be a noun or a verb. However, in the example, syntactic cues
restrict the choice to the noun. More precisely, I propose that the word ‘sink’ would trigger
the candidates sinkNoun and sinkVerb, that would respectively submit the features noun
and verb. A conﬁrma.tic;n path would be obtained between noun and the existing syntactic
context—the detection of the article ‘the’ would either expect or confirm the feature noun—
eventually leading to the detection of sinkNoun. The latter feature would, in turn, notify
its possible interpretations, which could include plumberSink, viceSink, heatSink, etc.
Similarly, if sinkVerb were detected, it would notify its possible interpretations.

It appears that if a rigid grammar, that is, one that systematically rejects ungrammatical
sentences, is specified, then the resolution of categorial ambiguity relies mostly on syntactic
cues (e.g., which sequences of parts-of-speech are allowed). But, as suggested in section 5.1,
the mind typically possesses an enormous ability to handle ‘ungrammaticality’ that can lead

to more complex cases of categorial ambiguity, as with the word ‘bark’ in the sentence:
Example 7.3.10 The dog’s bark woke me up.

Two other interesting examples handled by the current prototype of IDIoT, in which several

linguistic problems are combined into a single sentence, are:

Example 7.3.11 The men man the submarine.
Example 7.3.12 The sailors man the submarine.

In extreme cases, categorial ambiguity can create a ‘garden path’ effect (Marcus, 1980) as

in the sentence:
Example 7.3.13 The prime number few.

Interestingly, this sentence often seems to present much less difficulty for a native French
reader than for a native English reader. An explanation may reside in the historical devel-
opment of these two languages: like Latin, French is an analytic (as opposed to a synthetic)
language where syntactic cues appear to be much more rigid and ‘verb-oriented’ than the
English ones, tending to prevent the French reader from making decisions until the verb has
been found, and thus avoiding the ‘trap’ of interpreting ‘prime number’ as the mathematical

idiom. The point to be repeated is that both ungrammaticality and garden-path sentences
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suggest complex syntactic cues that allow for some flexibility in parsing but also can ‘jump
to conclusions’ leading the reader ‘down the garden path’.

Let us now consider a sentence in which several words are ambiguous, as in the sentence:
Example 7.3.14 Nadia’s plane tazied to the terminal. (Hirst, 1987, p.126)

The word ‘plane’ has several possible interpretations (e.g., plane tree, tool for smoothing
wood, geometric plane, aircraft) as a noun, and as a verb (e.g., to make smooth, to remove
by planing). ‘Taxi’ can be a noun or a verb. And the word ‘terminal’ can, at least, be
associated with computerTerminal and airportTerminal. Since ‘plane’ has a categorial
ambiguity, upon the recognition of 'plane’, I suggest that the features planeNoun and
planeVerb become candidates, eventually leading, through syntactic cues, to the detection
of the former. Once planeNoun becomes detected, it notifies all its possible interpreta-
tions. A given KB may cause the aircraftPlane to become detected as a result of a direct
path between actionTaxi and aircraftPlane. In the case of a less fluent reader who ig-
nores the fact that ‘to taxi’ specifically applies to airplanes, the path between actionTaxi
and aircraft Plane will simply be longer (e.g., actionTaxi~actionVehicleMovement—vehicle-
aircraftPlane).

The recognition of the preposition ‘to’ causes its possible interpretations to become can-
didates. However, a path between ‘to’ and actionTaxi is probably built (e.g., actionTaxi-
actionMove-movement-destination—destinationTo), leading to the disambiguation of ’to’
to destinationTo.

The recognition of *terminal’ leads to the candidacy of computerTerminal and air-
portTerminal. If ‘plane’ has been disambiguated .t-o aircraftPlane from ‘taxied’, it is
probable that either an expectation, or a path between airportTerminal and actionTaxi
or aircraft Plane will lead to the disambiguation of ‘terminal’ to airportTerminal. How-
ever, if the knowledge of the reader had not allowed for the disambiguation of ‘plane’, the
disambiguation of ‘terminal’ would probably fail, since both of its possible interpretations

can act as destinations of a movement. Consider, for example, the sentence:
Example 7.3.15 John walked to his terminal and compiled his sofiware.

Again, the word ‘terminal’ as the destination of a movement does not provide useful infor-
mation (since a passenger of an aircraft may also walk to the terminal). If, in the previous

example, the disambiguation of ‘terminal’ could rely on ‘plane’ or ‘taxied’, it seems that
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in this case ‘terminal’ will be specialized to computerTerminal using a path that would
probably involve software. Such a scenario again emphasizes the importance of having
candidacies that span a few words after their triggering input.

Another important observation with respect to disambignation is that, in IDIoT, in-
ferences are completely integrated with the quantitative detection mechanism described in

chapter 3. Consider, for example, the sentence:

Example 7.3.18 The view from the window would be improved by a plant. (Hirst, 1987,
p.126)

An inference is assumed to be required in order to disambiguate the word ‘plant’ to vege-
talPlant instead of industrialPlant. Let me briefly digress to stress that vegetalPlant
is not necessarily the adequate interpretation. For example, a rich industrialist may prefer
seeing a new factory he owns rather than some stupid vegetable that presents no inter-
est whatsoever to his pragmatic sense of esthetics! A new building may also represent an
improvement over some ugly sight. End of digression. If we assume that the sentence in
vacuo favors the vegetalPlant interpretation, then the word ‘plant’ will be disambiguated
through features and paths that capture the complex hypothesized inference.!

Referential inferences are also relevant to disambiguation, as suggested earlier. Consider

the sentence:
Example 7.3.17 The astronomer married the star.

Let us assume that some movie actress has been recently referenced. In this case, a cluster
¢ denoting this specific actress has been constructed and includes the feature actorStar.
Upon the recognition of the word ‘star’ of the example, celestialBodyStar and actorStar

both become candidates. A reference is found for actorStar in the context if ¢ is reachable

11¥or example:

1. The words ‘the view from the window’ lead to the detection of windowView and of its association
rouomLocation and of its association interiorLocation.

2. The word ‘improved’ leads to the detection of activnlmprove.

3. The fact that interiorLocation is the object of actionImprove causes the detection of interi-
orDecorativnhnprovement.

4. The path (vegetalPlant, windowOrnamanent, ornament, additionOfRoomQOrnament, interiorDecora-
tionlmprovement) is found leading to the confirmation and detection of vegetalPlant.

This proposal emphasizes the importance of generalizations using associations but is still simplistic, especially
in that it does not account for the subtleties stemming from the use of a conditional.
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and actorStar becomes detected. This strategy respects the intuition that a referemce
should eliminate the need for the disambiguation process.
Finally, I remark that for sentences (from Hirst, 1987, p-126) such as:

Example 7.3.18 I want to eliminate some moles.
Example 7.3.19 Ross was escorted from the bar to the dock.

if there is not enough information to disambiguate, then the candidacies of the possible in-
terpretations will simply expire, without making the reader aware of these multiple potential

interpretations, since there is currently no model of awareness in IDIoT.

7.4 On Idioms and Figurative Language

Some NLP models need some counterintuitive a priori warning in order to process so-called
figurative (i.e., non-literal) language. It is as though understanding required yet some more
specialized algorithms to tackle this pervasive (Lakoff and Johnson, 1980) aspect of lan-
guage that is generally ignored. From my viewpoint, there can be no a priori distinction
between a literal and a figurative interpretation, for this would imply some sort of improb-
able prescience: each reader typically produces a private interpretation without knowing in
advance what a text is about. In this section, I very briefly investigate how the problem of
figurative language can be approached with IDIoT.

Let us first consider the simplest form of idioms. (For a more detailed discussion of id-
joms, see Miezitis, 1988.) It is my opinion that lexical and structural ambiguities can often
be eliminated through an efficient processing of idioms, which, I believe, always consist in a
pattern whose global interpretation as a whole is faster than, and does not necessarily pro-
ceed from, the interpretation of its individual components. For example, conventionalized
(verb—preposition) patterns could be specified as idioms (e.g., ‘give up’, ‘fall in love’, etc.),
de facto minimizing the number of possible interpretations for both verb and preposition.
Clearly, this approach favors the word expert strategy that was previously advocated, an
exhaustive list of idioms being specified for each verb and preposition.

In IDIoT, an idiom may be specified as a feature i with the components of the idiom’s
pattern as a set of ordered triggers. Once triggered, i has its constraint(s) check for the

semantic felicity of the idiom’s interpretation in the existing context. More precisely, the
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key feature(s) of the interpretation are specified as inputs in these constraints. When an
idiom has an interpretation that cannot be derived from the individual interpretation of its
pattern’s components, success or failure in being detected involves only the constraints of the
idiom. Conversely, an idiom that can also be interpreted literally will typically be detected if
one of its constraints is satisfied before the ].ifera.l interpretation can be assembled. Idioms
very often correspond to lexical patterns. The case where such a lexical idiom can also
be interpreted literally (i.e., have an interpretation built from its components) is treated
as a lexical ambiguity with the only difference that, if we assume equal retrievability of
all relevant features, thé idiom will be a candidate sooner, as it is directly triggered by a
pattern of words that requires less time to detect than that required for assembling them
into an interpretation. Let me clarify this discussion by considering the idiom ‘to kick the
bucket’, for which I propose the following definition:

KU kickTheBucket:
constraint 1:
ordered triggers: rootKick, ’the’, ’bucket’
inputs:
actionDie has a weight of 1
exceptions:
actionKick has a weight of 1
bucket has a weight of 1
expansion:
getCluster ul governing rootKick
renameFeature rootKick to actionDie in ui
addFeature kickTheBucket to ul
getCluster ul governing ’the’
removeCluster uil
getCluster ul governing ’bucket’
removeCluster ul

This feature is essentially triggered by rootKick (i.e., the morphological stem of the verb
‘kick’) followed by the words ‘the bucket’. The input actionDjie is submitted unless it has
already been detected, in which case the constraint would be immediately satisfied. Once
actionDie is confirmed by the context, the idiom becomes detected, provided neither of its
exceptions has been detected. The expansion procedure simply takes note of the idiomatic

form of actionDie and removes the clusters associated with the words ‘the bucket’. Finally,
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the feature kickTheBucket must also be specified as an exception of actionKick and of
bucket in order to inhibit the literal interpretation. Consider, for example, the sentences:

Example 7.4.1 John kicked the bucket; the milk spilled.
Example 7.4.2 John kicked the bucket. His widow celebrated.

For both sentences, the features actionKick, bucket, and kickTheBucket will become
candidates. In the first sentence, actionDie will not be confirmed, and thus the candidacy
of the idiom will expire without success. In fact, an inference between ‘bucket’ and ‘spilled’
could probably be established, causing the detection of bucket, and thus the inhibition of
kickTheBucket. In the second sentence, a confirmation path having been built between
actionDie and ‘widow’, kickTheBucket becomes detected.

Idioms can be viewed as conventionalized figurative language, their idiomatic interpre-
tation not requiring any special treatment: in the process of becoming conventionalized by
a reader, the init¥al inferences that are made to understand them are lost and only the in-
terpretation as a whole remains. In other words, language is not static, it has a history that
is generally unknown and irrelevant to the comprehender, who is taught an idiomatic inter-
pretation as a single lexical item. If we think of figurative language usage as a spectrum,
idioms are at one end: they have been conventionalized to the point where they consti-
tute lexical items. In the middle of the spectrum we find the conventionalized metaphors
(e.g., “argument is war”, “instrument as companion”, etc., see Lakoff and Johnson, 1980)
that pervade our use of language. Finally, at the other end of the spectrum, reside today’s
novel metaphors (which may become tomorrow’s idioms). It is precisely the novelty of a
usage, with respect to an individual’s idiolect, that forces the comprehender to establish
a new inference path (which may be missed or require more time to construct due to its
complexity). |

Consider, for example, the passage:

Example 7.4.3 As a writer, John had been humiliated; his pen breathed revenge (adapted
from Hirst, 1987, p.115)

The context favors the disambiguation of ‘pen’ as ‘writing implement’ rather than as ‘female

swan’ (via a path between ‘writer’ and ‘pen’). The comprehender must also:

o Recognize the conventionalized metaphor “instrument as result” which takes a pen as

meaning a writer’s work.
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o Set the interpretation of ‘to breathe’ to ‘to mean’, ‘to express’.

e Make the link between revenge and humiliation and possibly infer a causal scenario
such as “the humiliated seeks Tevenge”.

Each of these three steps may seem quite straightforward (if not quite literal) for an ex-
perienced speaker of English.? Yet they may be quite complex for a beginner who must
either be taught the interpretation or must invest considerable time and effort in order
to construct an interpretation by herself. The immediacy of an interpretation also varies
with how well the words fit a comprehender’s conventions, as illustrated in the following

sentences:

Example 7.4.4 His pen perspires revenge.
Example 7.4.5 His pen spits nevénge.
Example 7.4.6 His pen produces revenge.
Example 7.4.7 His pen generaies revenge.
Example 7.4.8 His pen inhales revenge.
Example 7.4.9 His pen ezhales revenge.
Example 7.4.10 His pen smells revenge.
Example 7.4.11 His pen satisfies his revenge.

And, as always, in the worst eaée, the passage will be misunderstood or not understood.
The possibility for misunderstanding or not understanding increases as we move on the
axis of figurative nsages. Consider the first few lines of John Keats’s “Ode on a Grecian

Urn™:13

Thou still unravish’d bride of quietness,
Thou foster-child of silence and slow time,
Sylvan historian, who canst thus express

A flowery tale more sweetly than our rhyme.

12As a matter of fact, the two first steps are so conventional that they can be found in a dictionary or a
thesaurus.

3In: Carl Bain, Jerome Beaty, and J. Panl Hunter (eds.) (1977) The Norton Introduction to Literature,
Second edition, W.W, Norton & Company, New York.
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The interpretation will not only completely escape a ‘down-to-earth’ kind of comprehender
(e.g., how can an urn, which is inanimate object, be an unravished bride, a foster-child, an
historian?) but will also remain somewhat incomplete in the case of a reader who is not
familiar with the Rousseauist movement.

The point is that figurative language can only be defined with respect to one’s idiolect,
one’s experiences and knowledge, one’s postulates and conventions: one man’s evidence can
be another man’s mystery. In other words, figurative language ought not to be an a priori
notion but an a posteriori classification of a usage with respect to a particular individual.
From this standpoint, there is no need to hypothesize separate interpretation mechanisms:
a novel usage merely requires more complex, possibly less immediate inferences. And, in
the end, the ascription of meaning also depends on idiosyncratic acceptability, fear of losing
face, authority, power (Peckham, 1979): an individual may feel compelled to produce an
interpretation for a surrealist poem, painting, or sculpture that he considers meaningless

but that is regarded as a masterpiece by his teacher.

183



"

Chapter 8

Structural Disambiguation

8.1 Introduction to Structural Disambiguation

The problem of structural disambiguation stems from the fact that a sentence may have
several parses. For a detailed discussion of this problem, see chapter 6 of Hirst (1987). Here
is his table (ibid., p.135) summarizing attachment ambiguities in English:

e PP aitlachmeni—to noun or verb?
Ross insisted on phoning the man with the limp.
Ross insisted on washing the dog with pet shampoo.

e PP atiachmeni—io which noun?
the door near the stairs with the “Members Only” sign

o Relative clause atiachmeni—io which nounf
the door near the stairs that had the “Members Only” sign

e PP atlachmeni—io which verb or adjectival phrasef
He seemed nice to her.

o PP atlachmeni—to which verb?
Ross said that Nadia had taken the cleaning out yesterday.

o Adverd atiachmeni—1o verbd or sentencef
Happily, Nadia cleaned up the mess Ross had left.

e Participle atiachment—to surface subject or senience
Considering his situation likely to go from bad to worse, he decided to offer his
resignation.
Considering the deficiencies of his education, his career has been extraordinary.

Following is his table (ibid., p.149) of analytic a.mbigﬁities in English:

o Relative clause or complement?
The tourists objected to the guide that they couldn’t hear.
The tourists signaled to the guide that they couldn’t hear.

e Particle detection
A good pharmacist dispenses with accuracy.
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Prepositional phrase or adjectival phrase?
1 want the music box on the table.

Present participle or adjective?

Ross and Nadia are singing madrigals.
Pens and pencils are writing implements.
Present participle or noun?

‘We discussed running.

Where does an NP end?

Nadia gave the cat food.

The prime number few.

Reduced relative clause or VP#
The horse raced past the barn fell.

Determining noun group siruclure

airport long term car park courtesy vehicle pickup point
What is the subject of the supplementive?

He drove the car home undismayed.

He brought the car back undamaged.

Supplementive, restrictive relative, or verb complement?
The manager approached the boy smoking a cigar.
The manager caught the boy smoking a cigar.

Cleft or notf
It frightened the child that Ross wanted to visit the lab.

Question or command?
Have the crystals dissolved?
Have the crystals dissolved.

How is the predicate formed?
Ross is eager to please.

Ross is ideal to please.

Ross is easy to please.

Ross is certain to please.

These tables are not claimed to be exhaustive, and structural disambiguation also involves
other problems such as gap finding and filling (see ibid., section 6.2.2) as in these sentences:

Example 8.1.1 Those are the boys that the police debated about fighting.
Example 8.1.2 Mary is the student whom the teacher wanted to talk to the principal.

Structural ambiguities can involve categorial ambiguities and can lead to a garden-path
phenomenon, as one will have probably experienced by reading some of the previous exam-
ples. Also, it is generally accepted that a sentence that presents such an ambiguity has a
preferred parse. However, Lenhart Schubert (1986) remarks that a discussion of preferences
often degrades to a battle of “partisan informants”, who often do not even agree on whether
a sentence is ‘confusing’ or not. A review of current theories for this problem can be found

in Hirst (1987, section 6.3) who concludes:
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There is at present no agreement on any general principles that can be used for dis-
ambiguation. It seems clear, however, that knowledge from several different sources is
used.

For example, most of the studies on attachment decisions originate in the principles of Right

Association and of Minimal Attachment, which are purely syntactic (McRoy, 1988, p.6):
The principle of Right Association states that optimally, terminal symbols will be at-
tached to the lowest non-terminal node that is on the right-most branch of the current
structure; that is, they will be grouped with the terminal symbols immediately to their
left. ... Minimal Attachment, ... requires that optimally a terminal symbol is to be at-
tached into a parse tree with the fewest possible number of new non-terminal nodes
linking it with the nodes already in the tree.

The principle of Lexical Preference, which, in essence, states that lexical verbs and
other lexical items may prefer one pattern of complementation to another, also plays an
important role in recent discussions on attachment priorities. Against the syntactic trend,
Yorick Wilks (1975, et al. 1985) argues for a more semantic version of lexical preferences,
in which preferences correspond to selectional restrictions. Both Hirst (1983, 1987) and
Schubert (1986) offer models that synthesize all these factors. Let us very briefly overview
each of these two models.

Hirst suggests the use of a Semantic Enquiry Desk (SED), which is systematically con-
sulted by his Paragram parser for assistance with prepositional phrase attachment and gap

finding in relative clauses. The SED requires (Hirst, 1987, p.167):

e An annotation on each verb sense as to which of its cases are ‘expected’ (COMPUL-
SORY, PREFERRED, or UNPREFERRED).

o A method for deciding on the relative plausibility of PP attachment.

o A method for determining the presuppositions that would be engendered by a partic-
ular PP attachment, and for testing whether they are satisfied or not.

o A method for resolving the issue when the strategies give contradictory recommenda-

tions.
For the second requirement, Hirst observes (1987, p.168) that:

In the most general case, deciding whether something is plausible is extremely diffi-
cult.... However, there are two easy methods of testing plausibility that we can use
that, though non-definitive, will suffice in many cases. The first of these, ... is the slot
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restriction predicates. ... While satisfying the predicates does not guarantee plausibil-

ity, failing the predicates indicates almost certain implausibility. The second method is

what we shall call the EXEMPLAR PRINCIPLE: an object or action should be con-

sidered plausible if the knowledge base contains an instance of such an object or action,

or an instance of something similar.
For the third requirement, the SED relies on a referential heuristic that is very close to the
second method of plausibility testing. Hirst develops specific decision algorithms for the
fourth requirement (ibid., pp.173-174). These a priori rules ignore inferences, context, and
pragmatics. A full discussion of the SED and of its results can be found in Hirst (1987,
chapter 7).

Schubert’s approach to PP attachment is a lot more sketchy, involves numerically

weighted preferences, and also allows for trade-offs among syntactic and semantic/pragmatic

preferences. The model relies on the following six principles (1986, pp.601-602):

1. A graded distance effect: Immediate constituents of a phrase prefer to be close to
the head lezeme of the phrase. The effect is mediated by an ‘expectation potential’
that decreases with distance from the head lexeme and increases with constituent size;

as a result, larger constituents admit larger displacements from the head lexeme.

2. A rule of habituation effect: There is an inhibitory potential or ‘cost’ associated
with each phrase structure rule (including lexical rules), leading to a preference for
low-cost rules over high-cost rules.

3. Inhibition by errors: ‘Mild errors’ such as concord errors contribute inhibitory
potentials to the phrases in which they occur.

4, Salience in context: The potential of a word sense or phrase is high to the extent

that the denotation of that word sense or phrase is salient in the current context.

5. Familiarity of logical-form pattern: The potential of a phrase is high to the
extent that its logical translation instantiates a familiar pattern of function-argument

combination.

6. Conformity with scripts/frames: The potential of a phrase is high to the extent
that it describes a familiar kind of object or situation (such as might be specified in

a script or frame).
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The first two principlgs are taken to capture syntactic preferences, and the others, semantic
and pragmatic effects. In particular, the fourth principle “is intended to allow for semantic
priming by spreading activation” (ibid., p.602).

Closest to the modus operandi of time-constrained memory, Susan McRoy (1988) pro-
poses a psychologically plausible model of parsing that provides a good account of memory
constraints, sentence complexity, structural preferences, and verb-frame preferences. The
model, which is based on the Sausage Machine Model (Frazier and Fodor, 1978; Fodor and
Frazier, 1980) employs a principled theory of grammar (such ag the theory of Government
and Binding, see Chomsky (1982)), concurrently processes syntax and semantics, and uses
estimated timing information to resolve conflicting preferences. Both McRoy’s work and
mine are based on the fundamental idea of viewing comprehension as a race process. A
most important difference between our two models resides in the fact that IDIoT has a
strong connectionist flavor to it whereas McRoy’s parser is algorithmic and symbolic.! Also,
the role of time in her work is limited to atiachment hypothesizers (McRoy, 1988, pp.40-
42) used to choose between conflicting preferences. As argued throughout my thesis, time
plays a much more pervasive role in time-constrained memory and, ultimately, linguistic
comprehension. And finally, McRoy’s research focuses on the parsing of single sentences,

not inference.

8.2 Structural Disambiguation with IDIoT

As with the rest of part 2, my goal in this section is not to propose a solution to the
problem of structural disambiguation, but rather, to suggest how time-constrained memory
emphasizes some of the quantitative aspects of this problem that are generally ignored when
the ‘correct’ interpretation is always sought. Let me start with two preliminary comments
on the existing research.

First, I agree with Hirst and McRoy in acknowledging that structural disambiguation
(hereafter, SD) involves several sources of knowledge. Hence I discard both purely syntactic
or semantic approaches to SD, and focus instead on the syntheses proposed by Hirst and
Schubert. As a matter of fact, I strongly disagree with solutions that assume and depend on

1The symbolic rules and mechanisms required by McRoy to implement her grammar are replaced in
IDIoT by the modus operandi of Knowledge Units in {ime-constrained memory and by the restricted lan-
guage of the expansion procedures of these KUs.
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a syntax-first strategy and/or a particular parser with specific data structures, operations,
and limitations (e.g., Marcus, 1980). Consequently, in the framework of a trivial algorithm
where all qualitative rules (including syntax, semantics, pragmatics, inferences, etc.) are
uniformly processed rather than artificially separated, I see no reason to discuss purely
theoretical parse trees and complex hy'pofhetica.l parsers.

Second, when considering the questionnaire used by Schubert (1986, p.605) to quiz his
informants?, and the debate surrounding “partisan informants”, I am not only reminded of
Spiro’s (1980) and Dillon’s (1980) warnings on the artificialness of such experiments, but
also disappointed by the fact that the idiosyncratic nature of comprehension, which should
be acknowledged from the term ‘preference’ and from the debate surrounding Schubert’s
results, is completely ignored.

The fundamental hypothesis with respect to IDIoT’s treatment of SD is that there is
no need to postulate separate mechanisms and algorithms but, on the contrary, that dis-
ambiguation, if it occurs, will proceed from the same processes as those assumed for lexical
disambiguation. In other words, I claim that the mechanisms of time-constrained memory
suffice for the specification of the rules used by an individual to solve structur.al ambiguities.
(As mentioned earlier, there is no need to hypothesize the set attrition mechanism proposed
by Haddock (1987).) And again, I repeat that my goal is not to specify a correct set of such
rules but to illustrate IDIoT’s ability to capture these rules.

Time-constrained memory seems well-suited to implement a model of SD which amal-
gamates some facets of the proposals of Hirst and Schubert while respecting the philosophy
of Small’s (1980, 1983) word experts. I develop this model below, briefly focusing on the
differents problems of SD from an abstract viewpoint, rather than with respect to specific
examples.

Let us consider, in some detail, the problem of atta.clunént. Put in a simplistic way,
a word z needs to be attached to some other element of the context, which will be called
the ‘hook’ for z. Prepositional phrase attachment consists in hooking the preposition that

3The questionnaire asked one to read the test sentence “at normal speed” and to “immediately” answer
the question that followed it “as honestly as one could” (my italics). The answers one had to choose from
requested that one decide whether one became self-conacious of an ambiguity, or of a need to reanalyze, or
of a plausibility judgment, or unconsciously obtained the correct interpretation.

SWith each of his test sentences, Schubert gives a fraction that shows the proportion of subjects who
reported initially arriving at an anomalous reading. These fractions vary from 24 percent to 90 percent and
are typically rejected by Wilks et al. (1985).

189

-n



starts the PP; relative clause attachment, the relative pronoun that starts the clause; adverb
attachment, an adverb by itself; and participle attachment, the participle that starts the
subordinate proposition. From this perspective, the problem of attachment can be seen as
consisting in the lexical disambiguation of the word z to be hooked.

Given that lexical disambiguation in IDIoT is a time-constrained process, it is possible
that z be left ambiguous at the end of its candidacy, an alternative seldom implemented in
the existing models. Consider, for example:

Example 8.2.1 John insisied on drying the dog with a scarf. (adapied from Hirst, 1987)

Since ‘drying with a scarf’ and ‘dog with a scarf* are both more or less plausible, the
preposition ‘with’ could be left ambiguous unless contextual evidence caused one of the
two possible interpretations (namely withInstrument and withAttribute) to become
detected. Similarly, consider:

Example 8.2.2 He seemed nice to her. (Hirst, 1987, p.135)

This sentence is ambignous unless the context is taken into account. In IDIoT, ‘taking
into account the context’ simply means having the possibility of constructing one or more
confirmation paths to the reachable clusters of short-term memory. Also affects the use of
rules: certain rules of disambiguation may be less retrievable than others at a given point
in time. _

If we assume that z can be hooked, then we must consider the nature of this hook. Recall
that from my standpoint, syntax is mostly irrelevant by itself in that it merely constitutes
a mechanism to speed up the recognition of certain semantic cues. Also, it is generally
accepted that the principles of Right Association and Minimal Attachment do not offer,
by themselves, an adequate solution to the problem of attachment: semantics are required
for attachment (Hirst, 1987, section 6.3). Consequently, as with lexical disambiguation, I
suggest abandoning the quest for principles, which always seem to admit counterexamples,
in favor of the ‘word expert’ approach advocated by Small (1983). This strategy completely
agrees with viewing attachment as consisting in the lexical disambiguation of the hook.
From this standpoint, principles are not banished but merely reify a disambiguation tactic

that some, if not most, word experts will adopt. However, each individual word expert

4For example, Scottish terriers are often depicted with scarfs.
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need not plead allegiance to these principles: individual lexical idiosyncrasies, in fact, each
rule their domain, the monarchy of principles simply being a convenient illusion that is
acknowledged or ignored. Moreover, IDIoT’s underlying time-constrained memory allows
for a more or less direct implementation of Schubert’s (1986) first two principles, which he

assumes to capture syntactic preferences for attachment decisions:

o In IDIoT the idea that the immediate constituents of a phrase prefer to be ‘close’
to the head lexeme of this phrase can be correlated to the fact that features that
will be attached to a cluster need to be detected ‘close’ (in time) to the feature that
causes the construetion of the cluster. Otherwise, it will become unreachable and the

attachment will not be possible.

e The notion of an ‘expectation potential’ that decreases with distance from the head
lexeme can be directly captured using IDIoT’s expectation mechanism, where the
chances of detecting an expectation decrease with respect to time, and thus, as more
inputs are processed (the number of processed inputs defining Schubert’s notion of

‘distance’).

e The combination of IDIoT’s reachability and expectation mechanisms can capture
Schubert’s idea of a constituent’s trade-off between wanting to be close to its head
lexeme (in order to insure the reachability of the latter), and becoming expected
(due to the detection of the head lexeme), which allows this constituent (because of
the possible greater time-span of an expectation over a ‘normal candidacy’) to be at a

greater ‘distance’ (in terms of the time between the two detections) of its head lexeme.

o The retrievability coefficient of each KU, and thus of each user-specified rule and
preference, handles Schubert’s rule habituation effect: the less frequent (i.e., the
more ‘expensive’ to retrieve) a rule or preference is, the less chance it has of beiag

considered.

I observe that, if Schubert’s first two principles do capture syntactic preferences®, then

such preferences can be explained, in IDIoT, from a strictly quantitative point of view.

5Schubert’s approach is still too sketchy to explain why the following examples (from Hirst, 1987, sec-
tion 7.2.1), the first two of which are ungrammatical, are intelligible, implying the reader’s ability to make
the appropriate attachment(s):

o Nadia for his birthday gave her secretary a gyroscope.
e Nadia gave her secretary for his birthday a gyroscope.
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Moreover, the relevant quantitative mechanisms are not fitted to the problem at hand but,
quite on the contrary, are designed totally independently from any qualitative consideration,
reinforcing my claim that the strictly quantitative modus operandi of a time-constrained
memory pervades linguistic comprehensién.

Schubert’s three remaining semantic principles of salience in context, familiarity, and
conformity (with schemas) are also accounted for in IDIoT:

s Confirmation paths can only be built from a candidate to the reachable context.
¢ Familiarity is captured by the retrievability coefficients of the relevant features.
o Conformity with schemas can be handled with expectations (Dyer, 1983).

The point is that the quantitative facets of time-constrained memory can basically account
for all facets of at least one model for attachment decisions, while still viewing such a decision
as consisting in the lexical disambignation of the word to be hooked. However, Schubert’s
model being sketchy, it does not address some of the semantic tasks that Hirst assumes
to be necessary for attachment decisions, namely, pla.usibi]it}; judgments, presupposition
identification and testing, and trade-off rules for when the strategies give contradictory
recommendations. How do these tasks fit IDIoT’s approach to attachment?

Plausibility judgments are reduced in Hirst’s work to two separate processes, namely,
selectional restrictions and the examplar principle (see previous section). Selectional re-
strictions form an important facet of lexical disambigunation and have been discussed when
considering the sentence “The sailor ate the submarine” in the previous chapter. With
respect to attachment, these restrictions would simply allow for the confirmation of one of

the possible interpretation of the hook. For example, consider:
Example 8.2.8 Ross loves the girl with a passion. (Hirst, 1987, section 71.2.4)

I propose the following scenario: From the co-occurrence of actionLove and withPrepo-
sition (respectively triggered from the words ‘love’ and ‘with’), the feature lovesWith

becomes a candidate. Its detection requires that the cluster corresponding to the noun

o The gyroscope for Nadia’s secretary gave him great pleasure.
e Nadia gave the secretary on the second floor a gyroscope.
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phrase associated with the preposition (in this case, ‘a passion’) include the feature man-
nerQuality. This tactic implements the selectional restriction that states that ‘with’ can
be attached to ‘love’ “only as the MANNER case, but requires the filler to be a manner-
quality” (ibid.). The detection of withPreposition also triggers the possible semantic
interpretations of ‘with’ including withAttribute whose detection attaches the PP to the
preceding noun for which it constitutes an attribute. A cluster with feature mannerQual-
ity is then constructed as a result from the processing of the words ‘a passion’. At this point
in time, the buildable feature loveWith has its restriction satisfied and becomes detected.
The candidacies of the other interpretations of ‘with’ could be inhibited or left to expire on
their own.

If the sentence (adapted from Hirst, 1987, section 7.2.4) were:
Example 8.2.4 Ross loves the girl with the brown eyes.

then loveWith would never become detected. Instead, ‘eyes’ being an attribute of ‘girl’, the
feature withAttribute would eventually be detected, without any plausibility judgment
based on what I would call the ‘referential felicity’ of the string ‘the brown eyes’ with respect
to ‘the girl’. Hirst instead suggests the examplar principle to make a plausibility judgment
on the NP-PP attachment: if a reference to ‘girl with the brown eyes’ (or something ‘similar’)
is found in the KB, then plausibility is granted and attachment can proceed. From my
viewpoint, plausibility judgments are so problematic® that attachment should not rely on

them. For example, if the sentence is:
Example 8.2.5 Ross loves the girl with purple polka dot eyes.

then the relative implausibility” of such eyes should not prevent attachment to ‘girl’. Sim-
ilarly, I minimize the importance of testing for presupposition satisfaction for attachment

decisions. Consider, for example:

Example 8.2.8 John loves the ocelot with the blue chipmunk. (adapted from Hirst, 1987,
section 7.2.5)

Let me quote at length Hirst’s (ibid.) description of the relevant presuppositions:

$Implausibility is seldom perceived by the reader in the fictive worlds invented by authors (Graesser and
Clark, 1985, subsection 1.3.5).

"In its nnending quest for a better life in the civilized world, technology now brings us contact lenses to
modify the colour of our iris.
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First, a definite NP presupposes that the thing it describes exists and that it is available
in the focus ar knowledge base for felicitous (unique) reference; an indefinite NP presup-
poses only the plausibility of what it describes. Thus, ‘e blue chipmunk’, presupposes
only that the concept of a blue chipmunk is plausible; ‘the blue chipmunk further pre-
supposes that there is exactly one blue chipmunk available for ready reference. Second,
the attachment of a PP to an NP results in new presuppositions for the new NP thus
created, but cancels the uniqueness aspect of the referential presuppositions of both
constituent NPs. Thus, ‘the ocelot with the blue chipmunk’ presupposes that there
is just one such ocelot available for reference (and that such a thing is plausible); the
plausibility and existence of an ocelot and a blue chipmunk continue to be presup-
posed, but their uniqueness is no longer required. Third, the attachment of a PP to a
VP creates no new presuppositions but rather always indicates new (unpresupposed)
information.

Haddock’s (1987) approach to such complex definite NPs has already been criticized in
section 6.2. In IDIoT, I propose that the preposition ‘with’ is attached to the NP ‘the
ocelot’ without any plausibility judgment or presupposition testing on ‘the blue chipmunk’,
‘the ocelot’, or ‘the ocelot with the blue chipmunk’. I do, however, recognize the impoi’ta.nce
of ‘referential felicity’ and of Hirst’s exemplar principle, a simple version of which can be
implemented using the referredNP feature discussed in section 6.2. Let me elaborate
by sketching a possible scenario for the last example. For clarity and simplicity, let us
assume that the context ‘talks’ of a nursery in a zoo where feline cubs are placed with
smaller animals to play with, but that there is no explicit reference to either an ocelot or
a chipmunk. Let us also postulate that attachment will result from the detection of the
feature withColocation (which captures a co-location relation between its two arguments).

After reading the string ‘the ocelot’, a cluster z is constructed for it and the buildable
feature referred NP becomes a candidate (see section 6.2). Since it is assumed there is no
earlier reference to an ocelot, this candidacy will fail. Conversely, if such a reference existed
and was reachable, then referred NP would immediately become detected and z would be
replaced by this reference. And, if there was a reference to ‘an ocelot with a blue chipmunk’,
the matching process woul.d succeed because referredNP uses a findInclusiveReference
instruction. Again z would be replaced by this reference.

The recognition of the word ‘with’ leads to the candidacy of all possible interpretations
of ‘with’ (including withAttribute and withColocation). A cluster y is then constructed
for the NP ‘the blue chipmunk’ and a new referredNP candidacy starts for ‘the blue chip-
munk’. Again, since it is assumed there is no earlier reference, this candidacy will fail. If a
specific and reachable reference to a blue chipmunk existed, then y would be replaced by it.

The context having suggested the co-location of animals, the feature withColocation is
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eventually detected, and other relevant candidacies expire or are inhibited. The execution
of this feature’s expansion procedure causes y to become a subcluster in z, governed by fea-
ture colocation. To reflect that the attachment of y to z forms a new noun phrase, a new
candidacy of referredNP would be triggered as a result of the detection of withColoca-
tion. This third consecutive candidacy of referred NP would succeed if a reachable cluster
describing an ocelot co-located with a blue chipmunk could be found. However, since it is
assumed no such reference exists, this candidacy will also eventually fail.

In summary, the attachment is realized through the disambiguation of ‘with’, without
considering plausibility or presuppositions. However, the referential felicity of each relevant
presupposition is tested by means of the repeated candidacies of referred NP, This strategy,
which restricts the search for a reference to reachable clusters during a short interval of
time, seems psychologically more plausible then a search over a complete KB (as seems
to be required by the exemplar principle). Finally, in the case of indefinite noun phrases,
there is no referential check, as referred NP is simply not triggered. This approach is still
simplistic and the user may wish to specify features that would account for the subtleties
of de re versus de dicto readings.

Last, Hirst develops (1987, subsection 7.2.6) an algorithm that defines priorities for
making attachment decisions when the results of verb expectation and presupposition and
plausibility testing do not agree. This algorithm is limited to clauses with one VP and one
NP, and does allow some counterexamples (ibid., p.191). Similar priorities could be imple-
mented in IDIoT by either making less probable attachment rules less retrievable (an idea
similar to Schubert’s principles) and/or by specifying triggers for the less probable rules
that would insure that more probable alternatives have been considered. However, since
IDIoT favors an approach to attachment that does not rely on plausibility or presuppo-
sition, but rather on the lexical disambiguation of the hook, it seems that such a complex
scheme is not necessary: the retrievability of the rules used to disambiguate the hook, and
the expectations and context that affect such a disambiguation should generally suffice. In
other words, in IDIoT, the complexity of attachment decisions is shifted from a priori pro-
cedures to user-specified rules. Furthermore, an attachment decision does not necessarily
have to be made. Consider, for example, the following sentence, which is generally taken to

be ambiguous:
Example 8.2.7 Nadia saw the man in the park with the telescope. (Hirst, 1987, p.175)
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At least, the ‘with the telescope’ PP should probably be left ambiguous, that is, either
unattached or attached to ‘saw’, ‘man’, and ‘park’. In other words, in the case of an
ambiguity, no actual disambiguation should occur unless desired (and thus, set up by pref-
erences) by the user. And, as with lexical ambiguities, capturing the perception of the
different alternatives of such an ambiguity would probably require a theory of awareness.

Finally, the proposed approach to the problem of attachment favors a word-expert strat-
egy, disambiguation features being associated with hooks and with any juxtaposition fea-
tures involving the hooks (e.g., feature loveWith). Such an approach carries over to other
problems of structural disambiguation. Consider, for example, the last problem of Hirst’s
list of analytic ambiguities (see previous section) and its associated examples, which are
repeated below (Hirst, 1987, p.149):

1. Ross is eager to please.
2. Ross is ideal to please.
3. Ross is easy to please.
4. Ross is certain to please.

In each sentence, disambiguation can only proceed from the specific characteristics of the
attribute and its possible path to both ‘Ross’ and ‘to please’. Similarly, the problem of

deciding between a relative and a complement in the sentences (ibid.):
1. The tourists objected to the guide that they couldn’t hear.
2. The tourists signaled to the guide that they couldn’t hear.

respectively involves the word experts associated with ‘objected’ and ‘signaled’. In fact,
when studying Hirst’s list of analytic ambiguities in English, one can identify the following

factors that must be considered:
e Word experts (e.g., relative clause or complement?).
e Syntactic restrictions (e.g., a verb is required in the particle detection example).
¢ Context (e.g., prepositional phrase or adjectival phrase?) .

o Inference (e.g., what is the subject of the supplementive?).

196



o Importance of time-constrained memory (e.g., garden path effect in reduced relative

clause or VP? and determining noun group siructure).
o Idioms (e.g., “lay down the law™).

My claim is that all these factors can be accounted for in IDIoT’s approach to comprehen-
sion, as suggested in this second part of the dissertation.

8.3 Examples of Structural Disambiguation with IDIoT

Let us focus on the problem of PP attachment. Consider the sentence:
Example 8.3.1 The women discussed the tigers on the beach. (Hirst, 1987, p.175)

From my viewpoint this sentence can be ambiguous and the disambiguation of ‘on’ will
depend on the retrievability of the different possible interpretations and on the context.
The same holds for:

Example 8.3.2 The women discussed the dogs on the beach. (ibid.)

for which Hirst prefers the NP-attachment. To illustrate the importance of context and

inference, consider the following passages:

e Feature NP-attached: After supper, the two couples moved to the living room. The
men talked about baseball. The women discussed the dogs (or tigers) on the beach

that were causing so much trouble with the tourists that summer.?

e Feature VP-attached: The women discussed the dogs (or tigers) on the beach, while
sunbathing, and then went to the cottage to talk about the children.?

Let us develop a possible simple scenario for each of these examples. (A more complex
attachment scheme, which recognizes forced attachment to an NP or to a verb, has been
developed with the current prototype of IDIoT.) For both passages, the ambiguous prepo-

sition ‘on’ is assumed to lead to the candidacy of its possible interpretations including

81f this scene takes place in some exotic paradise or fictive world, the ‘tigers on the beach’ is as likely and
as much a problem for tourists as ‘dogs on the beach’.

®]f these women are (or are close to) breeders, zoo keepers, etc. or love (or possess, etc.) exotic pets,
then tigers are as likely a conversation topic as ‘dogs’.
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onActionLocation and onObjectLocation, which respectively capture the verb attach-
ment (i.e., action performed in a specific location) and the noun attachment (i.e., object
existing in specific location). Here are possible definitions for these features.

For feature onActionLocation:

constraint 1:
triggers: actionVerb, onPreposition
exceptions: <all the other interpretations of ’on’>

expansion:
getCluster ul governing actionVerb
testAbsencelf locatien in uil
getCluster u2 governing onPreposition
getCluster u3 governedBy nounPhrase0fPP in u2
testPresencelf location in u3
addFeature location in ul
addSubCluster u3 to location in uil
removeCluster u2

Unordered triggers are used so that attachment to the verb is not limited to the case where
the PP follows the verb. The expansion procedure first checks that the verb does not have
a specified location. If it does, the procedure fails. Otherwise, the noun phrase of the PP
is checked for the feature location. If it has it, then attachment to the verb occurs. The ,
cluster associated with the preposition in itself is eliminated since its semantic function has
been captured by the feature under which the attachment is placed (in this case, location).
This strategy can be applied to any preposition.
For feature onObjectLocation, the definition is quite similar:

constraint 1:
ordered triggers: NP, onPreposition
exceptions: <all the other interpretations of ’on’>

expansion:
getCluster ul governing NP
testPresencelf object in ui
getCluster u2 governing onPreposition
getCluster u3 governedBy nounPhrase0fPP in u2
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testPresencelf location in u3
addFeature location to ul
addSubCluster u3 to location in ul
removeCluster u2

For this feature, triggers are ordered, since attachment requires that the PP follow the NP
to which it is attached. Also, in the expansion procedure, ul will be bound to the most
reachable NP, that is, the NP that immediately precedes the PP.

A scenario for the first passage follows:

1. In the first sentence, the word expert for actionMove concludes that the subject
(i-e., the two couples) of actionMove end up in in the living room. More precisely, the
detection of actionMoveToLocation causes the cluster associated with the subject
to add the feature location that is set up to govern the cluster associated with the

living room.

2. In the second sentence, an inference path is built between ‘the men’ and the previously

. processed ‘the two couples’ to recognize the implicit reference.

3. From the detection of this implicit reference, another rule deduces that the two argu-

ments of this reference are still in the same ‘time frame’ 1°.

4. Since the two arguments of the reference are in the same time frame, yet another rule
infers that the action performed by the men (i.e., actionTalk) occurs in the current
location of the men, that is, through the reference, the living room. The feature
location is added to the cluster of actionTalk and is made to govern the cluster

associated with the living room.

5. In the third sentence, the same rules lead the reader to infer that the action performed
by the women (i.e., actionDiscuss) occurs in the current location of the women, that

is, the living room.

6. The words ‘the dogs’ or ‘the tigers’ lead to the construction of an NP cluster that be-

comes the direct object of actionDiscuss. The word expert associated with ‘discuss’

10This inference involves the ‘tense rules’ of English, which allow a reader to perceive a change or an
absence of change in narrative time. The notion of ‘tense rules’ and of ‘time frame’, which are taken to be
crucial to text interpretation, are discussed in section 9.2.
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10.

then substitutes feature topic for feature directObject in the actionDiscuss clus-
ter. More specifically, the co-occurrence of actionDiscuss with a direct object leads
to the detection of the feature actionDiscussWhat which makes the direct object
cluster associated with actionDiscuss its ‘topic’ by making the direct object cluster
become a subcluster of actionDiscuss governed by feature topic. The processing
of ‘the dogs’ or ‘the tigers’ also leads to the candidacy of referredNP through the
detection of the NP feature. For simplicity, this candidacy is assumed to fail.

. The word ‘on’ leads to the detection of onPreposition, which triggers the candidacy

of all its possible interpretations. The feature prepositionNP becomes expected.

- The words ‘the beach’ lead to the construction of an NP cluster. Through this process,

the feature prepositionNP is triggered and becomes detected since it was expected.
As a consequence, feature NP is replaced by feature nounPhraseOfPP in the cluster
constructed from the processing of ‘the beach’, and this cluster is made a subcluster
of the cluster constructed for ‘on’ under feature NP-PP. In other words, the cluster
resulting from the processing of the words ‘the beach’ is attached to the preposition

‘on’.

. Since the cluster of actionDiscuss does have feature location, the testAbsenceOf

instruction of its expansion procedure systematically fails. Consequently, the candi-
dacy of onActionLocation never succeeds. All other possible interpretations of ‘on’,

except onObjectLocation, also fail from a lack of evidence.

The candidate onObjectLocation becomes detected if it finds the feature location
in the NP cluster it governs. In the example, the processing of the word ‘beach’ does
lead to the construction of a cluster that includes feature location in order to capture
the fact that a beach is a location. Thus, onObjectLocation has enough information
to become detected but must wait, due to the exceptions of its triggered constraint,
to the end of its candidacy at which point it becomes detected. This detection results
in the cluster denoting the beach to become a subcluster of the cluster associated
with the ‘dogs’ or ‘tigers’, under feature location. In other words, the detection of
onObjectLocation attaches ‘the beach’ to the noun phrase which precedes it, under

the feature location.
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This scenario can be complicated xf we assume a probable syntactic expectation resulting
from a semantic observation: a path could be built between ‘talked about’ and ‘discussed’
detecting a similar action. Since the complement of “talked about’ was a topic, it is possible
that the reader may expect the .complement of ‘discussed’ to be treated, if possible, as a
topic, and therefore, as an NP. In this case, the parsing of ‘the (dogs or tigers) on the beach’
as an NP is favored through this expectation, and only those interpretations of ‘on’ that
correspond to an NP-attachment become candidates.

The features onObjectLocation and onActionLocation are simplisticand somewhat
inadequate for the more complex second passage. Let us assume instead that the word ‘on’
triggers more general interpretations of the preposition, such as onTime and onLocation,
reflecting the different possible semantic functions of the preposition. The detection of
these features depends on the NP that follows the preposition. Another set of features is
used for the attachment of the PP to other parts of the clause. For example, onLocation
triggers the candidacy of locationNPAttachment and locationVPAttachment, which
respectively attach any location PP to an immediately preceding NP, and any location PP
~ to the verb of the clause. The definitions for these features are similar to those proposed
above for onObjectLocation and onActionLocation. Also, it is possible that even more
general features such as attachPPToNP and attachPPToVP, which would work for any
type of PP, could be used (as is the case in the KB of the current prototype). This approach
has the advantage of still respecting the ‘word expert’ philosophy by using a first stratum
of features that handle the different semantic functions of a preposition, while modularizing
attachment decisions in features not dependent of the particular prepositions but rather
associated with general semantic categories (e.g., time, location, etc.).

A possible scenario that uses this more complex disambiguation scheme for ‘on’ follows:

1. The processing of ‘dogs’ or ‘tigers’ leads to a cluster in which those animals are the

topic of actionDiscuss.

9. The word ‘on’ leads to the candidacy of the possible interpretations of its semantic

function (e.g., onLocation, onTime, etc.).

3. The words ‘the beach’ leads to the construction of a cluster that captures the fact
that a beach is a location. This cluster is attached to the cluster constructed from

the processing of ‘on’. Feature onLocation becomes detected and triggers the can-
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didacy of locationNPAttachment and locationVPAttachment. The feature
unattachedPP is placed in the cluster corresponding to the PP in order to indi-
cate the fact that the PP is not currently attached. This feature is deleted from
the PP cluster when attachment features such as locationVPAttachment become
detected.

4. Both of these features may have enough evidence to become detected but must wait
until the end of their candidacy, as other possible interpretations are specified as
exceptions. This situation captures the structural ambiguity at that point of the

processing.
5. The features corresponding to ‘while’ become detected.

6. The features corresponding to ‘sunbathing’ become detected. Through the use of
‘while’, it is inferred that actionDiscuss and actionSunbathe occur in the same
time frame and in the same location. A unique cluster with feature unspecified is

constructed and made a subcluster of both verbs under feature location.

7. The co-occurrence of ‘beach’ in an unattached location PP and of actionSunbathe
triggers the inference that the subject of sunbathing performs this action on the beach
(which belongs to the time frame of actionDiscuss). In order for this inference to
become detected, it is required that the beach and the sunbathing be in the same
time frame, which is the case. Thus, it is inferred that the sunbathing occurs on the
beach. More precisely, the co-occurrence of ‘beach’ and action Sunbathe triggers a

buildable feature sunbatheOnBeach whose expansion procedure checks that:

e The word ‘beach’ belongs to an unattached location PP. This check is performed
by testing for the presence of unattachedPP and location in the cluster asso-
ciated with the PP.

o The unattached PP and actionSunbathe are in the same time frame (which can

be thought of as a cluster whose subclusters under feature cooccurrentFacts

are the individual actions that occur in this time frame, see chapter 9).

Since these checks are satisfied, sunbatheOnBeach becomes detected. It does not

modify the context through its expansion procedure, but has locationVPAttach
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as an association. Thus, locationVPAttach becomes detected upon receiving the
signal from sunbatheOnBeach. The unattached PP is attached to actionSunbathe
under feature location and replaces the previous ‘unspecified’ cluster. Also, other

possible interpretations of ‘on’ are inhibited.

8. Since the location subcluster of the actionDiscuss cluster is bound to the location
subcluster of actionSunbathe, the attachment to actionSunbathe de facto real-
izes the attachment to actionDiscuss. In other words, the structural ambiguity is

resolved by an inference.

In fact, the inference that the sunbathing occurs on the beach can be erroneous: the women
could discuss ‘the dogs on the beach’ while sunbathing in their garden. If a reader does not

make this inference, then the following scenario could continue the previous one:
1. The words ‘and then’ are processed leading the reader to infer a change of time frame.

2. The words ‘went to the cottage’ are processed, leading the reader to perceive a change
in location for the new time frame. I suggest that it is at this point that the verb
attachment can occur. A change of location seems to imply that a previous location
was specified. H this isn’t the case, and there is an unattached location PP in the

previous time frame, then locationVPAttach becomes detected.

In the example, the detection of a change of time and location would expect that
the actions of the previous time frame should have a location cluster. A check
to this effect, triggered by this change in location and time and performed by (the
expansion procedure of) feature needVPLocationInPreviousFrame, reveals that
they do not, leading to the candidacy of feature findVPLocationInPreviousTime-
Frame. This feature becomes detected if an unattached location PP can be found
in the previous time frame. The detection of this feature causes the detection of its
association locationVPAttach. In other words, in the example, the detection of
findVPLocationInPreviousTimeFrame leads to the resolution of the structural
ambiguity.

The two proposed scenarios not only illustrate IDIoT’s treatment of attachment decisions as
a lexical disambiguation problem, but also, and most importantly, suggest the omnipresent

and complex role of context and inference for linguistic disambiguation. There are still
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some drawbacks: For example, if no evidence favors either noun or verb attachment, then
the user must specify either an order of preference or the detection of an ambiguity. Let us

consider an example:
Example 8.8.3 The women discussed the dogs at breakfast. (Hirst, 1988, p.175)

Hirst states that his system incorrectly attaches ‘at’ to ‘the dogs’ “because the subtle im-
plausibility of the dogs at breakfast as a topic of conversation is not detected™ (ibid.).
In IDIOT, since plausibility judgments are not used per se, the NP-attachment must be
prevented some other way, most likely through an inhibition path that detects this implau-
sibility.

As another example, consider the similar sentence:
Example 8.3.4 The women discussed the bums at the train station.

Out of context, this sentence is ambiguous: the women can be in their garden, talking about
the bums of the train station, or can be at the train station, discussing bums in general, or
can be at the train station discussing the bums of the train station. I leave it to the reader
to invent passages in which each of these possibilities would be favored.

Here are some other examples handled by the current prototype of IDIoT that mix PP-
attachment with reference resolution:

e Example 8.3.8 John watched the rabbit in the park.

Double attachment of the PP, that is, to the VP and to the NP ’the rabbit’.

. Example 8.3.6 John watched the bench in the park.

Preference defined between ‘bench’ and ‘park’ leads to NP-attachment only.

e Example 8.3.7 R1I is a rabbit in a hat. John watched the rabbit in the hat.

Reference found for ‘the rabbit in the hat’ blocks VP-attachment.

e Example 8.3.8 John watched the rabbit with the telescope.

Double attachment.

o Example 8.3.9 John watched the planet with the telescope.

Preference defined between ‘planet’ and ‘telescope’ leads to NP-attachment only.
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» Example 8.3.10 R! is a rabbit. R2 is a rabbit. John watched the rabbit with the
hat.

No reference resolution, but preference to attach to the NP.
e Example 8.8.11 R! is a rabbit with a telescope. John waiched the rabbit with the
telescope.

Reference found for the NP prevents VP-attachment.

¢ Example 8.8.12 John watched the planet with the microscope.

Double attachment.

¢ Example 8.3.18 Rl is a planet with a telescope. R2 is a planet. John watched the
planet with the telescope.

Reference found for ‘the planet with the telescope’ prevents VP-attachment.

e Example 8.3.14 Jokn eats in a park with a bench.

The “n’ PP is attached to ‘eats’ and, by preference, the ‘with’ PP is attached to
‘park’.

Analytic ambiguities form another facet of the general problem of structural disam-
biguation and often seem to involve word experts and inferences beyond the scope of syn-
tax. Experimentation with the current prototype of IDIoT suggest that, generally, such
ambiguities can be viewed as cases of lexical disambiguation or of PP attachment. They
will not be discussed furthermore in this dissertation.



Chapter 9

Bridging Inferences

9.1 Inference in Other Models

It is a common view that forming inferences is an essential part of linguistic comprehension.
Several theories of inference have been proposed for text comprehension. In this chapter,
I investigate the modus operandi of inference in IDIoT with respect to the most relevant
characteristics of these theories.

The first and most important remark is that, as with grammar and disambiguation,
I abandon the idea of a correct set of rules of inference that would produce the correct
inference. Thus, contrary to the majority of the existing models of text comprehension in
both psycholinguistics and artificial intelligence, I do not present a theory of what knowledge
or representations are involved during inference, or of the rules of composition used to
construct inference paths. Instead, I mostly limit this discussion on inference to the role
played by the quantitative processes assumed for time-constrained memory. Consequently,
the problem of the specificity of features (or equivalently, of the ‘granularity’ of qualitative

deta) is entirely left to the user. For example, when considering a passage like:
Example 9.1.1 John is hungry. He picks up the Michelin guide.

it is each user’s responsibility to decide whether the co-occurrence of the features ‘person
x hungry’ and ‘person x in possession on Michelin guide’ should trigger a direct inference
through the feature ‘consult Michelin guide in order to satisfy hunger’ or requires a more
ela.:borate chain of features (e.g., the goal-based explanation presented in subsection 2.2.2).

Second, Garrod (1985) makes a crucial distinction between a ‘true inference’, which
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proceeds from the application of an inferential schema, and a ‘pseudo-inference’, which arises
from interpreting expressions against a mental model. In agreement with other researchers
in text understanding (e.g., Graesser and Clark, 1985), he claims that pseudo-inferences
are immediate whereas true inferences are only established rarely during comprehension. In
other woi'ds, most inference paths are constructed from the chaining of existing semantic
features or from schema-matching, rather than by the application of formal reasoning rules.
Thus, as already stated at the beginning of this part, I do not focus on formal inference but
rather on these faster ‘pseudo-inferences’ typically involved in reading.

Third, recall that existing models in text linguistics' (see subsection 2.2.2) can be sep-
arated into schema-matching models and inference-chaining models. Moreover, existing
computational models, with the exception of Dyer’s (1983) work, are restricted to local in-
fe;rence_s and ignore the problem of global coherence. Conversely, some models in psycholin-
guistics do tackle the whole problem of text comprehension (e.g., van Dijk and Kintsch,
1983; Graesser and Clark, 1985), but are still incomplete and may present computational
disadvantages.? My goal in the rest of this subsection is to suggest that IDIoT is a synthesis
of these models.

From my standpoint, inference for text comprehension requires both schema-matching
and inference-chaining as will be argued below. Both mechanisms are implemented at the
quantitative level of IDIoT. Recall that:

o Schema-matching in IDIoT reduces to having the detection of a schema’s gate-keeper
cause the other schema members to become either detected (through associations) or

expected (through expectation signals).

o Inference-chaining in IDIoT is implemented by confirmation paths. The proposed
mechanism is close in spirit to Hendler’s (1986, 1989) work.

An important claim is that more-semantic models of inference can be handled by IDIoT
if the user wishes to adopt them. Let us consider the three models reviewed at the begin-
ning of chapter 4. Dyer’s (1983) approach consists of strict schema matching. Each link
between two knowledge structures corresponds to a group of demon processes: whenever

a knowledge structure is recognized (i.e., matched), demons are spawned for each of its

1Story grammars, discourse analysis, and lexical statistics are not relevant to a discussion on inference
per se for the simple reason that they do not address this problem.
2For example, with respect to the use of probabilistic operations.

207



48

links. If a demon fires (i.e., has its constraint satisfied), then the old representation is
reinterpreted in terms of the new one. This strategy is similar to the approach suggested
for disambiguation using IDIoT and is quite easily specifiable. Consider, for example, the
‘eat-at-a-restaurant’ schema (Dyer, 1983; Norvig, 1987) for which I suggest the following
possible partial definitions in IDIoT:

KU eatAtARestaurant:
% This feature corresponds to the schema of the same name.
associations: contractualEvent

constraint 1: .
triggers: actionEat, location, restaurant
exceptions:

eatAtFastFood has weight 1
outputs:

% The following expectations define the schema itself.

sends expectation signal to waiter

sends expectation signal to beingSeated

sends expectation signal to orderingAtRestaurant

sends expectation signal to payFood
expansion:
% I assume that actionEat would have replaced the subject feature
% with the feature eater, as was suggested earlier for the verb
% ’give’. The procedure checks that the eater is a person and that the
% location of actionEat is a restaurant.

getCluster ul governing eater

getCluster u2 governedBy eater in ul

testPresencelf person in u2

getCluster u3 governedBy actionEat in ul

testPresencelf location in u3

getCluster u4 governedBy location in u3

testPresencelf restaurant in u4

renameFeature actionEat to eatAtARestaurant in ul

KU beingSeatedAtRestaurant: .
% This feature is a substep of the eat-at-a-restaurant schema.

constraint 1:

ordered triggers: eatAtRestaurant, actionSeat

expansion:
% The procedure checks that the person being seated is the same as the ome
% eating. If so, the event of being seated is put under feature ‘subSteps’
% in the cluster associated with ‘eat-at-a-restaurant’: by being governed,
% the substeps become less retrievable and less likely to be stored in LTM.

getCluster ul governing seated
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getCluster u2 governedBy seated in ul
getCluster u3 governing eatAtARestaurant
getCluster ué governedBy eater in u3
testEquivalence0f u2 u4

addFeature substeps to u3

addSubCluster ul to subSteps in u3

KU waiter:
Y This feature is partly defined in terms of the schemata
% that may trigger it. .
constraint cl:
ordered triggers: eatAtARestaurant, actionServe
constraint c2:
ordered triggers: drinkAtBar, actionServe
expansion:
% Check that the person being served is also the actor of the triggered
% scenario.
getCluster ul governing actionServe
getCluster u2 governedBy beingServed
jfConstraint ci then getCluster u3 governing eatAtARestaurant
jfConstraint cl then getCluster ué governedBy eater in u3
ifConstraint c2 then getCluster u3 governing drinkAtBar
ifConstraint c2 then getCluster u4 governedBy drinker in u3
testEquivalence0f u2 u4
% If so, add the cluster corresponding to the service performed by the
% waiter to the substeps of the schema.
addFeature substeps to u3
addSubCluster ul to substeps in u3

An example using these definitions is discussed in the section 9.3. For now, let me briefly
explain the use of feature substeps in schema matching. When a schema is detected, it
typically sets up expectations. In turn, these are detected if they receive an input signal
from all their triggers. The key point is that an expected feature can always be reconstructed
from the feature that created the expectation, that is, the one that sent the expectation
signal. Furthermore, it is commonly accepted that reconstructable items are less likely to
be stored in LTM (e.g., Kintsch and van Dijk, 1978, p.365). Therefore, I suggest that all
expected features of a schema that eventually become detected be governed by this schema,
under the feature subSteps. In other words, the clusters corresponding to the substeps of
a schema are subclusters, under subSteps of the cluster associated with the schema. As

subclusters, they are less reachable that the cluster of the schema itself. Therefore, because
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the memory manager will select the less reachable elements of STM when reducing the
membership of the latter (see chapter 3), the substeps will more likely be forgotten, and
thus not be included in the final interpretation.

Norvig’s work (1987, p.101) on inference-chaining hinges on the a priori definition of
a small number of path shapes and inference classes; only a path that matches one of the
predefined shapes is considered for evaluation. If so desired, these notions can be readily

duplicated in IDIoT. Consider, for example, the simplest inference class, namely reference

- resolution. Recall that an inference class consists of a pair of path shapes that must be

matched to the two halves of the total path of a marker collision. For the reference resolution
inference, both halves must correspond to a reference path, which is defined as:

Reference: origin — I — D™ — collision

in which I is an instance relationship, and D, a dominate one (where A dominates B if B
is a subclass of A, see ibid., pp.60 and 105). The key observation is that these relationships
can be used in IDIoT instead of more direct links between KUs. Consider, for example,
the following partial definitions: '

KU johnPerson:
associations: instance0fMan, ...

KU he:
associations: instance0fMan, ...

relay KU instanceOfMan:
suppliers: johnPerson, paulPerson. henryPerson, ...
customers: man, instanceRelationship

KU man:
associations: subclass0fPerson, ...

KU subclass0DfPerson:
suppliers: man, woman, child,
customers: person, subclassRelationship

relay KU instanceRelationship:

suppliers: instanceOfMan, ...
customers: refPathShape, ...
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relay KU subclassRelationship:
suppliers: subclassOfPerson, ...
customers: refPathShape, ...

The feature johnPerson will lead, through instanceOfMan, to the detection of in-
stanceRelationship, which notifies a feature refPathShape that would define Norvig's
‘reference’ path shape. The feature instanceOfMan would also eventually lead to the
detection of the subclass relationship that would also notify refPathShape. Recognizing a
sequence of D shapes (i.e., a sequence of Dominate links) would be handled in the same say
as dealing with a sequence of adjectives (see section 5.1). A very similar approach can be
used to capture the arc categories and composition rules suggested by Graesser and Clark
(1085, p.74).

There are two points to be made. First, I observe that the distinction between schema-
matching and inference-chaining models may be thinner than could be expected. On the one
hand, recall that Norvig (1987, p.139) claims that an inference-chaining model can reproduce
both script-based and goal-based processing just by looking for connections in the input with
respect to what is known in memory. In other words, inference-chaining is taken to subsume
schema-matching, though inference-chaining typically does not accommodate expectations.
On the other hand, it should be clear that Norvig’s approach is very similar to that suggested
by Graesser and Clark in that both consist in matching path shapes. I suspect that, for
non-quantitative models, schema-matching and inference-chaining approaches correspond
to distinct, yet equivalent strategies of conceptualization. In the framework of reader-based
understanding, I have decided to offer both mechanisms in IDIoT: it is up to a specific user
to choose the strategy she prefers. Second, it seems that a strictly quantitative approach
to inference (i.e., with no built-in semantics), as advocated in Hendler’s work (1986, 1989)
and in this dissertation, provides a more fundamental level of representation and process
over which semantics can be added. It is important to realize, as Graesser and Clark (1985,
chapter 1) have emphasized, that there is no agreement on the nature and use of inferences.
Thus, Dyer’s schemas, Norvig’s path shapes and inference classes, Graesser and Clark’s arc
categories and composition rules, and Kintsch and van Dijk’s strategies are all experimental
rather than definitive. The advantage of a quantitative approach is that these rules are
encoded as user-specifiable data rather than being etched in algorithms. Furthermore, the
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primitive cluster operations supplied for expansion procedures favour a standardization of
the specification of these rules. In turn, this promotes the potential re-use and sharing of
KUs between users.

A mode] of the production of inferences alone does not suffice for text comprehension; we
require a mechanism to solve the convergence problem, that is, to limit the actual number
of inferences éenera.ted. In the existing computational models, the problem is either ignored
or, in the case of marker-passing systems, handled with magic numbers and anti-promiscuity
rules (e.g., Hirst, 1987, section 5.2.3; Hendler, 1986, 1989). A few models emulate memory
decay through attrition (e.g., Norvig, 1983b), but there is typically no attempt to model
memory per se. Conversely, in neurolinguistics (Gigley, 1985a) and psycholinguistics, it is
generally accepted that the constraints of the working memory (i.e., capacity and decay)
do insure some convergence. Furthermore, as Schnotz (1985) remarks, the construction of
inference paths is taken to largely depend on the availability of the relevant features. The
mechanisms of time-constrained memory, which underlies IDIoT, implement all of these

factors:

o Hendler’s use of zorch (1989) to limit the length of paths can be directly duplicated

with the output specification of a feature (see chapter 3).

o The notions of STM capacity and decay are implemented in the proposed model of

time-constrained memory (see chapter 3).

o The issue of the availability of features is handled through the retrievability coefficient

of every KU in memory.

An example illustrating the importance of these factors is discussed in section 9.3. Further-
more, the notion of a time-constrained candidacy with a user-specifiable time-span provides
an adequate explanation of the reader’s natural propensity to infer (see Markus, 1983), often
giving himself merely enough time to consider those elements of STM that are immediately
accessible.

On the one hand, the proposed model of time-constrained memory merely forms a first
approximation of the complexity of memory processes involved in text comprehension. For
example, I do not address some of the more complex features of van Dijk and Kintsch’s

model of comprehension (1978, pp.368-371; 1983):
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o I do not model the kind of processing cycles they assume whereby n; propositions are
processed together. The difficulty is that “the precise number of propositions inclnded
in a processing chunk depends on the surface characteristics of the text,... as well as
reader characteristics.” (ibid.).

o As previously mentioned, I do not tackle the tasks of recall and summarization and
therefore I do not implement Kintsch and van Dijk’s notion of reproduction probability.
Consequently, I oversimplify the passage of clusters from STM to LTM by not corre-
lating it to frequency of reachability, much as these researchers link the probability of
reproduction of z with the number of times z belongs to the STM buffer.

s The use of retrievability coefficients within time-constrained candidacies very roughly
approximates the effects of familiarity, which “may be rather complex” (ibid.) and

involve probabilities of reproduction.

On the other hand, IDIoT avoids some of the drawbacks of existing models, especially by
enforcing total user-programmability and by not assuming an a priori order of processing. |
For example, there is no need to hypothesize, as Kintsch and van Dijk (1978) do, that
inferences and LTM searches are systematically established after referential analysis.

As a whole, my model is close in spirit to Graesser and Clark’s (1985) work, with the
difference that no ordering of operations is imposed contrary to their MBPP algorithm (see

section 4.3). In other words, the four operations are independent of one another:
o Schema-matching in IDIoT is handled through detections and expectations.

e Bridging is performed in IDIoT by inference-chaining (implemented as confirmation
paths).

o Projections are expectations set up by detected features, especially schemas.
o Pruning of STM is a concurrent process implemented with the memory manager.

In summary, it appears that IDIoT and its underlying model of time-constrained memory
can be used to specify the knowledge structures and processes hypothesized in more semaatic

models of text comprehension.
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9.2 Inference with IDIoT

My goal in this section is to suggest how the different facets of inference for text compre-
hension can be tackled with IDIoT on its own, that is, without depending on the specifics
of these information-processing models.

Let us start by discussing the functional relationships that exist between clauses, since,
I argue, a proper treatment of inference, local coherence, and global coherence ultimately
depends on these relationships. The point is that clauses must be related on the basis of
their meaning (i.e., intensionally), not just through references (i.e., extensionally). This
statement is accepted by Kintsch and van Dijk (1978, pp.390-393) who see this problem as

the crucial missing component of their initial work:

We do not have yet an adequate theory of such functional relations. The present model
was not extended beyond the processes involved in referential coherence of texts because
we do not feel that the problems involved are sufficiently well understood. However,
by limiting the processing model to coherence in terms of argument repetition, we are
neglecting the important role that fact relationships play in comprehension.

-

There are several possible classification schemes for “facts’ (i.e., inter-clausal) relationships:

e From the initial observation that a fact may be a possible, likely, or necessary con-
sequence of another (through connectives such as ‘like’, ‘because’, ‘although’, etc.)
Kintsch and van Dijk (1978, p.390) suggest presuppositional relationships: compati-

bility, enablement, specification, correction, explanation, generalization.

e Some (if not most) of the rules of story grammarians (see subsection 2.2.1) and some
of Lehnert’s plot units (see subsection 2.2.2) constitute fact relationships.

o Norvig’s (1987) inference classes, especially the ‘view’ class, could be taken as fact
relationships.

For a more extensive survey of inference taxonomies refer to Graesser and Clark (1985).
The conclusion to be reached is that, as Graesser and Clark state, there is widespread
disagreement on inferences in general, and fact relationships in particular.

It is not my intent to develop a theory of these inter-clausal fela.tionships: I repeat that
my aim here is not to develop a model of comprehension but to suggest how IDIoT can be
used to capture such a model. From my standpoint, inter-clausal relationships constitute

organizing principles for the construction of clusters. In other words, these relationships
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essentially specify how the clusters of the facts they relate are organjzed in STM. I propose
distinguishing between local and global organizing principles. Local fact relations typically
specify a government link between two clauses. For example, if A is a consequence of B,
then there must be a government link between A and B. It is left to the user of IDIoT
to choose a uniform strategy for each class of fact relation that'is to be perceived. For
example, if it is established that A is a consequence of B, then A could be systematically
made a subcluster of B under the feature consequence. Similarly, a correction could always
govern the fact that it corrects, and an explained fact, its explanation. It appears that the
prabability of reproduction is the only guiding principle available to specify these strategies:
for example, if it is empirically demonstrated that, for a specific reader, an elaboration z
systematically has an smaller likelihood of being recalled than the clause y it elaborates,
then z should be made a subcluster of y, for this reduces the reachability of z and thus its
chances of passing from STM to LTM. In other words, for this specific reader, each time
the elaboration feature is detected between two clauses, its expansion procedure makes
the elaboration a subcluster of the other fact. In general, given a taxonomy of fact relations
and the government strategies adopted by a specific reader, for each of them, IDIoT can
be used to model the latter, much like the approach suggested to capture Norvig’s inference
classes.

Finally, it should be remarked that the ordering of the clauses may be very relevant.

Consider the sentences:

Example 9.2.1 Because he is hungry, John eats.

Example 9.2.2 John eats because he is hungry.
It is up to the user of IDIOT to decide:

e Whether in both sentences the reason clause (‘because he is hungry’) governs or is

governed by (with respect to reachability) the main clause (‘John eats’).

e Whether or not the temporal ordering of clauses affects the reproduction probability
of each one (e.g., being the first processed, the clause ‘because he is hungry’ would
have better chances of being recalled in the first sentence than in the second).

Whereas local organizing principles specify a government relation between the clusters of

two clauses, I propose that global organizing principles would place each cluster on several
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orthogonal axes of organization. This idea is close to Zavarin’s (1983) notion of ‘stratifi-
cation’ of levels of representation during comprehension. I suggest that each cluster be, at
the very least, placed on the time and location axes. In a complete theory, there could be
an axis corresponding to the different semantic roles that can be established within a clause
(e-g., actors, time, location, instrument, manner, etc). Kintsch and van Dijk (1978, p.391)
make essentially the same hypothesis when they develop the notion of topic change markers
(1983; p.204).

Let me very briefly survey the use and implementation of the time and location axes
(that were illustrated in the previous chapter). I hypothesize that each of these axes is
organized in terms of ‘frames’® For example, two facts may be in the same time frame
but in the different location frames (e.g., “Yesterday, John did the shopping and Mary
played badminton”). Placing a fact on one of these axes means making it a subcluster of
the current frame of each of these axes. For both axes, features are required to detect a
change of current frame (e.g., different times, different locations). Verb tenses and explicit
connectives such as the word ‘then’ indicate such changes which, if implicit, must be inferred.
There is a relatively simple implementation of the notions of axes and current frames in
IDIoT. An axis is, not surprisingly, a cluster. One feature of an axis identifies the axis
itself (e.g., timeAxis is a feature of the cluster denoting the time axis). FEach of the
other features of the cluster governs a set of subclusters belonging to the same frame. The
current frame is identified by a specific feature name. For example, to access the current .
frame on the time axis, one could access the cluster governed by feature currentTime in
the cluster governing feature timeAxis. The user may set up the naming of features so
that the previous time frame could also be accessed using the name of its governing feature.
Assuming that only the current time frame is directly accessible, the difficulty comes when
a change of frame occurs: the set of clusters governed by currentTime should now be
governed by some feature whose name is irrelevant (since we assume only the current time
frame is accessible), and the feature currentTime should be made to govern an empty set of
clusters. To accommodate the idea of a feature whose name is irrelevant, that is, in essence,
a run-time feature that cannot be referred to by the user-specified features of the KB, I

introduce the feature dummyFeature. By renaming currentTime to dummyFeature,

3This word is used in a totally different sense from its usual one in Al: a frame is merely a set of clusters,
an axis of organization consisting of several frames.
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the user establishes a boundary between two distinct time frames and makes the current
one the only accessible one. Here are sketchy definitions for adding to the current time
frame and switching time frames:

KU addToCurrentTimeFrame:

constraint 1:

triggers: clauseFitsCurrentTime

expansion:
getCluster ul governing clauseFitsCurrentTime
getCluster u2 governing timeAxis
getCluster u3 governedBy currentTime in u2
addSubCluster ul to currentTime in u3

KU switchTimeFrame: =
constraint 1i:
triggers: clauseFitsNewTime
expansion:
getCluster ul governing clauseFitsNewTime
getCluster u2 governing timeAxis
renameFeature currentTime to dummyFeature in u2
addFeature currentTime to u2
addSubCluster ul to currentTime in u3

Both definitions assume that when the ending boundary of a clause is detected, it is possible
to infer whether the clause belongs to the current or to a new time frame, to the current
or to a new location frame, etc. Some researchers have proposed rules to establish the time
relation between two clauses (e.g., Allen, 1982). Also, I repeat that verb tense usages are
very important with respect to the time axis. For other possible global axes of organization,
there does not seem to be such immediate cues (with the exception of explicit connectives).
Given a set of these axes, each clause of a text must be classified with respecf to each axis.
In other words, the user must specify rules that will decide, for each axis z. whether the
current clause being processed belongs to the current frame of z or causes a new frame to
be created for z. Since parallelism is postulated, a clause can be placed simultaneously on
all the given axes.

Again, the suggested theory for these global organizing principles is simplistic, especially
in view of the complexity of the retrieval process(es) that would have to access these axes

in order to produce recalls, summaries, and answers to questions on the text read. Yet the
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importance of these axes should not be underestimated. Consider, for example, the passage:

Example 8.2.3 John was hungry yesterday afiernoon. [Otherfacts.] Nest month, John
will pick up a Michelin guide.

The notation [Other facts.| denotes a series of zero or more facts. Any path between
‘hungry’ and ‘having a Michelin guide’ must be blocked because, it seems, such a path
would involve concepts in different time frames. Here is a similar example that involves the

location axis:
Example 8.2.4 John is hungry in Ottawa, while Mary picks up a Michelin guide in Paris.

If, however, John and Mary were in the same car, then the link between ‘hungry’ and
‘Michelin guide’ could be made if John announced he was hungry and Mary picked up the
Michelin guide.

There are several points to be made:

s Local organization principles seem to be motivated by a quantitative factor, namely,

an ordering between related facts with respect to likelihood of recall.

o Global organization axes establish frame boundaries between different clauses. These
boundaries not only must be considered in order to prevent some erroneous inferences,
but may also directly correlate to the organization of the representation of a text in

memory (and, by extension, of the subsequent retrieval of the representation).

® Thus, both local and global organization principles appear to play an important role

in inference, perception of coherence, and, therefore, in comprehension.
o We still lack a theory for these principles and for inference in general.

e A first approximation to a theory of inter-clausal rela.tidnships has been presented and

can be implemented using IDIoT.

Inter-clausal relationships directly correlate with a reader’s perceﬁtion of local and global
coherence, and ultimately, with the perception of subject matter. It must be stressed that
local and global coherence, and subject matter, are not taken to be perceived one after the
other but, on the contrary, simultaneously and interdependently. In particular, local coher-

ence is subject to global constraints, as explained by van Dijk and Kintsch (1983, p.152).
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Similarly, both global coherence and subject matter depend on how clauses are interrelated
(especially in terms of government) at the local level. Furthermore, in accordance with
these researchers, I emphasize the strategic nature of local and global coherence (see van
Dijk and Kintsch, 1983, chapters 5 through 7 for details of their strategies).?
With regards to the notion of subject matter, Kintsch and van Dijk (ibid., pp.155-
6) briefly discuss the notion of sentence topics, which subsumes the more general idea of
aboutness:
[T]he notion of topic can only be appropriately defined in terms of the relations between
a sentence and the (con-)text. This is also why such intuitive notions as ‘given’ and
‘new’ information, ... have been widely used, although clearly that is not sufficient[.]
The point is that there can be no a priori algorithm to compute subject matter, merely
idiosyncratic perception involving several factors. I suggest the following non-exhaustive

list of items that affect the perception of subject matter (and can be approximately modeled
in IDIOT):

e Topic changes: In IDIoT, these correspond to global axes for organizing clauses.

o Inter-clausal government: Establishing an inter-clausal relationship often implies
organizing the concerned clusters into a local government hierarchy. In other words,
detecting a relationship between A and B often leads to the cluster of A governing

that of B, or vice versa.

¢ Convergence mechanisms: In IDIoT, as is generally the case, these mechanisms
correspond to the constraints of the short-term memory (i.e., capacity limit and de-
cay). The notion of a time-constrained process is also very important in that it limits,
at the quantitative level, the extent of generalizations, expectations, and remindings.®

e Idiosyncratic profile of a reader (e.g., use of expectations): Several researchers
(e.g., Mitchell, 1982, chapter 7; van Dijk and Kintsch, 1983, subsection 2.1.2; Graesser
and Clark, 1985) address this item which, from my viewpoint, emphasizes the need
for a reader-based approach.

% Also, it is commonly accepted that differences between readers are more frequent at the level of global
coherence than at the level of local coherence, which involves conventionalized inter-clausal relationships.

5This is typically not the case in other models of NLP, in which some arbitrary criterion must be de-
vised to avoid having the representation of a text consist of an endless enumeration of the most irrelevant
generalizations (Kintsch and van Dijk, 1978, 1983).
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¢ Topical inferences: Though there is no adequate theory of such inferences, it seems a
reader can perceive certain word usages and inter-clausal relationships as mechanisms

to signal (or highlight) a topic (van Dijk and Kintsch, 1983, chapter 6 and 7).

In conclusion, I repeat Kintsch and van Dijk’s observation (1978) that in the general case
where readers approach a text with no a priori goals or controlling schema, the perception

of subject matter can vastly differ from one reader to another.

9.3 Examples of Inter-Clausal Inferences

L]

A schema-matching example was presented in chapter 6.2. The point is that, in essence, a
schema defines which actions can be reconstructed (and thus should be governed) by others.

To illustrate the constraints of short-term memory, consider the sentence;
Example 8.8.1 John is hungry. [Other facts.] John picks up the Michelin guide.

The notation [Other facts.] denotes a series of zero or more facts that are not connected to
John’s hunger (fact F1) nor to John picking up the Michelin (fact F2) in order to find a
restaurant. If [Other facts.] is empty, then the inference will proceed directly with both F1
and F2 in immediate memory. If it contains several items, then F2 will reside in STM but
not in WM when the inference is detected. Finally, if the series contains a large number of
facts, then F2 will probably have been ‘moved’ to LTM in which case the inference between
F1 and F2 will be missed.

To illustrate local organization, consider the sentence:
Example 9.3.2 John eats because he is hungry.

The explicit connective ‘because’ establishes a government relationship (under feature ra-
tionale, or consequence, or reason, etc.) between the two clanses.
And finally, to illustrate the notion of a locational axis of organization, consider the

sentence:
Example 9.3.3 John eats in Ottawa. Mary sleeps in Toronto.
I suggest the following scenario:

1. Feature actionEat possesses a feature location that governs the cluster associated

with ‘Ottawa’.
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2, Feature actionSleep possesses a feature location that governs the cluster associated

with ‘Toronta’.

3. The feature clauseFitsDifferentLocation, which is trigéered each time the feature
location is manipulated (as when a verb has its location specified), tests the difference
between the new location and the current one. If these are not the same, the feature

detects and notifies clanseFitsNewLocation and clauseFitsPreviousLocation.
4. The first of these features becomes detected only if the candidacy of the second fails.

5. Feature clauseFitsPreviousLocation tries to match the new location with one of
the clusters already on the locational axis. X it succeeds, the action (in this case,

actionSleep) is made a subcluster of the matched location cluster.

9.4 Concluding Remarks

8.4.1 On Semantic Conflicts

1t is very probable that, during the processing of a text, erroneous and ‘premature’ inferences
will be drawn, eventually leading the reader to perceive a conflict between a previously es-
tablished fact and one that has just been detected. I suggest thinking of a conflict in general
as a feature (e.g., the disagreement features presented in section 5.1) that becomes detected
from the co-occurrence of two (or more) conflicting features. Furthermore, I propose that all
features that detect ungrammaticalities (i.e., syntactic conflicts) have syntacticConflict
as an association, and all features that detect a conflict between two semantic features have
semanticConflict as an association. The purpose of the features syntacticConflict and
semanticConflict is to localize the actions performed upon the detection of a conflict.

As an example of a semantic conflict, consider the passage:
Example 8.4.1 John is dead. John eats.

The co-occurrence of the facts ‘person z dead’ and ‘person z does action’ (detected from
the action verb ‘eat’) causes the detection of the feature deadPersonDoesNotAct that
captures this particular semantic conflict.® In turn, deadPersonDoesNotAct notifies its

association semanticConflict.

SThere is no conflict if John dies after eating. Thus, this conflict can only be detected if it has been
somehow acknowledged that the death occurs before the action.
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There are several possible strategies to specify a feature like deadPersonDoesNotAct.
For example, features could be specified so that a person can act only if alive, otherwise a
conflict is perceived. I suggest below another approach, which uses a buildable feature to
check that the action follows the death once both facts have been detected. The trick is to

" rely on the fact that if John is dead when he performs an action, then his associated cluster

will already have (or govern) feature(s) reflecting this state. In this case, it is the dynamic
co-occurrence of conflicting features within the cluster associated with John that will cause
the detection of deadPersonDoesNotAct. Here is a possible definition:

KU deadPersonDoesNotAct:
associations: semanticConflict
constraint 1:
triggers: personActs
4 this trigger implies a presemt action (not a past action).
expansion:
getCluster ul governing clause
getCluster u2 governedBy subject in uil
% u2 is cluster of the subject.
~ testPresence0f person in u2
% subject must be a person.
getCluster u3 governedBy personStateAttributes in u2
testPresencelf dead in u3
% subject of action is dead

This feature is triggered each time a person acts. It checks that the person who acts has the
feature dead in the set of features corresponding to the personStateAttributes cluster
associated with each person. A similar approach can be used to check more sophisticated
conflicts, such as one where the same person is the subject of two actions taking place at

the same time in different locations:

KU ubiquitousPerson:
associations: semanticConflict
constraint 1:
triggers: personicts
expansion:
getCluster ul governing clause
getCluster u2 governing subject in uil
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testPresencelf person in u2
getCluster ul0 governing clause
getCluster u20 governing subject in ulld
testPresencelf person in u20
% At this point ul and ui0 both govern actions performed by persons.
% Check it’s the same person.
getCluster u3 governedBy person in u2
getCluster u30 governedBy persen in u20
testEquivalence u3 u30
Y Check that the actions occur at the same time.
getCluster u3 governedBy mainVerb in ul
getCluster ué governing time in u3 -
getCluster u30 governedBy mainVerb in ui0
getCluster u40 governing time in u30
testEquivalence u4 u40
% Check for actionms occurring in the same location, in which case
% the conflict becomes detected.
Y Alternatively, we could use the global time and location axes.
getCluster u5S governing location in u3
getCluster ub0 governing location in u30
testEquivalence ub ub0

The features dead PersonDoesNot Act and ubiquitousPerson are extremely specialized.
More general rules such as ‘an inanimate cannot act’ and ‘an actor cannot be ubiquitous’
could be defined in a similar way; the ‘granularity’ of the qualitative data specified by
the user of IDIoT is not the issue here. Indeed, it is commonly accepted that children
start with very specialized rules and acquire some generalizations with age. Furthermore,
a distributed representational scheme makes it quite feasible to have a computationally
workable memory with an enormous number of features (distributed over si gnificantly fewer
computing elements).

In summary, conflicts are merely a kind of inference that has the peculiarity, in IDIoT,
of forcing one of the features syntacticConflict or semanticConflict to become detected.
Let us focus on semantic conflicts.

As with other of inferences, there is no single commonly accepted theory of semantic
conﬂcts. What distinguishes such a conflict from ancther inference is that it somehow
needs to be ‘resolved’. Kintsch and van Dijk (1978) observe that, upon detecting a semantic
conflict, it is typical to either ignore it or to invest more processing resources (e.g., time
and memory capacity) in order to resolve it. In the latter case, they add, the increase of

resources may increase the conflict’s reproduction probability, that is, the likelihood of the

223



conflict being recalled. Granger and Holbrook (1983) suggest a more sophisticated theory:
a conflict requires an inference strategy in order to be resolved. Given a pre-established and
reachable fact z and a conflicting fact y that has just been detected, they propose three

possible strategies:

1. Perseverance: hold on to z and ignore y.

2. Recency : choose y and forget z.

3. Deferral: keep both facts and wait for a subsequent resolution.
A fourth strategy could be:

4. Reconciliation: invest more resources in order to find a path that could explain the

coﬁ:hjct and reconcile the two facts.

More complex phenomena, such as rereading or correcting (as opposed to eliminating) one
or both conflicting facts, are not considered here for they involve complex processes of
attention and decision that are currently beyond IDIoT’s scope of application.

The first three strategies of Granger and Holbrook can be easily modelled in IDIoT
through the expansion procedure of the semanticConflict feature. In the first two cases,
the cluster corresponding to the fact to fo.rget is simply deleted. In the third case, the
clusters of the conflicting pair of facts could be marked with a special feature (e.g., un-
solvedConflict), providing access once a resolution has been found within a short amount
of time after the conflict has been detected. The fourth case is the trickiest (and proba-
bly, the most infrequent) in that it involves requesting more time and memory in order to
find an explanatory inference between the two facts. Currently, neither the time-span of a
candidacy nor the capacity of STM can be dynamically modified during a reading. In the
future, however, a KU should be able to partially alter the time-span of its candidacy, and
STM capacity could be increased from any KU through a message to the memory manager.

In conclusion, using semanticConflict avoids duplicating a common strategy in indi-
vidual conflict detectors, but it has the disadvantage of not emulating the mind’s ability
to dynamically change from one strategy to another while processing a text. If this ap-
proach is not satisfactory, the user of IDIoT can always specify particular strategies for
particular conflict detectors. Overloading an KU with several expansion procedures, one of
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which would be dynamically chosen (e.g., with respect to the triggered constraint) during
processing, is yet another ability to be implemented in IDIoT in the future.

9.4.2 Recapitulation of Idiosyncratic Comprehension

As emphasized at the beginning of this part of the thesis, my goal here is not to present a
complete and detailed model of reader-based comprehension, but to demonstrate that the
quantitative processes of the time-constrained memory provide an adequate framework for
developing such a model. For this reason, I have proposed specification strategies for the
most frequent problems of linguistic comprehension. Recapitulating, I claim that:

e The notion of time-constrained memory is extremely relevant to the process of real-

time parsing (as argued by Lindsay and Manaster-Ramer, 1987).

o The problems of referential resolution, lexical disambiguation, structural disambigua-
tion, and ‘figurative’ language all critically involve the notion of reachability (of the
different possible interpretations) and inference chaining within a short amount of
time.

e The processes of inference-chaining and schema-matching, which are essential for both

local and global understanding, are provided by IDIoT s underlying model of memory.

e Both local and global organizing principles of a text can be captured with clusters

and features.

The point is that a model of comprehension can be specified using IDIoT’s trivial algorithm,
with the advantage that first, no a priori semantic hypotheses are etched in an algorithm,
and second, the simple representational scheme of TDIoT used for time-constrained mem-
ory provides a fundamental quantitative level of representation upon which more comp'ex
knowledge structures can be constructed for linguistic comprehension. This research does
not address many of the more complex issues of fluent reading (see Mitchell, 1982; van Dijk
and Kintsch, 1983). For example, the phenomenon of re-reading is put aside. Such problems
often require a theory of self-awareness that essentially eludes current research in psycho-
logy and artificial intelligence. Some simpler problems involving attentional processes will

eventually be dealt with in IDIoT. Let me briefly discuss two of these.
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First, Hidi and Baird (1986) report that the perception of interestingness is partly
idiosyneratic: “Interest occurs only in the interaction between stimulus and person so that
one can never stipulate its origin in one to the exclusion of the other.” They also remark
that “what is central to the response of interest is that a person is compelled to increase
intellectual activity to cope with greater significance of incoming information.” I suggest

that ‘increasing intellectual activity’ may correspond to the following actions in IDIoT:

¢ Increasing STM capacity: A KU requests from the memory manager that the

maximal retrievability coefficient in STM be increased for a short amount of time.

» Slowing down the rate of decay: An individual KU could slow down its own rate
of decay and/or notify the memory manager that all decay rates should be lowered

for a short amount of time.

o Increasing the time-span of candidacies: A KU requests the memory manager

to increase the time-span of candidacies for a short amount of time.

In essence, we want a KU to have the possibility to dynamically modify the processing
environment for a limited period of time. At this point in my research, it seems this may
best be accomplished by having the vocabulary for expansion procedures include two new
instructions that would respectively increase and decrease intellectual activity as described
above. The major drawback of this approach is that special-purpose signals would have
to be hypothesized to carry ont complex operations. In turn, this points to the need to
investigate the actual physiological reification of the currently very metaphorical memory
manager.

Second, Kintsch and van Dijk (1978) suggest that the perception of subject matter often
relies on the schema encapsulating the reader’s goal:”

Decameron stories may be read not for the plot and the interesting events but because
of concern with the role of women in fourteenth-century Italy or with the attitudes of
the characters in the story toward morality and sin.

In other words, the reader has the ability to understand a text from different cognitive

viewpoints, different perspectives. I emphasize that these perspectives are totally idiosyn-

"This is oversimplified, inasmuch as a reader may simultaneously possess several possibly conflicting
schemas. Also, as these authors admit themselves, a reader very often approaches a text with no a priori
goals, a situation these researchers dismiss as unpredictable, thereby implicitly acknowledging the idiosyn-
cratic nature of linguistic comprehension.
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cratic and that each reading of a text may be initiated from a siifferent one. Reading with
a perspective corresponds to the frequent situation where a reader comes to a text already
seeking a certain aboutness (Vipond and Hunt, 1984). Within the framework of IDIoT, I
suggest that a perspective consist of a set of features that are initially selected and detected
at the beginning of a reading and that reside perﬁumtly in WM for this reading. The
omnipresence of the perspective in WM guarantees its reachability, and thus its systematic
- consideration by all candidates.

In accordance with the rest of this part of the dissertation, the point is that quantitative
characteristics of IDIoT pervade some of the most complex facets of idiosyncratic compre-
hension. The perception of the subject matter of a text is systematically affected by the

metaphors of reachability and of time-constrained memory processes.
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Chapter 10

Conclusions

10.1 Recapitulation

Norvig (1987, chapter 7) starts his conclusions by remarking that, “in a sense, FAUSTUS
was an experiment in self-deprivation” in that it relied on only six basic inference classes,
contrary to systems such as Dyer’s (1983) BORIS where “one occasionally gets the suspicion
that the system designer can just add one more rule to account for each new difficulty as it
arises, as long as he or she is careful about interactions with previous rules” (Norvig, ibid.).
Yet FAUSTUS does not model the kind of “in-depth understanding” tackled by Dyer. For
example, FAUSTUS has no forward inferences, no expectations, no notion of events and
explanations. The differences between these two text understanding systems summarize
the debate between, on the one hand, researchers looking for general classes of inferences
(e.g., for marker-passing models), and on the other hand, researchers constructing a large set
of specific rules (for schema-matching models). A multitude of other debates currently exist
in text linguistics (e.g., role of priming for words sense disambiguation, declarative versus
procedural rules, Wilensky’s (1983b) principles of comprehension, Graesser and Clark’s
(1985) principles for a central content selector, etc.).

Given that there is widespread disagreement on the nature, modus operandi, and use
of inferences in text comprehension, I have tried to avoid specifying, in this dissertation,
yet another ‘story comprehender’ (or conceptual analyzer), that is, yet another set of rules
of comprehension. Instead, recognizing that the fundamental feature of conceptual analyz-
ers consists in their ability to build a representation of the input, I suggest a quantitative

tenchistic (i.e., ‘constructionist’) approach to text understanding. This approach is rooted
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in the basic metaphor of human memory, which bypasses the mind-body problem. I ac-
knowledge the Teal-time processing constraints imposed by the biological constraint and,
therefore, assume that linguistic comprehension is a time-constrained process. I do not
model an adaptable memory and, thus, I partition the proposed model of memory into
static memory, which consists of a massively parallel network of simple computing ele-
ments whose processes allow for the construction of clusters, and dynamic memory, where
these clusters reside: Clusters act as the building blocks for the cognitive structures built
during comprehension. The implied approach to qualitative data representation and use
during comprehension is strictly quantitative in that all data must be specified in terms of
constraints to satisfy (through the exchange of simple signals) and sequences of primitive
memory operations (expansion procedures). This strategy follows closely the philosophy of
Minsky’s (1986) “society of mindless agents” from which the mind emerges.

The proposed representational approach is also strictly programmable and reader-based
in that all qualitative data is specified by the user of IDIoT, who is sole judge of the
‘correctness’ and ‘completeness’ of this information. The nature of the rules to use and of the
cognitive structures to build during comprehension is entirely left to the user; IDIoT merely
‘grounds’ a theory of text understanding into the more fundamental (representational and
processing) level that memory constitutes. From this viewpoint, IDIoT is an experiment
in extreme self-deprivation, in that the designer must develop a conceptual analyzer out of
the proposed model of time-constrained memory, which has only six numeric signals and a
small set of primitive memory operations. Yet the model of memory has been developed to
offer both forward and backward inference chaining, and expectations. And, throughout the
preceding clrapters, I have argued that IDIoT could indeed be used to specify a conceptual
analyzer for text understanding.

The representational and processing framework imposed by time-constrained memory
does not require the symbolic markers, attenuation mechanisms, and path evaluator of
marker-passing systems (see Hendler, 1989), and remedies the severe limitations in gen-
erative capacity of existing connectionist systems. Furthermore, through user-specified
constraints and buildable features, IDIoT makes available both static and dynamic con-
straints; the latter depending on the contents of STM at a particular point in time. The
notion of a time-constrained process also eliminates the issues of algorithmic complexity

and intractability, as time is the stopping criterion for comprehension. Similarly, given that
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some inferences take longer to establish than others, the time limit of memory processes
implicitly controls the contents of the final representation of the input (to be used by an
eventual recall mechanism to summarize and answer questions about what was read).

It could seem that having arbitrarily long delays for memory processes would necessar-
ily lead to more ‘in-depth’ understanding. However, since short-term memory constantly
decays, this is not the case, for the longer the delay, the more clusters in STM will decay
to the point of being moved to LTM or forgotten. There is another trade-off associated
with long delays: such delays do allow less retrievable information to be retrieved, but the
longer the delay, the more ‘far-fetched’ retrieved information can get. In other words, the
presence in STM of less ‘relevant’ information increases with time. But, nltimately, it is the
designer, through the specification of rules, who may define what is relevant and what is
not. From this standpoint, IDIoT offers a tabula rasa approach to cognition: there are only”
quantitative processes and their limitations, much like the physiological limitations of the
brain, and ‘mind’ (in essence, the IDIoT knowledge base) starts empty. It is entirely left
to the user of IDIOT to define rules and organize their interactions. Indeed, inconsistent
sets of rules can exist in the KB: the actual set of rules used at a given point in time mainly
depends on the reachability of rules at that point in time (Lindsay and Manaster-Ramer,
1987). In other words, in IDIoT, as the number of rules in the KB increases, the issue is
not as much defining interactions between rules as specifying communication delays that
give precedence to gertain rules under certain circumstances. Indeed, much as connectionist
researchers ‘tweak’ weights on connections, the user of IDIoT must ‘tweak’ the commu-
nication delay between two knowledge units to ensure that one rule is triggered before or
after another one, or to leave enough time for a KU to force the detection or inhibition of

another one. Timing is of the essence in IDIoT.

10.2 Enhancements

Several enhancements will be implemented for the next prototype of IDIoT:

o A KU will have the ability to increase or decrease the retrievability of its customers.
This will make the whole detection mechanism far more dynamic in that the actual
reading process will affect the likelihood of the detection of a feature through the

detection of other features.
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o The memory manager will warn the user. if two KUs that are mutual exceptions are
simultaneously present in STM. This warning will make the user aware that either
there is an error in the KB or there is a potential conflict to explicitly handle.

e Static and dynamic memory will be more integrated. Roughly put, a KU will act as a
‘computing cluster’, that is, behave as a cluster once it is activated. More specifically,
if the user wishes so, upon its activation, a KU will be ‘moved’ to the Working Memory
and will not be ‘deactivated’ until it is removed from STM. And a KU in STM will
be considered far more retrievable than KUs in the knowledge base. Thus, in effect,
a KU will have its retrievability (and ‘detectability’) controlled by its actual usage.
Again, this strategy makes IDIoT significantly more dynamic.

o The knowledge browser will have a new menu item to obtain a graphical layout of the
knowledge base.

e A tool to navigate in the KB will be designed. From a KU, the designer will be able
to easily access the suppliers and customers of this KU.

o The syntactic and semantic checking of expansion procedures will be improved.

e Each KU in static memory will be assigned an initial activation level. The higher
this level, the slower the decay rate of the KU once activated. This follows from
the observation (e.g., Gernsbacher, 1985) that thematic information takes longer to
become detected than syntactic information but that former is more permanent in

memory than the latter.

e To implement the notion of a perspective (see chapter 9), the user will be able to mark
a set of KUs as being permanently detected for a reading and to construct clusters
that reside in STM throughout a reading.

s Through two new primitive memory operations, an expansion procedure will be able
to increase or decrease, for a short amount of time, the detection threshold, the length
of races, and the capacity of memory. This will allow the user to simulate a fluctuation

in interestingness (see chapter 9).

e A KU will be allowed to have several expansion procedures, each associated with one

or more constraints. At the time of its detection, the KU will execute the expansion

231



procedure associated with its triggered constraint. This ability will make it easy for

the user to regroup several features in a same KU.

o There will be different levels of tracing in order to avoid having one large and very

verbose log of all exchanges of signals and modifications of states during a reading.

I also want to investigate the ‘true’ parallel execution of expansion procedures. IDIoT
should ideally run on a parallel computer that supports asynchronous communication (which

is not the case for the Connection Machine).

10.3 Future Research

The model of time-constrained memory presented in this work has some important gaps
that future research must address.

With respect to learning:

e Since I do not model an adaptable memory, there is no principle of self-organization
in IDIOT. Such a principle (e.g., from category theory, see Peters and Shapiro (1987)
and Peters, Shapiro, and Rapaport (1989)) would be desirable if it proceeded from

quantitative observations (e.g., with respect to the physiology of the brain/mind).

o Learning from experience should be integrated within IDIoT. More specifically, with-
out necessarily developing a complete theory of learning, it should be possible for
IDIoT to continuously monitor (through the memory manager) the contents of STM
for new patterns of features to be suggested to the reader for addition to the KB. In
its simplest form, this would involve keeping a frequency count of the co-occurrence,
in STM, of ‘unrelated’ features. In the longer term, an automatic generalization

mechanism would also be highly desirable.

o The distinction between static and dynamic memory should be eliminated in favor of

the kind of fast and slow links suggested by Hinton and Plaut (1987).

o Ideally, the system should be able to automatically generate constraints for the de-

tection of new unknown features, though this seems quite far-off for now.

With respect to memory management:
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» A STM capacity limit defined in terms of maximal membership is simplistic. Several
management schemes have been proposed in both psychology and artificial intelli-
gence. Lehnert’s (1981, 1983) notion of pivotal units seems the easiest to implement
in IDIOT.

» The mechanisms of information loss, especially the “shift-processing hypothesis” (Gern-
sbacher, 1985) need further investigation. The phenomenon of forgetting needs to be
accounted for in TDIoT, most likely through the idea that only clusters with more
than a certain threshold of energy move from STM to LTM; others are simply lost.

o The current retrieval mechanism of IDIoT, though relatively complex, is oversim-
plified compared to theories proposed in psychology (e.g., the notion of synergy for
engrams, see Tulving, 1983, 1984). These theories must be studied at greater length
so that, eventually, it would be possible for the user of IDIoT to define a retrieval
mechanism. More generally, I would like the memory model of IDIoT to be itself

somewhat user-programmable.

o The notions of strategic reading (van Dijk and Kintsch, 1083) and strategic inferences
(Granger and Holbrook, 1983) must be integrated in IDIoT. In particular, the user
should be able to specify a strategy for the processing of conflicting inferences.

o The notion of the acceptability of an interpretation must be investigated. This topic
partly relates to the treatment of surprisingness.

Also, the problems of recall, summarization, and question answering must be addressed.
In particular, the notion of a central content selector (Graesser and Clark, 1985) must be
investigated for IDIoT. For question answering, a simple strategy could consist in con-
structing, from the processing of the question, a cluster to be matched in the representation

built for the studied text.

10.4 Aftermath

IDIoT started out and remains nothing more than a tool to explore how much of compre-
hension depends on the time-constrained nature of human memory. By all means, the pro-

posed model of memory is simplistic but already helpful in demonstrating the omnipresent
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and determinative role of time during comprehension. Since all the complexities of the
implementation of time-constrained memory are invisible to the user of IDIoT, it is easy to_
"believe that the trivial algorithm, that is, the modus operandi of timgconstrained memory,
is jﬁst that, trivial, and that the interpretation of a text results solely from the rules of the
KB, IDIoT merely acting as an access system. This is the danger of any Al research where
the focus of study is shifted away from conceptual rules. Yet, in light of the numerous
debates raging with respect to linguistic comprehension, I do believe we must ‘ground’ the
data structures and algorithms we pgstulate for cognition in a more fundamental entity that
bypasses the mind-body problem, namely, human memory. This is precisely what I tried to
do in the previous chapters, to show that both new and existing strategies for understanding
can be specified using IDIoT. But, regardless of the exact rules used, I also want to argue
that the time-constrained nature of memory plays an essential role during comprehension by
defining context and controlling the interactions between rules (e.g., through the processes
of decay, memory management, races, retrieval, etc.). The problems associated with the
specification of rules (see chapter 2) do not vanish in IDIoT, but some may be partially
avoided. For example, a parallel network may help with respect to intractability, and the
notion of reachability does considerably limit the interactions that a designer must consider
when adding a KU to the knowledge base.

In the end, the specification of rules and concepts for the knowledge base remains a
crucial and enormous task for which different approaches can be adopted. Most likely,
human knowledge is made of a mixture of both ‘experts’ and general rules abstracted from '
experience. I donot deny this evidence; I merely claim that these rules and their interactions
should be grounded in memory. It is obvious that a very large amount of work still must be
done before we can construct a reasonable model of human memory (e.g., with respect to
natural and analogical categorization, ‘body knowledge’, and information loss) and design
unconstrained memory-based conceptual analyzers for text comprehension. This is the

direction of my future efforts.
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Appendix A

A Complete Trace

The trace for the sentence “John drinks gin” is provided as is, tilat is, in its most verbose
and unedited form, in the next pages. Studying this trace, the reader will realize that several
minor complexities of IDIoT have not been addressed in this dissertation. Queries about
the exact modus operandi of the current prototype, which is constantly evolving, shounld be
mailed to the author. The phrase ‘manager tries dynamic construction of.... ' means that
the manager is attempting to execute the expansion procedure of a buildable KU whose
race to build has not yet expired but whose expansion procedure has not yet succeeded.
If such an attempt succeeds, the trace will have the phrase ‘which succeeds’ immediately

following,.
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starting a reading

candidacy length set to 200
expactation length set to 100
submission length set to 50
decay factor set to O

letter quantum set to 10
detection threshold set to 1
STH capacity set to 50
Working Memoxry capacity set to 7
forcedDetectionSignal is -1
confirmationSignal is -2
expectationSignal is -3
inhibitionSignal is -4
presenceSignal is 1
reinforcementSignal is -6
submissionSignal is -6

innate MU startOfSentencs read in at 0
is recognized
menager sends presenceSignal from start0fSentence to s-Start arriving at 1
manager smends pressnceSignal from startOfSentence to end(fSentence arriving at 1
manager sends prasenceSignal from startOfSentence to imperative-Start arriving at 1
MU imperative-Start in mode idle works at 1
receives presenceSignal on start(fSentence
HU s-8tart in mode idle works at 1
receives presenceSignal on startOfSentence
MU andlfSentence in mode idle works at 1
receives praesenceSignal on startifSentence
innate MU *John’ read in at 3
is recognized
manager expands
manager sends forcedDstectionSignal from manager to singular arriving at 3.01
menager sends forcedDetectionSignal from managar to proper arriving at 3.01
manager sends forcedDetectionSignal from manager to person arriving at 3.01
manager sends forcedDetectionSignal from manager to male arriving at 3.01
MU singular in mode idle works at 3.01
bacomes detected at: 3.01
NU proper in mode idle works at 3.01
becomes detected at: 3.01
maneger sends presenceSignal from proper to NP arriving at 4.01
manager sends presenceSignal from proper to lookForReference arriving at 5.01
manager sends presenceSignal from proper to resetLookForReference arriving at 4.01
WU person in mode idle works at 3.01
becomes detected at: 3.01
manager expands
manager sends forcedDetectionSignal from manager to rational arriving at 3.02
menager sends forcedDetectionSignal from manager to animate arriving at 3.02
MU male in mode idle works at 3.01
becaomes detectad at: 3.01
MU rational in mode idie woxks at 3.02
bacomes detected at: 3.02
NU animate in mode idle works at 3.02
becomes detacted at: 3.02
NU BP in mode idle works at 4.01
Teceives presenceSignal on proper
start candidacy race ending at 204.01 for constraint proper
satisfaction of proper against threshold 1
becomes detected at: 4.01
manager expands
manager sends forcedDetectionSignal from manager to NPhead arriving at 4.02
manager sends forcedDetectionSignal from manager to BPquant arriving at 4.02
manager sends forcedDetectionSignal from manager to NPmods arriving at 4.02
manager sends forcedDetectionSignal from manager to 3rdPerson arriving at 4.02
manager sends inhibitionSignal from manager to referrediP arriving at 4.02
manager sends presenceSignal from NP to directObject arriving at 5.01
manager sends presenceSignal from BP to coi arriving at 5.01
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manager sends prasenceSignal from NP to PP arriving at 5.01
manager sends presenceSignal from FP to s-Start arriving at 5.01
manager sends presenceSignal from NP to detDisagraement arriving at 5.01
manager sends presenceSignal from BP to detAttach arriving at 5.01
manager ssnds presenceSignal from NP to adjAttach arriving at 5.01
manager sends prepenceSignal from NP to forced~EP-PP-Attach arriving at 5.01
mansger sends presenceSignal from NP to referencaloPersonalPronoun arriving at 5.01
manager sends presenceSignal from NP to lookForReferencs arriving at 5.01
manager sends presenceSignal from NP to NP-PP-locationittach arriving at 5.01
manager sends presenceSignal from EP to EP-PP~timesittach arriving at 5.01
HU resstLookForRefsrence in mode idle works at 4.01
Teceives presenceSignal on proper
start candidacy race ending at 204.01 for constraint proper
satinfaction of proper against threshold 1
becemes detected at: 4.01
manager sends inhibitionSignal from manager to lookForReference arriving at 4.02
manager sends inhibitionSignal from manager to referredNP arriving at 4.02
HU lookFoxRefarence in mode idle works at 4,02
is inhibited at 4.02
NU referrediP in mode idle works at 4.02
is inhibited at 4.02
MU EPhead in mode idle works at 4.02
becomes detected at: 4.02
NU NPquant in mode idle works at 4.02
becomes detected at: 4.02
MU SrdPerson in mode idle works at 4.02
becomes detected at: 4.02
HU EPmods in mode idle works at 4.02
becomes detacted at: 4.02
MU PP in mode idle works at 5.01
Teceives presenceSignal on P
MU adjAttach in mode idle works at 5.01
receives presenceSignal on WP
HU NP-PP-locationAttach in mode idle works at 5.01
Teceives presencaSignal on NP
MU lookForReference in mode idle works at 65.01
Teceives presemceSignal on NP
receives prasanceSignal om proper
atart candidacy race ending at 205.01 for comstraint proper
satisfaction of proper against threshold 1
bacomes detaected at: 5.01
sends presenceSignal from lookForRefsrence to referredNP arriving at 6.01
NU forced~-EP-PP~Attach in mode idle works at 5.01
receives presenceSignal on NP
MU detDissgreement in mode idle works at 5.01
receives presenceSignal on NP
start candidacy race ending at 206.01 for constraint ci
menager triss dynamic construction of detDisagreement at 5.01
NU s-Start in mode idle works at 5.01
Tacaiven presencaSignal on BP
start candidacy race ending at 205.01 for constraint NP
satisfaction of NP against threshold 1
becomes detected at: 5.01
manager expands
zmanager sends forcedDetectionSignal from manager to topEP arriving at 5.02
manager sends forcedDetectionSignal from manager to snbject arriving at 5.02
manager tries dynamic constrauction of detDisagreement at 5.01
manager sends inhibitionSignal from manager to imperative-Start arriving at 5.02
manager sends presenceSignal from s~-Start to subj-verb-rel arriving at 6.01
NU coi in mode idle works at 5.01
receives presenceSignal on NP
MU FP-PP-timeittach in mode idle works at 5.01
receives prasenceSignal on EP
MU directObject in mode idle works at 5.01
receives presenceSignal on NP
MU detAttach in mode idle vorks at 5.01
receives presenceS8ignal on NP
MU referenceToPersonalPronoun in mode idle works at 5.01
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receives presenceSignal on NP
NU imperative-Start in mode idle works at 5.02
is inhibited at 5.02
MU topNP in mode idle works at 5.02
becomes detected at: 5.02
MU subject in mode idle works at 5.02
becomes detacted at: 5.02
MU subj-verb-rel in mode idle works at 6.01
receives presanceSignal on s-Start
MU referrediP in mode idle works at 6.01
receives presenceSignal on lookForReferance
start candidacy race ending at 206.01 for comstraint lookForReferamnce
manager tries dynamic construction of referrediP at 6.01
innate NU ’drinks’ read in at 43
is recognized
manager expands
manager sends forcedDetectionSignal from manager to 3rdPersonSingForm arriving at 43.01
manager sends presenceSignal from ’drinks’ to actionDrink arriving at 44
MU 3rdPersonSingForm in mode idle works at 43.01
becomes detected at: 43.01
MU actionDrink in mode idle works at 44
receives presenceSignal on ’‘drinks?
start candidacy race ending at 244 for comstraint ’drinks’
satisfaction of ’drinks’ against threshold 1
for vardb value is O
manager ssnds submissionS8ignal from actionDrink to verb arriving at 45
manager sends submissionSignal from actionDrink to drinkBeverage arriving at 45
NU drinkBeverage in mode idle works at 46
receives submissionS8ignal on actionDrink
MU verd in mode idle works at 45
receives submissionSignal on actionDrink
manager sends submissionSignal from verb to VP arriving at 46
MU VP in mode idle works at 48
receives submissionSignal on verd
in submission, a triggered constraint is verd
satisfaction of verdb against threshold 1
manager sends submissionSignal from VP to end0fSentence arriving at 47
manager sends submissionSignal from VP to subj-verb-rel arriving at 47
manager sends submissionSignal from VP to newFact arriving at 47
manager sends submissionSignal from VP to adverbifterVerd arriving at 47
manager sends submissionSignal from VP to imperative-Start arriving at 47
manager sends submissionSignal £rom VP to actionObserve arriving at 47
manager sends submissionSignal from VP to VP-PP-timeAttach arriving at 47
manager sends submissionSignal £rom VP to EP-PP-timeAttach arriving at 47
manager sends submissionSignal from VP to forced-VP-PP-Attach arriving at 47
manager sends submissionSignal fxrom VP to EP-PP-locationAttach arriving at 47
manager sends submissionSignal from VP to VP-PP-attributedttach arriving at 47
manager sends submissionSignal fxrom VP to VP-PP-instrumentittach arriving at 47
MU endOfSentance in mode idle works at 47
receives submissionSignal on VP
MU subj-verb-rel in mode idle works at 47
receives submissionSignal on VP
in submission, a triggered constraint is WP
satisfaction of NP against threshold 1
manager sends confirmetionSignal from subj-verb-rel to VP arriving at 48
NU actionObserve in mode idle works at 47
receives submissionSignel on VP
MU FP-PP-locationAttach in mode idle works at 47
receives submisaionSignal on VP
MU VP-PP-instrumentAttach in mode idle works at 47
receives submissionSignal on VP
MU newFact in mode idle works at 47
receives submissionSignal on VP
MU forced-VP-PP-Attach in mode idle works at 47
receives submissionSignal on VP
MU adverbAftarVerd in mode idle works at 47
receives submissionSignal on VP
MU imperative~Start in mode idle works at 47
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Treceives submissionSignal on VP
MU VP-PP-timedttach in mode idle works at 47
Teceives submissionSignal on VP
NU EP-PP~timeldttach in moda idle works at 47
receives submissionSignal on VP
¥U VP-PP-attributeAttach in mode idle works at 47
recaives submissionSignal on VP
¥U VP in mode neediConfirmationBeforeConfirming works at 48
reoceives confirmationSignal on subj-vexb-rel
confirmers are subj-verb~rael
manager sende confirmationSignal from VP to verb arriving at 49
XU vexrb in mode toBeConfirmed works at 49
receives confirmationSignal on VP
confirmars are VP
manager sends confirmationSignal £rom verb to actionDrink arriving at 50
MU actionDrink in mode immediatsCandidate works at 50
receives confirmationSignal on verd
confirmers are verxdb
manager sends reinforcementSignal from actionDrink to verb arriving at 51
becomes detactad at: 50
forgets end of race deadline
manager expands i
manager triss dynamic construction of referredEP at 50
manager tries dynamic construction of detDisagresment at 50
manager sends presenceSignal from actionDrink to drinkBeverage arriving at 51
MU drinkBeverags in mode idle vorks at 51
receives presenceSignal on actionDrink
MU verdb in mode toBeReinforced works at 51
receives reinforcemsntSignal on actionDrink
manager sends reinforcementSignal from verb to VP arriving at 52
becomes detected at: 51
MU VP in mode toBeReinforced works at 52
receives reinforcementSignal on verdb
manager sands reinforcementSignal from VP to subj-verb-rel arriving at 53
becomes detscted at: 52
manager expands
manager sends forcedDetectionSignal from manager to activeMood arriving at 52.01
manager sends forcedDetectionSignel from manager to mainVerdb arriving at §3.01
manager sends forcedDetectionSignal from manager to VPmods arriving at 52.01
manager tries dynamic construction of referredEP at 52
manager tries dynamic construction of detDisagresment at 52
manager sends inhibitionSignal from manager to forced-BP-PP-Attach arriving at 52.01
manager sends presenceSignal from VP to imperative-Start arriving at 63
manager sends presenceSignal from VP to newFact arriving at 53
manager sends presenceSignal from VP to end0fSentence arriving at 53
manager sends presenceSignal from VP to actionUbserve arriving at 53
manager sends presenceSignal from VP to VP-PP-attributeittach arriving at 53
manager sends presenceSignal from VP to VP-PP-instrumentAttach arriving at 53
manzger ssnds presenceSignal from VP to VP-PP-timeAttach arriving at §3
manager sends presenceSignal from VP to forced-VP-PP-Attach arriving at 53
manager sends presenceSignal from VP to NP-FP-locationAttach arriving at 63
manager sends presanceSignal from VP to NP-PP~timeAttach arriving at 53
manager sends presenceSignal from VP to adverbAfterVerb arriving at 63
BU forced-EP~PP-Attach in mode idle works at 652.01
is inhibited at 52.01
HU VPmods in mode idle works at 52.01
becomes detected at: 52.01
BU activeMood in mode idle works at 52.01
becomas detected at: 52.01
MU mainVerdb in mode idle works at 52.01
becomes detected at: 52.01
manager sends presenceSignal from mainVerb to endlfSentence arriving at 53.01
MU VP-PP-attributeAdttach in mode idle works at 53
receives prasenceSignal on VP
NU subj-verb-rel in mode toBeReinforced works at 53
Teceives reinforcementSignal on VP
becomes detected at: 53

manager expands
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manager sends forcedDetectionSignal from manager to clanse arriving at 53.01
manager triss dynsmic comstruction of referredNP at 63
manager tries dynamic construction of detDissgreement at E3
manager sends presenceBignal £rom subj-verb-rel to dirsctObject arriving at 54
manager sends presenceSignal from subj~verb-rel to mewFact arriving at 54
manager sends presenceSignal from subj~verb-rel to verb-complement-attachment arriving at 54
manager sends presenceSignal from subj-verb-rel to sva-1 arriving at 54
manager sends presenceSignal from subj-verb-rel to sva~2 arriving at 54
XU actionbserve in mode idle works at &3
receives pressncsSignal on VP
NU VP-PP-instrmmentittach in mode idle works at 53
receives presenceSignal on VP
KU ¥P-PP-locationittach in mode idle works at 63
receives prasenceSignsl on VP
MU newFact in mode idle works at 63
receives presenceSignal on VP
U forcad-VP-PP-Attach in mode idle works at 63
receives presancaSignal on VP
KU adverbAfterVerdb in mode idle works at 53
receives prasenceSignal on VP
MU imperative-Start in mode idle works at 53
receives presenceSignal on VP
KU VP-PP-timeAttach in mode idle works at 63
raceives presenceSignal on VP
MU NP-PP-timeAttach in mode idle works at 53
receives presenceSignal on VP
MU end0fSentence in mode idle works at 63
receives presenceSignal on VP
MU endDfSentsnce in mode idle works at 53.01
receives presenceSignal on mainVerd
MU clauss in mode idle works at 53.01
becomes detected at: 53.01
MU sva-2 in mode idle works at 64
receives praesenceSignal on subj-verb-rel
start candidacy race ending at 254 for constraint subj-verb-rel
manager tries dynamic construction of sva-2 at 54
MU newFact in mode idle works at 54
Teceives prasenceSignal on subj-verb-rel
MU verb-complement-attachment in mode idle works at 64
receives presenceSignal on subj-verb-rel
WU dirsctObject in mode idle works at 54
receives presenceSignal an subj-verb-rel
MU sva-1 in mode idle works at 54
receives presenceSignal on subj-verb-rel
start candidacy race ending at 264 for constraint subj-verb-rel
manager tries dynamic construction of sva-1 at 54
innate MU ’gin’ read in at 103
is racognized
manager expands
menager sends forcmdDetectionSignal from manager to singular arriving at 103.01
manager sends prasenceSignal from 'gin’ to gin arriving at 104
MU singular in mode idle works at 103.01
becomes detected at: 103.01
MU gin in mode idle works at 104
Teceives presenceSignal on ’gin’
start candidacy race ending at 304 for comstraint ’gin’
satisfaction of ’gin’ agrinst threshold 1
for noun value is O
manager sends submissionSignal from gin to noun arriving at 105
MU noun in mode idle works at 105
receives submissionSignal on gin
manager sends submissionSignal from noun to XP arriving at 106
MU BP in mode idle works at 106
receives submissionSignal on noun
in submission, a triggered comstraint is justNoun
satisfaction of justlNoun against threshold 1
manager sends submissionSignal from NP to directObject arriving at 107
manager sende submissionSignal from NP to coi arriving at 107
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manager sends subaissionSignal from NP to s-8tart arriving at 107
manager sends submissionSignal from BP to detiAttach arriviag at 107
manager sends submissionSignal from NP to referenceToParscnalPronoun arriving at 107
manager sends submissionSignal from WP to PP arriving at 107
manager sends submissionSignal from NP to lookForReference arriving at 107
manager sends subaissionSignal from NP to NP-PP-timeAttach arriving at 107
manager sends submissionSignal from NP to forced-EP-PP-Attach arriving at 107
menager sands submissionSignal from NP to NP-PP-locationAttach arriving at 107
manager sends submissionSignal £rom NP to adjAttach arriving at 107
manager sends submissionSignal from NP to detDisagreement arriving at 107
MU PP in mode idle works at 107
receives snbmissionSignal on WP
MU adjAttach in mode idle works at 107
receives submissionSignal on FP
KU NP-PP-locationidttach in mode idle works at 107
Taceives submissionSignal on NP
MU lookForRefersnce in mode idle sorks at 107
receives submissionSignal on EP
NU forced-EP~PP-~Attach in mode idle works at 107
Tecaives submissionSignal on NP
MU detDisagrsement in mode toBeBuiltlmmediate works at 107
resceives submissionSignal on XP
NU a-Start in mode idle works at 107
receives submissionSignal on ¥P
MU coi in mode idle works at 107
receives submissionSignal on NP
NU NP-PP~timedttach in mode idle works at 107
receives submissionSignal on P
MU directObject in mode idle works at 107
receives submissionSignal on XP
in submission, a triggsred coastraint is ci
satisfaction of cl against threshold 1
manager attempts dynamic construction for submission at 107
manager sends confirmationfiignal from directDbject to NP arriving at 108.26
MU detAttach in mode idle works at 107
receives submissionSignal on EP
MU referenceToPeraonzlPronoun in mode idle works at 107
receives submissionSignal on EP
MU BP in mode neadAConfirmationBefareConfirmingworks at 108.26
Teceiver confirmationSignal on directDbject
confirmers are dirsctibject
manager sends confirmationSignal from NP to moun arriving at 109.26
KU noun in mode toBeConfirmed works at 109.26
receives confirmationSignal on ¥P
confirmers are BP
manager sends confirmationSignal from noun to gin arriving at 110.26
NU gin in mode immediateCandidate works at 110.26
receives confirmationSignal on noun
confirmers are noun
manager sends reinforcementSignal from gin to noun arriving at 111.26
becomas detacted at: 110.26
forgets end of race deadline
manager expands
manager tries dynamic construction of sva-1 at 110.26
manager tries dynamic comstruction of sva-2 at 110.26
manager tries dynamic construction of referredNP at 110.26
manager tries dynamic construction of detDisagreement at 110.26
manager sends confirmationSignal from gin to cardGameGin arriving at 111.26
manager sends confirmationSignal from gin to alcoholicBeverageGin arriving at 111.26
NU alcoholicBeverage@in in mode idle works at 111.26
receives confirmationSignal on gin
start direct candidacy race ending at 311.26 for constraimt gin
manager sends submissionSignal from alcoholicBeverageGin to alcoholicBeverage arriving at 112.26
MU cardGameGin in mode idle works at 111.26
receives confirmationSignal on gin
start direct candidacy race ending at 311.26 for constraint gin
manager sends submissionSignal from cardGamedin to cardGame arriving at 112.26
manager sends submissionSignal from cardGame@in to rules(dfGin arriving at 112.26
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MU noun in mode toBeReinforced works at 111.26
receives rainforcementSignal on gin
manager sends reinforcementSignal from noun to NP arriving at 112.26
bacomes detected at: 111.26
MU alcoholicBeverage in mode idle works at 112.26
receives submissionSignal on alcoholicBeverage@in
in submission, a triggered comstraint is alcoholicBevarageGin
satisfaction of alcoholicBeveragelin against thrashold 1
manager sends submissionSignal from alcoholicBeverage to abontdlcoholBeverages arriving at 113.26
manager sends submissionSignal 2rom alcoheolicBevarage to beverage arriving at 113.26
WU 3P in mode toBeReinforced works at 112.26
receives reinforcement8Signal on noun
manager sands rainforcementSignal from NP to directObject arriving at 113.26
becomas detscted at: 112.26 ¥
manager sxpands
manager sends forcedDetectionSignal from managar to NPhead axriving at 112.27
manager sends forcedDetectionSignal from manager to NPquant arriving at 112.27
manager sends forcedDetectionSignal frem manager to NFmods arriving at 112.27
manager aends forcedDetsctionSignal from manager to SrdPerson arriving at 112.27
manager tries dynamic construction of sva-1 at 112.26
manager triss dynsmic construction of sva~2 at 112.26
manager tries dynamic comstruction ef referrediP at 112.26
manager tries dynamic construction of detDisagresmant at 112.26
mansger sends inhibitionSignal from manager to referredEP arriving at 112.27
manager sends prassuceSignal from EP to coi arriving at 113.26
manager sands presencaSignal from NP to PP arriving at 113.28
manager sends presenceSignal from NP to s-Start arriving at 113.26
manager sends prasenceSignal from EP to detDisagreement arriving at 113.26
manager sends presenceSignal from NP to detAttach arriving at 113.26
manager sends presenceSignal f£rom EP to adjAttach arriving at 119.26
manager sends presanceSignal from EP to forcad-NP-PP-Attach arriving at 113.26
manager ssnds presenceSignal frem EP to referenceToPersonalPronoun arriving at 113.26
manager sends presenceSignal from NP to lockForRefersnce arriving at 113.26
manager sends presenceSignal from EP to EP-PP-locationittach arriving at 113.26
manager sends presenceSignal from NP to NP-PP-timedttach arriving at 113.26
KU cardGame in mode idle works at 112.26
receives submissionSignal on card@ame@in
in submission, a triggered comstraint is cardGameGin
satisfaction of card@ameGin against thrashold 1
manager sends submissionSignal from cardGame to game arriving at 113.26
sends submissionSignal from cardGems to abontPlayingCards arriving at 118.26
MU rules0fGin in mode idle works at 112.26
receives submisaionSignal on cardGameGin
in submission, a triggered comstraint is cardGame@in
satisfaction of cardGame@in against threshold 1
MU XPguant in mode idle works at 112,27
becomes detected at: 112.27
MU 3xdPerson in mode idle works at 112.27
becomas detected at: 112.27
NU referredSP in mode toBeBuiltImmediate works at 112.27
is iphibited at 112.27
forgets end of race deadline
¥U ¥Pmods in mode idle works at 112.27
becomes detected at: 112.27
NU FPhead in mode idle works at 112.27
becomes detected at: 112.27
MU PP in mode idle works at 113.26
receives presanceSignal on NP
¥U game in mode idle works at 113.26
receives submissionSignal on cardGame
in submission, a triggersd comstraint is cardGame
satisfaction of cardGame against threshold 1
manager sends submissionSignal from game to actionPlayAGeme arriving at 114.26
XU beverage in mode idle works at 113.26
receives submissionSignal on alcoholicBeverage
in submission, a triggered constraint is alcoholicBeverage
satisfaction of alcoholicBeverage against threshold 1
manager sends submissionSignal from beverage to drinkBeverage arriving at 114.26
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manager sends submissionSignal from beverage to liquid arriving at 114.26
NU aboutilcoholBeverages in mode idle works at 113.28
Taceives submissionS8ignal on alcoholicBeverage
in sulmission, a triggered constraint is ci
satisfaction of ci against threshold 1
MU adjAttach in mode idle works at 113.26
recaeives prasenceSignal on EP
HU §P-PP-locationittach in mode idle works at 113.26
receives pressnceSignal on XP
NU forced-EP-PP-Attach in mode idle works at 113.26
Teceives prassnceSignal on NP
NU lookForReferaence in mode idle works at 113.26
recesives presenceSignal on EP
U detDisagresment in mode toBeBuiltImmediate works at 113.26
receives presenceSignal on NP
MU s-Start in mode idle works at 113.26
receives pressnceSignal on ¥P
NU aboutPlayingCards in mode idle works at 113.26
raceives submisnionSignal on cardGame
in submission, a triggered constraint is ci
satisfaction of ci against thrashold 1
NU coi in mode idle works at 113.26
recaives presenceSignal on EP
MU ¥P~PP-timesittach in mode idle works at 113.26
receives prasenceSignal on FP
HU directObject in mode toBeReinforced works at 113.26
receives reinforcementSignal on EP
becomes detected at: 113.26
manager expands
manager sends forcedDetectionSignal from manager to verbComplemented arriving at 113.27
manager sends forcedDetectionS8ignal from manager to topEP arriving at 113.27
manager tries dynamic construction of sva-1 at 113.26
manager tries dynamic comstruction of sva-2 at 113.26
manager tries dynamic construction of detDisagreement at 113.26
nanager sands presencsSignal from directlbject to coi arriving at 114.26
manager sends prasenceSignal from directObject to nesFact arriving at 114.28
manager sends presenceSignal from directObject to beNP arriving at 114.26
MU detittach in mode idle works at 113.26
Teceives presenceSignal on EP
MU referenceToPersonalPronoun in mode idle works at 113.26
receives presenceSignal on ¥P
MU verbComplemented in mode idle works at 113.27
becomen detectad at: 113.27
MU topEP in mode idle works at 113.27
' becomes detected at: 113.27
MU newFact in mode idle works at 114.26
raceives presanceSignal on dirsctObject
NU drinkBeverage in mode idle works at 114.26
receives submissionSignal on beverage
in submission, a triggered constraint is ci
satisfaction of c1 against threshold 1
manager attempts dynamic comstruction for submission at 114.26
manager sends confirmationSignal from drinkBeverage to beverage arriving at 116.52
MU liquid in mode idle works at 114.26
receives submissionSignal on beverage
in submission, a triggered comstraint is beverage
satisfaction of beverage against threshold 1
manager sends submissionSignal from liquid to actionSpillliquid arriving at 1165.26
manager sends subzmissionSignal from liquid to aboutlLiquids arriving at 115.26
HU actionPlayAGame in mode idle works at 114.26 .
Teceives submissionSignal on game
NU coi in mode idle works at 114.26
Teceives presanceSignal on directDbject
NU belBP in mode idle works at 114.26
receives presenceSignal on dirsctDbject
MU actionSpilllLiguid in mode idle works at 115.26
Treceives submissionSignal on liqmid
HU aboutLiquids in mode idle works at 115.26
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receives submissionSignel on liquid
in submission, a triggered constraint is liguid
satisfaction of liquid against threshold 1
MU beverage in mode needAConfirmationBeforeConfirmingworks at 115.52
rTeceives confirmationSignal on drinkBeverage
confirmers are drinkBevarage
manager sends confirmationSignal from beverage to alcoholicBeverage arriving at 115.53
XU alcoholicBeverage in mode nesdACorfirmationBeforaConfirmingworks at 115.53
manager sends confirmationSignal from alcoholicBeverage to alcoholicBeverage@in arriving at 115.54
MU alcoholicBeverageGin in mode directInmediateCandidate works at 115.54
becomes detected at: 115.54
forgets end of race deadline
manager expands
manager sends forcedDetactionSignal from manager to tastelfGin arriving at 115.56
manager tries dynamic comstruction of sva-1 at 116.54
manager tries dynamic construction of sva-2 at 115.54
manager tries dynamic censtruction of detDisagreement at 115.54
manager sends forcedDatectionSignal from alcoholicBeverageGin to alcoholicBeverage arriving at 115.55
MU tastelf@in in mode idle works at 115.55
becomes detected at: 115.56
MU alcoholicBeverage in mode toBsReinforced works at 115.66
receives forcedDatectionSignal on alcoholicBeverageGin
becomas detected at: 115.56
nanager expands
nmanager tries dynamic construction of sva-1 at 116.56
manager tries dynamic construction of sva-2 at 115.56
manager tries dynamic construction of detDisagraement at 115.556
manager sends forcedDetectionSignal from alcoholicBeverage
to aboutilcoholBeverages beverage arriving at 115.56
NU aboutAlcoholBeverages in mode neediConfirmationBeforeConfirmingworks at 115.56
receives forcedDetectionSignal on alcoholicBeverage
becomes detected at: 115.66
manager expands
manager tries dynamic comstruction of sva-1 at 1156.56
manager tries dynamic comstruction of sva-2 at 115.56
manager tries dynamic construction of detDisagreement at 115.56
MU beverage in mode toBeReinforced works at 115.66
receivas forcedDetectionSignal on alcoholicBeverage
becomes detected at: 1156.66
manager expands
manager tries dynamic comstruction of sva-1 at 1156.66
manager tries dynamic comstruction of sva-2 at 115.56
manager tries dynsmic construction of detDisagreement at 115.66
manager sends forcedDetectionSignal from baverage to liquid arriving at 115.57
MU liquid in mode neediConfirmationBeforsConfirmingworks at 115.67
receivas forcedDetectionSignel on beverage
becomes detected at: 115.57
manager expands
manager tries dynamic construction of sva-1 at 1156.67
manager tries dynamic comstruction of sva-2 at 115.57
manager tries dynamic construction of detDisagreement at 115.57
manager sends forcedDetectionSignal from liquid to aboutliquids arriving at 115.68
manager sends presenceSignal from liquid to actionSpillliquid arriving at 116.57
MU aboutLiguide in mode neediConfirmationBeforeConfirmingworks at 115.58
recaeives forcedDetectionSignal on liquid
becomes detected at: 115.68
manager expands
manager tries dynamic conmstruction of sva-1 at 115.68
manager tries dynamic comstrnction of sva-2 at 115.68
manager tries dynemic construction of detDisagreement at 115.58
MU actionSpillliquid in mode idle works at 116.57
receives presenceSignal on liquid
innate MU . read in at 133
is recogniszed
manager sends presanceSignal from . to end0fSentence arriving at 134
innate MU end(fText read in at 133.01
is recognized
manager sends presenceSignal from end0fText to endOfSentence axrriving at 134.01
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KU endDfSemtence in mode idle works at 134
Teceives presenceSignal on .
NU end0fSentence in mode idle works at 134.01
Teceives prasencaSignal on end0fText
start candidacy rage ending at 334.01 for constraint c2
satisfaction of c2 against threshold 1
bacomes detscted at: 134.01
manager tries dynamic construction of sva-1 at 134.01
manager triss dynamic construction of sva~2 at 134.01
manager tries dynamic construction of detDisagresment at 134.01
manager sends presencaSignal from endifSentence to nemFact arriving at 135.01
manager sends presenceSignal from end(fSentencs to missingDirectObject arriving at 135.01
nanager sends presencaSignal from end0fSentence to absentLocation arriving at 136.01
MU newFact in mode idle works at 135.01
receives presenceSignal on endOfSentence
start candidacy race ending at 335.01 for constraint subject-verb
satisfaction of subject-verd against threshold 1
becomes detected at: 135.01
manager expands
manager tries dynamic comstruction of sva-1 at 135.01
manager tries dynamic comstrmuction of sva-2 at 135.01
manager tries dynamic construction of detDisagresment at 135.01
menager sends forcedDetectionSignal from newFact to rsmoveTopEP resetFeatures arriving at 135.02
manager sends presenceSignal from newFact to complement arriving at 136.01
manager sends presenceSignal from newFact to rel-clause arriving at 136.01
manager sends presenceSignal from newFact to beAttribute arriving at 136.01
menager sends presenceSignal from newFact to belP arriving at 136.01
MU sbsentLocatior in mode idle works at 135.01
recaives presenceSignal on endifSentence
MU missingDirectObject in mode idle works at 135.01
receives presenceSignal on endOdfSentence
¥U removeTopEP in mode idle works at 135.02
Tecaives forcedDetactionSignal on mewFact
becomes detacted at: 136.02
manager expands
manager tries dynamic construction of sva-1 at 136.02
manager tries dynamic construction of sva~-2 at 135.02
maneger tries dynamic construction of detDisagreement at 135.02
MU resetFeaturas in mode idle works at 135.02
receives forcedDestectionSignal on newFact
becomes detected at: 135.02
manager tries dynsmic construction of sva-1 at 135.02
manager tries dynamic construction of sva-2 at 135.02
manager tries dynamic comstruction of detDisagreement at 135.02
manager sends inhibitionSignal from manager to sva-1 arriving at 135.03
manager sends inhibitiom8ignal from manager to sva-2 arriving at 135.03
manager sends inhibitionSignal from manager to referredfP arriving at 135.03
manager sends inhibitionSignal from manager to directObject arriving at 135.03
manager sends inhibitionSignal from manager to coi arriving at 135.03
manager sends inhibitionSignal from manager to missingDirectObject arriving at 185.03
manager sends inhibitienSignal from mansger to absentlocation arriving at 136.03
manager sends inhibitionSignal from manager to detDisagresment arriving at 136.03
manager sends inhibitionSignal from manager to forced-EP-PP-Attach arriving at 136.03
manager sends inhibitionSignal from manager to forced-VP-PP-Attach arriving at 135.03
manager sends inhibitionSignal from manager to adjStart arriving at 135.03
manager sends inhibitionSignal from manager to NP arriving at 135.03
manager sends inhibitionSignal from manager to VP-PP-attributeAttach arriving at 136.03
manager sends inhibitionSignal from manager to VP-PP-instrumentittach arriving at 135.03
manager sends inhibitionSignal from manager to VP-PP-locationittach arriving at 135.03
manager sends inhibitionS8ignal from manager to VP-PP~timeAttach arriving at 136.08
manager sends inhibitionSignal from manager to bellP arriving at 136.03
manager sends inhibitionSignal from manager to bePP arriving at 135.03
manager sends inhibitionSignal from manager to adjAttach arriving at 136.03
manager sends inhibitionSignal from manager to atLocation arriving at 135.03
manager sends inhibitionSignal frem manager to atTime arriving at 135.03
manager ssnds inhibitionSignel from manager to inlocation arriving at 135.03
manager sends inhibitionSignal from manager to inTime arriving at 135.03
manager sends inhibitionSignal from manager to onLocation arriving at 136.03
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manager sends inhibitionSignal from manager to onTime arriving at 135,03

manager sends inhibitionSignal from manager to checkLocationForittribute arriving at 135.03
manager sends inhibitionSignal from manager to detittach arriving at 135.03

manager sends inhibitionSignal from manager to refarenceToPersonzlPronoun arriving at 135.03
manager sends inhibitionSignal fxom manager to rel-proncun-disagresmant arriving at 135.03
menager sends inhibitionSignal from manager to verb-complemsnt-attachment arriving at 135.08
menager sends inhibitionSignal from manager to withAttribute azriving at 136.03

manager sends inhibitionSignal from manager to vithInstrument arriving at 135.03

manager sends inhibitionSignal from manager to EP-PP-locationittach arriving at 135.03
manager sends inhibitionSignal from manager to EP-PP-attributeittach arriving at 1386.03
manager sends inhibitionSignal from mamager to EP-PP~timaAttach arriving at 135.03

manager sends inhibitionSignal from manager to raferonceAttachmenti arriving at 136.03
manager sends inhibitionSignal from manager to referencedttachment2 arriving at 135.03
manager sends inhibitionSignal from mamager to cleanUpCompulasrylocation arriving at 186.03

MU cleanUpCompulsorylocation in mode idle works at 135.03
is inhibited at 136.03

NU absentLocatien in mode idle works at 135.03
is inhibited at 135.03

NU referrediP in mode idle works at 135.08
is inhibited at 135.03

M0 refersncedttachment2 in mode idle works at 135.03
is inhibited at 135.03

MU adjAttach in mode idle works at 135.03
is inhibited at 135.03

MU referenceAttachmenti in mode idle works at 135.03
i8 inhibited at 135.03

MU bePP in mode idle works at 136.03
is inhidbited at 135.03

WU VP-PP-locationAttach in mode idle works at 136.03
is imhibited at 136.03

NU EP~PP-attributedttach in mode idle works at 136.03
is inhibited at 135.03

¥U VP~PP-instrumentAttach in mode idle works at 136.03
is inhibited at 135.03

NU sva-2 in mode toBmBuiltImmediate works at 135.03
is inhibited at 135.03
foxgets end of race deadline .

NU forced-EP-PP-Attach in mode idle works at 135.03
is inhibited at 1356.03

NU inLocation in mode idle works at 135.03
is inhibited at 135.03

MU checkLocationForAttribute in mode idle works at 135.03
is inhibited at 136.03

NU forced-VP~PP-Attackh in mode idle works at 136.03
is inhibited at 135.03

WU withInstrument in mode idle works at 135.03
is inhibited at 135.03

MU EP-PP-locationAttach in mode idie works at 135.03
is inhibited at 135.03

WU coi in mode idle works at 136.03
is inhibited at 135.038

MU VP-PP-timeittach in mode idle works at 135.03
is inhibited at 135.03

MU directObject in mode idle works at 136.03
is inhibited at 1365.03

MU SP-PP-timaAttach in mode idle works at 135.03
is inhibited at 1356.03

MU detAttach in mode idle works at 135.03
is inhibited at 136.03

NU refersnceToPeraonalPronoun in mode idle works at 135.03
is inhibited at 135.03

XU verb-~complement-attachment in mode idle works at 135.03
is inhibited at 136.03

MU rel-prononn-disagresment in mode idle works at 135.03
is inhibited at 136.08

NU missingDirectObject in mode idle works at 135.03
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is inhibited at 135.03

MU P in mode idle works at 135.03
is inhibited at 136.03

HU bel#P in mode idle works at 135.03
is inhibited at 136.03

MU onTime in mode idle works at 136.03
is inhibited at 135.03

MU atTime in mode idle works at 136.03
is inhibited at 135.03

MU sva-1 in mode toBeBuiltImmediate works at 135.03
is inhibited at 136.03
forgets end of race deadline

KU adjStart in mode idle works at 135.03
is inhibited at 135.03

MU inTime in mode idle works at 135.03
is inhibited at 135.03

MU detDisagreement in mode toBeBuiltImmediate works at 135.03
is inhibited at 135.03
forgets end of race deadline

MU withAttribute in mode idle works at 135.03
is inhibited at 135.03

HU atLocation in mode idle works at 135.03
is inhibited at 135.03

MU onlocation in mode idle works at 135.03
is inhibited at 135.03

HU VP-PP-attributeAttach in mode idle works at 135.03
is inhibited at 135.03

MU bedttribute in mode idle works at 136.01
receives presenceSignal on newFact

MU belP in mode idle works at 136.01
receives presenceSignal on newFact

MU rel-clause in mode idle works at 136.01
receives presenceSignal on newFact

.1 complement in mode idle works at 136.01
receives presenceSignal on newFact

MU cardGame@in in mode directImmediateCandidate works at 311.26
reverts to idle

end of reading
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