
A Computational Model of Collaboration on
Reference in Direction-Giving Dialogues

by

Philip Glenny Edmonds

Department of Computer Science
University of Toronto
Toronto, Canada
October 1993

A thesis submitted in conformity with the requirements
for the degree of Master of Science at the

University of Toronto

Copyright c
 1993 by Philip Glenny Edmonds

Abstract

In a conversation, a speaker sometimes has to refer to an object that is not previously known

to the hearer. This type of reference occurs frequently in dialogues where the speaker is

giving directions to a particular place. To make a reference, the speaker attempts to build

a description of the object that will allow the hearer to identify it when she later reaches it.

This thesis presents a computational model of how an agent collaborates on reference in

direction-giving dialogues. Viewing language as goal-oriented behaviour, we encode route

descriptions, referring expressions, and discourse actions in the planning paradigm. This

allows an agent to construct plans that achieve communicative goals by means of surface

speech actions, and to infer plans and goals from these actions. The basis is that a referring

expression plan is acceptable to an agent if she is con�dent that the plan is adequate as

an executable identi�cation plan. By considering the salience of the features used in a

referring expression plan, an agent can evaluate her con�dence in its adequacy. Driven

by the implicit intention of making plans mutually acceptable, the conversants collaborate

until the hearer is con�dent in the adequacy of the current referring expression plan. In

doing so, the conversants use suggestion and elaboration discourse actions that operate

on the current plan. While collaborating, an agent is in a mental state that includes the

intention to achieve the goal of having the direction recipient understand the directions,

the plan the agents are currently considering, and a focus of attention into the plan. This

collaborative state governs the discourse by sanctioning both the adoption of goals, and the

mutual acceptance of plans. Re
ecting the inherent symmetry in collaborative dialogue, the

model can act as both speaker and hearer, and can play the roles of both the direction-giver

and the recipient.

ii

Acknowledgements

I thank my supervisor Graeme Hirst for his expert guidance and assistance. I also thank
Je�rey Siskind, my second reader, for providing many helpful comments.

I am grateful to Peter Heeman for the discussions that we had, for they helped in getting
everything into perspective.

Finally, I thank my family and friends for bearing with me, and especially Lynne for
her seemingly endless love and support.

iii

Contents

1 Introduction 1

1.1 Goals : 2
1.2 Assumptions : 4
1.3 Some Terminology : 6
1.4 Overview : 6

2 An Overview of Relevant Research 8

2.1 Direction-giving : 8
2.1.1 Understanding Written Directions : : : : : : : : : : : : : : : : : : : 8
2.1.2 Automated Driving Instructions : 9
2.1.3 Interactive Direction-giving : 11
2.1.4 Generating Route Descriptions : 12
2.1.5 Cognitive Maps : 13

2.2 Language as Communicative Action : 14
2.2.1 Speech Acts : 15
2.2.2 Referring Expressions : 15

2.3 A Psychological Model of Collaborative Discourse : : : : : : : : : : : : : : : 18
2.3.1 Contributing to Discourse : 19
2.3.2 Collaboration on Referring Expressions : : : : : : : : : : : : : : : : 21

2.4 Discourse Planning : 22
2.4.1 Clari�cation Subdialogues and Referring : : : : : : : : : : : : : : : : 22
2.4.2 Collaborative Task-Oriented Dialogues : : : : : : : : : : : : : : : : : 23

2.5 Implementation Details of Heeman's System : : : : : : : : : : : : : : : : : : 25

3 A Plan-Based Representation of Route Description 28

3.1 Introduction : 28
3.2 Representation of Spatial Knowledge : 30

3.2.1 Topological Structure : 31
3.2.2 Route Structure : 32
3.2.3 An Example Spatial Representation : : : : : : : : : : : : : : : : : : 33

3.3 Route Description Action Schemas : 35
3.3.1 Top-level Action : 36
3.3.2 Intermediate Actions : 37
3.3.3 Surface Speech Actions : 39
3.3.4 Referring to Paths and Places : 40

3.4 Constructing and Inferring Route Description Plans : : : : : : : : : : : : : 40
3.4.1 Construction : 41

iv

3.4.2 Inference : 41
3.5 Discussion : 43

3.5.1 Giving Directions in Installments : 43
3.5.2 Comparing Direction-Giving to Referring : : : : : : : : : : : : : : : 44
3.5.3 Errors in Route Descriptions : 46
3.5.4 Versatility : 46

4 Referring to Paths and Places 48

4.1 Introduction : 48
4.2 Con�dence in a Referring Expression : 49

4.2.1 Con�dence : 50
4.2.2 Salience : 51

4.3 Construction and Inference : 54
4.3.1 Plan Construction : 54
4.3.2 Plan Inference : 55

4.4 Referring Action Schemas : 57
4.4.1 Refer Action : 57
4.4.2 Intermediate Actions : 58
4.4.3 Surface Speech Actions : 61

4.5 An Example : 62
4.5.1 Generating a Referring Expression : : : : : : : : : : : : : : : : : : : 63
4.5.2 Understanding a Referring Expression : : : : : : : : : : : : : : : : : 63

4.6 Summary : 67

5 Elaboration 68

5.1 Introduction : 68
5.2 Suggesting and Elaborating : 68
5.3 Discourse Action Schemas : 71

5.3.1 accept-plan : 71
5.3.2 postpone-plan : 72
5.3.3 suggest-expand-plan : 73
5.3.4 expand-plan : 73

5.4 Surface Speech Actions : 76
5.5 An Example : 78

5.5.1 Making a Suggestion : 78
5.5.2 Elaborating a Referring Expression : : : : : : : : : : : : : : : : : : : 79

5.6 Summary : 81

6 Modelling Collaboration 85

6.1 Introduction : 85
6.2 The Collaborative State : 87

6.2.1 Entering into the Collaborative State : : : : : : : : : : : : : : : : : : 88
6.2.2 The Focus Stack : 88

6.3 Adopting Goals : 90
6.4 The Acceptance Process : 91

6.4.1 Accepting One Contribution : 92
6.4.2 The Grounds for Acceptance : 93
6.4.3 The Mutual Acceptance Rule : 94

v

6.4.4 The Resulting Discourse Structure : : : : : : : : : : : : : : : : : : : 95
6.5 The Reasoning Process : 96
6.6 Summary : 98

7 Example 100

7.1 System as Direction Giver : 101
7.1.1 Constructing \Go to the Lowell Street intersection." : : : : : : : : : 103
7.1.2 Understanding \Does it have a sign?" : : : : : : : : : : : : : : : : : 105
7.1.3 Constructing \Yes, it does, and it also has tra�c lights." : : : : : : 107
7.1.4 Understanding \Okay." : 111

7.2 System as Direction Recipient : 111
7.2.1 Understanding \Go to the Lowell Street intersection." : : : : : : : : 112
7.2.2 Constructing \Does it have a sign?" : : : : : : : : : : : : : : : : : : 114
7.2.3 Understanding \Yes, it does, and it also has tra�c lights." : : : : : 115
7.2.4 Constructing \Okay." : 116

8 Conclusion 118

8.1 Contributions : 118
8.2 Assumptions : 119
8.3 Comparisons to Similar Work : 120
8.4 Future Directions : 122

Bibliography 124

A Glossary 128

B Trace of the System 133

B.1 Initialization : 134
B.2 Constructing \Go to the Lowell Street Intersection." : : : : : : : : : : : : : 137
B.3 Understanding \Does it have a sign?" : 144
B.4 Constructing \Yes, it does, and it also has tra�c lights." : : : : : : : : : : : 150
B.5 Understanding \Okay." : 185

vi

List of Figures

1.1 System diagram : 4
1.2 An example of the system's input and output : : : : : : : : : : : : : : : : : 5

2.1 Hierarchical acceptance phase : 20

3.1 A street network : 33
3.2 describe-route schema : 36
3.3 directions schema : 37
3.4 directions schema : 37
3.5 direction schema : 38
3.6 direction schema : 38
3.7 s-goto schema : 39
3.8 s-turn schema : 40
3.9 Constructed route description plan derivation : : : : : : : : : : : : : : : : : 42

4.1 refer schema : 58
4.2 describe schema : 58
4.3 headnoun schema : 59
4.4 modifiers schema : 59
4.5 modifiers schema : 60
4.6 modifier schema : 60
4.7 modifier schema : 61
4.8 s-refer schema : 61
4.9 s-attrib schema (for category) : 61
4.10 s-attrib schema (for called) : 62
4.11 s-attrib-rel schema (for has) : 62
4.12 Plan derivation for The Lowell Street intersection. : : : : : : : : : : : : : : 64
4.13 Recognized referring expression plan : 65
4.14 Inferred plan derivation for The Lowell Street intersection. : : : : : : : : : : 66

5.1 accept-plan schema : 72
5.2 postpone-plan schema : 72
5.3 suggest-expand-plan schema : 73
5.4 expand-plan schema : 74
5.5 expand-plan schema : 75
5.6 respond-to-suggestion schema : 76
5.7 respond-to-suggestion schema : 76
5.8 respond-to-suggestion schema : 76
5.9 s-accept schema : 77

vii

5.10 s-postpone schema : 77
5.11 s-actions schema : 77
5.12 s-suggest schema : 78
5.13 s-affirm schema : 78
5.14 s-deny schema : 78
5.15 Plan derivation of a suggestion : 79
5.16 Plan derivation of an expansion : 81
5.17 A modifiers expansion for the referring expression plan of �gure 4.12 : : : 82
5.18 Referring expression plan after an expansion : : : : : : : : : : : : : : : : : : 83

6.1 Criteria for plans to achieve their goals : 93
6.2 Algorithm for understanding : 97
6.3 Algorithm for responding : 97

7.1 Street network known by the direction giver : : : : : : : : : : : : : : : : : : 102
7.2 Route description plan derivation showing subplan forGo to the Lowell Street

intersection. : 104
7.3 Referring plan derivation for the Lowell Street intersection that has a sign

and tra�c lights. : 108
7.4 Inferred plan derivation for Go to the Lowell Street intersection. : : : : : : : 113

viii

Chapter 1

Introduction

Consider the following telephone conversation recorded by Psathas (1991, p. 196):

(1.1) 1 A. Can you tell me where the Academy is?
2 B. Yeah, where ya coming from?
3 A. uh Newton.
4 B. Okay, why dontcha come up 128?
5 A. Yes.
6 B. And take 2A.
7 A. Yes,
8 B. um 2A will take ya right across Mass Avenoo

an ya just stay on 2A,
uh until ya get to Lowell Street.

9 A. Is it marked?
10 B. uh, Lowell Street?
11 A. Yeah.
12 B. Yeah I think there's a street sign there,

its an intersection with lights.
13 A. Okay.
14 B. an ya turn right on Lowell Street.

an its about quarter to half a mile um,
take another right on Bartlett Avenoo.

15 A. Okay.
16 B. an that takes ya right to the Academy.
17 A. Okay.

Participant B is giving directions to participant A in response to A's query Can you tell me

where the Academy is? This direction-giving dialogue contains many phenomena that we

wish to discuss brie
y.

First of all, A and B are involved in an interactive direction-giving dialogue. A is

accepting each of B's direction instructions in turn with utterances such as Yes and Okay.

When A does not understand an instruction, or does not �nd an instruction good enough,

she puts the direction-giving sequence on hold and initiates a subdialogue to repair the

1

o�ending instruction. For example, A is concerned that she will not be able to identify

Lowell Street in utterance 8, so she initiates a subdialogue by asking Is is marked? in

utterance 9. The subdialogue terminates when A utters Okay (utterance 13).

Second, B's direction instructions consist of an action (a verb such as come up, take,

or turn), and, usually, a reference to a location or a road. The references to the places

and paths are very important in making a good set of directions. But, in this dialogue,

B is not using the common type of reference in which an agent attempts to identify the

referent immediately. In fact, A is likely to have never even heard of the places and paths

on which she will eventually travel. Appelt (1985c) calls this type of reference nonshared

concept activation with identi�cation intention. It is di�erent from the type of reference

that has been investigated in the literature, because the agents have no mutual knowledge

of the intended referent, and the agent making the reference has the underlying intention

for the other agent to be able to identify the referent eventually, given the information in

the referring expression. This type of reference is pervasive in direction-giving dialogues

and probably in all instructional dialogues.

Third, A and B are not just interacting to describe a set of directions, they are collab-

orating. Speci�cally, they collaborate to make referring actions successful. Returning to

the subdialogue (utterances 9 to 13) above, we see that it serves to give more information

about the location of the turn; but notice that both participants are making contributions

to the referring action (or at least attempting to). A's utterance Is it marked? is more than

a simple yes/no question. It is a suggestion to add the fact that Lowell Street is marked

to the description, if possible. Additionally, this utterance also expresses that A is unsure

about the reference to Lowell Street and requires more information. B responds to this

suggestion (after resolving the ambiguous reference it) with utterance 12, by a�rming that

the street is marked with a sign, and by providing even more new information. B knew

that he should provide extra information because he recognized that A was unsure of the

reference from her utterance.

From the dialogue, we see that the participants are collaborating on more than just

referring actions. They are collaborating to achieve the direction-giving successfully. After

each utterance, A expresses her judgement, which allows B to know what to do next. The

participants are mutually responsible for the outcome of the dialogue.

1.1 Goals

This thesis presents a computational model of how two agents involved in a direction-

giving dialogue collaborate to make referring actions successful. Motivated by the type of

referring action used in interactive direction-giving, and by the preliminary work of Appelt,

our central goal is to model reference to objects for which the two agents have no mutual

2

knowledge.

We develop a model that is highly in
uenced by Heeman and Hirst's (1992) model of

referring, which is based on Clark and Wilkes-Gibbs's (1986). Since we view language as

communicative action that people use to achieve their communicative goals, we use the

planning paradigm to account for the construction and inference of referring expressions,

route descriptions, and discourse moves.

For a referring action to be successful, we suggest that an agent must be con�dent that

the referring expression plan is adequate as an identi�cation plan for the referent. We

describe our method of computing and evaluating con�dence, which rests on the salience

of the components of the expression. We discuss the importance of constructing salient

referring expressions, and account for the behaviour with special actions in the plan schemas.

We model collaborative behaviour by using a set of meta-plans, or discourse actions,

that operate on the referring expression plans. An agent can express judgement, refashion,

or make suggestions by using discourse actions. Because an agent may �nd an expression

inadequate, we de�ne discourse actions for elaborating the expression that add more com-

ponents to it. An agent may also want to suggest a good (salient) way to elaborate an

expression, for which we also de�ne a discourse action.

A second goal of this thesis is to model collaborative discourse where the domain plans

are large (i.e., consisting of many subplans, subgoals, and e�ects). Since a domain plan

may be large, we require a means of focusing on only part of it, so we extend Heeman and

Hirst's notion of a collaborative state to include this focus of attention. The result is that the

collaborative state sanctions the adoption of goals to express judgement about, refashion,

or make suggestions for the subplan in focus, and sanctions the mutual acceptance of the

subplan in focus, which allows its e�ects to occur (that update the common ground). The

work of Clark and Schaefer (1989) on contributing to discourse was an in
uence for our

model whose resulting discourse is similar to that seen in the real human dialogues studied

by Clark and Schaefer.

A third goal is to provide an initial framework for describing routes by using a plan-based

formalism that assumes that route description is a goal-oriented communicative task.

Re
ecting the inherent symmetry in collaborative dialogue, we develop the model so that

it can act as both the speaker and hearer. This means the model can play both the role of

the agent who gives directions (and attempts to construct adequate referring expressions),

and the role of the agent who listens to the directions (who attempts to understand the

references).

Figure 1.1 is a diagram of the system and its knowledge sources. The system is divided

into two main components. The �rst is for understanding a set of surface speech acts, and

the second is for responding with a set of surface speech acts. The knowledge the system

uses is also divided into two parts. Some knowledge is considered common knowledge, such

3

UNDERSTAND

SYSTEM

KNOWLEDGE
cognitive map

objects in world
mental actions

reasoning rules

other

speech acts speech actsRESPOND
(speaker)(hearer)

BELIEFS

action schemas

COMMON

salience/confidence

plan derivations

Figure 1.1: System diagram

as the plan schemas, mental actions, and reasoning rules. Other knowledge is modelled using

beliefs, so that it can vary depending on the agent. Included in an agent's beliefs are his

cognitive map, his beliefs about objects in the world (including their salience), beliefs about

plan derivations and their validity, and other beliefs such as the belief that a suggestion was

made.

This thesis has several contributions to make. First, we model a type of reference

that has not yet been modelled. To do this we have to formalize intuitive notions about

con�dence and salience. Second, we amalgamate the work of Clark and Schaefer, Heeman

and Hirst, and Grosz and Sidner (1986) to arrive at a plausible model of collaborative

discourse. We model both the understanding and generation of language. And third, we

give a preliminary account of how route description plans for interactive direction-giving

can be processed.

1.2 Assumptions

We make a few broad assumptions to reduce the scope of our work.

First, we assume that the agents have mutual knowledge of the plan library, including

route description plans, referring expression plans, discourse plans, and mental actions,

and that they know the collaborative processes for reasoning about these plans. This is

justi�able because referring expressions and discourse moves are communicative actions

that everybody knows how to use (if they didn't, they couldn't communicate). As for route

4

1 A. Go to the Lowell Street intersection.
s-goto(Entity)

s-refer(Entity)

s-attrib(Entity,�X�category(X,intersection))

s-attrib(Entity,�X�called(X,'Lowell Street'))

2 B. Does it have a sign?
s-accept(p1)

s-accept(p1)

s-postpone(p1)

s-suggest(p1,[s-attrib-rel(Entity,Entity2,�X��Y�has(X,Y)),

s-refer(Entity2),

s-attrib(Entity2,�X�category(X,sign))])

3 A. Yes, it does, and it also has tra�c lights.
s-affirm(p1,[s-attrib-rel(Entity,Entity2,�X��Y�has(X,Y)),

s-refer(Entity2),

s-attrib(Entity2,�X�category(X,sign))])

s-actions(p1,[s-attrib-rel(Entity,Entity3,�X��Y�has(X,Y)),

s-refer(Entity3),

s-attrib(Entity3,�X�category(X,traffic-lights))])

4 B. Okay.
s-accept(p123) � 8

Figure 1.2: An example of the system's input and output

description plans, Psathas (1991) views direction-giving as a social task, so any agent who

participates must be held accountable to a social contract, which means knowing how to

generate and understand route descriptions.

Second, as shown in �gure 1.1, the input and output of the system are both surface

speech actions. We assume the existence of a generator and parser that translate between

surface speech actions and natural language utterances. For example, in �gure 1.2 we a

show simpli�ed version of part of dialogue (1.1), in which we have associated with each

utterance its underlying surface speech actions. These actions are the actual input and

output for our system.

Third, for the referring action, we make the strict assumption that the direction giver

has complete (or su�cient) knowledge of any object that he refers to, and that the direction

recipient has no speci�c knowledge of any referent at all (although she must have general

knowledge about objects).

Finally, we only consider route description and not route planning. Furthermore, we

take route description out of context and consider only the part of dialogue during which a

route is described from origin to destination.

5

1.3 Some Terminology

It will be bene�cial to have a few terms de�ned before we proceed. We will refer to the

agents involved in a dialogue in a number of ways depending on their role in the current

task. For direction-giving, the giver is the agent who plans a route description, and the

recipient is the agent who attempts to understand it. While making references, the initiator

is the agent who initiates the referring action (and is usually the giver in our domain), and

the responder is the agent who will be identifying the referent, eventually (and, likewise, is

usually the recipient). During a dialogue, the agent who constructs plans to achieve goals

is the speaker, while the hearer attempts to understand utterances through plan inference.

When using pronouns to refer to the agents we adopt the convention that the giver,

initiator, and speaker are masculine, and that the recipient, responder, and hearer are

feminine. This distinction will help to clarify and disambiguate the text of the thesis.

Our planning terminology is fairly standard. We will use the terms action schema, plan

derivation, plan construction, and plan inference. An action schema consists of a header,

where-clauses, constraints, a decomposition, and an e�ect. An action schema encodes the

constraints under which the header's e�ect can be achieved by the actions in the decomposi-

tion. We de�ne three types of action in a decomposition: primitive actions, mental actions,

and action schema headers. Primitive actions cannot be decomposed further. Mental ac-

tions are similar to primitive actions, but they have no observable e�ects. Instead, they

a�ect the mental state of the planning agent. A plan derivation is an instance of an action

schema that has all of the headers in its decomposition recursively expanded, and that has

some, or all, of its variables instantiated. Plan construction is the process of �nding a plan

derivation that achieves a given e�ect through its set of primitive actions (its yield). Plan

inference is the opposite process, whereby a plan derivation is found whose yield is a given

set of primitive actions. In the text we will often refer to a plan derivation simply as a plan.

We will use many mental actions and propositions in the action schemas. A complete

list, with de�nitions, is given in a glossary in appendix A.

1.4 Overview

Chapter 2 is an overview of previous research that is relevant to the thesis.

In Chapter 3 we describe our plan-based model of interactive route description. We

describe how we represent the spatial knowledge of both topography and routes. We de�ne

action schemas for route description plans, and discuss how route description plans can be

constructed, inferred, and evaluated. We give an example of how an agent constructs a

route description plan. Route description plans provide a framework and motivation for

our model of reference.

Chapters 4 and 5 are essential to tackling our goal of modelling collaboration on referring

6

in route descriptions. In chapter 4 we examine the referring act in isolation. We �rst discuss

how con�dence in the adequacy of a referring expression can be assessed by considering

salience. Then, we apply our formalism of con�dence to the construction and inference of

referring expression plans. We de�ne referring action schemas, and go through an example

of construction and inference.

In chapter 5, we show that the same planning processes can be used by the agents

to collaboratively negotiate a referring expression plan. We discuss how an agent can

express judgement about, make suggestions for, and elaborate a referring plan. We de�ne

the discourse action schemas that the agents use to perform these moves. We continue the

example of the previous chapter to illustrate how the referring expression is made adequate.

In chapter 6, we complete our model of collaboration by tying together the route de-

scription and referring expression plans with an intentional structure that controls the
ow

of the discourse. We �rst describe the collaborative state that sanctions the application of

reasoning rules for goal adoption and mutual acceptance. We describe how focus is main-

tained with a focus stack. We de�ne goal adoption rules. We �nally describe the acceptance

process and the reasoning process, which complete our model of collaborative behaviour.

Chapter 7 presents a complete example of our system in action. We illustrate the

construction, understanding, and negotiation of a route description plan with the system

acting as both direction giver and recipient in turn.

Finally, in chapter 8, we summarize the contributions of our work, compare it to other

related work, and speculate on possible future extensions.

7

Chapter 2

An Overview of Relevant Research

To achieve our goals we need to explore background material from a variety of disciplines

including sociology, psychology, philosophy, linguistics, and, of course, computational lin-

guistics. This chapter provides an overview of the relevant research. The �rst section

discusses research about direction-giving and cognitive maps. The second section discusses

speech act theory and referring expressions. In the third section, we discuss a model of

collaborative discourse, and in the fourth, we discuss several theories of how planning can

be applied to discourse modelling.

2.1 Direction-giving

Direction-giving happens in a variety of contexts. While we do not wish to model all

types of direction-giving, it is important to investigate a few di�erent direction-giving tasks,

namely, understanding written directions, giving automated driving instructions, interactive

direction-giving, and generating route descriptions. This section also includes a discussion

of cognitive map theory.

2.1.1 Understanding Written Directions

Riesbeck (1980) addressed the natural language processing of texts of driving directions.

He claims that, on a casual �rst reading, people make clarity judgements of the directions

and do not use any complex spatial reasoning. This claim is intuitively plausible for several

reasons. First, determining whether or not directions are clear and sensible (and possibly

adequate) is of primary importance. Second, a clarity judgement is more simple, and

therefore, less resource-consuming, than complex spatial reasoning such as map or route

construction. Third, since the text will be available while making the trip, the spatial

reasoning can be done then.

Riesbeck found three components in direction texts: motions, descriptions, and com-

8

ments. The most important of these is, of course, the motions which express commands or

actions to be performed. They can take many surface forms as evidenced by the following

examples:

Go south to Midway.

Go two or three blocks.

Turn right.

Descriptions serve the purpose of telling what places look like, for example:

On the left is a gas station.

A church is across the street.

All other sentences are comments, such as

You can't miss it.

which can imply motions or descriptions.

Riesbeck's system uses domain-speci�c heuristic rules based primarily on syntactic and

lexical information, which he admits are crude but do the job. The system analyzes the text

sequentially using rules that tie the language to conceptual forms (descriptions or motions).

These concepts are then manipulated by clarity rules and cruciality rules until they are

determined to be clear or not crucial. An example of a clarity rule is \left and right are

clear", and of a cruciality rule is \motions are crucial."

One problem with this work is that the rules do not take semantic information into

account. Directions are taken out of context, and analyzed separately (although inference

over two sequential instructions is allowed). Riesbeck's argument that we do not need to

construct mental maps to judge clarity may be too strong. Geographical knowledge is

certainly important when giving clear directions and so could help with clarity judgements.

While a mental map or a complete `program' to execute the directions may not be necessary,

a temporary local mental map (or route) would bring geographical knowledge into the

judgement process.

There are times when spatial reasoning, including mental constructions of routes and

maps, is necessary. One such occasion is when directions are given in a conversational

context. In this task the judgement of clarity takes a seat beside actually remembering the

details of the route.

2.1.2 Automated Driving Instructions

Another direction-giving task is that of giving real-time driving instructions in a non-

interactive setting. Several systems have been developed that generate instructions to assist

a driver to navigate in a city (Davis, 1989; Frisch et al., 1990; Cole et al., 1991). In these

9

systems timing is critical, because instructions are given dynamically as the driver needs

them at relevant points in a journey. This helps drivers, because they need not remember

the instructions nor exert e�ort looking for a place to act. The dynamic nature of the

system also allows for detailed instructions such as those necessary for navigating through

large intersections.

The sta� of the Laboratory for Computational Linguistics at the University of Illinois at

Urbana-Champaign have developed a system that takes a previously computed route plan

and dynamically generates natural language utterances for each `move' (Frisch et al., 1990;

Cole et al., 1991). Complex turns give drivers the most di�culty while navigating, so a

move is de�ned to be from the end of one turn up to the next turn. The main components

of the system include a driver action planner, a speech act planner, a sentence generator,

and a map database.

The driver action planner does geometrical and functional analysis of the turns in the

input route plan (a turn occurs between each pair of contiguous links in the route plan)

and determines the action (or actions) necessary to navigate the turn successfully. Some

sequences of turns may be viewed as single complex actions with sub-actions, and the

planner identi�es such sequences.

The speech act planner takes the possibly-complex driver action as input, and has the

goal of getting the driver to perform this action. The planner uses a STRIPS-like approach

with simple notions of intentionality|the driver's beliefs and intentions are modelled by

STRIPS-style operators. For example, one premise is that the system can conclude that the

driver knows that she needs to do something if she has been told and she is able to identify

everything referred to by the system in its act of telling.

The system assumes copresence of the driver and the objects that need to be referred

to in an instruction, since the driver is dynamically navigating through the environment.

A further assumption is that enough information about the salient landmarks needed to

describe locations is contained in a map database. So the speech act planner, by simply

appealing to this database, can `plan' the referring expressions that will uniquely identify

the salient objects of a location. Unfortunately, the database contains ad hoc hard-coded

information that cannot be tailored to the context, which may include variations in the

knowledge and abilities of the driver, and the timing of the instructions.

In his Ph.D. thesis, Davis (1989) describes his Back Seat Driver system that tackles the

same automated navigator task, but from a di�erent perspective. He considers the current

context to be important to give proper instructions. If the instruction is to be performed

immediately, the system can refer to mutually observable information from the environment.

But for instructions intended as cues, the places referred to are not yet observable by the

driver. This means giving clear instructions that the driver has con�dence in. A driver

must be able to recognize the place to act, and must also believe that he will be able to

10

recognize it. It is su�cient for the driver to have a plan that will uniquely identify the

referent when it becomes observable even though the driver may not know of the place

before getting there (Appelt, 1985a). But how can the system construct referring plans

that a driver believes are adequate?

By using a simple hard-coded user-model, Davis's system can determine what the user

believes is salient. Davis describes his salience hierarchy that ranges over landmarks: tra�c

lights, buildings, features of the road (underpasses, bridges, railroads, etc.), road `endings',

and street names. The hierarchy was obtained from empirical studies of how people un-

derstand and prefer given directions. When the more salient landmark types are used,

instructions can be concise and a driver will be more con�dent in their adequacy. If the less

salient landmarks are the only ones available then the driver usually requires longer and

less concise instructions.

2.1.3 Interactive Direction-giving

Psathas, in several papers (Psathas and Kozlo�, 1976; Psathas, 1986; Psathas, 1991), views

the direction-giving task as an interactive social task that involves a collaborative e�ort

between the two participants. Interactive direction-giving (i.e., during a conversation) is

di�erent from the other direction-giving tasks for several reasons. Here, interaction allows

the participants to discuss the directions. It is no longer necessary to be as thorough

when giving directions, either locally, as is the case with speci�c actions in automated

driving directions, or globally by accounting for `all contingencies' as good written directions

should do. A further di�erence, as mentioned earlier, is that spatial reasoning is used when

processing driving directions during conversation.

From his corpus, a set of telephone conversations involving direction-giving, Psathas

identi�es four aspects of the task: the opening, the sequence of operations (or directions

that constitute a route plan), suspension and resumptions of the operation sequence, and

the closing.

In the opening, an initial common ground is established, including the starting point,

destination, mode of travel, time of travel, and mutual categorization1 of the participants.

Closings involve the direction giver marking the `arrival' at the destination, and the recipient

ending the direction-giving task by accepting this arrival point.

In conversation, as on paper, a set of directions is structured sequentially. Psathas

observes that this structure is inherently embedded in a sequence of utterances spoken by

1The participants perform a type of user-modelling on each other to determine how much knowledge
each other has. They determine membership in categories such as local area person, stranger to the area, or
visitor (Psathas, 1991, p. 202).

11

the direction giver.2 Participants take conversational turns in which the direction giver

describes the next operation in the sequence and then waits for a display of acceptance or

understanding by the recipient. The general pattern of the common operations in Psathas's

corpus is that of

move to a reference point,

at which a change in direction is made.

So, a sequence of reference points is linked by operations performed in relation to them.

These reference points are important to the recipient (because one doesn't want to miss

a turn, or take the wrong turn), for whom they must be clear. When a reference point

is not clear, the recipient must suspend the operation sequence. Alternatively, the giver

may suspend the sequence to get con�rmation that the recipient `knows' a reference point.

While the sequence is suspended, a side sequence3 is initiated that serves to clarify the

unclear reference point. Psathas does not dwell on the actual structure of the clari�cation

side sequence, but he says in general it is a series of questions and answers initiated by

either participant|a somewhat simplistic assessment. The side sequence is �nished, and

the direction-giving sequence resumed, when the recipient `knows' the reference point.

The tendency in sociolinguistics is to not consider discourse pragmatics or computa-

tional models, and Psathas's work is not an exception. Nevertheless, he observes that the

sequential nature of directions and direction-giving is re
ected by the discourse structure

and this is a good starting point for a computational theory. He provides evidence that the

participants do collaborate, but he does not discuss a theory modelling that collaborative

behaviour.

2.1.4 Generating Route Descriptions

Pattabhiraman and Cercone (1990) have implemented a prototype system that generates

descriptions of bus route directions. They divide the task of route communication into

the cognitive task of route �nding and the linguistic task of route description, but make

no claims about how these two tasks are interleaved. Even though route communication

usually occurs in a dialogue, they are not concerned with the interactive aspects of the

task: they model only generation and not understanding. Their text planner takes as

input a skeletal plan and augments it by selecting from the knowledge base descriptions

of landmarks, location, and orientation. The text planner has two components. The �rst

2Psathas observes this embedding from a sociological standpoint. Alternatively, the sequence of directions
can be said to structure the sequence of utterances. The former view is useful when one is understanding a
set of directions, while the latter is important for giving directions.

3A side sequence is a break in an activity that is not part of the main activity but is relevant. For example,
a sequence of turns embedded between or within a contribution to a conversation is a side sequence (Je�erson,
1972).

12

augments the skeletal plan, and the second realizes the augmented plan as language by

forming predicates and choosing utterance type. Thus, the text planner deals with both

domain-level knowledge, and language-level knowledge.

They de�ne the notions of salience and relevance, which are both used to control se-

lection (and omission) in text planning. Salience is related to speaker-external objects and

properties, and relevance to speaker-internal factors such as goals and intentions. Salience

is the key factor in selecting landmarks to describe a location. Unfortunately, they present

salience and relevance only in intuitive terms, but are working towards a concrete theory

applicable in their domain. This work addresses the issues of route communication from the

planning stages through to realization, and focuses on the generation of route descriptions.

It does not treat route communication as a interactive goal-oriented task.

2.1.5 Cognitive Maps

Now that we have looked at the higher-level features of various direction-giving tasks, we

must consider how route information can be represented for processing or for generating

instructions. For a century, psychologists have studied cognitive maps. In particular, Lynch,

a pioneer in this �eld, has done research on people's cognitive maps of cities; and Kuipers

has developed a computational theory of cognitive maps of cities for use in spatial-reasoning

tasks.

Kuipers (1978) explains that cognitive maps can be described metaphorically in three

ways. First, the cognitive map is like many loosely related `maps in the head'. Second,

the cognitive map is like a network; speci�cally, it is a topological network of streets and

intersections. Third, the cognitive map is like a catalog of routes, which are procedures for

getting from one place to another.

Lynch (1960) discovered that people have �ve major elements in their cognitive maps:

paths, edges, districts, nodes, and landmarks. The elements of the cognitive map are con-

ceptual, and all exist together, interacting (overlapping, piercing, etc.) with each other.

Although cognitive maps are topologically invariant with respect to the environment, they

tend to be distorted in several ways: distances are compressed or extended, directions are

twisted, etc.

The notion of salience comes up again, because elementhood can be marked on a scale

of strength, where strength is related to salience and identi�ability. Context determines

how strong an element is, and even what type of element an object is. Contextual factors

may include the point-of-view, familiarity, and current goals (i.e., to �nd a location, or to

give directions) of a person. Salience can also be in
uenced by identi�ability, visibility,

prominence, and even functional importance (Devlin, 1976).

Sequences (of elements) are an important, possibly basic, sub-structure in a cognitive

map that are especially useful for navigation because they facilitate recognition and mem-

13

orization of a route. The majority of elements found in these sequences are paths and

nodes, but landmarks are also prevalent. Strong elements are more likely to be used when

describing spatial information linguistically. Therefore, strong paths, nodes, and landmarks

are more likely to be used when giving directions.

Kuipers's TOUR model (Kuipers, 1978) is a model of commonsense knowledge of a

large-scale urban environment. He is concerned with the everyday activities of learning

(i.e., the assimilation of new observations into the cognitive map) and problem solving (i.e.,

the extraction of answers to particular questions of the cognitive map). One of his goals

was to make the model as psychologically plausible as possible.

The elements and representations in the TOUR model are drawn loosely from those of

Lynch, although Kuipers does not model the same primitives that Lynch describes. The

model divides spatial knowledge into �ve primitive categories, the two most important

being the topological structure and the route. The topological structure is composed of two

sub-structures, PATHs and PLACEs, which are connected together by metric information

(e.g., the angles of turns and travel distance) and topological information (e.g., the relative

locations of places on paths, and the connectivity of paths). A route is stored as a sequence

of actions (TURN and GO-TO) that, when executed, would take a traveller from one place

to another. The fact that routes are modelled by actions makes it obvious that routes are

the result of actual travel in the environment.

It should be evident that the theory is based on everyday action in the environment.

Because information is assimilated by action, structures can be partial, with missing infor-

mation (inference can be used to �ll in the holes). In fact, the system maintains a current

position pointer to help simulate traversals of the cognitive map as if the system were

actually acting in the real environment.

The model is simple, and does not take input from linguistic sources, instead relying

on an assumed conversion from visual input to internal representation. One way in which

the model is not psychologically plausible is its reliance on metric information. Cognitive

maps tend to be distorted and contain fuzzy information (Lynch, 1960; McDermott, 1980;

McDermott and Davis, 1984). Although the processes of problem-solving (route-�nding,

and relative-position problems) that are manifest in his cognitive map are psychologically

plausible, the map itself is not. A further problem is that landmarks are suspiciously absent

from the theory. A route can only be described or followed on the basis of topological and

metric information.

2.2 Language as Communicative Action

In the past few decades, philosophers have started to view language as intended and planned

action. With this in mind, they went on to investigate the use of reference in spoken and

14

written language. This section contains a brief explanation of speech act theory, and a

discussion of the research on referring expressions.

2.2.1 Speech Acts

Speech act theory is generally considered to have been founded by Austin (1962) who an-

alyzed utterances that he called performatives that did not express assertions about the

world.4 Searle (1969) went on to formalize the theory by de�ning illocutionary speech acts

and propositional speech acts. At one level of abstraction, utterances are illocutionary acts

such as requesting, informing, or promising. Central to the idea of illocutionary acts is that

an agent makes an utterance with the intention that the hearer recognize the agent's inten-

tion in performing the act. Because the hearer can recognize the speaker's intention, she can

infer the speaker's intended illocutionary act and change her mental state appropriately.5

At another level of abstraction an utterance can be viewed as a propositional act. Searle

considers referring to be a propositional act because it is always part of an illocutionary

act. We discuss this view below in section 2.2.2.

A further level of abstraction views utterances as surface speech acts (Appelt, 1985b).

Surface speech acts are used to realize illocutionary acts and correspond directly to the

syntactic structure of an utterance.

Since we are viewing language as communicative action, and since agents have intentions

to achieve their communicative goals, we can use plan construction and inference techniques

to account for these actions. Cohen and Perrault (1979) developed a system that would

map an agent's goals to speech acts by constructing a plan, while, conversely, Allen and

Perrault's (1980) system can infer a plan from its underlying surface speech acts. These

plans can be incorporated into the larger domain of discourse planning, to be discussed

after we discuss collaborative discourse models in section 2.3.

2.2.2 Referring Expressions

Referring as a Speech Act

Searle (1969) was the �rst to propose that referring can be treated as a speech act. Since he

did not view referring as a solitary act (referring was only used within an illocutionary act),

he had to consider it a propositional speech act. The propositional content consists of an

identifying description that the speaker produces with the intention of uniquely identifying

the referent.

Contrary to Searle, Cohen (1981; 1984) treats referring as an illocutionary act, explain-

4Before Austin, it was thought that all utterances expressed assertions, true or false, about the world.
5These changes are referred to as perlocutionary e�ects, and the speaker hopes that they are his intended

e�ects.

15

ing that sometimes referring is done via a single separate utterance. A speaker uses a

referring act to request that the hearer identify the perceptually accessible referent, and

provides a description that the hearer decomposes into a plan to identify the referent.

Appelt and Kronfeld (Appelt, 1985b; Appelt and Kronfeld, 1987), like Searle, consider

referring to be a propositional act used to realize an informing or requesting illocutionary

act. The speaker's goal in uttering a referring expression is for the hearer to believe that it

is mutually believed that the speaker and hearer have respective mental representations of

the same object, the referent.

Heeman and Hirst (1992) also consider referring to be a speech act, but avoid the

controversy (that it is an illocutionary or propositional act) by looking at the act of referring

in isolation from other illocutionary speech acts.

Generating Referring Expressions

Appelt (1985a) considers generating referring expressions to be a primitive action in his

sentence generation task. His algorithm �rst chooses a basic category descriptor for an ob-

ject, then adds descriptors until the object is uniquely identi�ed with respect to the mutual

knowledge of the participants. Descriptors, based on facts about the object, are chosen if

they are mutually believed by the participants, and if they are linguistically realizable. The

aim is to generate an expression that the hearer can use to uniquely identify the object

when it becomes observable.

Appelt's algorithm chooses descriptors indiscriminately. To make better expressions,

Reiter and Dale (1992) improve on Appelt's process and on their own earlier work (Dale,

1987; Reiter, 1990). They examine psychological evidence and conclude that humans are

more interested in making referring expressions that are easy to understand than they are in

being e�cient. The evidence shows that humans sometimes use unnecessary descriptors and

are not as brief as possible. They propose several algorithms to account for this behaviour6

but adopt an algorithm that chooses the most preferred attribute �rst (if it reduces the

number of candidates). Preferred attributes are encoded in a list that usually includes

visually salient attributes such as size, shape, and colour.

These algorithms are inadequate for use in conversation, because people don't always

make an ideal or even adequate referring expression on the �rst attempt. Clark and Wilkes-

Gibbs (1986) postulate three main reasons to account for this behaviour. First, time pressure

may not allow an ideal referring expression to be designed. Second, the referring expression

may be too complex to be presented in a single utterance. And third, ignorance of another's

knowledge may cause a speaker to present an inadequate expression.

Because the above models of referring make strong assumptions about the beliefs of

6One algorithm would build referring expressions incrementally, with no backtracking, while another
would use `precompiled' reference scripts.

16

the participants they are not useful in conversation. Appelt assumes that the speaker has

complete knowledge of the hearer's beliefs, and Reiter and Dale implicitly assume that the

participants have identical beliefs (except that the speaker has knowledge of the attribute-

value pairs that the hearer has no knowledge of).

Heeman and Hirst (1992) provide a more sophisticated model of belief. Each participant

has their own beliefs about the properties of an object. The speaker must believe that the

speaker and hearer mutually believe a property before using it in an expression. The

hearer, in turn, might not have the same beliefs as the speaker, hence she can �nd the

expression inadequate and initiate a repair process. Heeman, unlike Appelt and Searle,

treats generation as part of the planning process|it is not a primitive action. In other

respects, the algorithm is similar to Appelt's, but also draws from Reiter's earlier research

on avoiding conversational implicature in generating referring expressions (Reiter, 1990).

Understanding Referring Expressions

Moving on to the opposite task, the understanding of referring expressions, the obvious

approach is to treat the task as constraint satisfaction. The category descriptor gives an

initial candidate set, and each component of the expression gives a constraint that serves to

reduce the candidate set (Heeman and Hirst, 1992). Ideally this process would leave us with

a unique candidate that is the referent. But, as stated above, the expression may be found

invalid, a judgement that is made when either there are no candidates left (the expression

is overconstrained), or several candidates left (the expression is underconstrained). It is

these cases that cause the hearer to initiate a repair process to obtain clari�cation of the

referring expression.

Copresence and Referring Expressions

Traditionally, researchers of referring expressions have assumed the following: that the

agents have mutual knowledge7 of the objects referred to (Appelt, 1985a; Appelt and Kron-

feld, 1987; Heeman and Hirst, 1992; Searle, 1969), are copresent with these objects (Heeman

and Hirst, 1992; Cohen, 1981), or have the objects in their focus of attention (Reiter and

Dale, 1992; Grosz and Sidner, 1986). This type of reference corresponds to the speaker

intending that the hearer either know the referent or identify it immediately, and to what

Appelt (1985c) calls shared concept activation with identi�cation intention.

7Clark and Marshall (1981, p. 17) recursively de�ne two agents' mutual knowledge of a proposition p

(that an object has a certain property) thus:

A and B mutually know that p is true if
(q) A and B know that p and that q.

Furthermore, a mutually known object is an object of which the speaker and hearer mutually know some
properties (Appelt, 1985a, p. 1).

17

However, a speaker will commonly refer to objects that the hearer has no knowledge of.

This type of reference occurs when a speaker wishes the hearer to be able to identify the

referent at some later time. Appelt calls it nonshared concept activation with identi�cation

intention. For example, the instruction

Turn left at the third block past the stoplight

uttered to a hearer who has no knowledge of the location, carries the speaker's intention that

the hearer identify (and be able to identify) the location at the appropriate time (Appelt,

1985c). Appelt says that

the speaker's implicit intention that the hearer identify the referent may require
the hearer to form and execute a complex plan to make the identi�cation. In-
stead of planning a description with respect to the speaker and hearer's mutual
knowledge, he tries to plan a description that is useful for the hearer to plan an
identi�cation action. (Appelt, 1985a, p. 2)

This type of reference occurs often in direction-giving dialogues, since Davis says \this

description should be so clear that the driver cannot only recognize the place when it comes,

but can also be con�dent in advance that she will be able to recognize the place" (Davis,

1989, p. 72). The problem with all of the aforementioned theories is that they do not address

these two issues: (1) the speaker intending that the hearer eventually identify the referent,

and so constructing a suitable referring expression (from which an identi�cation plan can

be built), and (2) the notion of con�dence in the adequacy of this expression.

2.3 A Psychological Model of Collaborative Discourse

Since we are interested in how people collaborate when giving directions, we must �rst study

models of discourse that account for the collaboration. Many researchers have investigated

how people collaborate in discourse, and this section presents some of the psychological

research. People communicate with one another so that they can interchange information

(ideas, beliefs, knowledge, etc.). The result of a communication should be that the common

ground of the participants is updated with the new information. A speaker in a discourse

takes the common ground of the participants to be the set of his presuppositions, which

are propositions whose truth he takes for granted. The common ground of the participants

can also be described as their shared knowledge or mutual knowledge (Clark and Schaefer,

1989, p. 260). (See also footnote 7.)

First, we discuss Clark and Schaefer's model of how people contribute to discourse by

using cooperative collective actions. And second, we discuss Clark and Wilkes-Gibbs's

application of this model to the collaborative task of referring.

18

2.3.1 Contributing to Discourse

Clark and Schaefer (1989) discuss how people contribute to discourse. The basic units of

conversation are contributions that result from the fundamental requirement that people

must add to their common ground in an orderly way. That is, the content of every utterance

is not automatically added to the common ground; the common ground only accumulates

once the participants mutually establish that an utterance has been understood. A con-

tribution is a collective act that establishes the mutual belief that the hearer understands

what the speaker meant by his utterance (or action), so that they may then update their

common ground.

Contributing divides conceptually into two phases:

Presentation Phase: Speaker S presents utterance u for hearer H to consider.
He does so on the assumption that, if H gives evidence e or stronger, he can
believe that H understands what S means by u.

Acceptance Phase: H accepts utterance u by giving evidence e
0 that she believes

she understands what S means by u. She does so on the assumption that, once
S registers evidence e

0, he will also believe that H understands.8 (p. 265)

There are �ve main types of evidence that H can present to indicate her understanding

of what S means by u. They are, arranged from weakest to strongest:

1. continued attention,

2. initiation of the next relevant contribution,

3. acknowledgement,

4. demonstration, and

5. display.

H must decide what type of evidence to present, and generally, the more complicated S's

presentation, or the more demanding the current purpose, the stronger the evidence needed.

Clark and Schaefer rely on several corpora, including the London-Lund corpus (Svartvik

and Quirk, 1980), to determine empirically which types of evidence are expected for which

presentations.

The acceptance process is inherently recursive, since giving evidence is itself a presen-

tation that needs to be accepted (by presenting further evidence). But what keeps the

recursion from going on ad in�nitum? Clark and Schaefer propose their strength of evi-

dence principle, which states that participants expect successively weaker evidence to be

given. This principle implies that continued attention, or the initiation of the next turn,

will end every acceptance phase, usually after one or two cycles of recursion.

8In giving evidence e
0, H intends that it is strong enough, that is, that S will �nd it equal or stronger

than his expected evidence e.

19

A.

B.

B.

well I propose to write, uh saying [etc]

m

Duveen?

well wo uh what shall we do about this boy thenA.C

Ac

PrC

Ac

Pr

Ac

Pr

C

CAc

Pr

Figure 2.1: Hierarchical acceptance phase

Contributions can be embedded in many di�erent structures, the simplest coinciding

with the turn. Here, each turn is both an acceptance of the previous turn (completing the

contribution), and a presentation that begins a new contribution.

More complex patterns occur when the presentation is not understood. In this case a

hierarchical contribution structure within the acceptance phase arises. In dialogue (2.1)

below, B is unclear about A's reference, and initiates a clari�cation sequence (indented) to

clarify the reference to the boy, Duveen.

(2.1) 1 A. well wo uh what shall we do about uh this boy then
2 B. Duveen?
3 A. m
4 B. well I propose to write, uh saying [etc] (p. 277)

Figure 2.1 shows the structure of this conversation. Note that a contribution C always

has a presentation phase Pr and an acceptance phase Ac. The contribution begun by A,

is �nally accepted when B gives her answer, but the acceptance phase is a sequence that

consists of two other simple contributions that coincide with the turns. This clari�cation

subdialogue is a type of side sequence (Je�erson, 1972), and Clark and Schaefer found them

to be pervasive in the corpora.

While the authors are not explicitly concerned with collaboration, their model can be

the basis for a model of collaborative behaviour. Since people add to their common ground

in an orderly way, they must cooperate, and this means using contributions. Contributions

\are not formulated autonomously by the speaker according to some prior plan, but emerge

as the contributor and partner act collectively. Success depends on the coordinated actions

by the two of them" (p. 292).

Because people collaborate to achieve success in a conversation, they structure their

contributions by using many di�erent devices. For example, a side sequence during an

acceptance phase allows the participants to focus on speci�c aspects of a presentation that

they �nd troublesome. Or, by dividing his presentation into several installments, a speaker

can give the hearer the opportunity to register information verbatim, or can assure himself

that each step of his complex information is understood by the hearer before moving on. The

20

size of contributions is also important in contributing e�ectively. Clark and Schaefer found

that people preferred the surface form of their contributions to be one simple or complex

sentence. They conjecture that the preferred contribution is one or more illocutionary

speech acts.

What is missing from this structural view of collaboration is a formal theory of belief

and intention to support it. The contribution model accounts for the overall structure of

a discourse, but only informally explains the reasons an agent has for using a particular

device at a particular time. In other words, they model the linguistic structure but not

the intentional structure (Grosz and Sidner, 1986). The content of a contribution is left

for another theory to explain. For example, in dialogue (2.1), B's utterance of Duveen?

indicates that she has found A's reference to the boy inadequate, and initiates a clari�cation

subdialogue. But this utterance is also a proposal to expand the reference by adding the

boy's name. Furthermore, B is asking A if the expansion is correct (i.e., she is looking for

con�rmation that she has chosen the right boy). This example shows that there is more

to collaborative discourse structure than just the embedded contributions|how does one

make a clari�cation? Clark and Wilkes-Gibbs, in earlier work, delved into this matter.

2.3.2 Collaboration on Referring Expressions

Clark and Wilkes-Gibbs (1986) investigated how conversational participants collaborate in

making a referring action successful. Consider a person A, who when speaking to a person

B, refers to an object. For the referring action to be successful, A and B must establish the

mutual belief that B has understood A's reference before moving on in the conversation.

Clark and Wilkes-Gibbs argue that the participants make use of the acceptance process

outlined above and that they use a number of inherently collaborative procedures to do so.

In a perfect world the acceptance process would be simple: A would be able to present

the perfect referring expression which B could immediately accept. In their experiment,

Clark and Wilkes-Gibbs discovered that the process is much more involved|subjects usually

required several turns to complete the acceptance process. They propose that \participants

aren't trying to ensure perfect understanding of each utterance, but only understanding to

a criterion su�cient for current purposes" (p. 488). To initiate the process, A presents an

initial version of a referring expression on which B passes judgement. B can either accept it,

reject it, or postpone her decision until later. If B rejects or postpones then the expression

must be refashioned by either A or B. Refashionings are accomplished in three main ways:

repairing the expression by correcting speech errors, expanding the expression by adding

more quali�cations, and replacing the expression by a new expression.

The acceptance process continues, with each judgement/refashioning pair operating on

and replacing the current referring expression (kept in the participants' common ground)

until the expression is mutually accepted. Thus, the acceptance phase is either a single

21

acceptance move, or a clari�cation subdialogue: a series of moves (judgements and refash-

ionings) forming a side sequence.

Judgement and refashioning moves have their own acceptance process (separate from the

referring expression's acceptance process); therefore there is a di�erence between �nding a

refashioning move unacceptable and �nding its resulting expression unacceptable. Because

the participants are collaborating, Clark and Wilkes-Gibbs propose that judgement and

refashioning moves are always found acceptable (as long as they are understood), even

though the referring expression that they operate on may be unacceptable. This view

explains why the only dependence between succeeding judgement/refashioning pairs is the

referring expression proposed by the former. Hence, the acceptance process for referring

expressions is iterative, which has important rami�cations on both the common ground of

the participants, and the discourse structure (see Heeman and Hirst (1992, p. 27) for further

explanation).

Collaboration can be de�ned in many ways. To explain their �ndings, Clark and Wilkes-

Gibbs propose that participants assume mutual responsibility for the success of a referring

action, and so cooperate with each other, each not impeding the other, and each presup-

posing certain beliefs. This principle of mutual responsibility embodies the notion that

understanding need only be su�cient for current purposes. They also propose that, con-

sistent with classical theories of least e�ort, the participants attempt to minimize their

collaborative e�ort. There is a trade-o� between initiating a referring expression and re-

fashioning it, attributable to the three reasons discussed in section 2.2.2, which include time

pressure, complexity of the referring expression, and ignorance of another's knowledge.

2.4 Discourse Planning

In this section we discuss a few methods that researchers have considered for applying

planning to discourse modelling. First, we discuss how clari�cation subdialogues can be

planned, and we describe Heeman and Hirst's computational model of Clark and Wilkes-

Gibbs's theory. And second, we discuss a variety of models, each addressing speci�c issues,

for discourse planning in task-oriented, interactive domains.

2.4.1 Clari�cation Subdialogues and Referring

Litman and Allen's (1987) approach to a plan-based discourse model involves having domain

plans that encode topical knowledge of the conversation and discourse plans that encode the

relations between utterances and the topic of conversation. The system uses plan recognition

to infer a discourse plan from an observed utterance, from which it attempts to identify the

underlying plan. The importance of this work is that meta-actions (meta-plans) are used

to model discourse phenomena such as clari�cations. They present three clari�cation plans

22

that account for a variety of clari�cation subdialogues.

Heeman and Hirst (1992) render Clark and Wilkes-Gibbs's model computationally, by

casting it into the planning paradigm (by extending Litman and Allen's model of clari�-

cation). To account for the collaborative behaviour of two agents, they propose that each

agent is in a mental state which includes both the intention to achieve the main goal of the

task (a successful referring action), and the current plan the agents are collectively consid-

ering that may achieve this goal. The collaborative state coordinates the agents' activities

by sanctioning the adoption of goals to clarify (expressing judgement, and refashioning) the

current plan, and by sanctioning the acceptance of plans that do so. Heeman and Hirst

view plans as mental objects as opposed to data structures (Pollack, 1990), which allows

an agent to have beliefs and intentions about them. Thus, an agent has a belief about

the current plan's validity (whether or not it is mutually believed that the plan refers to a

unique referent), and has the intention to make this belief mutually believed.

Both Litman and Allen's, and Heeman and Hirst's model are governed by discourse

expectations, but the former uses a plan stack to remember the current context, whereas

the latter incorporates the expectations into the rules (that implicitly model intentions).

Because Heeman and Hirst use a collaborative state that contains a single current plan they

are able to model satisfactorily how a plan is updated.

2.4.2 Collaborative Task-Oriented Dialogues

To apply his model to collaborative task-oriented dialogues, Heeman (1993) adapts it by

providing a minimal set of operations, and their associated speech acts, that can be per-

formed on the current plan. These operations include suggesting additions to the plan,

requesting judgements, making judgements, and making replacements. The notion of a

current plan is modi�ed somewhat; the current plan now includes the proposed actions for

solving the problem (and how they contribute to the main goal), and beliefs about the

validity of the plan. Because the plan may contain many subplans, and because an agent

may want to restrict his attention to just one of these (usually the one relevant to the latest

addition), he introduces the notion of the subplan in focus, which the above operations take

as a parameter. He does not provide a good account of how focus shifts, leaving this for

future work.

Another model similar to Heeman and Hirst's is that of Lambert and Carberry (1991).

The main di�erence is that they do not con
ate problem-solving activities with communica-

tive activities as the former model does, giving them a tripartite model. Their claim is that

a model without this distinction cannot capture the relationship among several utterances

that are part of the same higher-level discourse plan unless the �rst utterance determines

what the higher-level plan is. It is unclear that this distinction is important. Heeman and

Hirst claim that their model is more simple because both activities are embodied at one

23

level.

Chu (1993) uses Lambert and Carberry's model as a basis for a model of collaborative

discourse in which the system and user might disagree on a proposed action for an existing

plan. Her approach accounts for, from the system's point of view, how a disagreement can

be detected and negotiated, and how the existing plan can be modi�ed. She separates the

dialogue model into two parts: the existing model containing the current shared plan (that

is mutually acceptable), and the proposed model containing the actions inferred from the

last utterance that have not yet been mutually accepted. The system and user negotiate

using collaborative meta-plans to correct the errors in the proposed actions. Once correct,

the proposed actions update the existing shared plan. This model is similar to Heeman

and Hirst's because it models collaboration with a set of meta-plans that are used in a

subdialogue to correct a plan. The two parts of the dialogue model, when taken together,

are like Heeman's current plan (that is kept in the common ground), but Chu assumes that

the existing model can never be rendered invalid by the addition of a proposal, and so, it

never requires re-evaluation. In Heeman and Hirst's model system there is no distinction

between existing and proposed actions, so the current plan is constantly evolving.

Carletta (1990a; 1990b) addresses repair and replanning in an interactive task. In the

task, two agents are given a `map' containing some objects. The �rst agent is also given a

route that she must describe to the second agent. The system plays the role of the �rst agent

and so constructs the initial plan on which all repairs are done. Carletta uses a STRIPS-like

approach with post-requisites to check for plan failure. Like the aforementioned models,

the system uses meta-actions to encode the repair of referring expressions within the plan

(all knowledge is mutually known, so it is only the referring act that may fail). Repair is

usually chosen over replanning, unless a failure cannot be diagnosed, or a repair is deemed

too expensive. This model addresses when repairs should be planned, and not the actual

repairing of a referring expression, applying at a level below Heeman and Hirst's model.

Grosz, Sidner, and Lochbaum (Grosz and Sidner, 1990; Lochbaum, Grosz and Sidner,

1990) model how several agents with partial knowledge collaborate on constructing a shared

domain plan. Each agent communicates their beliefs and intentions by making utterances

about what actions they can contribute to the shared plan. Collaboration is again modelled

by the agents establishing a mutual belief that each action in the shared plan contributes to

the goal of the plan, and that each action can and will be performed by one of the agents.

Unfortunately, an agent has no recourse, except to disagree, when it �nds the shared plan

invalid (i.e., a belief about an action in the plan is inconsistent with the agent's beliefs).

Here, the agents intend to cooperate when they execute the domain plan, but not while

negotiating who is going to do what.

In Grosz, Sidner, and Lochbaum's view, a shared plan contains only actions that are

mutually believed to contribute to the plan. This view is too restrictive because an agent

24

will sometimes propose an action that is not believed by the other agent, or even believed

by himself to contribute. Without being able to incorporate these types of proposals into

the shared plan, the model cannot represent the state in which an agent understands how

an utterance contributes to the plan, while not agreeing with it. Heeman (1991) suggests

that the only requirement for a shared plan is that it not be incoherent.

2.5 Implementation Details of Heeman's System

Since we are building upon Heeman's (1991) implementation, we describe the pertinent

details here, thus avoiding a lengthy discussion later in the thesis.

The system is implemented in Prolog. The three central modules are the plan construc-

tion module, the plan inference module, and the belief module. We will describe each in

turn, paraphrasing from (Heeman, 1991, pp. 86{92).

Plan Construction

The input to the plan constructor is an e�ect that the speaker wishes to achieve. The

constructor then starts with a set of action schemas that satisfy the intended e�ect. Since the

speaker's actual communicative goal cannot be achieved directly, he instead plans actions

that achieve the goal indirectly. Thus, the e�ect that a speaker plans to achieve is to have

the hearer recognize his communicative goal.

The output is an instantiated plan derivation that the speaker believes is valid. A plan

derivation is an instance of an action schema that has each of the action schema headers in

its decomposition recursively expanded into instances of action schemas. To be instantiated,

a plan derivation must have all of its variables instantiated and uni�ed. An agent views an

instantiated plan derivation as valid if the agent believes that all of the constraints hold,

and all of the mental actions are executable.

The plan construction algorithm is a best-�rst search. The best-�rst heuristic is to prefer

plan derivations with the fewest number of primitive actions. The algorithm initializes a

list of partial derivations to contain all of the instances of action schemas (from the initial

set of action schemas) whose constraints are satis�able. Each partial derivation in the list

has an associated list of unexpanded steps that is initialized to be its decomposition. Until

a plan derivation with no unexpanded steps is found, the algorithm repeatedly removes the

partial derivation with the fewest number of primitive actions, �nds all expansions of its

leftmost unexpanded step, and adds these expansions (if any) to the list.

The expansion of a step depends on the type of action. To expand a mental action,

the system performs the action immediately. Thus, a mental action can a�ect the rest of

25

the construction. To expand a primitive action, the system instantiates the where-clauses,9

ensures that the constraints are satis�able, and ensures that the action is not already in

the plan derivation. Finally, to expand an action schema header (that is not primitive), the

system instantiates the where-clauses, ensures that the constraints are satis�able, and adds

its decomposition to the front of the list of unexpanded steps.

Plan Inference

Plan inference proceeds in two stages: plan recognition and plan evaluation.

The input to the plan recognizer is a set of observed surface speech actions (i.e., primitive

actions). The plan recognizer outputs a set of plan derivations each of which is rooted at a

specially marked top-level action schema and has only the input actions in its yield. It does

not consider whether the constraints hold or whether the mental actions are executable.

The plan recognizer is based on chart parsing. It parses actions instead of words, so

each edge in the chart represents a set of primitive actions accounted for by the edge.

The strategy is essentially bottom-up, breadth-�rst. Since some action schemas have no

observable primitive actions (e.g., those with a null decomposition), they would never be

considered with a strictly bottom-up strategy, so an exception allows this type of schema

to be added to the chart as an inactive edge, if necessary.

Each plan derivation in the set of recognized plan derivations is evaluated. If plan

evaluation is successful, the output is an instantiated plan derivation that the hearer believes

is valid. Otherwise, the evaluator outputs the constraint or mental action that caused the

failure.

The algorithm proceeds as follows. It �rst instantiates all of the where-clauses. Second,

it gathers all of the constraints and mental actions into a list. Third, it iteratively chooses

the �rst unevaluated constraint or mental action subject to meta-knowledge that correctly

orders the evaluation. For a constraint, it attempts to prove that it is satis�able, and for

a mental action, it attempts to execute it. If it fails in evaluating a constraint or mental

action, it determines which constraint or mental action was the cause of the failure (which is

not necessarily the constraint or mental action that could not be evaluated). Although the

algorithm would prefer to evaluate the constraints and mental actions in the order in which

they occur in the plan, this is not always possible because the action schemas have been

formulated for plan construction. The meta-knowledge simply encodes which parameters

of a predicate must be instantiated before it can be evaluated.

9If the where-clauses cannot be instantiated, the system aborts.

26

Belief Module

Heeman's belief module provides the minimum functionality to support plan construction,

inference, and reasoning in a collaborative environment. Functions are provided for adding,

testing, and retracting beliefs. Belief revision is not possible. Internally, a belief is en-

coded as abel(N,Prop) that represents the Nth alternating belief between the system

and the user (Cohen and Levesque, 1990). Instead of using the abel predicate, the ac-

tion schemas use the belief operators bel(Agent,Prop), mb(Agent1,Agent2,Prop), and

ab(Agent1,Agent2,Prop), representing simple belief, mutual belief, and alternating belief,

respectively.

For reasoning about beliefs, he has taken the syntactic approach, with the addition

of several inference rules. The rules can be applied within an arbitrary nesting of belief

operators. One inference rule allows the system to believe that a proposition is mutually

believed, if the system believes the proposition, and if the system believes that the user

believes the proposition. A second inference rule allows the system to believe an alternating

belief, if the system believes the proposition, or if the system believes the user has an

alternating belief about it (applied to a maximum embedding of recursive beliefs) (Cohen

and Levesque, 1990). A third rule, that attempts to capture co-presence, allows the system,

for certain propositions, to believe that the user believes the proposition if the system

believes the proposition.

27

Chapter 3

A Plan-Based Representation of

Route Description

3.1 Introduction

Since we are considering the task of giving directions in conversation, we view direction-

giving as communicative action. Therefore, we can use the planning paradigm to account

for the way a set of directions is described or understood. At a high level, an agent, the

direction giver, adopts a goal to have a second agent, the recipient, know how to get from

A to B. For the recipient, this means knowing the route, that is, knowing the sequence of

paths and places that link A to B (or, alternatively, the sequence of actions she can perform

to get herself from A to B). To achieve his goal, the giver must both plan a route, and plan

a description of that route|two tasks that are mostly independent but may be interleaved.

In a direction-giving dialogue, the giver refers to paths and places that the recipient has

no knowledge of. The central focus of this thesis is to model the collaboration that occurs

while making these references. However, before we can discuss reference itself, we must

establish a framework, or a context, to motivate our theory of reference. This framework is

a plan-based model of route descriptions, and we begin by discussing interactive direction-

giving.

Interactive direction-giving presents us with some interesting phenomena to account for.

First, in comparison to written directions (Riesbeck, 1980), which tend to be very complete

by covering all possible contingencies (including detailed descriptions and error-correction

information), conversation allows the directions to be less complete. Since the participants

are able to collaborate, the direction giver need only make the directions good enough

to some threshold he believes is adequate. If the recipient of the directions �nds them

inadequate (i.e., she believes that she will not be able to follow them), then she may simply

ask for clari�cation or elaboration . This collaborative behaviour can be attributed to several

28

sources, including time pressure (one doesn't want to spend all day giving directions), and

the giver's ignorance of the recipient's knowledge (why guess, when one can assume) (Clark

and Wilkes-Gibbs, 1986)1.

Second, in comparison to the work in automated driving directions, in which directions

are given dynamically and no complex driver intervention is allowed, directions given in

conversation tend to be less speci�c. One major focus for giving automated driving direc-

tions is to instruct a driver in how to negotiate complex turns as the driver is making the

turn. The speci�c details of the actions required of the driver simply cannot be conveyed

completely by a linguistic description before the turn is negotiated (unless the driver has

a photographic memory). In our task it is more important to describe the place a turn

must be made, along with a summary of the expected di�culties a driver may have (such

as getting into the left lane to make the turn). Again, because collaboration is possible, the

recipient of the directions may query for additional information about the turn if they feel

that it is necessary.

Two issues emerge out of the above discussion: determining the content of a route

description, and collaborating on the description. Addressing the �rst issue, we note that

there is a trade-o� between making the directions simple enough to remember (or to write

down quickly) and to be understood, while making them complete enough to be useful.

How do people do this? In their route descriptions, the descriptions of locations where

changes of direction are made are more important than the descriptions of the actions one

performs at those locations (Psathas, 1991). Not only are the descriptions of locations

important but they are kept relatively short by containing only the most salient features of

the location (Davis, 1989).

We consider describing a route to be our domain task, even though the conventional

view is that a domain task (for a task-oriented dialogue) should not be involved directly

with communicative action (Litman and Allen, 1987; Grosz and Sidner, 1990; Lambert and

Carberry, 1991; Heeman, 1993). Direction-giving in our context is a linguistic task, but it

can be a sub-task of a higher domain task such as cooperatively planning a route.

The second issue, studied by Psathas, involves the collaborative aspects of direction-

giving in conversation. People use many of the same actions that Clark and Wilkes-Gibbs

discovered were used for collaborating on referring expressions. A route description can be

judged and refashioned in much the same way as a referring expression is. Additionally,

because the references to locations on the route are the most important part of a route

description, collaboration is used to make sure that the references are adequate.

We limit the breadth of our investigation to the issues of collaboration on making an

understanding route descriptions within the planning paradigm. The following assumptions

1Although Clark and Wilkes-Gibbs's principles of mutual responsibility and least collaborative e�ort are
made in reference to referring expressions, they apply, in general, to collaborative dialogue.

29

are made about the content of route descriptions:

1. As is obvious from the previous discussion, we consider only driving directions. This

implies a knowledge of Lynch's paths, nodes, and landmarks; speci�cally, roads, inter-

sections, and features thereof (Lynch, 1960). We can also consider walking directions

if we constrain them to only require spatial knowledge similar to that needed for

driving directions.

2. The route description is to be remembered and executed at a later date. The direction

recipient cannot execute the directions as she hears them. This assumption coincides

with giving directions over the telephone (ignoring mobile phones), or on a street

corner with a stranger.

3. We are concerned only with linguistic descriptions. Therefore, we do not account for

deictic gestures, or references to physical maps.

4. The input to the model is a route in the form of an alternating sequence of direction

actions (goto and turn) corresponding to the actions performed on paths or at nodes.

This representation could be built easily from a sequence of links and nodes (see Frisch

et al. (1990) and Cole et al. (1991)).

5. We take route descriptions out of context by not considering the conversation before or

after the direction-giving dialogue. This amounts to assuming that the participants

have the origin and destination in their common ground, along with the intention

to describe/understand the directions. These issues are resolved in the opening and

closing that Psathas (1991) describes.

6. Directions are usually broken up into installments, but we do not model this be-

haviour. Instead, a route description is given in a single utterance. However, this is

an important topic, which we will consider in the discussion at the end of the chapter.

In this chapter we present a plan-based model of route description for which we have

three requirements: a representation of spatial knowledge, action schemas for describing

routes and locations, and processes for constructing and inferring route description plans.

These requirements are presented in the next three sections, along with examples. The �nal

section of the chapter is a discussion of some meta-issues of the model.

3.2 Representation of Spatial Knowledge

Direction-giving in a conversational context requires that the participants employ some spa-

tial reasoning (Riesbeck, 1980). Therefore, in order to give or understand directions, we

30

need an adequate representation of spatial knowledge. We adopt Kuipers's (1978) repre-

sentation of the cognitive map, but we use only the features relevant to direction-giving:

the topological structure and the route structure. While we do not use these structures as

Kuipers does (to monitor action in an environment with the purpose of spatial reasoning),

we do make use of them to describe and understand routes linguistically, something that

his model does not take into account.

Kuipers's model uses metric information and topological information. We choose not to

use the metric information directly in making descriptions, because people usually �nd the

descriptions inadequate or unclear (Riesbeck, 1980). Topological information is one source

of descriptiveness in directions, the where part, but we also need attributive information.

Attributive information describes the what part (Downs and Stea, 1973). Kuipers does

not consider the attributes of paths and places, which may include landmarks, street signs,

street lights, etc. (see Davis (1989)). Attributive information is represented by a set of

propositions that an agent believes are true of a path or place. These beliefs are accessed

when constructing a referring expression for a path or a place. For example, an agent may

believe that a place is a town, which has a name, or may believe that a path is a road with

an asphalt surface.

In the next two sections we de�ne the topological and route representations that we use.

The topological structure is represented the same way that attributive information is, as

a set of beliefs that are used when describing a route. The route structure is represented

as a data structure provided as an argument to the action schemas de�ned in section 3.3.

Following the de�nitions, is an example representation of a simple street network.

3.2.1 Topological Structure

The topological structure represents declarative knowledge about a street network by using

two sub-structures: path descriptions and place descriptions. The path structure,

path(Name,

Row),

de�nes a path the unique internal name Name. The Row is a partial ordering (a list) of the

places known to be on the path.

The place structure,

place(Name,

Intersection,

LocalGeometry),

de�nes a place with the unique name Name. The Intersection �eld is a list of all paths

that intersect at the place, that is, paths that pass through or end at the place. The local

geometry describes, with metric information, how the intersecting paths relate to the place.

31

We do not use the local geometry, but we keep it for completeness and for possible future

expansion.

Taken together, many instances of these structures represent a street network. Kuipers

intended them to be able to incorporate new information inferred from traversing the net-

work, or to give out information in answer to questions (i.e., the angle of a turn from one

path to another at a place). In our model we will not use these properties of the network,

but, for generation, we will use topological structure to help describe paths and places, and,

for understanding, as a framework to be �lled in as directions are understood. Knowledge

of the topological structure will be stored as a set of propositions that an agent has beliefs

about. Each path and place that an agent knows about is represented as a proposition that

the agent believes is true.

3.2.2 Route Structure

The route structure is important in this model, because it contains the procedural knowledge

of how to get from one place to another. A route could be considered as a series of paths

and places (Frisch et al., 1990; Cole et al., 1991), but we consider it to be a sequence of

actions (Kuipers, 1978) because a route represents action in the environment. A route

description is an alternating sequence of the two possible actions that are taken as one

traverses the street network. The two actions are to go to a place, and to make a turn. The

�rst has the following representation:

goto(FromPlace,

ToPlace,

Path,

Orientation,

Distance)

It indicates that one travels from the FromPlace to the ToPlace along a Path. Orientation

refers to a one-dimensional orientation (forward or backward) on the path, which is an

internal quality that is not physically observable. It relates to the partial order of places,

Row, contained in the path description. Distance is a metric quantity that we do not use

directly. The goto structure represents an ordered pair of places between which no other

actions are to be made, meaning that, to describe a path, we only need to consider the

endpoints.

A second action is to make a turn, and has the following representation:

turn(Place,

Path1,

Orientation1,

Angle,

Path2,

Orientation2)

32

Newton

street2

2A

Lowell St.

building1

Academy

town1

street1

inter1

Figure 3.1: A street network

This indicates that in making the turn at Place one starts on Path1 and ends up on Path2.

The two orientation components are similar to those in the goto structure. The Angle is

the angle of the turn made, a metric quantity that we do not use.

These two structures correspond to action schemas to be de�ned in section 3.3. Unlike

the topological structures, they are not stored as beliefs. The set of actions (directions) for

a particular route are grouped together to form a list that is an argument to the planning

processes, either to be described (when giving directions), or �lled in (when understanding

a route description).

As we shall see in the next section, to sequentially plan the route description, we need

to know how much of the route we have already described. To facilitate the process, we

de�ne a you-are-here structure (analogous to Kuipers's) that contains three aspects about

a current position:

here(Place,

Path,

Orientation)

The planning processes maintain a current position pointer, represented as a here structure,

and update it as a description is made or understood. The route origin and destination are

also represented as here structures.

3.2.3 An Example Spatial Representation

Figure 3.1 presents a small street network. First, we list the attributive information in the

form of propositions that an agent would have beliefs about.

category(town1,town).

called(town1,'Newton').

category(street1,street).

called(street1,'2A').

category(inter1,intersection).

33

category(street2,street).

called(street2,'Lowell').

category(building1,building).

called(building1,'Academy').

Brie
y, town1 is an instance of a town (the category proposition assigns the category of an

object). The second proposition, called, assigns the name Newton to the town. The other

de�nitions follow similarly.

The objects, town1, inter1, and building1 are places, and have the following de�ni-

tions within the topological structure:

place(town1,

[street1],

[(0,street1,+1)]).

place(inter1,

[street1, street2],

[(0,street1,+1), (90,street2,+1),

(180,street1,-1), (270,street2,-1)]).

place(building1,

[street2],

[(270,street2,-1)]).

In each structure, the �rst parameter is the internal name of the place. The second is a

list of all paths that intersect at the place. For example, at inter1, street1 and street2

intersect. The third parameter expresses the local geometry as a list of triples comprising

an angle, a path, and a one-dimensional orientation. Each triple represents the direction

that the path leaves from the place (e.g., street1 leaves to the north, with a forward

orientation, and also to the south with a backward orientation). We include this information

for completeness, but it can be safely ignored.

The second component of the topological structure represents the paths street1 and

street2:

path(street1,

[town1, inter1]).

path(street2,

[inter1, building1]).

These structures include the internal name of the path and a list of places on the path. The

order of the places is important because it relates to the one-dimensional orientation seen

in the place structures above.

We would like to describe a route going from Newton to the Academy traversing town1,

street1, inter1, street2, and building1. Thus, we require the following route structures:

34

Origin: here(town1, street1, +1)

Goto1: goto(town1, inter1, street1, +1, 1)

Turn1: turn(inter1, street1, +1, 90, street2, +1)

Goto2: goto(inter1, building1, street2, +1, 1)

Dest: here(building1, street2, +1)

The origin represents that we are at town1, facing forward on street1. The �rst action,

Goto1, speci�es that we go to inter1 from town1 by traversing street1 in the forward

direction, for a distance of 1 unit. The action to turn is similar, specifying that at inter1

a turn (of 90 degrees) from street1 onto street2 is made. The actual route that needs to

be described is the list of the three actions Goto1, Turn1, and Goto2, which is represented

as the following route data structure that the planning processes operate with:

route([Goto1, Turn1, Goto2]).

The origin and destination are implicitly known to the giver and recipient because we assume

that the agents involved have already agreed upon this information.

3.3 Route Description Action Schemas

We treat describing a route (from origin to destination) as an illocutionary speech act

similar to informing. The goal of the act is to have the hearer understand the description,

and hence know how to get from the origin to the destination by following a sequence of

direction actions. The speaker attempts to achieve this goal by realizing the description as

a series of utterances that correspond to surface speech acts that are primitive actions in

the plan hierarchy.

Our route description action schemas are modelled very closely on Heeman and Hirst's

refer action schemas (Heeman and Hirst, 1992). Plan decomposition is used to map the

top-level action, through intermediate actions, into surface speech actions. The following

is a list of the action schemas that we de�ne along with their decompositions. The symbol
d

=) may be read as `decomposes to'.

describe-route
d

=) directions

directions
d

=) f null j direction directions g

direction
d

=) f s-goto refer j s-turn refer g

In the following sections we will call the physical actions (or their descriptions) that

one performs while traversing a route \directions" in order not to confuse them with the

communicative actions. In the schemas, we use the standard Prolog notation that variables

begin with an upper-case letter and predicates and constants begin with lower-case.

Also note that all of the predicates and mental actions used in these schemas are de�ned

in appendix A.

35

3.3.1 Top-level Action

Since describing a route is a communicative act, it has a top-level action schema called

describe-route shown in �gure 3.2. The describe-route schema takes as a parameter the

Header: describe-route(Route)

Where: speaker(Speaker)

hearer(Hearer)

Route = route(Dirs)

route-origin(Origin)

route-dest(Dest)

Decomposition: directions(Origin,Dirs,Dest)

Effects: bel(Hearer,goal(Speaker,knowroute(Hearer,Speaker,Route)))

Figure 3.2: describe-route schema

route that consists of a list of directions, Dirs, which is instantiated by a Where-clause.

Two Where-clauses instantiate the origin, Origin, and the destination, Dest. We assume

that the origin and destination are known to the direction giver and recipient before the

giver actually starts describing the route. TwoWhere-clauses also instantiate the Speaker

and Hearer to system or user depending on whether plan construction or inference is being

done.

The action decomposes into the single step directions, to be de�ned later in this

section. The e�ect of describe-route is that the hearer will believe that the speaker has

the goal of the hearer knowing the route, that is, knowing how to get from the origin to the

destination. The e�ect is formulated this way because when a speaker has a communicative

goal, he usually intends it to be recognized by the hearer (Searle, 1969; Appelt, 1985a; Grosz

and Sidner, 1986; Heeman and Hirst, 1992). Whether or not the hearer believes that the

goal (of her knowing the route) is achieved, she will know what the intended e�ect of the

plan is through the plan inference process. The use of knowroute(A1,A2,R) is similar to

Heeman's use of knowref(A1,A2,E) meaning that A1 knows the referent that A2 associates

with the discourse entity E. For A1 to know the route, R, that A2 is describing entails A1

inferring a complete list of directions Dirs that `link' the Origin to the Dest.

Obviously, every schema should have one or more e�ects associated with it, but to

simplify, only the top-level route description action and the surface speech actions have

e�ects. Heeman makes the same simpli�cation, stating that nothing is lost because we are

chaining by decomposition, and plan inference always derives the correct plan derivation.2

However, since the route description actions make use of referring actions, which have e�ects,

the plan inference, constructing, and reasoning processes will have to take these e�ects into

2In Heeman's system, only the top-level refer action has an e�ect that captures all of the e�ects of the
sub-actions in the plan.

36

account. In chapter 6, we describe the acceptance process that takes plans with multiple

subplans and e�ects into account.

3.3.2 Intermediate Actions

The directions action is used to sequentially describe each of the directions in the list

of directions in order to `link' the origin to the destination. By using a current list of the

directions that have not yet been described and a current position pointer (the you-are-here

pointer) to coordinate its activity, the directions action determines the next direction

to describe. Initially, the list contains all the directions needed to link the origin to the

destination, and the current position is the origin; but, as the process continues, directions

are pulled o� from the head of the list, and described, until there are none left. The process

of describing a route is sequential and iterative, but we model it recursively (tail recursion

only) to make the planning simple.

Thus, we de�ne two action schemas. The �rst, shown in �gure 3.3, serves to terminate

Header: directions(CurPos,Dirs,Dest)

Constraint: CurPos = Dest

Dirs = []

Decomposition: null

Figure 3.3: directions schema

the recursion. The schema has constraints that make sure we have reached the destination,

and that all of the directions in the list have been accounted for.3 The decomposition step

is null in order to distinguish it from a primitive action.

The second schema, �gure 3.4, uses its constraints to pull o� the head of the direction

Header: directions(CurPos,Dirs,Dest)

Constraint: Dirs = [Dir j RestDirs]
Decomposition: direction(CurPos,Dir,NewPos)

directions(NewPos,RestDirs,Dest)

Figure 3.4: directions schema

list4 which will be used to describe the next direction. This constraint also ensures that

there is still further description to be done. The �rst step of the decomposition is to describe

the next direction via the direction action that, as part of its decomposition, updates the

current position pointer. The second step is recursive because it calls on the directions

action with the new position pointer, and remaining directions as arguments.

3[] is Prolog notation for the empty list.
4[HjT] is Prolog notation for a list consisting of a head H (an element), and a tail T (a list).

37

The �nal intermediate action that we de�ne is the direction action. There are two

schemas to choose from, depending on the type of direction, corresponding to the directions

of goto and turn de�ned in section 3.2.2. For both schemas the constraints make sure that

the schema corresponds to the direction, and instantiate the necessary variables. The �rst

schema, �gure 3.5, is for describing movement along a path from one location to another.

The �rst step of the decomposition associates the new location with its discourse entity,

Header: direction(CurPos,Dir,NewPos)

Constraint: CurPos = here(From,Path,Orient)

Dir = goto(From,To,Path,Orient,Distance)

Decomposition: ref(ToEntity,To)

s-goto(ToEntity)

set-context(From,To,Path,Orient)

refer(ToEntity)

NewPos = here(To,Path,Orient)

Figure 3.5: direction schema

which is used by the second step, the surface speech action s-goto (de�ned below). The

third step is a mental action that sets the current context for making a reference to the

location. The action takes into account all the locations along the path, from the current

position to the new location, by consulting the topological structure. The current context

is used by the fourth step that refers to the actual location. The refer action is described

in detail in the next chapter. Finally, a mental action determines the new position.

The second schema, shown in �gure 3.6, is similar to the �rst. In the decomposition,

Header: direction(CurPos,Dir,NewPos)

Constraint: CurPos = here(Place,Path1,Orient1)

Dir = turn(Place,Path1,Orient1,Angle,Path2,Orient2)

Decomposition: ref(PathEntity,Path2)

s-turn(PathEntity)

set-context(Place)

refer(PathEntity)

NewPos = here(Place,Path2,Orient2)

Figure 3.6: direction schema

a di�erent surface speech action, s-turn, is used, and a reference to the path turned onto

is made. The current context for the reference is computed by considering only the place

at which the turn is being made. The mental action gathers all the paths and landmarks

associated with the place by accessing the topological structure.

Note that these direction schemas �ll the minimum requirements for giving directions:

describing how to get to a place and how to make a turn. They use only some of the

parameters that they have access to. For example, the schema for turning makes no reference

38

to the angle5 of the turn. Further action schemas (and surface speech actions) could be

added easily to allow for more descriptive directions, but as we have observed, it is the

descriptions of places at which changes in direction are made that take importance over the

descriptions of the directions themselves.

3.3.3 Surface Speech Actions

The route descriptions must map into primitive surface speech actions that will be linguis-

tically realized as parts of an utterance. We de�ne two surface speech actions: s-goto for

describing how to go to a place, and s-turn for describing how to make a turn. The action

schema for s-goto is shown in �gure 3.7. The constraint accesses the topological structure,

Header: s-goto(PlaceEntity)

Where: speaker(Speaker)

hearer(Hearer)

ref(PlaceEntity,Place)

Constraint: place(Place, ,)

Effects: bel(Hearer,goal(Speaker,

mb(Speaker,Hearer,place(Place, ,))))

Figure 3.7: s-goto schema

and makes sure that the speaker believes that the place exists. This constraint cannot be

evaluated unless the referring action that instantiates the entity (in the direction schema)

is successful. The e�ect of the action is for the hearer to believe that it is mutually believed

that Place is a place. As with the e�ect of the top-level action, this e�ect is formulated

so that the intention behind the action is recognizable: the intention to establish mutual

belief about the place.

The s-goto surface speech action corresponds to uttering a command for going to a

place. It cannot stand alone, because it gets realized together with the associated referring

expression for the place, which is realized as a result of the refer action in the direction

action schema. So, along with a referring expression, this action could be realized with an

utterance such as:

Go to the Lowell Street intersection.

There are many other ways to describe this particular direction, some giving more infor-

mation than others. It would be possible to de�ne more s-goto actions, which would take

additional parameters (from information in the direction schema). For example, if an

additional entity for the path of travel is given, one could utter the following, taken from

Psathas's corpus (Psathas, 1991, p. 196):

5The numeric value of an angle can be converted to a descriptive phrase such as right or sharp right (Davis,
1989; Cole et al., 1991; McDermott, 1980).

39

Stay on 2A until ya get to Lowell Street.

Figure 3.8 shows the surface speech action for turning. Its constraint and e�ect are

Header: s-turn(PathEntity)

Where: speaker(Speaker)

hearer(Hearer)

ref(PathEntity,Path)

Constraint: path(Path,)

Effects: bel(Hearer,goal(Speaker,mb(Speaker,Hearer,path(Path,))))

Figure 3.8: s-turn schema

similar to those of the s-goto action.

This action is used to describe a turn onto a path, so it must be realized together with

a referring expression for the path. Again, this action is only one of many possible actions

for turning|it could be realized as (with a referring expression):

Turn onto Lowell Street.

There are many other common ways of describing a turn, two of which are to utter:

Make a sharp right, or

Turn right at the intersection,

whose surface speech actions would require the turn angle and the place of the turn as

parameters, respectively.

3.3.4 Referring to Paths and Places

What we have left out of the action schemas above is how a reference to a path or place

is accomplished. The refer actions in the direction schemas decompose into referring

expression plans, which have primitive actions for uttering the various components of the

expression. In giving directions, the giver often makes references to paths and places that

the recipient has no knowledge of. This type of reference is di�erent from the type of

reference (that, traditionally, has been studied) in which the two agents are copresent with,

or have mutual knowledge of the referent. We hope that our plan-based model of route

description has provided su�cient motivation for our model of reference, which follows in

chapter 4.

3.4 Constructing and Inferring Route Description Plans

The system can act as both direction giver and recipient. As the giver, the system constructs

route description plans, and as the recipient, the system infers route description plans.

40

3.4.1 Construction

We use the same plan construction process as Heeman does. To construct a route description

for Route, the system gives the plan constructor the e�ect

bel(user,goal(system,knowroute(user,system,Route)))

as input. The constructor outputs an instantiated route description plan that the system

believes is valid. The yield of the plan derivation is then output to the utterance generator

(that we have not implemented).

An Example

Consider the scenario in which the system believes the spatial knowledge from the example

above (section 3.2.3). We give the system, who has the role of speaker and direction-giver,

the goal to describe the route from Newton to the Academy.

The system derives the plan shown in �gure 3.9. In this and later plan derivation

�gures, the marked indentation pattern shows the decomposition. Constraints and e�ects

are italicized. Variables have their �rst letter in upper-case, and co-referring variables have

the same name. In this �gure, Origin, Dest, Goto1, Turn1, and Goto2 are the structures

described in the above example. The plan derivation does not include the derivation of the

referring actions, just the top-level refer action. The resulting surface speech acts of this

plan are listed below (except for those related to referring).

s-goto(entity(1,inter1))

s-turn(entity(5,street2))

s-goto(entity(12,building1))

They correspond (with referring expressions added) to the utterances:

Go to the Lowell Street intersection,

turn onto Lowell Street,

go to the Academy building.

3.4.2 Inference

We use Heeman's plan inference process to understand a route description. Understanding

involves recognizing the speaker's goals by examining his utterance. So, by inferring the

speaker's plan, the hearer can determine the e�ects of the plan, which are formalized so

that the hearer can easily recognize the speaker's intentions.

Plan inference proceeds in two stages. The �rst stage is to recognize a set of plan

derivations that account for the observed surface speech actions, and the second stage is to

evaluate each of the plan derivations in the set. Because of its top-level action, the hearer

41

describe-route([Goto1,Turn1,Goto2])

directions(Origin,[Goto1,Turn1,Goto2],Dest)
Constraint: [Goto1,Turn1,Goto2] = [Goto1 j [Turn1,Goto2]]

direction(Origin,Goto1,Dest)
Constraint: Origin = here(town1,street1,+1)

Goto1 = goto(town1,inter1,street1,+1,)

ref(entity(1,inter1),inter1)
s-goto(entity(1,inter1))
Constraint: place(inter1, ,)

Effect: bel(user,goal(system,mb(system,user,place(inter1, ,))))

set-context(town1,inter1,street1,+1)
refer(entity(1,inter1))
here(inter1,street1,+1)=here(inter1,street1,+1)

directions(here(inter1,street1,+1),[Turn1,Goto2],Dest)
Constraint: [Turn1,Goto2] = [Turn1 j [Goto2]]

direction(here(inter1,street1,+1),Turn1,here(inter1,street2,+1))
Constraint: here(inter1,street1,+1) = here(inter1,street1,+1)

Turn1 = turn(inter1,street1,+1,90,street2,+1)

ref(entity(5,street2),street2)
s-turn(entity(5,street2))
Constraint: path(street2,)

Effect: bel(user,goal(system,mb(system,user,path(street2,))))

set-context(inter1)
refer(entity(5,street2))
here(inter1,street2,+1)=here(inter1,street2,+1)

directions(here(inter1,street2,+1),[Goto2],Dest)
Constraint: [Goto2] = [Goto2 j []]

direction(here(inter1,street2,+1),Goto2,Dest)
Constraint: here(inter1,street2,+1) = here(inter1,street2,+1)

Goto2 = goto(inter1,building2,street2,+1,)

ref(entity(12,building1),building1)
set-context(inter1,building1,street2,+1)
s-goto(entity(12,building1))
Constraint: place(building1, ,)

Effect: bel(user,goal(system,mb(system,user,place(building1, ,))))

refer(entity(12,building1))
here(building1,street2,+1)=here(building1,street2,+1)

directions(here(building1,street2,+1),[],Dest)
Constraint: here(building1,street2,+1) = Dest)

[] = []

null

Effect: bel(user,goal(system,knowroute(user,system,[Goto1,Turn1,Goto2])))

Figure 3.9: Constructed route description plan derivation

42

will know that the inferred plan is a route description plan, thus she will believe that the

speaker's intention is for her to know the route. If the hearer believes the plan is valid,

then she knows the route, because all the constraints and mental actions are satis�able.

Otherwise, she believes that the route description is in error because either a constraint or

mental action is found unsatis�able. We discuss the di�erent types of error in section 3.5.3.

For example, if the hearer observes the surface speech actions uttered by the speaker

in the example above, then she will infer a route description plan almost identical to the

one shown in �gure 3.9. The only di�erence is that the discourse entities would be instan-

tiated with di�erent object names. We give a detailed example of the construction and

understanding of route description plans in chapter 7.

3.5 Discussion

In this section we discuss a number of meta-issues about our model of direction-giving. First,

we discuss how directions might be given in installments. Second, we compare direction-

giving to referring. Third, we look at how a route description can break down, and fourth,

we discuss the versatility of the model.

3.5.1 Giving Directions in Installments

In our model of route description, a description is uttered all at once, an implausible scenario

given that route descriptions are usually long and might require repair. In dialogues between

humans, directions are usually given in installments. That is, the direction giver breaks up

his route description into a series of utterances, expecting the recipient to accept each one

in turn. Humans use installments not only for direction-giving, but anytime they need to

communicate complicated sequential information, such as a long address, or a long referring

expression. Installments allow a person hearing the complicated information time to think

about it and to, possibly, record it verbatim. It would be very di�cult for one to understand

a long set of directions or to collaborate on the repair of an inadequate portion of the

directions, if they were uttered all at once. Another reason for a speaker to use installments

is to receive con�rmation or understanding for each part of a large plan before continuing

to the next part. By using installments the speaker forces the hearer to consider the parts

of a plan in a di�erent order than they might have been considered had they been uttered

all at once.

We have not modelled direction-giving in installments in this thesis because the topic

is peripheral to the main focus|collaboration on referring expressions in direction-giving

dialogues|and would needlessly complicate plan construction and inference, and the rea-

soning process. A second reason for not implementing installments is that we feel insu�cient

research has been done on the topic. Only Clark and Schaefer (Clark and Schaefer, 1989)

43

touch on the subject in relation to making contributions to discourse.

At �rst glance the issue may seem simple to solve, but there are a few problems. Per-

haps the most di�cult problem is to determine the size of an installment. Intuitively, an

installment should be the right size for easy comprehension. Should an installment be a

single sentence, a speech act, a subplan of a larger plan, a plan with a maximum number of

primitive actions, or a single direction action (in the direction-giving domain)? A second,

but related problem, is to determine at what point installments are necessary. That is,

what is the minimum size of plan that does not need to be uttered in installments? A third

problem involves how installments are planned for, realized, and understood. Does an agent

start planning a utterance, and then realize that installments are necessary, or does he plan

to use installments ahead of time. By their nature, installments are incomplete plans, but

they are not invalid because of this incompleteness.

Nevertheless, we suggest a way to model installments (for direction-giving) for which

we do not yet have an implementation. First, the size of a plan is the number of primitive

surface speech actions in it. We propose that the size of an installment depends on the

number of surface speech actions in it. An installment would contain one or more complete

direction actions, whose yield of surface speech actions would be near some maximum size

allowance. Installments would not be used if the plan was short enough to be uttered in

approximately one to two installments.

Second, how is an installment uttered and recognized? Clark and Schaefer discuss

that humans place a rising or fall-rise intonation on all of the installments except the last,

on which they place a falling intonation. This observation means that installments are

marked. We propose that an agent plans a special surface speech action to indicate that

his current utterance is an installment. For the last installment he would �nish his plan

as if it was a normal non-installment plan. The hearer can recognize the installment from

the intonation, and can judge the validity of the installment separately, and incorporate

it into the overall plan. Upon �nding that the plan is incomplete and that the latest

contribution was an installment, the agent can use a continuer (Clark and Wilkes-Gibbs,

1986; Clark and Schaefer, 1989), such as the utterance yes, or okay. A continuer expresses

more than acknowledgement or acceptance. It also expresses that an agent believes the

previous utterance was an installment, and is ready to hear the next installment. Thus, by

using a continuer, an agent can postpone her judgement about the overall plan until later,

and informs the other agent that she is doing so.

3.5.2 Comparing Direction-Giving to Referring

In one sense, the direction-giving task is analogous to the referring task, because one can

think of describing a route as referring to the route. This is one reason that the action

schemas for direction-giving are modelled closely after Heeman's schemas for referring ex-

44

pressions. There are, however, some fundamental di�erences between giving directions and

referring to an object. Heeman uses a candidate set that represents the set of objects that

the speaker believes could satisfy the propositional content of the current referring expres-

sion. The intermediate actions serve to narrow down the candidate set by adding further

propositions to the referring expression, until the candidate set contains one object. So

the process of referring involves a series of propositions that successively narrow down a

candidate set. Describing a route could also be seen as narrowing down the set of all pos-

sible routes from A to B, by successively (recursively or iteratively) describing portions of

the intended route. But, we see a route description as simply a list of actions forming a

plan that, if performed, would get the performer from A to B. There is no candidate set to

narrow down, only a list of actions (directions) to describe. This view leads to the three

following observations.

First, the sequential structure of a set of directions is embedded in the route description

plan (see Psathas (1991)). Thus, order is important within a route description plan because

the order of directions is directly related to the order in which the directions must be

performed. In referring expressions, there is no inherent order of modi�ers, and their related

propositions can be applied in any order to reduce the candidate set.6

The sequential ordering leads to the second observation: as each direction is given and

mutually accepted, it can be added to the participants' common ground and not discussed

again. This behaviour allows directions to be given in installments. For a referring expres-

sion, its modi�ers tend to be kept active until the referring act is complete.

The third di�erence between Heeman's refer action and our route description action

is that Heeman's action decomposition encodes what information is needed to describe a

referent and how to communicate that information, whereas our actions are given the `what'

part as a list of directions, and the action decomposition only encodes how to communicate

this list of directions. One purpose behind referring is to make a description that is minimal

in size but maximal in descriptive capacity by choosing the best set of modi�ers. Analogous

to the modi�er is the individual direction, and the best set of these is determined by a route

planner that we have assumed.

So, although our direction-giving task is not equivalent to Heeman's referring task, we

can use similar planning techniques to account for it.

6Although the order of modi�ers within a referring expression may not be inherent, modi�ers are usually
ordered by their ability to maximally reduce the candidate set. That is, the most salient properties of an
object are chosen and uttered �rst. Contrary to the order of directions in a route, the order of modi�ers is
context dependent.

45

3.5.3 Errors in Route Descriptions

When does a route description break down? That is, when does it not achieve its goal

of describing a series of actions that can take an agent from one place to another? In

Heeman's model, a referring plan is in error if the referring expression is overconstrained

or underconstrained. These types of error do not occur with direction-giving, but an agent

may �nd a route description, or a portion of it, in error for some other reasons.

One type of error occurs when an agent believes that the description of a path or a

place is inadequate. Path and place descriptions are referring expressions and can be in

error for the same reasons as regular referring expressions. But, since we are not assuming

mutual knowledge of the paths and places, these referring expressions can also be inadequate.

An expression cannot be overconstrained or underconstrained if one has no knowledge of

the referent. Here, inadequate means that the agent lacks con�dence in the whether the

referring expression can be made into a plan good enough to be used to identify the referent

when necessary. This type of error can be corrected by the agents use of a collaborative

dialogue to elaborate on the referring expression. (See chapters 4 and 5 for a more complete

discussion.)

A second type of error in a route description occurs if an agent believes that a direction

is not descriptive enough. The direction itself could be too complex, or the description

of the direction could be too simple. This type of error can be resolved by breaking the

direction into sub-directions and planning descriptions for these, or by providing a more

detailed description of the direction (by choosing a di�erent direction schema that uses

more of the information from the spatial structure). Since we have decided to concentrate

on describing paths and places, we do not investigate this type of error in the thesis. This

decision is re
ected in the schema hierarchy by only having one direction schema for

each type of direction, and by not modelling spatial reasoning about topological or route

structures. In short, we can replan a description of a route, but not the route itself.

3.5.4 Versatility

Our plan-based model of direction-giving is versatile in a number of ways. First, additional

action schemas can be designed easily to provide a wider range of descriptive ability. There

is a linguistic variety (lexical and structural) of utterances that people use when giving

directions, of which we only give a bare minimum: two schemas, one for going (on paths)

and one for turning (at places).

Second, we use Kuipers's model of spatial knowledge representation, which includes a

method of assimilating route knowledge into a topological structure. Thus, an agent who

receives directions can incorporate them into her cognitive map. And an agent who already

knows some geographical knowledge about a city can use this knowledge when discussing

46

directions with the direction giver, possibly correcting mistakes, or adding directions herself.

Finally, because we use the planning paradigm to model linguistic direction-giving, we

can incorporate non-linguistic actions into the plans. Actions such as pointing: Go that

way; references to physical maps: Follow the red line; and other actions, such as nods of

agreement, can all be added to make the model more comprehensive.

47

Chapter 4

Referring to Paths and Places

4.1 Introduction

From our previous discussion we have seen that the research to date into referring expres-

sions has not dealt with what Appelt calls nonshared concept activation with identi�cation

intention (Appelt, 1985c). A speaker uses this action when he wants to refer to an ob-

ject for which the speaker and hearer do not have mutual (or shared) knowledge with the

underlying intention of having the hearer be able to eventually identify the object. This

type of referring is prevalent in direction-giving dialogues because the direction recipient

usually has no knowledge of at least part of the route (otherwise, why would she be getting

directions?), whereas the direction giver has complete knowledge of the route. Because of

this knowledge imbalance, the conventional models of referring are inadequate.

In this chapter we propose a method to generate and understand referring expressions

without assuming the copresence of the agents and the referent, or the agents' mutual

knowledge of the referent. In fact, the central assumption is that

(4.1) the speaker and hearer have no mutual knowledge of any object that
the speaker refers to.

However, the speaker does have the intention to achieve a state of mutual knowledge about

the object. The assumption is very strict, but we can make it in the direction-giving domain

because most references are new (we are not considering anaphoric references).

The assumption is plausible because it leads to a di�erent type of referring action that

has a di�erent underlying intention. Appelt's referring action is an attempt to formalize

this action, and is distinct from his shared concept activation and Heeman's referring ac-

tion (Heeman and Hirst, 1992). It is used when the speaker intends to refer to an object

that he believes is not known by the hearer.

Consider a plan for a referring expression. What constitutes grounds for accepting the

plan? In Heeman's system, the plan is achieved (and is, therefore, acceptable) if it uniquely

48

identi�es an object within the world of objects that an agent knows about. But how can an

agent identify the referent without knowledge of it? We suggest that a referring expression

plan can be accepted if

1. the plan contains a description that is useful for making an identi�cation
plan that the hearer can execute to identify the referent, and

2. the hearer is con�dent that the identi�cation plan is adequate.

The �rst condition, �rst described by Appelt, is important because the referring action's

success depends on the hearer formulating a useful identi�cation plan. This formulation is

not always possible|if a person on a bus asks what stop should I get o� at, the response one

stop before I do is not very useful (Appelt, 1985c, p. 202)|so the speaker must endeavour

to use an appropriate description.

For the second condition to hold, the hearer must believe that the identi�cation plan is

good enough to uniquely identify the referent when it becomes visible. This involves giving

enough information by using the most visually prominent or salient features of the referent.

The scope of the task is very broad, so we only consider some of the issues. We sidestep

the issue of creating useful identi�cation plans from referring expressions by assuming that

the propositional content of any referring expression is always useful for making an identi�-

cation plan.1 We do not model how an agent can use the propositional content to actually

identify the referent. This process occurs after the dialogue about identifying the referent,

our chief concern, is over.

In this chapter we �rst discuss, in section 4.2, how an agent can judge her con�dence

in the adequacy of a referring expression by considering the salience of the referent's de-

scriptors. This section also looks at the various uses of salience in our model. Then, in

section 4.3, we discuss how an agent can apply con�dence and salience to the construction

and inference of plans. Section 4.4 de�nes the referring action schemas, and section 4.5

presents an example of generating and understanding a referring plan. The �nal section is

a summary of the chapter.

4.2 Con�dence in a Referring Expression

For both construction and inference, we suggest that evaluating one's con�dence in a re-

ferring expression plan is the means of determining whether or not the plan is an adequate

identi�cation plan. By con�dence, we mean an agent's belief that the plan is good enough,

or adequate, to uniquely identify the referent once it becomes possible to do so (i.e., the

agent must believe that she will be able to recognize the referent, eventually).

1In fact, we take the referring expression plan itself to be the identi�cation plan, a view slightly di�erent
from Appelt's. His identi�cation plans enable the hearer to locate and identify the referent, whereas ours
only enable the hearer to identify the referent once the hearer establishes the relevant context (and, by
following the directions, the hearer should have the correct context).

49

In the domain of direction-giving, the direction giver must be satis�ed that the referring

expression that he constructs will be helpful to the recipient in identifying the referent. To

do so, he evaluates his con�dence in the plan's adequacy cumulatively as he constructs the

plan. When he is con�dent enough, he utters the resulting expression.

Upon hearing a referring expression, the direction recipient infers the associated plan,

and evaluates her con�dence in its adequacy. If she is con�dent that the plan will be useful

enough, the direction giver can continue with the rest of the directions; otherwise she must

initiate a collaborative dialogue that will serve to make her con�dent in its adequacy.

In this section we discuss how con�dence is evaluated, and follow that with a discussion

of salience on which con�dence is based.

4.2.1 Con�dence

Con�dence in a plan's adequacy comes from two sources: quantity and quality. If a referring

expression contains a long list of a variety of descriptors, then one might be con�dent that

it is adequate. Alternatively, it might contain a few very salient features of the referent and

thus be adequate. We propose that the old proverb of quality over quantity applies here

because people usually try to minimize the length of their referring expressions (Reiter,

1990; Reiter and Dale, 1992; Heeman and Hirst, 1992), or because they are forced to make

short expressions because of time pressure (Clark and Wilkes-Gibbs, 1986).

To evaluate the adequacy of a referring expression plan, we associate a numeric con-

�dence value with the plan. Even though this value is numeric, it can be interpreted as

ranging from low con�dence to high con�dence. An agent is con�dent in a plan if the con-

�dence value of the plan exceeds some threshold. Ideally, the con�dence threshold should

vary depending on the context surrounding the utterance, but since we are only consider-

ing referring expressions uttered within one context (part of a direction instruction), the

threshold may remain constant.

We also associate con�dence values with each of the descriptors of a referring expression

(i.e., the head noun and its attributes). These values can be thought of as the amount

con�dence is increased because of the use of a descriptor. The overall con�dence value is

composed of the con�dence values of its descriptors. Since the values are numeric we simply

add them up. One could envision more complex systems to evaluate con�dence including

an algebra of con�dence (the interaction of descriptors may lower or raise con�dence), or a

non-numeric system, but we feel that this system is simple and does the job. The problem

is that it is open to the ad hoc assignment of con�dence values, an issue we discuss in the

next section about salience.

Another point to consider is how sub-expressions in
uence the con�dence of a main

referring expression. An agent uses a sub-expression when he wants to relate the referent

to another object (for example, in the creature on the television, the television is a sub-

50

expression of the creature). Because the sub-expression forms a complete reference to an

object, it has a con�dence value associated with it, but how should this value a�ect the

value of the main expression? We choose to ignore the secondary value since its associ-

ated referring expression is far less important than the main expression.2 However, we do

associate a con�dence value with the type of relation between the referent and secondary

object, which is added to the overall con�dence value.

All con�dence calculations are incorporated into the referring action schemas (to be

de�ned in section 4.4) as mental actions. This means that evaluating the con�dence of a

referring expression plan falls out of the regular plan evaluation process. Plan evaluation

also checks if the con�dence value exceeds the threshold. Once a plan has been evaluated,

an agent adds beliefs about it to her mental state. If the plan is valid, the agent adds a

belief that the referring plan is adequate and successful; otherwise, she considers the plan

inadequate and adds a belief that it is in error.3

4.2.2 Salience

We have discussed how con�dence values are manipulated and evaluated, but where do they

come from? We propose that the con�dence value of a property is equivalent to its salience

within the context of the referring expression.

Salience plays a key role in selecting landmarks for describing a location (Pattabhiraman

and Cercone, 1990). One can think of many ways to compute the salient properties of a given

situation. Davis (1989) uses a hierarchy of salient landmarks to determine which landmarks

in a given location should be used to describe the location.4 The most salient ones, such

as tra�c lights and buildings, are chosen �rst over other landmarks such as street names.

Obviously a hierarchy should depend on the context of the situation. Lynch (1960) identi�es

the point-of-view, familiarity, and current goals of an agent as important contextual factors,

and Devlin (1976) says salience may be in
uenced by identi�ability, visibility, prominence,

and functional importance.

For example, di�erent landmarks may be salient to di�erent individuals (consider street

signs in Greece from the point of view of an English speaker). Furthermore, what is salient

in one city might not be salient in another (consider the long, straight streets of Toronto,

compared to those of London, which tend to meander and be re-named). Despite these

considerations, Davis's hierarchy is a hard-coded list of what is salient.

2Alternatively, the value could be scaled down so that it contributes to the overall con�dence a little bit,
but this would involve formalizing an algebra of con�dence|what about sub-sub-expressions?

3We should also note that sub-expressions of a main referring expression are evaluated in the same way
except that they are always found adequate (i.e., an agent is always con�dent in a sub-expression). This
view has the important rami�cation that a sub-expression will never be elaborated on by the collaborative
model (described in chapter 6). Only the main level plan can be elaborated on. We made this decision to
keep the dialogue simple by avoiding complex deep elaborations.

4The hierarchy is supposed to represent what the speaker believes the hearer believes is salient.

51

Reiter and Dale (1992) use a similar hierarchy of features to determine what features

should be used �rst when describing a object. They say it is important to use the most

visually prominent features of an object, such as size, colour, and shape. Again, their

hierarchy is static because it does not vary depending on the context or on the type of

object being described.

Ideally, as mentioned above, salience should depend on the context of the situation. For

example, a tall building, which would normally be salient, would not be if it were surrounded

by other tall buildings. The salience of a referent or of its properties should be calculated by

taking the other objects in the context of the referent into consideration. This calculation

would be quite complex and is beyond the scope of this thesis. But we would like to �nd

a middle ground between the simple context-independent approaches of Davis, and Reiter

and Dale, and a full blown contextual analysis.

The middle ground involves taking the type of object into account when choosing prop-

erties and landmarks that relate to it. This method is still simple enough to be encoded

as a hierarchy but is more dependent on the context. For example, height can be a very

salient feature when describing a building, but not when describing a street or a street sign.

Similarly, having a sign is an important feature for an intersection, but not so important

for a building (for which height, colour, and architectural style probably take precedence).

We would also like our model of salience to be useful for both the direction giver and

recipient. There is a di�erence in their tasks which is re
ected in how they make use

of salient information. The direction giver knows the situation, or the context, and can

compute what he believes to be salient from that situation directly. On the other hand, the

recipient has no knowledge of the situation and can only make access to what she believes

is generally salient. In our model, we formalize only the latter type of salience within two

hierarchies. The recipient can make direct access to the hierarchies to determine con�dence

values and salient feature types. The giver can also access these hierarchies and couple them

with his beliefs about the objects in the world to construct salient references to objects.

Salience is based primarily on visual salience, but also on what properties people �nd

important in referring expressions (in the direction-giving domain). We require two salience

hierarchies that encode this knowledge. The �rst is for object types (or categories), and the

second is for object properties.

The category salience hierarchy is de�ned to be a partial ordering on the set of object

categories. This is a simple hierarchy very similar to what Davis proposed. For us, it links

the category of an object to how con�dent one can be when using this object as a referent.

The following is a sample of a category salience hierarchy that an agent might have:

salient-category(4,town).

salient-category(3,street).

salient-category(1,intersection).

52

salient-category(1,sign).

salient-category(1,building).

In this hierarchy, towns are the most salient, followed by streets, intersections, signs, and

buildings. The numeric values are equivalent to the con�dence values for using the various

types of objects.

The second salience hierarchy, the property salience hierarchy, involves the properties of

objects. Since the salience of an object's property depends on the object, the hierarchy is

actually a set of partial orderings of features indexed by object type. The hierarchy encodes

how con�dent one can be by using each feature, represented as a lambda expression. For

simple features, such as height, the object type is speci�ed, while, for properties that relate

one object to another, both objects' types are speci�ed. Here is a sample property salience

hierarchy:

salient-property(1, town, �X �called(X,Name)).
salient-property(3, street,sign �X ��Y �has(X,Y)).

salient-property(2, street, �X �called(X,Name)).
salient-property(3, intersection,sign, �X ��Y �has(X,Y)).
salient-property(2, intersection, �X �called(X,Name)).

salient-property(4, building, �X �height(X,Height)).
salient-property(3, building, �X �colour(X,Colour)).

The most salient property of a town is its name. For streets and intersections, the most

salient property is having a sign followed by having a name. For buildings, height is very

salient followed by its colour. The numeric values are equated to the con�dence values of

each of the features.

In our model, the salience hierarchies are represented as beliefs. In e�ect, agents have

beliefs about the salience of object categories and features. But when constructing a re-

ferring expression, a speaker should use features that depend on more than his own beliefs

about salience. He should use features that he believes the hearer believes are salient. On

the other hand, the hearer cannot know what will be salient in the context of the referent

because she has no knowledge of its location. Perhaps, while describing the referent, the

speaker also makes it clear that the features he is using are salient. The interplay of salience

and reference has not been researched su�ciently in the literature and is a di�cult issue to

resolve; so we assume that the participants have a mutual knowledge of what is salient, in

general, thus approximating the recursive nature of beliefs about salience. We leave a more

complex model to future research.

The salience hierarchies are used for two purposes. The �rst is for generating salient

referring expressions by choosing the most salient properties of an object �rst. In this ca-

pacity, they are used for constructing initial referring expressions, elaborating on inadequate

referring expressions, and for suggesting possible elaborations to referring expressions (the

latter two uses are discussed in the next chapter, and the former in the following sections).

53

The second role of the hierarchies is for evaluating one's con�dence in the adequacy of a

plan. Since the hierarchies contain con�dence values, the evaluation process accesses these

to calculate the overall con�dence value of a plan.

Finally, note that choosing a salience hierarchy is a di�cult task which undoubtedly

requires much psycholinguistic and sociological research. We do not consider it further in

this thesis.

4.3 Construction and Inference

In the previous section we looked at how con�dence in the adequacy of a referring expression

is assessed, and how salience is used for this purpose. In this section we describe how

con�dence and salience are applied to the construction an inference of referring expression

plans.

4.3.1 Plan Construction

To refer to an object for which the speaker and hearer have no mutual knowledge, the

speaker adopts the goal of informing the hearer about how to identify the object. This goal

can be achieved by a referring expression plan that uniquely speci�es the referent according

to the speaker's beliefs and for which the speaker is con�dent. To this end, the speaker has

two sources of descriptive power: his beliefs about the properties of the referent, and his

beliefs about which properties of the referent are the most salient.

The propositional content of a referring plan is constructed by successively choosing

properties that reduce a candidate set, the set of objects that satisfy the already constructed

propositional content. When the candidate set contains one element, the referent, the plan

uniquely speci�es the referent according to the speaker's beliefs. But the goal of the referring

action is not achieved unless the speaker is con�dent in the adequacy of the expression he

is building. So, at the same time as the propositional content is being built, the overall

con�dence value of the plan is computed. The con�dence values for each property are

cumulatively summed up. Plan construction can �nally terminate when the con�dence

value exceeds the con�dence threshold (and the candidate set contains one element).

This, however, is not the whole story. The speaker also wants to make the most salient

referring expression possible, so he does not choose properties indiscriminately. Instead, he

chooses the most salient properties for the category of object he is referring to by accessing

his beliefs about his property salience hierarchy. In so doing, he creates a referring expression

that is inherently short (not necessarily minimal) with respect to the number of features

because, intuitively, salience is linked to descriptive power. This result corresponds to the

psychological evidence cited by Reiter and Dale (1992) that suggests humans make short

descriptions not by minimizing the length of the expression, but simply by using salient

54

information.

This construction process is then very similar to Heeman's planning process. The plan

constructor has dominion over structural decisions, such as the order in which competing

plan schemas are added to the plan being constructed. In fact, to make minimal plans,

Heeman's plan constructor uses a best-�rst heuristic, which chooses plan schemas with the

least number of primitive actions �rst. We still use this heuristic, but the plan schemas

themselves also in
uence the size of a plan, because they determine which modi�er should

be added next.5 In Heeman's model, modi�ers are chosen non-deterministically, a choice

in
uenced only by the planning heuristic.

This major di�erence from Heeman's model is encoded in the modi�er plan schemas by

using mental actions that select the most salient property of the referent that has not yet

been used. Paired with this mental action is a second which accesses the salience hierarchy

to determine the con�dence value for using that modi�er. These schemas are described in

detail in section 4.4.2 below.

We have also modi�ed Heeman's model to account for assumption (4.1). In order to use

a property as a descriptor, we no longer require that the speaker believe that it is mutually

believed, but only that he believes it to be true.6 This change is made in the constraints of

the primitive surface speech actions described in section 4.4.3 below.

The speaker's goal (for the hearer to be able to identify the referent) is encoded as

an e�ect of the referring plan, speci�cally of the top-level refer action (see section 4.4.1

below). Additionally, the speaker has the intention to establish the mutual belief of all

the properties that he uses. Therefore, the primitive actions have the e�ect of the making

the properties mutually believed. Thus, after a plan is mutually accepted, the speaker and

hearer have established mutual knowledge of the properties of the referent contained in the

propositional content of the referring plan.

4.3.2 Plan Inference

The �rst step in plan inference is to derive all the plans that account for the observed

primitive actions (surface speech actions). The second is to evaluate these plans. To evaluate

a plan in Heeman's system, the evaluator attempts to instantiate the variables such that all

the constraints hold and all the mental actions are satis�able. The referring plan cannot be

evaluated if it does not uniquely identify the referent according to the mutual knowledge

of the speaker and hearer. In this case the hearer �nds the plan either overconstrained or

underconstrained.

5Although the plan schemas determine the most salient modi�er that should be added next, there is still
a non-deterministic choice between the two types of modi�er: simple modi�ers, and modi�ers that relate
the referent to an object. (see section 4.4)

6We remove Heeman's inference rule that states the hearer can infer mutual belief of a property if she
believes it. This rule was intended to capture co-presence, which we have eliminated.

55

We will use this same evaluation process, but, as it stands, the hearer would always �nd

one of our referring plans overconstrained. This error happens because the hearer has no

knowledge whatsoever of the intended referent.

From assumption (4.1), the hearer knows nothing about any objects that are referred to,

and, clearly, the speaker intends to refer to a new entity.7 Therefore, the �rst modi�cation

we make to Heeman's plan evaluator is to initially scan the referring plan for each entity

referred to. For the hearer, each entity is new, so she updates her belief about the objects

in the current context, or focus of attention (Grosz and Sidner, 1986).8 We create a new

object name for each entity referred to, and add these to the hearer's current context set.

The hearer doesn't have any beliefs about the properties of the new objects yet, just the

belief that they exist. In other words, the hearer believes that some new objects exist, to

which she can attach the corresponding properties in the referring plan.

The evaluation process is still inadequate, because the hearer has no beliefs about the

properties of the referent that are used in the plan. The constraints in the primitive actions

corresponding with these properties cannot hold. Again, from assumption (4.1), we make

our second modi�cation. When the hearer evaluates a constraint corresponding to a prop-

erty of the referent, she infers that the speaker believes the property is true, and so she can

add, to her own beliefs, the belief that speaker believes this property. However, she makes

no assessment of her belief in the property.

With these two modi�cations in place, the hearer can now evaluate a referring plan

without having any knowledge of the intended referent. But how is her knowledge of

the referent and thus mutual knowledge of it established? Recall that the e�ects of the

primitive actions of a referring plan are to establish the mutual belief of the referent's

properties. If we assume that the hearer believes the speaker is rational, that is, sincere and

competent (Cohen and Levesque, 1985; Appelt and Kronfeld, 1987), then the hearer can

infer her own belief about a property of the referent if she believes that the speaker believes

the property (and she believes this as a result of evaluating the plan). Then, mutual belief

of the property is established once she accepts the referring plan and communicates her

acceptance to the speaker. (See chapter 6, where we described the acceptance process.)

As in Heeman's system, plan evaluation fails if a constraint does not hold, or if a mental

action is not satis�able.

The main failure that we consider is when the con�dence threshold is not exceeded,

implying that the hearer is not con�dent in the adequacy of the plan. Since we use the

same plan schemas for both construction and inference, con�dence value computation and

evaluation falls out of plan inference. A constraint makes sure that the overall con�dence

7The hearer recognizes this intention as a result of deriving the plan.
8Each agent maintains a belief about what objects are in focus in the current context. The current

context is simply a set of objects.

56

value exceeds the con�dence threshold, and if not, an error is signalled.

A second type of failure occurs when the plan does not uniquely specify the referent.

This failure can only be detected by the direction giver, since he has a set of objects that

he must distinguish the referent from. For the direction recipient, any reference is new and

so must be unique.

A third type of failure would happen at the constraints that correspond to the properties

of an object, but, because the hearer does not believe these properties yet, we allow them to

always hold because they will eventually be made true when the e�ects of the plan occur.

Therefore, if the con�dence threshold is exceeded, evaluation is usually successful be-

cause the possibilities that lead to other failures are not common. They occur only if the

plan is ill-formed, a condition we can detect, but have no recourse to repair.

4.4 Referring Action Schemas

As with the route description schemas, we draw on Heeman's referring schemas once again

to formulate our new referring action schemas. These schemas are very similar to Heeman's

because we want to keep the structure of the referring expression plan derivation the same.

The two main di�erences, as discussed in the previous sections, are the constraints and

e�ects of the primitive surface speech actions, and the incorporation of mental actions for

evaluating con�dence. The plan decomposition is the same as Heeman's:

refer
d

=) s-refer describe

describe
d

=) headnoun modifiers

headnoun
d

=) s-attrib

modifiers
d

=) f null j modifier modifiers g

modifier
d

=) f s-attrib j s-attrib-rel refer g

We �rst show the top-level refer action, followed by the intermediate actions, and the surface

speech actions.

The predicates and mental actions used in these schemas are de�ned in appendix A.

4.4.1 Refer Action

The top-level action, called refer, is shown in �gure 4.1. As with Heeman's refer action,

this action decomposes into two steps, one to communicate the intention to refer (s-refer),

and the second to describe the referent. The header has two parameters: the entity that

is referred to by the plan, and the overall con�dence value of the plan that is computed

within the plan.

The e�ect of this action is that the hearer believes that the speaker has the goal of the

hearer identifying the referent by using the description. The e�ect is formulated in this way

57

Header: refer(Entity,OvrConf)

Where: speaker(Speaker)

hearer(Hearer)

Decomposition: s-refer(Entity)

describe(Entity,OvrConf)

Effects: bel(Hearer,goal(Speaker,identify(Hearer,Speaker,Entity)))

Figure 4.1: refer schema

so that the hearer can recognize the speaker's intention, without having to believe that the

goal is achieved. The goal identify(A1,A2,E) is used to distinguish this referring action

from Heeman's, which has the goal knowref(A1,A2,E). The goal of our referring action is

not for the hearer to know the referent immediately according to mutual knowledge, but to

know how to identify the referent using the propositional content of the plan. A hearer of

our referring act will actually know the referent, a perlocutionary e�ect, once she is able to

�nd the referent in the environment. She believes that the identify goal is achieved if she

believes that she is con�dent in the plan's adequacy as an identi�cation plan.

4.4.2 Intermediate Actions

The describe action schema (�gure 4.2) is used to construct a description of the referent

by �rst choosing the head noun, and then by choosing the modi�ers. In the decomposition,

Header: describe(Entity,OvrConf)

Decomposition: context-current(Context)

headnoun(Context,Entity,Cand,UsedPred,HeadConf)

modifiers(Entity,Cand,UsedPred,HeadConf,OvrConf)

Figure 4.2: describe schema

the current context, Context, is determined by a mental action. Context is a set of objects

which the speaker has in his focus of attention. It is all those objects from which the

referent must be disambiguated and all those objects which may be helpful for describing

the referent.9

The headnoun schema returns the initial candidate set (all objects of the same category

as the referent), the actual predicate used, UsedPred, and the con�dence value of using

the particular object type. These three values are supplied to the modifiers plan schema,

which constructs the actual description.

9In his model, Heeman took referring out of context by modelling the world as a set of objects that an
agent believed to exist. Since our referring action is made in many di�erent situations over the course of a
direction-giving dialogue, we have overlayed the world with a simple model of attention (Grosz and Sidner,
1986) that speci�es which objects from the world are currently being attended to.

58

To recapitulate the planning process, we describe the use of these three values. The

candidate set enables the plan constructor to disambiguate the referent from the other

objects in the current situation. It is successively pruned down as new modi�ers are added

to the plan. The set of used predicates is a set of instantiated predicates that have already

been used in the plan; this enables the constructor to choose salient properties that have not

already been used. Finally, the con�dence value is used to initialize the overall con�dence

sum that is cumulatively computed, and checked against the con�dence threshold.

Figure 4.3 shows the headnoun schema, whose �rst step is to communicate the head noun

of the description (via the s-attrib surface speech action). Second, the initial candidate

set is computed by �nding the subset of objects in the current context, Context, that are

members of Category. Third, the object's internal name, Object, is determined, and is used

Header: headnoun(Context,Entity,Cand,Pred,Conf)

Where: speaker(Speaker)

hearer(Hearer)

Decomposition: s-attrib(Entity,�X �category(X,Category))
subset(Context,

�X �ab(Speaker,Hearer,category(X,Category)),Cand)
ref(Entity,Object)

Pred = [category(Object,Category)]

confidence-headnoun(Conf,Entity,Category)

Figure 4.3: headnoun schema

in the fourth step to initialize the set of used predicates. And �nally, a mental action returns

the con�dence value of the head noun by accessing the agent's category salience hierarchy.

The value represents how salient a reference to an object of this particular category is.

The modifiers schema is a recursive plan that enables the speaker to construct a salient

description that uniquely determines the referent with respect to the speaker's beliefs, and

for which the con�dence value exceeds the threshold. It is formulated with two schemas.

The �rst, shown in �gure 4.4, embodies the recursion. It has a step to construct one

Header: modifiers(Entity,Cand,UsedPred,CurConf,OvrConf)

Decomposition: modifier(Entity,Cand,NewCand,UsedPred,NewUsedPred,ModConf)

confidence-add(NewConf,CurConf,ModConf)

modifiers(Entity,NewCand,NewUsedPred,NewConf,OvrConf)

Figure 4.4: modifiers schema

modi�er, a mental action to add the con�dence value of the modi�er to the total, and a

step to recursively call itself. The recursive use of this action accomplishes several things.

First, the candidate set is reduced by each modifier step while the used-predicate set

is expanded. And second, the overall con�dence value is computed cumulatively by each

59

confidence-add action.

The second modifiers schema (�gure 4.5) terminates the recursion. The �rst constraint

Header: modifiers(Entity,Cand,UsedPred,Conf,Conf)

Where: ref(Entity,Object)

Constraints: Cand = [Object]

confidence-exceed(Entity,Conf)

Decomposition: null

Figure 4.5: modifiers schema

makes sure the candidate set only contains one object (that is the referent). The second con-

straint makes sure that the con�dence threshold is exceeded by the con�dence value, which

becomes the overall con�dence value of the plan (uni�ed in the header). The decomposition

is null to distinguish this action from the primitive surface speech actions.10

The modifier actions are used to construct modi�ers for the head noun that prune

down the candidate set by choosing the most salient property of the referent possible. Two

examples are shown in �gures 4.6 and 4.7. The �rst constructs a modi�er for a simple

Header: modifier(Entity,Cand,NewCand,UsedPred,NewUsedPred,Conf)

Where: speaker(Speaker)

hearer(Hearer)

Decomposition: salient-attrib(Entity,Pred,UsedPred,NewUsedPred)

s-attrib(Entity,Pred)

subset(Cand,�X �ab(Speaker,Hearer,Pred(X)),NewCand)

confidence-attrib(Conf,Entity,Pred)

Figure 4.6: modifier schema

attribute and the second describes the referent relative to another object. Both have a

mental action that computes the most salient predicate to use that has not already been

used by consulting the speaker's property salience hierarchy. As a side-e�ect the actions

update the used-predicate set.11

Both actions have a surface speech action as a step in their decomposition, and both

calculate how con�dent an agent can be by using the modi�er. The mental actions,

confidence-attrib and confidence-attrib-rel, access the agent's property salience hi-

erarchy. In the second schema, we ignore the con�dence value, OtherConf, of the reference

to the other object because we have no theory to account for how this value could be used

10Notice that, while the candidate set, the used predicate set, and the cumulative con�dence sum are
modi�ed and passed down the plan derivation, the overall con�dence value is passed up the plan derivation,
so that it ends up in the top-level refer action. In comparison, the other values end up in the last modifiers
action.

11When evaluating a plan, these mental actions simply update the used-predicate set. They have no need
to �nd a salient property because that property is supplied by the Pred parameter of the surface speech act.

60

Header: modifier(Entity,Cand,NewCand,UsedPred,NewUsedPred,Conf)

Where: speaker(Speaker)

hearer(Hearer)

Decomposition: salient-attrib-rel(Entity,OtherEntity,

Pred,UsedPred,NewUsedPred)

s-attrib-rel(Entity,OtherEntity,Pred)

ref(OtherEntity,Other)

subset(Cand,�X �ab(Speaker,Hearer,Pred(X)(Other)),NewCand)

refer(OtherEntity,OtherConf)

confidence-attrib-rel(Conf,Entity,OtherEntity,Pred)

Figure 4.7: modifier schema

(see section 4.2.1). However, the addition of another mental action to the schema would be

simple once such a theory is developed.

4.4.3 Surface Speech Actions

For referring expressions we de�ne three types of surface speech action. The �rst, shown in

�gure 4.8, is used by the speaker to inform the hearer that he is about to refer to an object.

Header: s-refer(Entity)

Figure 4.8: s-refer schema

It is a distinct action because it is sometimes linguistically marked by a de�nite article, or

by a phrase such as See the dog?

The second type of surface speech action, s-attrib, expresses an attribute of an object.

Two examples are shown (�gures 4.9 and 4.10) corresponding to uttering the category of

an object, and the `name' of an object. These actions are fundamental to constructing

Header: s-attrib(Entity,�X �category(X,Category))

Where: speaker(Speaker)

hearer(Hearer)

ref(Entity,Object)

Constraints: category(Object,Category)

Effects: bel(Hearer,goal(Speaker,mb(Speaker,Hearer,

category(Object,Category))))

Figure 4.9: s-attrib schema (for category)

referring expression plans under assumption (4.1). To use these actions the speaker is

constrained to believe that the attribute is true. The speaker's intention that the speaker

and hearer establish a mutual belief about the attribute is encoded as an e�ect, and is thus

a side-e�ect of the referring act. Similar to the refer action schema, the e�ect is formulated

61

Header: s-attrib(Entity,�X �called(X,Name))

Where: speaker(Speaker)

hearer(Hearer)

ref(Entity,Object)

Constraints: called(Object,Name)

Effects: bel(Hearer,goal(Speaker,mb(Speaker,Hearer,

called(Object,Name))))

Figure 4.10: s-attrib schema (for called)

so that the hearer can recognize the intention to establish mutual belief even if it cannot

established.

The third type of surface speech action, s-attrib-rel, is used to describe a relation

between the referent and another object. An example for the has property (that describes

an object that is `part' of the referent) is shown in �gure 4.11. The constraint and e�ect

Header: s-attrib-rel(Entity,TEntity,�X��Y �has(X,Y))
Where: speaker(Speaker)

hearer(Hearer)

ref(Entity,Object)

ref(TEntity,Thing)

Constraints: has(Object,Thing)

Effects: bel(Hearer,goal(Speaker,mb(Speaker,Hearer,

has(Object,Thing))))

Figure 4.11: s-attrib-rel schema (for has)

for this action are similar to those for the s-attrib schemas.

In Heeman's system, the referring act has only one e�ect corresponding to the top-level

refer action. He made this decision to simplify his implementation. Obviously, in our

theory the referring act has one main e�ect and several side-e�ects, one for each attribute.

Our implementation takes the multiple e�ects into account, and allows each one to be

reasoned about individually. We describe this process in chapter 6.

4.5 An Example

This section presents an example that illustrates how a speaker constructs a referring ex-

pression plan from his beliefs, and how he communicates the plan via surface speech acts.

Then, we illustrate how a hearer infers the plan from the surface speech acts that she

observes, and how her mental state is changed.

62

4.5.1 Generating a Referring Expression

Assume that the system (acting as speaker) believes the following propositions:

category(inter1,intersection).

category(inter2,intersection).

called(inter2,'Lowell Street').

has(inter2,sign1).

category(sign1,sign).

Also assume that the system believes the salience hierarchies shown in section 4.2.2, and

that the system has a con�dence threshold of 2. The system would like the user, the hearer,

to be able to identify inter2, within the context of inter1, inter2, and sign1, and so

constructs a referring expression that uniquely identi�es inter2. The constructor �rst

chooses the head noun, intersection, from the object's category property and creates an

initial candidate set that includes both inter1 and inter2. The constructor now attempts

to modify the head noun (because the candidate set does not contain a single object), and

comes up with two possibilities. It could use either the called property or the has property.

By using the former, the plan contains the fewest primitive actions, exceeds the con�dence

threshold, and uniquely speci�es the referent. The constructed plan derivation is shown in

�gure 4.12, and results in the following surface speech acts:

s-attrib(entity(1,inter2),�X�called(X,'Lowell Street'))

s-attrib(entity(1,inter2),�X�category(X,intersection))
s-refer(entity(1,inter2))

which could be realized as

The Lowell Street intersection.

4.5.2 Understanding a Referring Expression

Now we reverse our point of view and consider the system, acting as hearer, observing the

above surface speech acts. The hearer has no beliefs about the referent (from assump-

tion (4.1)), but she does have beliefs about the salience hierarchies. We will assume the

hearer has the same beliefs about salience as the speaker does, but has a di�erent con�dence

threshold, a value of 5. To infer the speaker's plan, the system �rst recognizes the referring

plan that accounts for the observed surface speech acts. This plan is shown in �gure 4.13

with the Where predicates instantiated, and all co-referring variables uni�ed.

The second step is to evaluate the plan. Since the system has no knowledge of the

referent, it creates a new object name (object1) and instantiates the Object variable with

it. This instantiation has the e�ect of making all the properties of Object used in the

plan be properties of the new object object1. Now the system evaluates the constraints

63

p20: refer(entity(1,inter2),3)

s-refer(entity(1,inter2))
describe(entity(1,inter2),3)

context-current([sign1,inter1,inter2])
headnoun([sign1,inter1,inter2],entity(1,inter2),[inter1,inter2],

[category(inter2,intersection)],1)

s-attrib(entity(1,inter2),�X�category(X,intersection))
Constraint: category(inter2,intersection)

Effect: bel(user,goal(system,mb(system,user,category(inter2,intersection))))

subset([sign1,inter1,inter2],�X�ab(system,user,category(X,intersection)),
[inter1,inter2])

ref(entity(1,inter2),inter2)
[category(inter2,intersection)]=[category(inter2,intersection)]
con�dence-headnoun(1,entity(1,inter2),intersection)

modi�ers(entity(1,inter2),[inter1,inter2],[category(inter2,intersection)],1,3)

modi�er(entity(1,inter2),[inter1,inter2],[inter2],[category(inter2,intersection)],
[called(inter2,'Lowell Street'),category(inter2,intersection)],2)

salient-attrib(entity(1,inter2),�X�called(X,'Lowell Street'),
[category(inter2,intersection)],[called(inter2,'Lowell Street'),
category(inter2,intersection)])

s-attrib(entity(1,inter2),�X�called(X,'Lowell Street'))
Constraint: called(inter2,'Lowell Street')

Effect: bel(user,goal(system,mb(system,user,called(inter2,'Lowell Street'))))

subset([inter1,inter2],�X�ab(system,user,called(X,'Lowell Street')),[inter2])
con�dence-attrib(2,entity(1,inter2),�X�called(X,'Lowell Street'))

con�dence-add(3,1,2)
p53: modi�ers(entity(1,inter2),[inter2],[called(inter2,'Lowell Street'),

category(inter2,intersection)],3,3)
Constraint: p55: [inter2] = [inter2]

con�dence-exceed(entity(1,inter2),3)

null

Effect: bel(user,goal(system,identify(user,system,entity(1,inter2))))

Figure 4.12: Plan derivation for The Lowell Street intersection.

64

p20: refer(entity(1,Object),OvrConf)

s-refer(entity(1,Object))
describe(entity(1,Object),OvrConf)

context-current(Context)
headnoun(Context,entity(1,Object),Cand,UsedPred,Conf)

s-attrib(entity(1,Object),�X�category(X,intersection))
Constraint: category(Object,intersection)

Effect: bel(system,goal(user,mb(user,system,category(Object,intersection

subset(Context,�X�ab(user,system,category(X,intersection)),Cand)
ref(entity(1,Object),Object)
UsedPred=[category(Object,intersection)]
con�dence-headnoun(Conf,entity(1,Object),intersection)

modi�ers(entity(1,Object),Cand,UsedPred,Conf,OvrConf)

modi�er(entity(1,Object),Cand,NewCand,UsedPred,NewUsedPred,ModConf)

salient-attrib(entity(1,Object),�X�called(X,'Lowell Street'),
UsedPred,NewUsedPred)

s-attrib(entity(1,Object),�X�called(X,'Lowell Street'))
Constraint: called(Object,'Lowell Street')

Effect: bel(system,goal(user,mb(user,system,called(Object,'Lowell Street'))))

subset(Cand,�X�ab(user,system,called(X,'Lowell Street')),NewCand)
con�dence-attrib(ModConf,entity(1,Object),�X�called(X,'Lowell Street'))

con�dence-add(OvrConf,Conf,ModConf)
p53: modi�ers(entity(1,Object),NewCand,NewUsedPred,OvrConf,OvrConf)
Constraint: NewCand = [Object]

p56: con�dence-exceed(entity(1,Object),OvrConf)

null

Effect: bel(system,goal(user,identify(system,user,entity(1,Object))))

Figure 4.13: Recognized referring expression plan

and mental actions. This results in Cand and NewCand being instantiated to [object1]

by the subset actions. UsedPred is instantiated to [category(object1,intersection)],

and NewUsedPred to [called(object1,'Lowell Street'), category(object1,inter-

section)] indicating that both the called and category properties have been used in the

description. Furthermore, the constraints from the two s-attrib actions cause the system

to add the two beliefs:

bel(user,category(object1,intersection)).

bel(user,called(object1,'Lowell Street')).

to its mental state. The mental actions that compute con�dence are also evaluated. From

the salience hierarchies shown in section 4.2.2, Conf gets instantiated to 1, ModConf to

2, and the overall con�dence, OvrConf, to 3. Notice that this value does not exceed the

threshold value of 5, and therefore, evaluation fails at the confidence-exceed constraint

of the null terminated modifiers schema.

65

p20: refer(entity(1,object1),3)

s-refer(entity(1,object1))
describe(entity(1,object1),3)

context-current([object1])
headnoun([object1],entity(1,object1),[object1],[category(object1,intersection)],1)

s-attrib(entity(1,object1),�X�category(X,intersection))
Constraint: category(object1,intersection)

Effect: bel(system,goal(user,mb(user,system,category(object1,intersection))))

subset([object1],�X�ab(system,user,category(X,intersection)),[object1])
ref(entity(1,object1),object1)
[category(object1,intersection)]=[category(object1,intersection)]
con�dence-headnoun(1,entity(1,object1),intersection)

modi�ers(entity(1,object1),[object1],[category(object1,intersection)],1,3)

modi�er(entity(1,object1),[object1],[object1],[category(object1,intersection)],
[called(object1,'Lowell Street'),category(object1,intersection)],2)

salient-attrib(entity(1,object1),�X�called(X,'Lowell Street'),
[category(object1,intersection)],[called(object1,'Lowell Street'),
category(object1,intersection)])

s-attrib(entity(1,object1),�X�called(X,'Lowell Street'))
Constraint: called(object1,'Lowell Street')

Effect: bel(system,goal(user,mb(user,system,called(object1,'Lowell Street'))))

subset([object1],�X�ab(system,user,called(X,'Lowell Street')),[object1])
con�dence-attrib(2,entity(1,object1),�X�called(X,'Lowell Street'))

con�dence-add(3,1,2)
p53: modi�ers(entity(1,object1),[object1],[called(object1,'Lowell Street'),

category(object1,intersection)],3,3)
Constraint: [object1] = [object1]

p56: con�dence-exceed(entity(1,object1),3)

null

Effect: bel(system,goal(user,identify(system,user,entity(1,object1))))

Figure 4.14: Inferred plan derivation for The Lowell Street intersection.

The evaluated plan is shown in �gure 4.14. The system goes on to reason about the

e�ects of the plan. Since the system believes the speaker is rational, it can infer its own

beliefs about the properties of object1. Speci�cally, the system now believes:

bel(user,category(object1,intersection)).

bel(user,called(object1,'Lowell Street')).

The �nal e�ect of the plan is for the system to know how to identify the referent. But

this e�ect cannot occur because of the error in con�dence evaluation. The hearer is not

con�dent that she will be able to identify the referent. In the next chapter we discuss the

options the hearer has to get this error corrected.

66

4.6 Summary

In this chapter we presented a model of how a referring expression can be generated and

understood, within the planning paradigm, for which the referent is not mutually known.

Although it was not explicitly stated, we view referring in this context as a speech act akin

to informing. The model accounts for how the propositional content of a referring plan is

generated and understood within the theory of speech acts.

The model accounts for the two issues we set out to resolve. First, how a suitable

referring expression can be built with the underlying intention of having the hearer know

how to identify the referent, eventually. And second, how the notion of con�dence in the

adequacy of such an expression can be incorporated into the expression's plan derivation.

One application of this model is in the direction-giving domain where the direction giver

and recipient have no mutual knowledge of the paths and places along a route. The direction

giver, during a direction-giving dialogue, attempts to make the most salient, and therefore

helpful, references to paths and places that he can. But because the recipient has never

heard of these paths and places, and because she cannot actually execute the directions while

hearing them, she must judge how adequate the directions are. The adequacy of referring

expression subplans (of a route description plan) is of primary importance to determining

the adequacy of route plans. So, if the hearer is not con�dent about the references made,

then she cannot be con�dent about the directions.12

What does the recipient do if she is not con�dent about the adequacy of the directions?

She attempts to negotiate or cooperate with the direction giver about the directions until

she is con�dent. In the next two chapters we explore our model of collaboration on direction-

giving.

12This is the only type of error we address in route description plans (see section 3.5.3).

67

Chapter 5

Elaboration

5.1 Introduction

This chapter presents our model of how two agents in a conversation cooperate to elaborate

a referring expression plan. The model is similar to Heeman's model for making clari�-

cations of referring expressions, but since we are dealing with a di�erent type of referring

action, we need a di�erent process for repairing inadequate referring expressions. Heeman's

clari�cations are intended to constrain a referent's description more (or less) than it is al-

ready, whereas an elaboration is intended to provide additional description to an already

uniquely de�ned referent.1

An agent has two courses of action when she believes a referring expression is inadequate.

She can either suggest a way for another agent to elaborate it, or she can actually elaborate

it herself. Section 5.2 explains the conversational moves of suggestion and elaboration, and

section 5.3 casts these moves into the planning paradigm.

The discourse action schemas that we de�ne below are only half of the solution. We

must also account for the intentional structure of the discourse, which means modelling how

the judgement of a plan (or action) in
uences the adoption of discourse goals that further

the conversation. This second half of the model is presented in the next chapter, while in

this chapter, we deal with elaboration in isolation.

5.2 Suggesting and Elaborating

In Clark and Wilkes-Gibbs's (1986) model of collaboration on referring expressions, par-

ticipants use conversational moves that express a judgement on the success of a referring

1By the term clari�cation, Heeman intended to encompass all forms of judgement and refashioning (in-
cluding elaboration) to referring expressions. We prefer to view clari�cation as a way to make an expression
more clear by further disambiguating the referent, and elaboration as a way of adding more information,
not necessarily more detail, to a description.

68

expression (acceptance, postponement, or rejection), and moves that refashion an expression

(expansion or replacement). Heeman and Hirst (1992), in their computational implemen-

tation, use the term clari�cation to refer to these moves because they serve to make the

expression more clear. In their model of referring, an expression is judged to be unsuccessful,

requiring clari�cation, if it is overconstrained or underconstrained.

Although Clark and Wilkes-Gibbs considered referring to mutually known objects, the

conversational moves that they observed are equally applicable to referring in our context.

In our model of referring, expressions are never overconstrained or underconstrained from

the point of view of the hearer. So, in this sense, they are always clear. However, as

we discussed in chapter 4, an agent can be concerned about the inadequacy of a referring

expression.

When the responder to a referring action is not con�dent in the adequacy of the plan,

she �rst postpones her judgement of its ultimate acceptability because, although she �nds

it acceptable so far, she requires more information. By using this action, the responder

communicates to the initiator that she is not con�dent in the adequacy of the current

expression. The next step in Clark and Wilkes-Gibbs's model is for one of the participants

to refashion the expression. Since the responder has no knowledge of the referent, other

than that contained within the referring expression itself, she cannot refashion the expression

herself. The initiator of the expression does have the ability to refashion the expression and

can do so by expanding it.2

Although the responder cannot expand an expression herself, she does have the ability

to help the initiator by suggesting a good way to expand it. We propose that suggestion

is a conversational move in which an agent suggests a new modi�er (of the referent) that

she deems would increase her con�dence in the expression's adequacy if the expression was

expanded to include that modi�er. For example, if the responder was not con�dent about

the adequacy of the schnauzer, she might suggest that the initiator use the size of the canine

(as well as its breed), by asking What size is it?. From this suggestion the initiator could

expand the expression to the miniature schnauzer. Note that, in our sense, a suggestion is

an illocutionary act of questioning. Along with actually suggesting a way to expand a plan,

the suggester is asking whether or not the referent has the suggested property.

We restrict the size of a suggestion to one modi�er for several reasons, even though the

addition of this one modi�er may not make the plan adequate in the eyes of the responder.

First, it seems appropriate to not inundate another agent with a large number of suggested

modi�ers, and to, instead, proceed one step at a time. And second, since we are modelling

collaborative dialogue, the hope behind making a suggestion is that the other agent will

2In Clark and Wilkes-Gibbs's model, an expansion always follows a postponement, and a replacement
always follows a rejection. In our model we are only concerned with adding new modi�ers to an expression,
so we consider only the postponement and expansion pair of moves.

69

expand the plan with extra (non-suggested) information.

Since an agent suggests only one modi�er of the referent, she would like to suggest the

most salient property that is not already used in the expression to potentially increase her

con�dence the most. Therefore, she accesses her property salience hierarchy to �nd what

she believes to be the most salient property for the type of object that has not been used

in the plan already.

Depending on whether the responder makes a suggestion or not, the initiator has two

options when expanding a plan. If a suggestion was not made, then he can expand the

plan according to his own beliefs about the referent's properties and their salience. On the

other hand, if a suggestion was made, he can attempt to expand the plan by using the

suggested modi�er. The �rst option is simple to perform because the plan constructor can

just continue from where it left o� before. The second option is more involved and we will

consider it further.

The �rst step to expand a plan according to a suggestion is to construct the expansion.

Using a suggestion is more involved for the plan constructor because it must build a plan

with a speci�c set of actions (those corresponding to the suggested modi�er) in its yield. Up

until now, we have described the plan constructor as constructing a plan and returning a set

of primitive actions, the plan's yield. We would like to force the constructor to build a plan

that has the suggested actions in its yield; therefore, we modi�ed the plan constructor in the

following way. The plan constructor is given a set of suggested actions as a parameter. A new

planning heuristic, the suggestion heuristic, which takes precedence over Heeman's best-�rst

heuristic,3 considers an action whose yield is contained in the suggested set of actions �rst.

Thus, the constructor attempts to add actions that correspond to the suggested modi�er

�rst. If it cannot add these actions, then it considers other actions in the order speci�ed

by the best-�rst heuristic. The result is a plan that has the suggested actions in its yield, if

possible.

The response to a suggestion depends, obviously, on whether or not the suggestion

was used to expand the plan. There are three possible cases, shown below, each of which

generates a di�erent response.

1. The suggestion was used, and was enough to make the initiator con�dent about the

adequacy of the referring plan. In this case, the response simply a�rms that the plan

was expanded with the suggestion.

2. The suggestion was used, but it was not enough to make the initiator con�dent, who,

therefore, expanded the plan with additional modi�ers. Here, the initiator responds

by a�rming that the suggestion was used, and by informing that additional modi�ers

were also used.

3Recall that the best-�rst heuristic considers the action with the smallest yield (of primitive actions) �rst.

70

3. It was not possible to use the suggestion (or the suggestion was inappropriate), so the

initiator expanded the plan using other modi�ers. The response, in this case, rejects

or denies the suggestion, and also informs the suggester of the expansion that was

actually made.

5.3 Discourse Action Schemas

Like Heeman, we model conversational moves as meta-actions (meta-plans) that act on

referring expression plans. The responder �rst expresses her judgement (based on her

con�dence) of the referring expression plan by using the accept-plan or postpone-plan

discourse actions. If she postpones her ultimate judgement, then she can either suggest, us-

ing suggest-expand-plan, a way to elaborate the plan, or wait for her partner to elaborate

the plan with an expand-plan action.4

We do not intend these discourse actions to account for all the ways a referring expression

may be elaborated, or all the ways a suggestion may be formed, but we believe this approach

is feasible and versatile enough to be extended. The schemas should be seen as a logical

extension of those de�ned by Heeman, with the ultimate goal of developing a model that

handles many types of referring acts that occur in collaborative dialogue.

For example, the expand-plan schemas de�ned below are used only by the initiator of

a referring expression because of assumption (4.1). Since the responder has no knowledge

of the initiator's intended referent, other than that obtained from the expression itself, she

cannot expand the expression. If assumption (4.1) were to be relaxed, thus allowing the

responder to have some knowledge about the referent, she could use these schemas too,

because they are general enough to be used by either participant in a conversation.

Likewise, the initiator could use the suggest-expand-plan action to see if the responder

would like the referring plan to be expanded in his suggested way.

5.3.1 accept-plan

The discourse action accept-plan, shown in �gure 5.1, is used by the speaker to establish

the mutual belief that a plan achieves its goal. The constraint makes sure the speaker

believes that the subplan5 SubPlan of the plan achieves its goal, and the decomposition is

the surface speech act s-accept. The e�ect of the action is that the hearer will believe

that the speaker has the goal that it be mutually believed that the subplan of the plan

4If she has knowledge of the referent, she could also expand the plan herself, and inform the initiator of
the expansion. The option is available to the recipient but it is never taken, because the recipient has no
knowledge of the referent.

5The subplan and its goal that the accept-plan move operates on is the subplan in the agent's focus of
attention, which is found by the Where-clause focus-current. All of the discourse actions in this chapter
operate on the current subplan in focus, the tracking of which is described in section 6.2 of the next chapter.

71

Header: accept-plan(Plan)

Where: speaker(Speaker)

hearer(Hearer)

focus-current(focus(Plan,SubPlan,SubGoal))

Constraints: achieve(Plan,SubPlan,SubGoal)

Decomposition: s-accept(Plan)

Effects: bel(Hearer,goal(Speaker,mb(Speaker,Hearer,

achieve(Plan,SubPlan,SubGoal))))

Figure 5.1: accept-plan schema

achieves its goal. The e�ect is formulated in this way, as are all the e�ects of the discourse

action schemas, because the speaker cannot directly a�ect the beliefs of the hearer, and

must, therefore, express his intentions in a recognizable manner.

5.3.2 postpone-plan

The discourse action postpone-plan, shown in �gure 5.2, is used by the speaker when

he is not con�dent in the adequacy of a referring expression. By using this action, the

Header: postpone-plan(Plan)

Where: speaker(Speaker)

hearer(Hearer)

focus-current(focus(Plan,SubPlan,SubGoal))

Constraints: error(Plan,SubPlan,ErrorNode)

constraint(Plan,ParentNode,ErrorNode)

yield(Plan,ParentNode,[])

content(Plan,ParentNode,Content)

Content = modifiers(Entity,Cand,UsedPred,Conf,OvrConf)

Decomposition: s-postpone(Plan)

Effects: bel(Hearer,goal(Speaker,mb(Speaker,Hearer,

error(Plan,SubPlan,ErrorNode))))

Figure 5.2: postpone-plan schema

speaker informs the hearer that the plan is inadequate and that elaboration is required.

The constraints �rst determine the node, ErrorNode, of the refer SubPlan within Plan,

where the `error' occurs. Second, they ensure that ErrorNode is a constraint of a node

ParentNode. Third, they make sure that ParentNode has no primitive actions (i.e., that it

has a null decomposition). Fourth and �fth, they �nd the content of ParentNode and make

sure that it is an instance of a modifiers schema. In other words, the constraints require

that the error node be the constraint of a modifiers action where expansion is possible.

The decomposition is the single surface speech action s-postpone. The e�ect of the

postpone-plan action is that the hearer will believe that the speaker has the goal of es-

72

tablishing the mutual belief that the referring plan has an error at ErrorNode. This action

has the additional side-e�ect, or perlocutionary e�ect, on the initiator of the referring ex-

pression of raising his con�dence threshold. So, the initiator will no longer believe that he

is con�dent in the adequacy of the current plan.

5.3.3 suggest-expand-plan

The discourse action suggest-expand-plan, shown in �gure 5.3, is used by the speaker

to suggest a way to expand the referring expression plan. The constraints are identi-

Header: suggest-expand-plan(Plan)

Where: speaker(Speaker)

hearer(Hearer)

focus-current(focus(Plan,SubPlan,SubGoal))

Constraints: error(Plan,SubPlan,ErrorNode)

constraint(Plan,ParentNode,ErrorNode)

yield(Plan,ParentNode,[])

content(Plan,ParentNode,Content)

Content = modifiers(Entity,Cand,UsedPred,Conf,OvrConf)

Decomposition: salience-suggest-actions(Plan,SubPlan,Entity,Actions)

s-suggest(Plan,Actions)

Effects: bel(Hearer,goal(Speaker,mb(Speaker,Hearer,

suggest(Plan,SubPlan,Actions))))

Figure 5.3: suggest-expand-plan schema

cal to those of postpone-plan. The �rst step of the decomposition, the mental action

salience-suggest-actions, accesses the speaker's property salience hierarchy and deter-

mines the property (that is not already used in SubPlan of Plan) that is the most salient for

the category of the referent. It returns a set of `skeleton' surface speech actions, Actions,

that are used to inform the hearer of the suggestion by using the surface speech action

s-suggest in the second step. The e�ect of this action is for the hearer to believe that

the speaker has the goal of establishing the mutual belief that these actions constitute a

suggestion.

5.3.4 expand-plan

The discourse action expand-plan is used by the speaker to replace a plan with a new

one by elaborating on a referring expression within it. Because the modi�ers in a referring

expression plan are constructed recursively by using modifiers schemas, new modi�ers

must be added at the �nal modifiers action that terminates the recursion.

We de�ne two expand-plan schemas. The �rst, shown in �gure 5.4, is used to expand

a referring expression plan by using the most salient property that has not already been

73

Header: expand-plan(Plan)

Where: speaker(Speaker)

hearer(Hearer)

focus-current(focus(Plan,SubPlan,SubGoal))

Constraints: error(Plan,SubPlan,ErrorNode)

constraint(Plan,ParentNode,ErrorNode)

yield(Plan,ParentNode,[])

content(Plan,ParentNode,Content)

Content = modifiers(Entity,Cand,UsedPred,Conf,OvrConf)

not(confidence-exceed(Entity,Conf))

not(suggest(Plan,SubPlan,SActs))

Decomposition: construct(modifiers(Entity,Cand,UsedPred,Conf,NewConf),

Expansion,[],Actions)

substitute(Plan,ParentNode,Expansion,NewPlan,Actions)

evaluate(NewPlan)

s-actions(Plan,Actions)

Effects: bel(Hearer,goal(Speaker,mb(Speaker,Hearer,

replace(Plan,NewPlan))))

Figure 5.4: expand-plan schema

used in the plan. This action is only used if a suggestion has not been made. The �rst

�ve constraints are the same as those of postpone-plan: they determine the `error' node

and make sure it is a constraint of a modifiers action with a null decomposition. The

�fth constraint also instantiates the �nal candidate set, used-predicate set, and con�dence

sum that will be used to construct the new modi�ers. The sixth constraint makes sure

that the con�dence threshold for the refer plan has not been exceeded, meaning that the

plan is deemed inadequate and requires expansion. The �nal constraint makes sure that no

suggestion to Subplan of Plan has been made.

The decomposition speci�es how a new plan can be built. First, the plan constructor

is called to construct an instance of a modifiers subplan starting where the constructor

ended before (by supplying to it the �nal candidate set, used-predicate set, and con�dence

sum). Obviously, the constructor will select the most salient properties possible until the

con�dence threshold is once again exceeded. Second, the constructed subplan, Expansion,

is substituted for the old modifiers subplan, creating the new plan NewPlan. Third, the

plan is evaluated to make sure it is still a valid plan. This step is necessary because the

plan constructor (called in the �rst step) is ignorant of how the expansion will interact with

the rest of the plan. Additionally, the evaluation re-uni�es the overall con�dence value in

the whole plan derivation. Finally, the surface speech action s-actions is used to inform

of hearer of the new surface speech actions that have been added to the plan.

The e�ect of the plan is that the hearer will believe that the speaker has the goal that

it be mutually believed that the old referring expression plan be replaced by the newly

74

elaborated plan.

The second expand-plan action, shown in �gure 5.5, is used by an agent to expand a

referring expression plan after another agent has made a suggestion. The suggested surface

speech actions are used to construct a new modifiers action to append to the referring

expression plan.

Header: expand-plan(Plan)

Where: speaker(Speaker)

hearer(Hearer)

focus-current(focus(Plan,SubPlan,SubGoal))

Constraints: error(Plan,SubPlan,ErrorNode)

constraint(Plan,ParentNode,ErrorNode)

yield(Plan,ParentNode,[])

content(Plan,ParentNode,Content)

Content = modifiers(Entity,Cand,UsedPred,Conf,OvrConf)

not(confidence-exceed(Entity,Conf))

suggest(Plan,SubPlan,SActs)

Decomposition: construct(modifiers(Entity,Cand,UsedPred,Conf,NewConf),

Expansion,SActs,Actions)

substitute(Plan,ParentNode,Expansion,NewPlan,Actions)

evaluate(NewPlan)

respond-to-suggestion(Plan,SActs,Actions)

Effects: bel(Hearer,goal(Speaker,mb(Speaker,Hearer,

replace(Plan,NewPlan))))

Figure 5.5: expand-plan schema

The �rst six constraints of this schema are identical to those in the �rst schema. The

seventh constraint makes sure that a suggestion to the subplan Subplan of the plan has been

made. The suggest(Plan,SubPlan,SActs) belief is realized as a perlocutionary e�ect of

inferring and accepting a suggest-expand-plan action. This action has the same e�ect as

the �rst expand-plan action.

The �rst step of the decomposition constructs a modifiers action by attempting to

use the suggested actions. The next two steps are similar to those of the �rst expansion

move. The �nal step is an action that responds to the suggestion via surface speech acts.

The actual response depends on the set of suggested actions and the actual yield of the

expansion.

In order to respond to suggestions, we de�ne three respond-to-suggestion action

schemas. Only one of these schemas is applicable at a time, depending on how the expansion

was constructed. In the �rst schema, shown in �gure 5.6, the constraint makes sure that the

set of suggested actions equals the set of expansion actions meaning that the suggestion,

and only the suggestion, was used in the expansion. In this case the decomposition is the

single surface speech action s-affirm that a�rms that the suggestion was taken.

75

Header: respond-to-suggestion(Plan,SActs,Acts)

Constraints: seteq(SActs,Acts)

Decomposition: s-affirm(Plan,SActs)

Figure 5.6: respond-to-suggestion schema

The second schema, �gure 5.7, is used when the plan is expanded with the suggested

actions, and other additional actions. The constraint makes sure that the suggested actions

are a proper subset of the expansion actions.

Header: respond-to-suggestion(Plan,SActs,Acts)

Constraints: psubset(SActs,Acts)

Decomposition: partition(Acts,SActs,OtherActs)

s-affirm(Plan,SActs)

s-actions(Plan,OtherActs)

Figure 5.7: respond-to-suggestion schema

The decomposition has a mental action which partitions the expansion actions into the

suggested actions and the other actions, OtherActs. Then, with two surface speech acts,

it a�rms that the suggestion was used, and that the other actions were also added to the

plan.

The third and �nal response to a suggestion occurs when the suggestion cannot be used.

The constraint of the schema, �gure 5.8, makes sure that the set of expansion actions does

not contain the suggested actions. The decomposition, containing two surface speech acts,

Header: respond-to-suggestion(Plan,SActs,Acts)

Constraints: not(subset(SActs,Acts))

Decomposition: s-deny(Plan,SActs)

s-actions(Plan,Acts)

Figure 5.8: respond-to-suggestion schema

denies that the suggested actions were used, and also informs how the plan was expanded.

5.4 Surface Speech Actions

We have taken Heeman's approach that there are surface speech actions for judgement

and refashioning plans. They take as parameters the valid plan that is being accepted or

elaborated, and a set of surface speech acts, if necessary. These actions are primitive, so

they have no decomposition. They also have no constraints and no e�ects because these

have been captured by the discourse actions de�ned above. Of the surface speech actions

de�ned below, we use Heeman's de�nition for s-accept, s-postpone, and s-actions, and

76

our own de�nition for s-suggest, s-affirm, and s-deny, since they are new.

The surface speech act s-accept, shown in �gure 5.9, is the only step in the decompo-

sition of the accept-plan action. Therefore, we could have formulated accept-plan as a

surface speech act. The only parameter, Plan, is the plan that is being accepted. This act

could be linguistically realized by an explicit acknowledgement such as okay or yes.

Header: s-accept(Plan)

Figure 5.9: s-accept schema

The s-postpone surface speech act, shown in �gure 5.10, is similar in form to s-accept.

It could be linguistically realized by a tentatively voiced okay? Or, it could be realized

together with another speech act such as s-actions or s-suggest de�ned below.

Header: s-postpone(Plan)

Figure 5.10: s-postpone schema

The s-actions surface speech act, shown in �gure 5.11, is used to signal that new

primitive actions are being added to the plan. Both expand-plan actions determine the

expansion, Actions, and might use s-actions as a step in their plan derivations. For

example, the following surface speech act:

s-actions(Plan,[s-attrib(Entity,�X�colour(X,grey))])

could be realized as the grey one.

Header: s-actions(Plan,Actions)

Figure 5.11: s-actions schema

The s-suggest act, shown in �gure 5.12, is used to express a suggested set of primitive

actions, Actions, that correspond to the yield of a single modifier plan derivation. The

parameter Actions can be a skeleton or template of possible actions (only some of the

parameters would be uninstantiated), or can be a fully instantiated set of surface speech

acts, like the actions provided to s-actions. For example, the following surface speech act:

s-suggest(Plan,[s-attrib(Entity,�X�size(X,Value))])

with the parameter Value uninstantiated could be linguistically realized as the question

What size is it? If Value were instead instantiated to, for instance, big, then the speaker

could ask Is it a big dog?

There are two possible answers to an s-suggest surface act, the s-affirm act, and the

s-deny act. The s-affirm act, shown in �gure 5.13, is used to express that the suggested

77

Header: s-suggest(Plan,Actions)

Figure 5.12: s-suggest schema

Header: s-affirm(Plan,Actions)

Figure 5.13: s-affirm schema

actions Actions have been added to the referring plan. For example, the following surface

speech act:

s-affirm(Plan,[s-attrib(Entity,�X �size(X,big))])

could be realized as Yes, it is big. If this action were followed the s-actions act shown

above, then the speaker could answer Yes, it is big, and grey.

The s-deny action, in �gure 5.14, expresses the negative answer to a suggestion. The

Header: s-deny(Plan,Actions)

Figure 5.14: s-deny schema

following surface speech act:

s-deny(Plan,[s-attrib(Entity,�X �size(X,big))])

could be realized as No, the dog isn't big. When accompanied with an s-actions action,

like the from above, the answer could be No, but it is grey.

5.5 An Example

5.5.1 Making a Suggestion

Consider the scenario, following from the example in section 4.5.2, where the system, acting

as hearer, has just �nished inferring the user's plan (see �gure 4.14). The system has

evaluated its con�dence in the adequacy of the referring expression

The Lowell Street intersection

to be the value 3, which does not exceed the its con�dence threshold of 5. The system has

the following belief about the error as a result of inferring the plan in :

error(p1,p20,p56)

meaning that subplan p20 (the inferred referring plan) of plan p1 (the overall route descrip-

tion plan) has an error at node p56.

78

The system switches roles and becomes the speaker. As speaker, the system �rst

adopts the goal of informing the user about the error and conveys this information with

postpone-plan.

Now, since the system, having no other knowledge about the object1, cannot elaborate

the plan itself, it tries to make a suggestion instead. The system adopts the following goal:

bel(user,goal(system,mb(system,user,suggest(p1,p20,Actions)))).

To achieve this goal, the constructor builds the plan derivation shown in �gure 5.15. The

�rst step has found the most salient property of an intersection (object1's category) that

has not already been used in the plan: the fact that an intersection can have a sign.

The corresponding surface speech acts are used to instantiate the surface speech action

suggest-expand-plan(p1)
Constraint: error(p1,p20,p56)

constraint(p1,p53,p56)
yield(p1,p53,[])
content(p1,p53,modi�ers(entity(1,object1),[object1],

[called(object1,'Lowell Street'),category(object1,intersection)],3,3))
modi�ers(entity(1,object1),[object1],[called(object1,'Lowell Street'),

category(object1,intersection)],3,3)=modi�ers(entity(1,object1),
[object1],[called(object1,'Lowell Street'),category(object1,intersection)],3,3)

salience-suggest-actions(p1,p20,entity(1,object1),Actions)
s-suggest(p1,Actions)

Effect: bel(system,goal(user,mb(system,user,suggest(p1,p20,Actions))))

where:
Actions = [s-attrib-rel(entity(1,object1),entity(N,Obj2),�X��Y�has(X,Y)),

s-refer(entity(N,Obj2)),
s-attrib(entity(N,Obj2),�X�category(X,sign))]

Figure 5.15: Plan derivation of a suggestion

s-suggest.

This plan results in the following surface speech act:

s-suggest(p1, [s-attrib-rel(entity(1,object1),entity(N,Obj2),

�X ��Y �has(X,Y)),
s-refer(entity(N,Obj2)),

s-attrib(entity(N,Obj2),�X �category(X,sign))])

which could be linguistically realized, together with the s-postpone act, as

Is there a sign?

5.5.2 Elaborating a Referring Expression

Now consider the scenario where the system, who constructed the initial referring ex-

pression The Lowell Street intersection (see �gure 4.12), now acting as hearer, has just

79

heard the suggestion made above. After inferring the speaker's plans (postpone-plan and

suggest-expand-plan) that underlie the observed surface speech acts, the system believes

that:

error(p1,p20,p55)

suggest(p1,p20,[s-attrib-rel(entity(1,inter2),entity(N,Obj2),

�X ��Y �has(X,Y)),

s-refer(entity(N,Obj2)),

s-attrib(entity(N,Obj2),�X�category(X,sign))])

Node p55 of subplan p20 is an arbitrarily chosen constraint of the modifiers action that has

a null decomposition. The system cannot identify the speci�c constraint that the user found

in error from the surface speech act, but an arbitrary choice is all right because it indicates

that there is an error somewhere in the modifiers action. Because the user informed the

system of its `error', the system also retracts its belief that the plan achieves its goal. The

system also raises its con�dence threshold to the value 5, because its old con�dence threshold

was, obviously, not high enough. The new value re
ects the amount that con�dence could

be raised by adding one or two more modi�ers to the referring expression.

The system switches roles to become the speaker and adopts the goal:

bel(user,goal(system,mb(system,user,replace(p1,NewPlan))))

with the intention of replacing the old plan with a new elaborated one.

The system then derives the plan derivation shown in �gure 5.16. Plan construction

results in Expansion, a modifiers plan derivation (shown in �gure 5.17), that uses the

suggestion, because the suggestion was good enough to raise con�dence over the threshold.

The substitute action then takes this expansion and substitutes it for the old modifiers

action that had a null decomposition (node p53 in the plan of �gure 4.12). The resulting

expanded referring expression plan, NewPlan, is shown in �gure 5.18. Next, the con-

structor evaluates the new plan to make sure it is still valid, and �nally uses the action

respond-to-suggestion. This action decomposes into the single surface speech act:

s-affirm(p1, [s-attrib-rel(entity(1,inter2),entity(N,Obj2),

�X ��Y �has(X,Y)),
s-refer(entity(N,Obj2)),

s-attrib(entity(N,Obj2),�X �category(X,sign))])

because the set of suggested actions is equal to the yield of the expansion. This act could

be linguistically realized as

Yes, it has a sign.

This example shows the most simple result of a suggestion, a lone a�rmation without

extra expansion. We will illustrate the more complex results in a large example given in

chapter 7.

80

expand-plan(p1)
Constraint: error(p1,p20,p55)

constraint(p1,p53,p55)
yield(p1,p53,[])
content(p1,p53,modi�ers(entity(1,inter2),[inter2],

[called(inter2,'Lowell Street'),category(inter2,intersection)],3,3))
modi�ers(entity(1,inter2),[inter2],[called(inter2,'Lowell Street'),

category(inter2,intersection)],3,3)=modi�ers(entity(1,inter2),
[inter2],[called(inter2,'Lowell Street'),category(inter2,intersection)],3,3)

not(con�dence-exceed(entity(1,inter2),3))
suggest(p1,p20,SActs)

construct(modi�ers(entity(1,inter2),[inter2],3),Expansion,SActs,Actions)
substitute(p1,p50,Expansion,NewPlan,Actions)
evaluate(NewPlan)
respond-to-suggestion(p1,SActs,Actions)
Constraint: seteq(SActs,Actions)

s-a�rm(p1,SActs)

Effect: bel(system,goal(user,mb(system,user,replace(p1,NewPlan))))

where:
Actions = SActs = [s-attrib-rel(entity(1,inter2),entity(N,Obj2),�X��Y�has(X,Y)),

s-refer(entity(N,Obj2)),
s-attrib(entity(N,Obj2),�X�category(X,sign))]

Figure 5.16: Plan derivation of an expansion

5.6 Summary

In this chapter we have presented a model, in the planning paradigm, that accounts for

how two agents can cooperate to elaborate a referring expression plan. We have de�ned

two discourse actions (postpone-plan and expand-plan) similar to Heeman's actions, and

a third new action (suggest-expand-plan). An agent uses the same planning processes in

collaboratively negotiating a referent as he uses in describing a route, or in referring to an

object.

We do not intend these actions to model all the possible ways of making suggestions

and elaborations. We believe they provide a feasible extendible platform onto which more

actions could placed. In particular, we have modelled suggestion as a way of asking the

another agent to expand a plan in a certain way. Obviously, not all suggestions are about

expanding plans.

We have also proposed a new heuristic, the suggestion heuristic, for the plan constructor.

This heuristic permits the constructor to choose suggested actions before other actions. It

takes precedence over Heeman's best-�rst heuristic if any actions have been suggested.

In the previous chapter we accounted for how an initial referring expression was con-

structed and inferred, and in this chapter we accounted for how a single elaboration of an

expression could be accomplished. Since this may not be enough to satisfy the hearer's

81

modi�ers(entity(1,inter2),[inter2],[called(inter2,'Lowell Street'),
category(inter2,intersection)],3,6)

modi�er(entity(1,inter2),[inter2],[inter2],[called(inter2,'Lowell Street'),
category(inter2,intersection)],[has(inter2,sign1),called(inter2,'Lowell Street'),
category(inter2,intersection)],3)

salient-attrib-rel(entity(1,inter2),entity(4,sign1),�X��Y�has(X,Y),
[called(inter2,'Lowell Street'),category(inter2,intersection)],[has(inter2,sign1),
called(inter2,'Lowell Street'),category(inter2,intersection)])

s-attrib-rel(entity(1,inter2),entity(4,sign1),�X��Y�has(X,Y))
Constraint: has(inter2,sign1)

Effect: bel(user,goal(system,mb(system,user,has(inter2,sign1))))

ref(entity(4,sign1),sign1)
subset([inter2],�X�ab(system,user,has(X,sign1)),[inter2])
refer(entity(4,sign1),1)

s-refer(entity(4,sign1))
describe(entity(4,sign1),1)

context-current([sign1,inter1,inter2])
headnoun([sign1,inter1,inter2],entity(4,sign1),[sign1],[category(sign1,sign)],1)

s-attrib(entity(4,sign1),�X�category(X,sign))
Constraint: category(sign1,sign)

Effect: bel(user,goal(system,mb(system,user,category(sign1,sign))))

subset([sign1,inter1,inter2],�X�ab(system,user,category(X,sign)),[sign1])
ref(entity(4,sign1),sign1)
[category(sign1,sign)]=[category(sign1,sign)]
con�dence-headnoun(1,entity(4,sign1),sign)

modi�ers(entity(4,sign1),[sign1],[category(sign1,sign)],1,1)
Constraint: [sign1] = [sign1]

con�dence-exceed(entity(4,sign1),1)

null

con�dence-attrib-rel(3,entity(1,inter2),entity(4,sign1),�X��Y�has(X,Y))

con�dence-add(6,3,3)
modi�ers(entity(1,inter2),[inter2],[has(inter2,sign1),called(inter2,'Lowell Street'),

category(inter2,intersection)],6,6)
Constraint: [inter2] = [inter2]

con�dence-exceed(entity(1,inter2),6)

null

Figure 5.17: A modifiers expansion for the referring expression plan of �gure 4.12

82

refer(entity(1,inter2),6)

s-refer(entity(1,inter2))
describe(entity(1,inter2),6)

context-current([sign1,inter1,inter2])
headnoun([sign1,inter1,inter2],entity(1,inter2),[inter1,inter2],

[category(inter2,intersection)],1)

s-attrib(entity(1,inter2),�X�category(X,intersection))
Constraint: category(inter2,intersection)

Effect: bel(user,goal(system,mb(system,user,category(inter2,intersection))))

subset([sign1,inter1,inter2],�X�ab(system,user,category(X,intersection)),
[inter1,inter2])

ref(entity(1,inter2),inter2)
[category(inter2,intersection)]=[category(inter2,intersection)]
con�dence-headnoun(1,entity(1,inter2),intersection)

modi�ers(entity(1,inter2),[inter1,inter2],[category(inter2,intersection)],1,6)

modi�er(entity(1,inter2),[inter1,inter2],[inter2],[category(inter2,intersection)],
[called(inter2,'Lowell Street'),category(inter2,intersection)],2)

salient-attrib(entity(1,inter2),�X�called(X,'Lowell Street'),
[category(inter2,intersection)],[called(inter2,'Lowell Street'),
category(inter2,intersection)])

s-attrib(entity(1,inter2),�X�called(X,'Lowell Street'))
Constraint: called(inter2,'Lowell Street')

Effect: bel(user,goal(system,mb(system,user,called(inter2,'Lowell Street'))))

subset([inter1,inter2],�X�ab(system,user,called(X,'Lowell Street')),[inter2])
con�dence-attrib(2,entity(1,inter2),�X�called(X,'Lowell Street'))

con�dence-add(3,1,2)
modi�ers plan derivation (shown in �gure 5.17)

Effect: bel(user,goal(system,identify(user,system,entity(1,inter2))))

Figure 5.18: Referring expression plan after an expansion

83

con�dence, we need to account for how further elaborations can be performed. Further-

more, we must account for how reference �ts into the construction and inference of route

description plans. We discuss these issues in the next chapter, where we complete our model

of collaborative behaviour with an intentional structure that controls the adoption of goals

and the acceptance of plans.

84

Chapter 6

Modelling Collaboration

6.1 Introduction

A model of collaboration in discourse within the planning paradigm should account for

how an agent both constructs plans and infers plans. In order to collaboratively build up

a domain plan, agents must converse until they reach a mutual acceptance of the plan,

and this involves both generating language and understanding language. Many previous

systems that incorporate speech acts and intentionality with utterances only model one

side of a conversation: generating or understanding (Cohen and Perrault, 1979; Allen and

Perrault, 1980; Appelt, 1985b; Litman and Allen, 1987), while other models consider the

plans and goals at a level lower than the surface utterance plans (Carletta, 1990a; Carletta,

1990b; Grosz and Sidner, 1990; Lochbaum, Grosz and Sidner, 1990; Lambert and Carberry,

1991). A few models have considered both generation and understanding (McRoy, 1993;

Heeman and Hirst, 1992). Heeman and Hirst's system models both plan construction and

inference while accounting for how speech acts correspond to an utterance. However, their

system, because it is for generating and understanding referring expressions (with only

one underlying intention), cannot handle domain plans with several goals, side-e�ects, and

underlying intentions. Nevertheless, their model is extendable to a model for more general

collaborative discourse.

In the previous three chapters we discussed how route descriptions, referring expressions

for places and paths on the route, and judgements and elaborations of referring expressions

are generated and understood within our plan-based model. These processes are similar to

what Grosz and Sidner (Grosz and Sidner, 1986) call the linguistic structure of a discourse.

That is, they account for the actual utterances in a conversation, but not how they are

connected. What we have left out of the model so far is a theory of how the collaborative

intentions of the participants in
uence the discourse. In this chapter we will describe an

intentional structure that includes the adoption of goals and the mutual acceptance of their

related plans, both of which are sanctioned by a collaborative state that an agent is in.

85

In Heeman and Hirst's model, an agent, while collaborating on the development of a

referring expression, is in a collaborative state that includes two components: the intention to

achieve the goal to refer, and the current referring plan that the participants are considering

in order to achieve the goal. The collaborative state sanctions the adoption of goals to

express judgement of the current plan and goals to refashion it. It also sanctions the

acceptance of these meta-plans and of the referring plan, which allows the mental state of

the agent to be updated and/or revised.

We use this model as a basis for a more comprehensive model of collaborative discourse

that is not limited to having one main discourse intention. As a discourse progresses over

time, many intentions arise and these are translated into goals that are achieved by discourse

plans. Our model accounts for how a domain plan can have a main goal, and many subgoals

and side-e�ects, and how two agents can collaboratively reason about these goals using

meta-plans.

Since a domain plan can be potentially very large, an agent needs a way to focus on

speci�c subplans within the plan. We suggest that an agent maintains a stack of subplans

within his collaborative state, in addition to the two components described above. The

subplan on the top of the stack is currently in focus and is the one that he uses for both the

generation and understanding of judgements and refashionings. In section 6.2 we discuss

the collaborative state, and in particular, how the focus stack is maintained.

As in Heeman's system, the collaborative state sanctions the adoption of goals for meta-

plans that operate on the domain plan. Speci�cally, an agent can express judgement (ac-

cepting or postponing) of a subplan, can elaborate a subplan, or can make suggestions to

expand a subplan. We discuss the adoption of goals in section 6.3.

The collaborative state also sanctions the mutual acceptance of plans. The acceptance

process is driven by an agent's need to establish the mutual acceptance of the domain

plan and discourse plans. In short, for a domain plan to be mutually acceptable, all of

its subplans must also be mutually acceptable to all of the agents in a conversation. In

section 6.4 we discuss the acceptance process.

We complete the theory with a discussion of the reasoning process that an agent un-

dergoes. The basic process is similar to Heeman's process, in that an agent uses reasoning

rules to determine what to do next. We de�ne two rule `operators'. The �rst,

B
B
(= C1 & C2 & � � � & Cn,

allows the agent's mental state to be updated (or revised) with belief B if all of the conditions

are true. The second,

G
G
(= C1 & C2 & � � � & Cn,

allows goal G to be adopted if all of the conditions are true.

86

The actual reasoning rules, to be de�ned in the next three sections, fall into three

categories:

1. collaborative activity rules,

2. goal adoption rules, and

3. a mutual acceptance rule.

As a collaborative dialogue progresses, an agent goes through a reasoning process and applies

di�erent types of rules in di�erent circumstances. The main factor in determining which

type of rule an agent attempts to apply is his current role, be it speaker or hearer. For

example, when a speaker doesn't yet have a goal, he attempts to use a goal adoption rule;

or, when a hearer has just inferred a plan, she attempts to apply the mutual acceptance rule.

The reasoning process governs how the dialogue progresses and is described in section 6.5.

We are making the assumption that the participants in a conversation have mutual

knowledge of many of the processes involved. These include: the shifting of the focus of

attention, reasoning using the rules, constructing and inferring plans, and the acceptance

process. This mutual knowledge can be considered part of the social contract that a par-

ticipant is accountable to upon entering a conversation (Boden and Zimmerman, 1991).

6.2 The Collaborative State

To model collaborative discourse, we need a way to account for how discourse goals arise, and

how these goals are achieved. Clark and Wilkes-Gibbs (1986) propose that the participants

in a conversation have a mutual responsibility for the success of a referring action. Clark

and Schaefer (1989) go on to say that the success of a discourse depends on the coordinated

actions of the participants|the participants must act collectively. But how do they do this

without direct access to each other's beliefs?

Heeman proposes that an agent engaged in collaborative activity is in a collaborative

mental state. We agree with Heeman, but we must extend his notion of the collaborative

state to deal with general collaborative discourse. We propose that the collaborative state

includes three components:

1. the intention to achieve the main goal of the collaborative activity,

2. the current domain plan that the agents are considering in order to achieve the main

goal, and

3. a stack of plans that is used to track the agent's focus of attention during the discourse.

In our system, the main goal of the discourse is to develop a mutually acceptable route

description. The domain plans (route description plans as de�ned in chapter 3) that we

87

consider are not domain plans in the classical sense, because they are closely linked to the

communicative actions that convey the plans as a series of utterances. A classical domain

plan in task-oriented dialogue is separate from the discourse level plans (Grosz and Sidner,

1990; Lambert and Carberry, 1991; Heeman, 1993). We feel that the distinction between

domain plan and discourse plan is blurred when the domain task involves the communication

of information.

The current domain plan, along with the focus stack (described in detail below), serves

to coordinate the collaborative activity of the participants, and so the agents keep it in their

common ground. An agent may not believe that every action in a plan contributes to its

goal, or even that every subgoal in the plan is achieved, unlike in the shared plans of Grosz

and Sidner (1990), and Lambert and Carberry (1991), where every action must contribute

and be mutually acceptable. Hence an agent has beliefs about the validity of the current

plan and its subplans, and has the intention of making these beliefs mutually believed.

Because the collaborative state contains the current domain plan and the subplan of the

domain plan that is in focus, it sanctions the adoption of goals to express judgement of the

subplan in focus, to refashion the subplan in focus, or to suggest a way to expand the subplan

in focus. The collaborative state also sanctions the mutual acceptance of the subplan in

focus. In this sense, the collaborative state is fundamental to controlling the progression of

a collaborative discourse because it keeps the collaborative task in the foreground and in

the agents' common ground.

6.2.1 Entering into the Collaborative State

The rule for entering into collaborative activity can be applied simply if the agent has

constructed or inferred a route description plan. So, if an agent believes that the speaker

has a plan for achieving the goal of the hearer knowing the route, then the agent enters into

the collaborative state. The rule is as follows:

cstate(Speaker,Hearer,Plan,Goal)
B
(=

hearer(Hearer) &

speaker(Speaker) &

plan(Speaker,Plan,Goal) &

Goal = knowroute(Hearer,Speaker,Route)

Although the agents know when to stop collaborating (i.e., when the plan is mutually

accepted), there is no rule for exiting the collaborative state, because we are modelling only

the portion of dialogue that occurs while two agents are collaborating.

6.2.2 The Focus Stack

As described above, the focus stack is part of the mental state of an agent engaged in

collaborative activity. The stack is a list of subplans of plans that an agent has beliefs

88

about, for which the top element is the current focus of attention. The focus stack is very

important for organizing the discourse, because it controls which subplan is being judged,

refashioned, operated on, or accepted. The subplan in focus may be a subplan of the

domain plan, or may be a discourse plan because discourse actions are subjected to the

same acceptance process as the domain plan is. But how does focus shift, that is, when is

a subplan popped or pushed?

After consulting the plan schemas de�ned in previous chapters, one can see that a plan

derivation can have many e�ects. All the e�ects are formulated in such a way that the

hearer of the plan can recognize the intentions of the speaker, modelled as subgoals that

the domain plan is intended to achieve. Each subgoal is intended to be achieved by the

subplan derivation rooted at the action with the corresponding e�ect. For example, a

referring subplan of a route description plan is a subplan with the goal of having the hearer

know how to identify the referent; and, an s-attrib primitive action is a subplan with the

goal of establishing the mutual belief of an attribute of the referent.

An element on the stack is a triple consisting of the domain plan name, the subplan

name, and the goal of the subplan. Associated with each focus element is a belief about the

validity of the subplan. Either the subplan achieves its goal, or it is in error. The general

rule for pushing subplans onto the focus stack is as follows:

Push Rule:1 Push subplans as they are encountered by an inorder traversal of
the plan derivation (top to bottom, left to right). Separate plan derivations are
considered in the order in which they are generated or understood.

This rule means that the last subplan encountered will be the �rst one to be operated on.

The general rule for popping a subplan from the focus stack is as follows:

Pop Rule: Pop a subplan if it is mutually acceptable. A subplan is mutually
acceptable if it is mutually believed that it achieves its goal, or if it implicitly
achieves its goal.

When the stack is empty, the collaborative discourse is over, because the domain plan has

been mutually accepted.

The focus stack contains only subplans that have not been mutually accepted yet. Once

a subplan is mutually accepted it will not be considered again, unless a further modi�cation

to the domain plan renders the subplan invalid.

Even though the focus stack speci�es a rigid order in which contributions should be

accepted, it is a plausible theory because the resulting discourse structure is similar to

what Clark and Schaefer (1989) have observed in their studies. Recursive clari�cation

1Obviously, we must assume that the agents in the conversation have mutual knowledge about how to
shift focus of attention. These two rules can be considered part of the social contract that a participant is
accountable to.

89

subdialogues occur because all of the subplans on the stack below the subplan in focus

cannot be considered until the subplan in focus is mutually accepted and popped from

the stack. When humans converse they would like to update their common ground in

a orderly way. The focus stack allows for this orderly behaviour via a simple mechanism

that the participants in a collaborative dialogue can use so that they can present and accept

contributions with a minimum of misunderstanding. However, because of the rigid structure

imposed by the focus stack, the consideration of subplans cannot be ordered di�erently. We

continue this discussion in section 6.4.4, after describing the acceptance process below.

6.3 Adopting Goals

As described above, a speaker adopts goals in order to collaborate in achieving the main

goal of the domain plan. These goals are achieved by planning the discourse actions de�ned

in the previous chapter. An agent may adopt a goal by applying a goal adoption rule

permitted by the collaborative state which he is in. Any goal that he adopts will be a goal

to operate on the subplan of the domain plan or a discourse plan that has his focus of

attention. There is one rule for each type of goal an agent may plan for.

The �rst rule, shown below, is used by the speaker to adopt the goal to inform the

hearer that a subplan is invalid. The conditions specify that the subplan in focus (of the

current plan of the collaborative activity) has an error at node Node, and that this is not

already mutually believed. A postponement action can achieve this goal.

goal(Speaker,mb(Speaker,Hearer,error(Plan,SubPlan,Node)))
G
(=

hearer(Hearer) &

speaker(Speaker) &

cstate(Speaker,Hearer,Plan,Goal) &

focus-current(focus(Plan,SubPlan,SubGoal)) &

error(Plan,SubPlan,Node) &

not(mb(Speaker,Hearer,error(Plan,SubPlan,Node)))

The second rule is for adopting a goal to inform the hearer that a subplan is acceptable.

The conditions for applying the rule specify that the speaker believes the subplan in focus

achieves its goal, and that this belief is not mutually known. To achieve this goal, the

speaker can plan an acceptance move.

goal(Speaker,mb(Speaker,Hearer,achieve(Plan,SubPlan,SubGoal)))
G
(=

hearer(Hearer) &

speaker(Speaker) &

cstate(Speaker,Hearer,Plan,Goal) &

focus-current(focus(Plan,SubPlan,SubGoal)) &

achieve(Plan,SubPlan,SubGoal) &

not(mb(Speaker,Hearer,achieve(Plan,SubPlan,SubGoal)))

90

A speaker uses the third rule to adopt a goal to replace the current plan (that has an

error in the subplan in focus) with a new refashioned plan. The conditions are similar to

those of the �rst rule, except that the speaker must believe that it is mutually believed

that there is an error. Hence, the speaker cannot refashion an invalid plan until after he

expresses his judgement of the plan.

goal(Speaker,mb(Speaker,Hearer,replace(Plan,NewPlan)))
G
(=

hearer(Hearer) &

speaker(Speaker) &

cstate(Speaker,Hearer,Plan,Goal) &

focus-current(focus(Plan,SubPlan,SubGoal)) &

mb(Speaker,Hearer,error(Plan,SubPlan,ErrorNode))

The fourth and �nal rule is used to adopt a goal to make a suggestion. The conditions are

almost identical to those of the previous rule. They additionally specify that the suggestion

has not already been made.

goal(Speaker,mb(Speaker,Hearer,suggest(Plan,SubPlan,Actions)))
G
(=

hearer(Hearer) &

speaker(Speaker) &

cstate(Speaker,Hearer,Plan,Goal) &

focus-current(focus(Plan,SubPlan,SubGoal)) &

mb(Speaker,Hearer,error(Plan,SubPlan,ErrorNode)) &

not(mb(Speaker,Hearer,suggest(Plan,SubPlan,Actions)))

There is actually a �fth goal adoption rule, but it is di�erent from the above rules. An

agent needs a way to adopt the initial goal of describing a route, a goal that is adopted

before the collaborative state is entered. The following rule is used to adopt the initial goal.

It has conditions to specify that the goal is not already being planned for in a collaborative

activity, and that the route to be described is Route.

goal(Speaker,knowroute(Hearer,Speaker,Route))
G
(=

hearer(Hearer) &

speaker(Speaker) &

not(cstate(Speaker,Hearer, ,knowroute(, ,))) &

what-route(Route)

6.4 The Acceptance Process

Clark and Schaefer (1989), in describing their model of how participants contribute to a

discourse, suggest that a basic unit of conversation is the contribution, which must be

mutually accepted by all participants before it can be added to their common ground. The

driving force behind collaborative discourse is the intention to have a proposed contribution

mutually accepted before proceeding. In their work, they associated contributions with

91

utterances, but we feel that this association is too restrictive because it does not re
ect the

intentional structure of a discourse as described by Grosz and Sidner (1986). We prefer to

associate contributions with the underlying intentions of an utterance. In this way, a single

utterance can have several contributions within it, all of which must be submitted to the

acceptance process. A contribution is a single subplan intended to achieve a goal, and it

may have subcontributions, because it may have subplans.

6.4.1 Accepting One Contribution

But how does the acceptance process work? That is, how does a contribution come to be

mutually accepted? In short, if an agent believes that it is mutually believed that a plan

achieves its goal, then the plan is mutually acceptable. Starting at the beginning of the

process, an agent, the presenter, presents a contribution. The contribution is a plan (or

a subplan of a plan) that he believes achieves its goal. In a collaborative dialogue there

is no sense in presenting a plan that one believes is invalid. Since he does not know if

the contribution is acceptable to the other agent, the presenter waits for her to express

her judgement of the plan. If she expresses acceptance, then the presenter infers that she

believes the plan achieves its goal. Thus he can infer the belief that it is mutually believed

that the plan achieves its goal. This inference is the culmination of the acceptance process

because it allows the use of the mutual acceptance rule (de�ned below) that allows the

e�ects of the plan to occur, thus updating the agents' common ground.

On the other hand, if the hearer of the contribution rejects the plan, then the presenter

infers that the hearer believes the plan is invalid. This action opens up a clari�cation

subdialogue which serves to make the current contribution mutually acceptable. The actions

used in the subdialogue are contributions that themselves must be accepted; but, once

the original contribution is accepted by both agents (i.e., the hearer �nally expresses her

acceptance, as before), the plan is mutually accepted.

Now, from the point of view of the hearer, after inferring the presenter's initial presen-

tation from his utterance, she judges whether or not the plan is valid. If so, she expresses

her acceptance of the plan, and then, presupposing the presenter's acceptance of this ac-

ceptance plan, she can infer the belief that it is mutually believed that the plan achieves its

goal. And thus, she can apply the mutual acceptance rule that allows the plan's e�ects to

occur.

If, however, she believes the plan is invalid, she initiates a clari�cation subdialogue

by expressing her judgement that there is an error in the plan. As above, the clari�cation

subdialogue terminates when she believes that it is mutually believed that the plan achieves

its goal. And this belief allows the mutual acceptance of the plan.

92

6.4.2 The Grounds for Acceptance

The acceptance process is applied to every contribution, whether it is a route description, a

referring expression, an expression of judgement, or a refashioning. Even moves that express

acceptance are contributions that must themselves be accepted by another move. But what

constitutes grounds for acceptance? In our model, a plan is acceptable to an agent if he

believes it achieves its goal, and for each type of plan, an agent uses di�erent criteria to

determine if it achieves its goal. Figure 6.1 shows, for each di�erent plan type, the criteria

used in the determination. A necessary condition for any plan to achieve its goal is for it to

be understood, which means that it must be valid as determined by the evaluation process.

Plan type Criterion

Route description Plan is valid (all referring subplans are valid, and
route leads from origin to destination)

Referring Plan is valid (referent uniquely speci�ed, and con-
�dent plan is adequate)

Plans having a goal to estab-
lish the mutual belief of some
property

Agent believes the other agent believes the prop-
erty (rationality assumption)

Judgement (except acceptance),
refashioning, and suggestion

Implicitly achieve their goal (if understood)

Acceptance Agent believes the plan it accepts achieves its goal

Figure 6.1: Criteria for plans to achieve their goals

As discussed in chapter 3, the only type of error in a route description plan that we

consider is inadequate referring expressions. This means that a route description plan

achieves its goal if all the referring expression subplans within the plan achieve their goals.

In addition, the route must have a sequence of actions that lead one from the origin to the

destination.

A referring expression plan achieves its goal if it uniquely speci�es the referent according

to an agent's beliefs, and if the agent is con�dent that the plan is adequate.

Referring plans have subgoals to establish the mutual belief of the properties of the

referent. By assuming that the other agent is rational (both sincere and competent), an

agent can believe that a subgoal (of this type) is achieved if he believes that the other agent

believes that the property is true. (See section 4.3.2.)

All of the meta-plans (judgements, refashionings, and suggestions), except for the ac-

ceptance move, achieve their goals if they are understood. To understand a judgement is to

know which constraint in the domain plan the speaker found in error, without necessarily

agreeing with the error. To understand a refashioning is to recognize the refashioned plan,

without necessarily �nding it acceptable. And to understand a suggestion is to know the

93

suggested modi�er, without necessarily believing the suggestion is a good one. If a plan

is not understood, it must be ill-formed, which can result from mis-hearing an utterance,

or from an incorrect utterance. We do not address the issue of ill-formed plans and their

repair, except to be able to identify the condition.

The reason for implicitly accepting these plans is drawn from Clark and Wilkes-Gibbs's

(and, subsequently, Heeman's) work on the acceptance process for referring expressions.

These moves are always achieved (and so accepted), and this keeps the current referring

plan in the agents' focus, leading to an iterative acceptance process for the referring plan. If

these moves were not implicitly accepted, then they would have to be refashioned, leading

to a recursive process, something that Clark and Wilkes-Gibbs did not observe in their

studies. We discuss this point below, after de�ning the acceptance rule.

The acceptance meta-plan, however, does not implicitly achieve its goal (the belief in

the mutual belief that the plan being accepted achieves its goal). For this plan, an agent

must believe that the accepted plan achieves its goal. This makes sure that when the

mutual acceptance rule is applied to the acceptance plan, the agent believes the accepted

plan achieves its goal before adopting the mutual belief of this fact.

6.4.3 The Mutual Acceptance Rule

Because the agents are collaborating, a simple acceptance of a plan is not good enough|an

agent must believe that it is mutually believed that a plan achieves its goal before allowing

the e�ects of the actions to occur. Therefore, we de�ne the following reasoning rule, the

mutual acceptance rule.2 Its conditions specify that an agent must believe that it is mutually

believed that the subplan in focus achieves its goal, SubGoal.

SubGoal
B
(=

hearer(Hearer) &

speaker(Speaker) &

focus-current(focus(Plan,SubPlan,SubGoal)) &

mb(Speaker,Hearer,achieve(Plan,SubPlan,SubGoal))

When this rule is applied, an agent uses SubGoal to update his mental state. In the

general case, this involves simply adopting the belief that SubGoal is true. If SubGoal is a

mutual belief then it becomes part of the agents' common ground.3

The adoption of some beliefs causes the revision of other beliefs, which are the perlocu-

tionary e�ects of the speech act. To adopt the mutual belief that a plan has an error in it,

the agent retracts his belief that the plan achieves its goal (if he had that belief).

2Unlike Heeman, we de�ne only one generic acceptance rule. In his system, he de�nes one acceptance
rule for each type of goal an agent can adopt.

3We model an agent's adoption of a mutual belief of a proposition as his adoption of the belief of the
proposition and his adoption of the belief that the other agent believes it. This weaker notion of mutual
belief simpli�es the belief module, and it is implemented as an inference rule for inferring mutual belief.

94

To adopt the belief that a new plan replaces an old one, belief revision takes place. First,

the old plan is removed from the agent's mental state. Second, the cstate is updated with

the new plan, which includes updating the focus stack. And, third, the plan is evaluated,

and new beliefs about the validities of its subplans are adopted. The newly added subplans

are reasoned about and pushed to the focus stack because they are new contributions in

the discourse. Any subplans that were already mutually accepted need not be considered

again.4

In Heeman and Hirst's model, moves that express judgement and moves that refashion

are always accepted if they are understood. This decision was made because the agents are

involved in a collaborative activity and have the intention to keep the current domain plan

in their common ground, while coordinating their activity. Heeman and Hirst say that

for a judgement plan, this is reasonable, since although the hearer might not
agree with the suggestion of error, he should realize that the referring expression
[the domain plan] must be mutually acceptable in order for the identi�cation to
take place. For a refashioning, this also is reasonable, for if he doesn't �nd the
resulting referring expression adequate, he can still accept it and then proceed
to refashion it. (Heeman and Hirst, 1992, p. 19)

The rami�cation of this decision is that these moves need not be explicitly accepted and,

therefore, can be automatically mutually accepted. In our model, this amounts to having

an inference rule that allows an agent to infer the mutual belief that a plan of this type

achieves its goal if he believes that it achieves its goal. Then, an agent can apply the mutual

acceptance rule immediately without waiting for the other agent to accept the plan.

6.4.4 The Resulting Discourse Structure

The previous discussion has been about the acceptance process for one contribution, but

in a discourse there are many contributions. We use the subplan in focus to be the current

contribution that is to be reasoned about. This means, as described in section 6.2.2, that our

focus stack encodes the intentional structure of a discourse. It speci�es which contribution

is currently being processed and which contribution needs to be mutually accepted before

proceeding. Once the subplan in focus is mutually accepted, it is popped from the stack,

the beliefs associated with it revise the mental state, and focus is shifted to another subplan

(the next subplan in the stack). The resulting discourse structure is similar to that observed

by Clark and Schaefer in real dialogues between humans.

The major di�erence between Clark and Schaefer's and our discourse structure is a

consequence of not using their theory of evidence in expressing acceptance. In our model,

an agent always explicitly accepts a plan by using the surface speech act s-accept (except

4They would have to be considered again if they were rendered invalid by the expansion, but in our model
this is not possible. The e�ects in disjoint subplans are independent from each other.

95

in the case of judgement, refashioning, and suggestion plans, which are implicitly accepted).

This means that the decision of whether or not to explicitly verbalize an acceptance is pushed

to the speech generator, but, surely, this decision involves some knowledge available only

at the level of the discourse planner. Giving this decision to the generator also means that

the parser must be able to determine when an acceptance has been expressed, whether or

not it was verbalized. This task is di�cult when based solely on the syntactic and prosodic

knowledge of a parser. Determining when an acceptance move has been made depends on

the previous discourse as recorded in the focus stack.

A better, more comprehensive model would include reasoning rules to determine how

much evidence should be given, and a set of acceptance plans that would allow for the

various ways of expressing acceptance (which are not necessarily linguistic). Like all the plan

schemas de�ned in this thesis, the acceptance plans would be applicable to both generation

and understanding. For most plans, continued attention, or the initiation of the next

relevant contribution would be enough, and these moves are equivalent to not verbalizing

anything.

As noted earlier, the focus stack imposes a rigid structure onto the discourse. It is

a model of the most prevalent type of structure seen in dialogues where information is

being described, as in direction-giving dialogues (Clark and Wilkes-Gibbs, 1986; Clark and

Schaefer, 1989; Psathas, 1991). We are able to model a large portion of real dialogue in

a plausible way. The focus stack accounts for hierarchical acceptance structures, such as

clari�cation subdialogues and other types of side sequences, and for hierarchical presentation

structures, such as installment structures. But other types of structure are sometimes

observed (see Clark and Schaefer (1989)), such as the the consideration of contributions top

down instead of bottom up. In Chu's plan evaluator (Chu, 1993), the actions are examined

in a top-down fashion so that the most general action that is inappropriate is addressed �rst.

This ordering seems implausible because, if a general contribution is found unacceptable,

the cause is probably an unacceptable sub-contribution.

Nevertheless, we feel that our model is a successful amalgamation of speech act theory,

Clark and Schaefer's theory of contributions, and Grosz and Sidner's theory of discourse

structure.

6.5 The Reasoning Process

The reasoning rules, along with an agent's other knowledge, are used during the reasoning

process. The process actually consists of two separate subprocesses; one for understanding

utterances, and one for generating a response. To take part in a conversation, the system

runs an alternating sequence of the two subprocesses. The basic algorithms for the two

subprocesses are shown in �gures 6.3 and 6.2, respectively, and are described in greater

96

while their is input (surface speech actions)
infer a plan from the input actions
reason about the plan (i.e., adopt beliefs about its validity, etc.)
while a mutual acceptance or collaborative activity rule can be applied

apply the rule

Figure 6.2: Algorithm for understanding

while a goal adoption rule can be applied
adopt the goal
construct a plan that achieves the goal
output the surface speech actions
reason about the plan (i.e., adopt beliefs about the plan)
while a mutual acceptance or collaborative activity rule can be applied

apply the rule

Figure 6.3: Algorithm for responding

detail below.

To understand an utterance, the system acts as the hearer and infers a plan for each

set of actions that it hears in turn. For each plan, the system determines whether the plan

itself achieves its goal and whether its subplans (if any) achieve their goals (these plans and

subplans are pushed to the focus stack). For each subplan, either the belief that it achieves

its goal, or the belief that it is in error is added to the system's mental state. Then, the

system applies any mutual acceptance rule or collaborative activity rule that it can. After

processing each set of observed actions, the system switches roles and becomes the speaker.

To generate a response, the system, acting as speaker, attempts to apply any goal

adoption rule. Once a goal is adopted, the system constructs a plan to achieve this goal, and

adds the belief that the plan achieves its goal and the beliefs that any subplans achieve their

goals (the system pushes the subplans to the focus stack). Then, presupposing the user's

acceptance of the plan, it applies any mutual acceptance rule or collaborative activity rule

to update its mental state. The system repeats this process until it can �nd no more goals

to adopt, at which point it switches roles to become the hearer. There are two exceptions

to always adopting a goal when it is possible to do so. First, a goal is not adopted to

accept a plan in the same response that presented that plan, or an expansion to the plan.

Second, a goal is not adopted to expand a plan from a suggestion in the same response as

the suggestion (i.e., you do not expand a plan from your own suggestion). Planning for

these two goals is pre-empted.

97

6.6 Summary

In this chapter we have completed our plan-based model of collaborative discourse. We

have merged the work of Clark and Schaefer, Heeman and Hirst, and Grosz and Sidner to

form a model capable of accounting for general task-oriented collaborative discourse.

The main feature of the model is the collaborative state that includes the current domain

plan, a focus of attention, and the intention to achieve the goal of the domain plan. The

current plan is in the common ground of the agents and they have the intention to keep it

there. Hence, the collaborative state sanctions the adoption of goals that operate on the

current plan, and sanctions the acceptance of these plans and of the domain plan (and its

subplans).

The acceptance process for a contribution causes the agents to act collectively to update

their common ground in an orderly way. Each contribution corresponds to an intention

to achieve some goal or subgoal in the discourse. The focus stack maintains a structure

of contributions similar to Grosz and Sidner's intentional structure, and speci�es which

contribution is being operated on by the current utterance.

The resulting discourse structure is plausible, because it is observed in many actual

dialogues between humans. A few points to consider are the following. A record of the

discourse is not kept. Only the current domain plan is kept in the agents' common ground

and the discourse actions operate on it, resulting in an iterative structure. Older domain

plans can be considered forgotten, or out of the scope of the discourse. The focus stack

encodes the current intentional structure of the discourse, but past intentions are not re-

membered. The stack evolves over time, but at the end of the discourse segment (once the

domain plan is mutually accepted) the stack is empty. A discourse progresses over time,

but is not planned ahead of time. There is no way to even represent an overall discourse

plan.

Although we concentrated on domain plans involving communicative action, speci�cally,

route description plans, we believe that the model is applicable to other, more classical,

domain tasks. Obviously, more reasoning rules might be necessary, and the discourse actions

would need to be more general. We are unsure how the model could handle complex domain

plans with interrelated actions, collective actions, and/or unintentional side-e�ects.

As noted previously, we have a very simple and inadequate account for how the accep-

tance of a plan is actually expressed. Because we are considering only linguistic actions, a

plan must be accepted by an explicit use of an s-accept action. Therefore, we must assume

that the generator and parser can realize and recognize acceptance moves. If it was possible

to plan for other types of action, then a complete model of acceptance could be added to

our current model.

In the next chapter, we present a full example of collaboration on direction-giving that

98

should clarify how we have implemented our model and how it functions in our application

domain.

99

Chapter 7

Example

This chapter presents a complete example of our system in action. In the example, we use

dialogue (7.1) to illustrate how our system collaborates to make a referring action successful

within the context of direction-giving.

(7.1) 1 G. Go to the Lowell Street intersection.
2 R. Does it have a sign?
3 G. Yes, it does, and it also has tra�c lights.
4 R. Okay.

Dialogue (7.1) is a simpli�ed version of a portion of dialogue (1.1), an actual telephone

conversation between humans, repeated below as dialogue (7.2).

(7.2) 1 A. Can you tell me where the Academy is?
2 B. Yeah, where ya coming from?
3 A. uh Newton.
4 B. Okay, why dontcha come up 128?
5 A. Yes.
6 B. And take 2A.
7 A. Yes,
8 B. um 2A will take ya right across Mass Avenoo

an ya just stay on 2A,
uh until ya get to Lowell Street.

9 A. Is it marked?

10 B. uh, Lowell Street?

11 A. Yeah.

12 B. Yeah I think there's a street sign there,

its an intersection with lights.

13 A. Okay.

14 B. an ya turn right on Lowell Street.
an its about quarter to half a mile um,
take another right on Bartlett Avenoo.

15 A. Okay.

100

16 B. an that takes ya right to the Academy.
17 A. Okay.

The simpli�cation is necessary because dialogue (7.2) has many complexities that we

have not addressed in this thesis. First, the directions given in the dialogue are given in a

series of installments. Since we do not have an adequate model of how a route description

plan (or, for that matter, any plan) can be communicated in installments, we restricted

our example to the portion of dialogue (7.2) shown in boldface. Although our system can

construct an entire route description plan (to be realized in one utterance), we chose this

single installment to keep the example simple and plausible. Our main goal is to model the

collaborative dialogue surrounding a reference in the context of direction-giving; so the rest

of the route description is irrelevant to showing how the system collaborates with the user

to make an inadequate referring plan adequate. (See section 3.5.1 for further discussion on

the complexity of modelling installments.)

Within this installment there are further complexities. Agent B �nds the utterance Is it

marked? ambiguous and requests a clari�cation. We have not addressed this type of repair.

Furthermore, we would need to model the attentional state of an agent in order to resolve

and construct this and other anaphoric references in the dialogue.

Another complexity concerns world knowledge. The agents in this dialogue know that

the reference until ya get to Lowell Street refers to an intersection and that for a street or

an intersection to be marked is for it to have a sign. We have simpli�ed the references that

require inference from world knowledge.

Dialogue (7.1) is one installment of a route description, and contains an elaboration

subdialogue. In the example, we consider this installment to be a single action in a sequence

of direction actions that forms an entire route description plan. We will concentrate on the

collaborative repair of the referring expression for the intersection. There are two agents

participating in the dialogue, so, in the next two sections, we illustrate the dialogue from

each agent's point of view. In the �rst, the system takes the role of the direction giver, and,

in the second, the system takes the role of the direction recipient. Appendix B contains a

trace of the system taking the role of the direction giver.

7.1 System as Direction Giver

Before the discourse commences, the system, acting as direction giver, has the following

beliefs about the world, which correspond to the street network shown in �gure 7.1:

category(highway1,highway).

called(highway1,'128').

category(street1,street).

called(street1,'2A').

101

exit1

street1

street2

avenue1

Lowell St.

Mass Av.

highway1 128

2A

inter2

inter1

Figure 7.1: Street network known by the direction giver

category(avenue1,avenue).

called(avenue1,'Mass').

category(street2,street).

called(street2,'Lowell').

category(exit1,exit).

called(exit1,'2A').

category(inter1,intersection).

called(inter1,'Mass Avenue').

category(inter2,intersection).

called(inter2,'Lowell Street').

has(inter2,sign1).

has(inter2,lights1).

category(sign1,sign).

category(lights1,traffic-lights).

place(exit1, [highway1,street1],

[(0,street1,+1), (90,highway1,-1), (270,highway1,+1)]).

place(inter1, [street1,avenue1],

[(0,street1,+1), (90,avenue1,+1),

(180,street1,-1), (270,avenue1,-1)]).

place(inter2, [street1, street2],

[(0,street1,+1), (90,street2,+1),

(180,street1,-1), (270,street2,-1)]).

path(highway1, [exit1]).

path(street1, [exit1,inter1,inter2]).

path(avenue1, [inter1]).

path(street2, [inter2]).

102

In addition, the system has the following beliefs about salience (these beliefs form only

a subset of the system's two salience hierarchies):

salient-category(2,traffic-lights).

salient-category(1,intersection).

salient-category(1,sign).

salient-property(3,intersection,traffic-lights, �X ��Y �has(X,Y)).
salient-property(2,intersection,sign, �X ��Y �has(X,Y)).
salient-property(2,intersection, �X �called(X,Name)).

confidence-threshold(intersection,2).

7.1.1 Constructing \Go to the Lowell Street intersection."

The system, acting as speaker, �rst adopts the initial goal to construct a route descrip-

tion plan for the entire route. Part of this plan is for describing the portion of the route

originating at exit1 and ending at inter2, which involves only one action: going to the

intersection. After adopting the initial goal, the system constructs the route description

plan shown in �gure 7.2, where the installment that we are considering is shown. In the

�gure, arrows represent decomposition, and for brevity, constraints, mental actions, and

e�ects are omitted, and only the parameters of surface speech actions are shown. Relevant

instantiations are shown in a box at the bottom of the �gure, and for some headers, their

internal name (e.g., p1) is shown. In the rest of this example, we consider only those plans

and subplans associated with this one installment.

To construct the direction action, the system used the goto action schema, which makes

a reference to inter2, the place to go to. The system constructed a refer plan for inter2

choosing the head noun, intersection, from the category of inter2. To disambiguate inter2

from inter1, the system chose the simplest modi�er, called(inter2,'Lowell Street').

The con�dence value of the referring plan is 3 (1, for the category, plus 2, for the name),

which exceeds the system's threshold of 2.

The system reasons about the plan and pushes it and its four subplans onto the focus

stack, shown below with plan names (e.g., p1) representing actual plan derivations. Note

the order in which the subplans are pushed: top to bottom, left to right.

(p1,p44,mb(system,user,called(inter2,'Lowell Street')))

(p1,p29,mb(system,user,category(inter2,intersection)))

(p1,p20,identify(user,system,entity(1,inter2)))

(p1,p13,mb(system,user,place(inter2, ,)))

(p1,p1,knowroute(user,system,

route([: : :,goto(exit1,inter2,street1,+1,1),: : :])))

For each plan on the stack, the system believes that it achieves its goal; so, the system adds

103

Where:
E = entity(1,inter2)

HHHHj

�������)

?

�
�

�
�

�
��	

S
S
S
Sw

?

������)

?

HHHHHHj

��������9

�������

?

PPPPPPPq

p1: describe-route

PPPPPPq

�
�
�
�� B

B
B
BB

describe

modi�ersheadnoun

modi�ers

modi�er

direction

directions

directions

null

p20: refer
p13: s-goto(E)

s-refer(E)

p29: s-attrib(E,�X�category(X,intersection))

p44: s-attrib(E,�X�called(X,`Lowell Street'))

Figure 7.2: Route description plan derivation showing subplan for Go to the
Lowell Street intersection.

the following beliefs to its mental state:

achieve(p1,p44,mb(system,user,called(inter2,'Lowell Street')))

achieve(p1,p29,mb(system,user,category(inter2,intersection)))

achieve(p1,p20,identify(user,system,entity(1,inter2)))

achieve(p1,p13,mb(system,user,place(inter2, ,)))

achieve(p1,p1,knowroute(user,system,

route([: : :,goto(exit1,inter2,street1,+1,1),: : :])))

The system outputs the following surface speech actions to the generator:

s-attrib(entity(1,inter2),�X�called(X,'Lowell Street')),

s-attrib(entity(1,inter2),�X�category(X,intersection)),

s-refer(entity(1,inter2)),

s-goto(entity(1,inter2)).

104

These could be realized as

Go to the Lowell Street intersection.

The system then attempts to apply any mutual acceptance rule or collaborative activity

rule. The only rule that the system can apply is for entering into a collaborative activity.

Applying this rule causes the system to adopt the following belief:

cstate(system,user,p1,knowroute(user,system,

route([: : :,goto(exit1,inter2,street1,+1,1),: : :])))

The system is now in a collaborative state that will not end until the route description is

mutually accepted. Finally, the system becomes the hearer, waiting for an utterance from

the recipient.

7.1.2 Understanding \Does it have a sign?"

The recipient utters Does it have a sign? which has the following underlying surface speech

actions:

s-accept(p1).

s-accept(p1).

s-postpone(p1).

s-suggest(p1,[s-attrib-rel(entity(1,inter2),entity(N,Obj),

�X ��Y �has(X,Y)),

s-refer(entity(N,Obj)),

s-attrib(entity(N,Obj),�X �category(X,sign))]).

We assume that the parser can determine that these actions underlie the utterance. In par-

ticular, we make the tenuous assumption that the parser can �gure out that two s-accept

actions are necessary for the postponement and suggestion to make sense. The system

processes each surface speech action in turn, and in the order shown.

The system performs plan inference with the �rst action as input, and comes up with

an instance of accept-plan that expresses acceptance of the subplan in focus, p44. The

system then reasons that the accept-plan is achieved because it believes that the subplan

in focus achieves its goal, and so shifts focus to the accept-plan, by pushing it onto the

stack. The next step is to apply the mutual acceptance rule as many times as is possible.

The system applies it to mutually accept the accept-plan which allows the system to adopt

the belief in the mutual belief that p44 achieves its goal (i.e., the goal of the mutual belief

in the name of the intersection):

mb(system,user,achieve(p1,p44,

mb(system,user,called(inter2,'Lowell Street')))).

105

This application pops the accept-plan from the stack. The system applies the rule a

second time to mutually accept the s-attrib action, which allows the system to believe

the mutual belief that the intersection is called Lowell Street:

mb(system,user,called(inter2,'Lowell Street')).

The subplan, p44, is popped from the stack.

Next, the system performs plan inference with the second s-accept action as input.

The process is similar to the former acceptance, resulting in the system believing that:

mb(system,user,achieve(p1,p29,

mb(system,user,category(inter2,intersection)))).

mb(system,user,category(inter2,intersection)).

The third action, s-postpone(p1), is given to the plan inference process, which infers

an instance of postpone-plan. The goal of this action is to establish the mutual belief that

the subplan in focus, p20, has an error, but the system does not immediately believe this

mutual belief. First, the system shifts focus to the postponement plan, which the system

believes is implicitly achieved, and therefore mutually acceptable. This application of the

mutual acceptance rule allows the system to believe the mutual belief that the refer plan,

p20, has an error:

mb(system,user,error(p1,p20,p55)).

The evaluation of the postponement plan determined that the error was at node p55, whose

parent action (i.e., the �nal modifiers action in the plan) has the confidence-exceed

constraint. Adopting this belief causes the system to retract the belief that p20 achieves its

goal. Focus has shifted back to p20, but p20 is not popped from the stack, because it has

not been mutually accepted yet.

A second e�ect of the postponement action is that the system raises its con�dence

threshold, because of the underlying intention of the user to inform the system that she is

not con�dent in the adequacy of the referring plan. The new con�dence threshold is the

following:1

confidence-threshold(intersection,6).

The fourth and �nal surface speech action, after being inferred from, results in an

instance of suggest-expand-plan. Through a similar reasoning process to that for the

postponement plan above, the system believes that it is mutually believed that:

1We have no theory about how much the threshold should change, other than that it should be raised by
about the amount that one or two modi�ers would raise the overall con�dence value of a referring plan. As
we will see below, di�erent values will result in di�erent elaborations.

106

suggest(p1,[s-attrib-rel(entity(1,inter2),entity(N,Obj),

�X ��Y �has(X,Y)),
s-refer(entity(N,Obj)),

s-attrib(entity(N,Obj),�X �category(X,sign))]).

This is a suggestion to expand the plan with a modi�er for having a sign.

Since there are no more surface speech actions to consider, the system switches to become

the speaker again. The current state of the focus stack is the following:

(p1,p20,identify(user,system,entity(1,inter2)))

(p1,p13,mb(system,user,place(inter2, ,)))

(p1,p1,knowroute(user,system,

route([: : :,goto(exit1,inter2,street1,+1,1),: : :])))

7.1.3 Constructing \Yes, it does, and it also has tra�c lights."

The system now attempts to apply any goal adoption rule that it can. Since the system

believes there is an error in the referring plan, it adopts the goal to replace the current

route description plan with a new plan. To achieve this goal, the system �nds that it can

use an expansion move, but there are two such moves. The �rst, to expand using only its

own beliefs, cannot be used because the user made a suggestion. So the system constructs

an instance of expand-plan, and attempts to incorporate the user's suggestion into the

expansion.

The �rst step is to construct a modifiers schema that serves to elaborate on the previous

description (the Lowell Street intersection), and so the plan constructor is called recursively.

The system uses the suggestion because it believes the intersection does have a sign, but

the con�dence value of this modi�er is only 2. This value brings the overall con�dence value

of the referring expression up to 5, which does not exceed the threshold of 6. So another

modi�er, that the intersection has tra�c lights, is also added to the modifiers sequence.

Now the overall con�dence value is 8 (because the con�dence value of an intersection having

tra�c lights is 3), which exceeds the threshold, and, thus the recursive call to the constructor

can terminate.

This expansion is then substituted for the step of the old plan that had the error in

its constraint (node p55). That is, the �nal modifiers step with the null decomposition

is replaced with the newly constructed modi�ers sequence. As a result the new referring

expression is the Lowell Street intersection that has a sign and tra�c lights, whose plan is

shown in �gure 7.3.

However, the system does not utter the whole referring expression, because part of it

was already uttered. The next step in constructing the expand-plan action is to decide

how to respond to the suggestion. Since the suggested modi�er and an extra modi�er were

used to elaborate the referring expression, the system chooses to a�rm that the intersection

107

Where:
E = entity(1,inter2)

E1 = entity(4,light1)

E2 = entity(6,sign1)

HHHHj

?

������)

�������)
A
A
A
AAU

�����������

C
C
C
C
CCW

���������

? C
C
C
C
CCW

@
@
@
@R

?

�
�
�
�
��

BBN
����������9

�
�� @

@@

��������9
S
Sw

p221: s-attrib-rel(E,E2,�X��Y�has(X,Y))
�
�
� A

A
A

describe

headnoun

modi�ers

modi�er

modi�ers

modi�ers

modi�ers

null

s-attrib(E,�X�category(X,intersection))

s-attrib(E,�X�called(X,`Lowell Street'))

s-refer(E)

modi�er

tra�c lights

modi�er

a sign

p142: refer

p180: s-attrib-rel(E,E1,�X��Y�has(X,Y))
p189: refer

p230: refer

Figure 7.3: Referring plan derivation for the Lowell Street intersection that
has a sign and tra�c lights. (The expansion is shown in bold type.)

108

does have a sign (thus informing the user that the suggestion was used), and to inform the

user of the extra modi�er. The surface speech actions to be given to the generator are:

s-actions(p1,[s-attrib(entity(4,lights1),

�X �category(X,traffic-lights)),

s-refer(entity(4,lights1)),

s-attrib-rel(entity(1,inter2),entity(4,lights1),

�X ��Y �has(X,Y))]).

s-affirm(p1,[s-attrib-rel(entity(1,inter2),entity(6,sign1),

�X ��Y �has(X,Y)),
s-refer(entity(6,sign1)),

s-attrib(entity(6,sign1),�X �category(X,sign))]).

which could be realized as

Yes, it does, and it also has tra�c lights.

The system could have responded in two other ways depending on the constructed

expansion. First, if the con�dence threshold had been adjusted to 4 instead of 6, then the

use of the suggestion would have been enough to make the plan adequate, and the following

surface speech action would be given to the generator:

s-affirm(p1,[s-attrib-rel(entity(1,inter2),entity(6,sign1),

�X ��Y �has(X,Y)),
s-refer(entity(6,sign1)),

s-attrib(entity(6,sign1),�X �category(X,sign))])

which could be realized as Yes, it does have a sign.

Second, if the system did not believe that the intersection had a sign, then it would not

be possible to use the suggestion. The system would have to �nd a di�erent way to expand

the plan. Assuming that adding the modi�er that the intersection has tra�c lights makes

the referring plan adequate, the following two surface speech actions could be realized as

No, it doesn't have a sign, but it has tra�c lights.

s-actions(p1,[s-attrib(entity(4,lights1),

�X �category(X,traffic-lights)),
s-refer(entity(4,lights1)),

s-attrib-rel(entity(1,inter2),entity(4,lights1),

�X ��Y �has(X,Y))]).

s-deny(p1,[s-attrib-rel(entity(1,inter2),entity(6,sign1),

�X ��Y �has(X,Y)),
s-refer(entity(6,sign1)),

s-attrib(entity(6,sign1),�X �category(X,sign))]).

109

Returning to the expand-plan that was constructed, the next move is to reason about

it. Since refashioning plans are implicitly achieved, the system adds this belief to its mental

state, and pushes the plan to its focus stack.

Now the system attempts to apply the mutual acceptance rule as many times as is

possible, because it presupposes that the user will accept the plan it has just constructed.

The expand-plan gets automatically mutually accepted, because the system can infer the

mutual belief that it is achieved from its own belief. This allows the system to update its

mental state with the mutual belief that the new elaborated plan replaces the old plan,

which causes belief revision.

To revise its belief about the current route description plan the system does several

things.

First, it removes the old plan from its mental state, and adds the new plan.

Second, the system updates its focus stack, by replacing the plan names and subplan

names that were part of the old plan with their equivalent names in the new plan. Since

these plans are on the focus stack, they have not been mutually accepted yet, but the

system's beliefs about their validities may have changed as a result of the new expansion,

so the system updates these beliefs too. Since the system evaluated the new plan during

its construction, the system believes that all of the new subplans achieve their goals.

Third, the system determines which subplans of the plan are new, when compared with

the old plan, pushes these to its focus stack, and adds beliefs that they achieve their goals.

The new focus stack contains the following elements:

(p123,p239,mb(system,user,category(sign1,sign)))

(p123,p230,identify(user,system,entity(6,sign1)))

(p123,p221,mb(system,user,has(inter2,sign1)))

(p123,p198,mb(system,user,category(lights1,traffic-lights)))

(p123,p189,identify(user,system,entity(4,lights1)))

(p123,p180,mb(system,user,has(inter2,lights1)))

(p123,p142,identify(user,system,entity(1,inter2)))

(p123,p135,mb(system,user,place(inter2, ,))

(p123,p123,knowroute(user,system,

route([: : :,goto(exit1,inter2,street1,+1,1),: : :])))

Note that the new plan name is p123 and that the three subplans that used to be on the

stack are still on the stack, but at the bottom.

Finally, the system updates its belief about the collaborative state by replacing the old

plan name, p1, in its cstate belief with p123.

The system cannot apply the mutual acceptance rule again, so tries to adopt another

goal. The only possible goal is to establish the mutual belief that the subplan in focus (at

the top of the stack above) achieves its goal. The system pre-empts its construction of an

accept-plan because it just constructed the subplan in focus itself, and must wait until

110

the user accepts the subplan.

With nothing left to do, the system becomes the hearer once again, and waits, hopefully,

for the user's acceptance of its new plan.

7.1.4 Understanding \Okay."

The user does indeed accept the new plan by uttering Okay, whose underlying set of surface

speech actions consists of eight instances of

s-accept(p123).

We assume that the parser can determine that this utterance is intended to accept the

whole plan so far which contains the eight subplans on the focus stack.2

For each of these actions, the system infers an instance of accept-plan. The acceptance

process that follows is identical to that described above for the two s-accept(p1) surface

speech actions. The top eight subplans on the focus stack are eventually popped from the

stack, and for each subplan, its goal is believed to be true. Only one plan remains on the

focus stack:

(p123,p123,knowroute(user,system,

route([: : :,goto(exit1,inter2,street1,+1,1),: : :])))

and as discussed in footnote 2, this plan would also be removed from the stack if the user

has accepted the route description. This event would occur after the last direction (or

installment) was mutually accepted, and if the user believed that route description plan

was complete.

Once the route description is mutually accepted, the focus stack would be empty, and

thus the collaborative activity of giving the directions would terminate, leaving the partic-

ipants to return to bigger and bolder topics.

7.2 System as Direction Recipient

Switching point of view, we re-examine the dialogue with the system acting as the direction

recipient. The system has the following beliefs about the world:

category(exit1,exit).

called(exit1,'2A').

category(street1,street).

2In this example we have been considering only one installment of the route description. In a complete
dialogue, if this installment was the last (or only) installment, then the user would also express her judgement
of the entire route description plan; or if there were more directions following this installment, then the user
would judge these directions, or would wait for them to be given. In the example, we have omitted any
surface speech actions pertaining to the dialogue that could occur after the installment.

111

called(street1,'2A').

place(exit1, [street1], [(0,street1,+1)]).

path(street1, [exit1]).

The system has knowledge of the origin, but not of any other location on the route. We

have omitted the system's belief about the ultimate destination of the route, because it is

not relevant to the installment we are considering.

In addition, the system has the following beliefs about salience:

salient-category(2,traffic-lights).

salient-category(1,intersection).

salient-category(1,sign).

salient-property(3,intersection,sign, �X ��Y �has(X,Y)).

salient-property(2,intersection, �X �called(X,Name)).
salient-property(1,intersection,traffic-lights, �X ��Y �has(X,Y)).

confidence-threshold(intersection,5).

Although the system's category salience hierarchy is the same as that of the direction giver,

its property salience hierarchy is di�erent. Also, the con�dence threshold of the recipient is

higher than the giver's.

7.2.1 Understanding \Go to the Lowell Street intersection."

The system is given as input the surface speech acts underlying Go to the Lowell Street

intersection as shown below:

s-attrib(entity(1,Obj),�X �called(X,'Lowell Street')),

s-attrib(entity(1,Obj),�X �category(X,intersection)),
s-refer(entity(1,Obj)),

s-goto(entity(1,Obj)).

The system performs plan inference, which �rst �nds a plan derivation with this set of

surface speech actions as its yield. This results in the plan derivation shown in �gure 7.4

that is almost identical to the derivation in �gure 7.2. The only di�erence is that none of

the parameters are instantiated, and, in particular, the discourse entity, E, of the reference

is uninstantiated.

Next, the system evaluates the plan derivation. A new object name, object1, is created

for the new reference, and a new discourse entity, entity(1,object1), is instantiated.

Evaluating the direction portion of the plan results in the system adding the belief to its

own beliefs that the giver believes that object1 is a place:

bel(user,place(object1, ,)).

112

HHHHj

�������)

?

�
�

�
�

�
��	

S
S
S
Sw

?

������)

?

HHHHHHj

��������9

?

PPPPPPq

p1: describe-route

describe

modi�ersheadnoun

modi�ers

modi�er

direction

null

p20: refer
p13: s-goto(E)

s-refer(E)

p29: s-attrib(E,�X�category(X,intersection))

p44: s-attrib(E,�X�called(X,`Lowell Street'))

Figure 7.4: Inferred plan derivation for Go to the Lowell Street intersection.

The system then evaluates the refer plan, p20, as shown in the example in section 4.5.2.

As a result the system adds the following beliefs to its mental state:

bel(user,category(object1,intersection)).

bel(user,called(object1,'Lowell Street')).

Also, the �nal con�dence value of the referring expression plan is 3, which does not exceed

the system's con�dence threshold of 5, so the constraint (node p56, which is not shown) in

the �nal modi�ers plan schema fails.

Now that plan inference is �nished, the system reasons about the inferred plan. For each

subplan, the system pushes it onto the focus stack, and decides whether or not it achieves

its goal. Here, the �rst two subplans, p44 and p29, achieve their goals because the system

believes that the user believes the properties (and also believes that the user is rational).

However, the refer plan itself, p20, does not achieve its goal, because the system is not

con�dent in its adequacy. So, the system adds the plan derivation to its mental state along

with the following beliefs:

achieve(p1,p44,mb(system,user,called(object1,'Lowell Street'))).

achieve(p1,p29,mb(system,user,category(object1,intersection))).

error(p1,p20,p56).

113

The resulting focus stack is as follows:

(p1,p44,mb(system,user,called(object1,'Lowell Street')))

(p1,p29,mb(system,user,category(object1,intersection)))

(p1,p20,identify(user,system,entity(1,object1)))

(p1,p13,mb(system,user,place(object1, ,)))

(p1,p1,knowroute(user,system,

route([: : :,goto(exit1,object1,street1,+1,1),: : :])))

The �nal step of understanding the speaker's utterance is to apply the collaborative

activity rule to enter into the collaborative state.

7.2.2 Constructing \Does it have a sign?"

The system switches from being hearer to being speaker and attempts to apply any goal

adoption rule that it can. Since the system believes that the subplan in focus, p44, achieves

its goal, it adopts the goal of making this belief mutually believed. The system then

constructs an instance of accept-plan that accepts p44, and since the system believes that

p44 achieves its goal, it can adopt the belief that the accept-plan achieves its goal (and

can also pushes the accept-plan onto the focus stack).

The system then applies the mutual acceptance rule twice, presupposing the user's

acceptance of the judgement plan. The �rst time pops the accept-plan from the stack,

establishing the mutual belief that p44 achieves its goal, and the second time pops p44 from

the stack, establishing the mutual belief that the referent is called Lowell Street.

The system repeats this same cycle again to accept the next subplan, p29, on the focus

stack, which establishes the mutual belief that the referent is an intersection.

Now, the subplan in focus is the refer plan, p20. Since the system believes this subplan

is invalid, it adopts the goal of making the invalidity mutually believed, and therefore

constructs an instance of postpone-plan. Next, through a reasoning process similar to

those used in the previous two acceptance moves, the system establishes the mutual belief

that the subplan has an error.

Next, the system checks to see if any other goal can be adopted. It attempts to expand

the plan to make it adequate, but this is not possible, because the system has no knowledge

of the referent. Instead, it adopts the goal of making a suggestion, and so constructs

an instance of suggest-expand-plan (as shown in the example in section 5.5.1), which it

pushes onto the focus stack. In the suggestion, the system asks if the intersection has a sign,

because the property of having a sign is the most salient property for an intersection that

has not already been used in the referring expression. Presupposing the user's acceptance of

the suggestion, the system applies the mutual acceptance rule, which establishes the mutual

belief that a suggestion has been made.

Finally, the system attempts to adopt another goal. The only possible goal to adopt

114

is the goal of replacing the current plan with a new plan (via an expand-plan), but the

system pre-empts the plan construction process, because it has just made a suggestion.

The four plans that the system has constructed give rise to the following surface speech

actions:

s-accept(p1).

s-accept(p1).

s-postpone(p1).

s-suggest(p1,[s-attrib-rel(entity(1,object1),entity(N,Obj),

�X ��Y �has(X,Y)),

s-refer(entity(N,Obj)),

s-attrib(entity(N,Obj),�X �category(X,sign))]).

which could be realized collectively as

Does it have a sign?

Finally, the current state of the focus stack is the following:

(p1,p20,identify(user,system,entity(1,object1)))

(p1,p13,mb(system,user,place(object1, ,)))

(p1,p1,knowroute(user,system,

route([: : :,goto(exit1,object1,street1,+1,1),: : :])))

7.2.3 Understanding \Yes, it does, and it also has tra�c lights."

The user's reply of Yes, it does, and it also has tra�c lights has the following underlying

surface speech actions, which are input to the system:

s-affirm(p1,[s-attrib-rel(entity(1,Obj),entity(3,Obj1),�X��Y �has(X,Y)),
s-refer(entity(3,Obj1)),

s-attrib(entity(3,Obj1),�X �category(X,sign))]).

s-actions(p1,[s-attrib-rel(entity(1,Obj2),entity(4,Obj2),

�X ��Y �has(X,Y))])

s-refer(entity(4,Obj2)),

s-attrib(entity(4,Obj2),�X �category(X,traffic-lights)).

Once again, the system's �rst task is to perform plan inference. This results in an

expand-plan plan derivation that has the goal of replacing the old route description plan

with a new expanded plan. During the evaluation, a modifiers action is found that has

as its yield the speech actions in the s-affirm and s-actions above. This plan is then

substituted for the invalid modifiers action in the old plan. The resulting plan derivation

contains a referring expression plan similar to the one shown in �gure 7.3, except that the

discourse entities are not instantiated. The evaluation �nds the expand-plan to be valid,

115

so, after pushing it onto the focus stack, the system adopts the belief that it achieves its

goal.

Since an expansion plan implicitly achieves its goal, the system can apply the mutual

acceptance rule, which allows it to adopt the mutual belief that the new route description

plan replaces the old plan. To adopt this belief, the system has to revise its beliefs about

the current plan of the collaborative activity, and so must make the new plan the current

plan. The �rst step in the revision is to evaluate the new plan. The evaluation results in

the creation of two new object names, object2 and object3, corresponding to the two new

referents in the plan, and these are used to instantiate the discourse entities in the plan.

The system also adopts the following beliefs about the properties of the referents:

bel(user,has(object1,object2))

bel(user,category(object2,sign))

bel(user,has(object1,object3))

bel(user,category(object3,traffic-lights))

The overall con�dence value of the reference to the intersection has increased to 7 (original

value of 3, plus 3, for having a sign, plus 1, for having tra�c lights), which exceeds the

system's con�dence threshold of 5. Thus, the referring plan is found valid by the evaluation.

The second step of the revision is to reason about the new plan. This involves pushing

the new subplans onto the focus stack, and adopting beliefs that each subplan achieves its

goal. The resulting focus stack, shown below, contains the subplans that were already on

the stack, and the new subplans that have not been mutually accepted yet. Note that the

plan names have also been updated.

(p123,p239,mb(system,user,category(object2,sign)))

(p123,p230,identify(user,system,entity(6,object2)))

(p123,p221,mb(system,user,has(object1,object2)))

(p123,p198,mb(system,user,category(object3,traffic-lights)))

(p123,p189,identify(user,system,entity(4,object3)))

(p123,p180,mb(system,user,has(object1,object3)))

(p123,p142,identify(user,system,entity(1,object1)))

(p123,p135,mb(system,user,place(object1, ,))

(p123,p123,knowroute(user,system,

route([: : :,goto(exit1,object1,street1,+1,1),: : :])))

The �nal step of the revision is to update the current plan of the collaborative state

with the new route description plan.

7.2.4 Constructing \Okay."

The system becomes the speaker and expresses its acceptance of the eight subplans on the

top of the stack. It cycles through the mutual acceptance process eight times in exactly the

same way as described in section 7.2.2 above, and sends eight instances of

116

s-accept(p123).

to the generator, which could be realized collectively as Okay.

The installment that we have been considering has been mutually accepted, and, had

it been the last installment (as discussed in footnote 2), the whole route description could

have been accepted. But since this installment is not the last, the system considers the

route description plan to be invalid, and so cannot accept the �nal plan on the focus stack:

(p123,p123,knowroute(user,system,

route([: : :,goto(exit1,object1,street1,+1,1),: : :])))

If we had considered an entire route description plan, then, after accepting the plan, the

system's focus stack would be empty, signalling the end of the collaborative activity.

117

Chapter 8

Conclusion

8.1 Contributions

We have presented a computational model of how two agents collaborate to make referring

actions successful during direction-giving dialogues. This thesis makes several contributions

to the �eld.

The central goal of this thesis was to model how an agent can refer to an object of which

another agent has no knowledge in a collaborative environment. To this end, we suggested

that a referring expression plan is acceptable to an agent if it contains a description that

the agent can use to identify the referent eventually, and if the agent is con�dent that the

plan is adequate for this purpose. We have assumed that, in our system, every description

could be used as an identi�cation plan. We developed a model of con�dence based on the

salience of the components of a referring expression that accounts for an agent's belief in the

adequacy of the expression. We gave an algorithm for constructing the most salient referring

expression according to an agent's beliefs. We have also provided a set of discourse actions

that agents can use to express judgements, make elaborations, and suggest elaborations, so

that the agents can collaborate to make the referring action successful.

Our model of salience can be applied to other types of referring action. It should always

be important to make salient referring expressions. Likewise, our discourse actions for

making suggestions, and elaborating referring expressions are applicable to other types of

referring.

The model is not limited to reference in direction-giving dialogues. We view a referring

expression plan as a means of identifying a referent, once the agent establishes the relevant

context (which, in direction-giving, occurs as an agent traverses a route). Reference of this

sort can be seen in any dialogue where an agent is referring to something new that is not

visible or not known to exist by the other agent. Although less common than other types

of reference, it is pervasive in, at least, instructional dialogues, if not all discourse.

A second goal was to augment Heeman and Hirst's model of collaborative discourse to

118

handle larger domain plans with many subplans, subgoals, and e�ects. The collaborative

state sanctions the adoption of goals to clarify or elaborate the plan (or subplan) in focus,

and sanctions the mutual acceptance of the plan in focus. Focus of attention is maintained

as a stack of plans (and subplans) that have not yet been mutually accepted. The stack

results in a plausible discourse structure that allows clari�cation subdialogues as seen in

real dialogues between humans. The focus stack imposes a rigid structure on a discourse,

but it allows large domain plans to be negotiated in an orderly way. Our hope is that

this collaborative discourse model is general enough to be applicable in domains other

than direction-giving, and in domains that do not directly involve communicative action.

However, because of the rigid structure, problems may arise if the domain plans have

complex dependencies between actions, collective actions, interleaved actions, etc.

A third contribution lies in the area of interactive direction-giving. We have developed

a preliminary model of direction-giving within a plan-based formalism that handles route

description as a goal-oriented communicative task. The model is applicable to direction-

giving discourse, which is necessary for interactive route description, route advice, route

justi�cation, and, perhaps, interactive route planning. The model is centred on the descrip-

tion of places and paths, because these descriptions are the most important, but could be

easily extended to describe the actions that must be taken along a route.

8.2 Assumptions

We have made a few assumptions that are worth noting. First, we have assumed that the

agents have mutual knowledge of the following items:

� the plan library (i.e., the set of available action schemas),

� the plan construction, inference, and reasoning processes,

� the acceptance process, including the use of the focus stack, and the collaborative

state (we assume the agents know how to collaborate), and

� the mental actions for determining the reference context, computing con�dence, and

determining salience.

This knowledge can be considered part of the social contract that agents are accountable

to when participating in social tasks.

Second, we have assumed that the parser and language generator are capable of recog-

nizing and using the the surface speech acts appropriately. This is not a simple task, but we

have tried to de�ne surface speech actions so that their translation to and from utterances

is plausible. However, we had to make the tenuous assumption that a parser can determine

an acceptance move without access to the current context, or to the current domain plan.

119

Third, in relation to direction-giving, since we have considered route description in

isolation from any other associated task, we have assumed that a route planner provides

input to our system as a sequence of edges and nodes (as a path in a graph structure), or

as a sequence of goto and turn actions. We are not addressing route planning in this thesis,

only route description. But, because we have split these two, mostly independent tasks, we

cannot handle the repair of an action that is too complex. This would require going back

to the route planner, and replanning a segment of a route. Additionally, we cannot handle

other phenomena seen in direction-giving, such as mistake detection and recovery.

8.3 Comparisons to Similar Work

In this section we compare our research to similar work. We �rst look at research into

referring expressions, and, second, at research into collaboration.

Referring Expressions

Heeman and Hirst's model (Heeman and Hirst, 1992) and Clark and Wilkes-Gibbs's model

(Clark and Wilkes-Gibbs, 1986) highly in
uenced our model of reference. The main di�er-

ence is the type of referring action and its underlying intentions, which results in a di�erent

method of evaluating referring expressions and a di�erent method of refashioning them.

In their model, a referring expression can be overconstrained or underconstrained, and is

refashioned by making a clari�cation; whereas, in our model, a referring expression can be

inadequate, requiring elaboration. Nevertheless, the same acceptance cycle can be applied

in both models, and the discourse actions are very similar.

Reiter and Dale's theory (Reiter and Dale, 1992) of generating referring expressions

involves an algorithm that uniquely speci�es a referent while choosing the most preferred

attributes of the referent. Preference is given to visually salient attributes, such as size,

shape, and colour, but salience does not depend on the context, or even on the referent's

type. Our algorithm is similar, because it also disambiguates the referent from all others in

its context set, but we allow salience to depend on the category of the referent, which results

in better, more plausible, referring expressions. Reiter and Dale's theory only concerns the

generation of referring expressions, and is not agent-oriented (i.e., they are not concerned

with the intentions, goals, and beliefs of an agent making a reference). By considering

referring in a collaborative and interactive context, we provide a motive for the underlying

intentions of the referring act.

Appelt (1985c) proposed a type of referring, called nonshared concept activation with

identi�cation intention, for which he never completed a theory. We picked up where he left

o�, but modi�ed his proposal in two ways. First, his identi�cation intention includes both

locating and recognizing the referent, whereas ours includes only the recognition part. Thus,

120

to identify a referent, an agent has to be in the correct location, and this location should be

known from the context of the reference. Second, he intended the referring expression to be

used as the basis for an identi�cation plan that could be executed to identify the referent.

We take the referring expression plan itself to be the identi�cation plan.

Collaboration

Our collaborative model has been highly in
uenced by Heeman and Hirst's model. The

problem with their model, which results from only accounting for referring expression plans,

is that it could not handle large domain plans with multiple goals and e�ects. We have

extended their model by adding a focus stack to the collaborative state that an agent is in.

This allows an agent to attend to a speci�c subplan in a domain plan (or a discourse plan)

that he can judge, refashion, or accept without being concerned about the rest of the plan.

The focus stack structures the discourse, so, in e�ect, we have merged the work of Grosz

and Sidner (1986) on intentional structure, Clark and Schaefer (1989) on the acceptance

process, and Heeman and Hirst (1992) on collaboration and discourse planning.

Lochbaum, Grosz, and Sidner (Lochbaum, Grosz and Sidner, 1990; Grosz and Sidner,

1990) deal with collaboration on shared domain plans. They concentrate on domain plans

in which the agents act collectively to achieve goals, and provide a taxonomy of action

types. The main di�culty with their theory is that a shared plan contains only actions

that have been mutually agreed to contribute to the goal of the plan. Their theory cannot

account for two types of behaviour that ours can. First, an agent sometimes proposes an

action that another agent, or even himself, does not believe contributes. Without being able

to incorporate these beliefs into the plan, the model cannot represent the state in which

an agent understands how an utterance could contribute, without believing that it does.

Second, adding a new action to a shared plan may invalidate an action already in the plan.

The invalidated action would then have to be addressed. This state can never occur in their

model. In our model, the current domain plan can contain actions that are not valid, so

an agent has beliefs about the validity of every subplan of the domain plan. Agents have,

when in the collaborative state, the intention to achieve the goal of the domain plan, and

so also have the intention to repair the errors in the plan.

Lambert and Carberry (1991) propose a tripartite model of collaborative discourse,

consisting of a discourse layer, a problem-solving layer, and a domain layer. In our model,

there is no division between di�erent types of planning. The same processes function on all

the plans. The distinction between separate layers is blurred when the domain task directly

involves communicative action.

Chu (1993), in her extension of Lambert and Carberry's model, breaks the dialogue

model into two components: the existing, mutually agreed upon, plan that is never re-

evaluated, and the proposed additions to the plan. On the surface, this model is very

121

similar to ours, because the agents can collaborate on the proposed actions without having

to believe that they contribute to the plan. The problem is that the existing plan can

only be added to, which means the model cannot represent how the existing plan could be

modi�ed to accommodate new proposals. Our model is simpler, because both valid and

invalid actions are kept in one plan, which is operated on by one set of discourse actions.

8.4 Future Directions

This work can be extended in many directions. First, we summarize some of the speci�c

extensions that we have already been discussed in the text, and second, we mention a few

general directions for future research.

Speci�c Directions

A complete model of route description plans, and, indeed, any model of communicative

action, should account for how the plans can be communicated in a sequence of installments.

Using installments is conducive to collaborative behaviour, because it breaks up complex

material making it easier to understand and assimilate. In chapter 3 we outlined an approach

that could be implemented within our plan-based model.

Our model of direction-giving is not as extensive as some of the other cited models,

because we have designed only two direction action schemas: one for going to a place, and a

second for turning onto a path. Obviously, many more schemas would be necessary to cover

the wide variety of instructions that people use. We believe that our model is a su�cient

framework to build from, because Kuipers's topological structures can represent most of

the necessary knowledge for traversing an environment, and because the plan-based model

is versatile enough to account for many types of action, including non-linguistic actions.

An agent computes his con�dence in the adequacy of a referring expression by adding up

the various numeric con�dence values of the modi�ers in the expression. As noted earlier, a

con�dence `algebra' may be necessary since the con�dence values of the modi�ers might not

be independent. They may interact with each other to raise or lower con�dence. Also, the

con�dence in sub-expressions of the main referring expression should be taken into account.

To determine the most salient objects at a location, the direction giver, who has extensive

knowledge of the location, resorts to accessing a hierarchy of salient features indexed by

object type. Ideally, since salience is highly context dependent, the giver should apply an

algorithm to determine what objects, and what properties, are the most salient, given the

context.

122

General Directions

Perhaps the most obvious way to extend this work would be to merge the di�erent types of

reference into a single uni�ed model. Heeman and Hirst model reference to objects that are

copresent with the participants, or for which the participants have mutual knowledge. Our

work has modelled reference to objects for which the participants have a large knowledge

imbalance (the responder has no knowledge of the referent). There has also been research

done on anaphoric reference, that is, reference to objects in a participant's focus of attention.

Each of these types of reference has di�erent underlying intentions, but all them can be, and

are, used in discourse (including direction-giving dialogues). Heeman and Hirst's model is

not a complete coverage of all the di�erent ways a referring plan can clari�ed, and neither is

ours for elaboration. By de�ning more discourse action schemas for judgement, refashioning,

and suggestion, the coverage could be expanded and even generalized to handle even plans

other than referring expressions.

A second avenue of research is to further investigate collaborative behaviour and the

discourse structure that underlies it. We have modelled the acceptance process, a pro-

cess essential and basic to collaboration, by using an attentional state that contains the

contribution that is currently being considered. We have proposed a stack structure to con-

tributions, which results in the most prevalent type of discourse structure. Unfortunately,

the stack imposes a rigid order onto a discourse that is sometimes not seen in dialogues

between humans (Clark and Schaefer (1989) investigate many structures underlying the

acceptance of contributions). A more general theory of attention would say that the most

important or salient contribution should be attended to, where importance would depend

on the context of the discourse and the knowledge of the participants. This more general

theory would subsume our model, where we equate importance with recency (i.e., the most

recent contribution is considered �rst). A di�erent metric for determining the importance

of contributions needs to be developed to account for other less rigid discourse, where the

acceptance processes for several contributions may happen in a di�erent order than normal,

be interleaved, or even be simultaneous.

A third direction would be to augment the model of knowledge and belief. The model we

have adopted is minimal: belief revision is handled in a crude way, mutual belief is approx-

imated by inference rules, and world knowledge is basic. Agents involved in a collaborative

discourse have an interest in determining each other's beliefs so that they can cooperate and

not impede the discourse. Establishing mutual belief and a common ground is fundamental

to collaborating. A more extensive model of belief would be necessary before this model of

collaborative behaviour could handle general task-oriented dialogue.

123

Bibliography

Allen, J. F. and Perrault, C. (1980). Analyzing intention in utterances. Arti�cial Intelli-

gence, 15:143{178. Reprinted in (Grosz, Sparck Jones and Webber, 1986).

Appelt, D. E. (1985a). Planning English referring expressions. Arti�cial Intelligence,

26(1):1{33.

Appelt, D. E. (1985b). Planning English Sentences. Cambridge University Press, Cam-

bridge.

Appelt, D. E. (1985c). Some pragmatic issues in the planning of de�nite and inde�nite

noun phrases. In Proceedings of the 23th Annual Meeting of the Association for Com-

putational Linguistics, pages 198{203.

Appelt, D. E. and Kronfeld, A. (1987). A computational model of referring. In Proceedings

of the Tenth International Joint Conference on Arti�cial Intelligence (IJCAI-87), pages

640{647.

Austin, J. L. (1962). How To Do Things With Words. Oxford University Press, Oxford.

Boden, D. and Zimmerman, D. H., editors (1991). Talk and Social Structure. Polity Press,

Cambridge, England.

Carletta, J. (1990a). An architecture facilitating repair and replanning in interactive expla-

nations. Technical Report No. 478, Dept. of Arti�cial Intelligence, Univ. of Edinburgh.

Carletta, J. (1990b). An incremental dialogue planner that monitors execution. Technical

Report No. 480, Dept. of Arti�cial Intelligence, Univ. of Edinburgh.

Chu, J. (1993). Responding to user queries in a collaborative environment. In Proceedings

of the 31th Annual Meeting of the Association for Computational Linguistics, pages

280{282.

Clark, H. H. and Marshall, C. (1981). De�nite reference and mutual knowledge. In Joshi,

A., Webber, B., and Sag, I., editors, Elements of Discourse Understanding, pages 10{

63. Cambridge University Press, New York.

124

Clark, H. H. and Schaefer, E. F. (1989). Contributing to discourse. Cognitive Science,

13:259{294.

Clark, H. H. and Wilkes-Gibbs, D. (1986). Referring as a collaborative process. Cognition,

22:1{39. Reprinted in (Cohen, Morgan and Pollack, 1990, pp. 463{493).

Cohen, P. R. (1981). The need for referent identi�cation as a planned action. In Proceedings

of the Seventh International Joint Conference on Arti�cial Intelligence (IJCAI-81),

pages 31{36.

Cohen, P. R. (1984). Referring as requesting. In Proceedings of the 10th International

Conference on Computational Linguistics (COLING-84), pages 207{211.

Cohen, P. R. and Levesque, H. (1985). Speech acts and rationality. In Proceedings of the

23th Annual Meeting of the Association for Computational Linguistics, pages 49{59.

Cohen, P. R. and Levesque, H. J. (1990). Rational interaction as the basis for communica-

tion. In Cohen, P. R., Morgan, J., and Pollack, M., editors, Intentions in Communi-

cation, pages 221{255. MIT Press, Cambridge, Mass.

Cohen, P. R., Morgan, J., and Pollack, M., editors (1990). Intentions in Communication.

MIT Press, Cambridge, Mass.

Cohen, P. R. and Perrault, C. (1979). Elements of a plan-based theory of speech acts.

Cognitive Science, 3(3):177{212. Reprinted in (Grosz, Sparck Jones and Webber, 1986).

Cole, J., Frisch, A., Green, G., Hinrichs, E., Morgan, J., and research assistants (1991).

Research on automated driving instructions: the second year. Technical report, Lab-

oratory for Computational Linguistics, Beckman Institute for Advanced Science and

Technology, University of Illinois at Urbana-Champaign, Urnana, IL.

Dale, R. (1987). Cooking up referring expressions. In Proceedings of the 27th Annual

Meeting of the Association for Computational Linguistics, pages 68{75.

Davis, J. R. (1989). Back Seat Driver: Voice Assisted Automobile Navigation. PhD thesis,

Massachusetts Institute of Technology, Boston, Mass.

Devlin, A. S. (1976). The \small town" cognitive map: Adjusting to a new environment.

In Moore, G. and Golledge, R., editors, Environmental Knowing: Theories, Research

and Methods. Dowden, Hutchinson and Ross, Stroudsburg, Pa.

Downs, R. M. and Stea, D. (1973). Cognitive maps and spatial behaviour: Process and

products. In Downs, R. and Stea, D., editors, Image and Environment: Cognitive

Mapping and spatial behaviour, pages 8{26. Aldine Pub. Co., Chicago.

125

Frisch, A. M., Gerdenman, D., Gri�th, J., Hinrichs, E. W., Morgan, J. L., Russell, D. W.,

and Sutanto, H. (1990). Automated natural language generation in a driving instruc-

tion system. In Proceedings of the 1990 Arti�cial Intelligence Applications Symposium,

Phoenix, AZ.

Grosz, B. J. and Sidner, C. L. (1986). Attention, intentions, and the structure of discourse.

Computational Linguistics, 12(3):175{204.

Grosz, B. J. and Sidner, C. L. (1990). Plans for discourse. In Cohen, P. R., Morgan, J.,

and Pollack, M., editors, Intentions in Communication, pages 417{444. MIT Press,

Cambridge, Mass.

Grosz, B. J., Sparck Jones, K., and Webber, B. L., editors (1986). Readings in Natural

Language Processing. Morgan Kaufmann Publishers.

Heeman, P. A. (1991). A computational model of collaboration on referring expres-

sions. Technical Report CSRI-251, Computer Systems Research Institute (University

of Toronto), Toronto, Canada. (MSc Thesis).

Heeman, P. A. (1993). Speech actions and mental states in task-oriented dialogues. In

Working Notes AAAI Spring Symposium on Reasoning about Mental States: Formal

Theories & Applications, pages 68{73, Stanford.

Heeman, P. A. and Hirst, G. (1992). Collaborating on referring expressions. Technical

Report TR 435, Computer Science Dept., Univ. of Rochester, Rochester, New York.

Je�erson, G. (1972). Side sequences. In Sudnow, D., editor, Studies in Social Interaction,

pages 294{338. Free Press, New York.

Kuipers, B. (1978). Modeling spatial knowledge. Cognitive Science, 2:129{153.

Lambert, L. and Carberry, S. (1991). A tripartite plan-based model for dialogue. In Pro-

ceedings of the 29th Annual Meeting of the Association for Computational Linguistics,

pages 47{54.

Litman, D. J. and Allen, J. F. (1987). A plan recognition model for subdialogues in con-

versations. Cognitive Science, 11(2):163{200.

Lochbaum, K. E., Grosz, B., and Sidner, C. (1990). Models of plans to support commu-

nication: an initial report. In Proceedings of the National Conference on Arti�cial

Intelligence (AAAI-90), pages 485{490.

Lynch, K. (1960). The Image of the City. MIT Press, Cambridge, MA.

126

McDermott, D. (1980). A theory of metric spatial inference. In Proceedings of the First

Annual National Conference on Arti�cial Intelligence (AAAI-80), pages 246{248.

McDermott, D. and Davis, E. (1984). Planning routes through uncertain territory. Arti�cial

Intelligence, 22(2):107{156.

McRoy, S. W. (1993). Abductive Interpretation and Reinterpretation of Natural Language

Utterances. PhD thesis, University of Toronto.

Pattabhiraman, T. and Cercone, N. (1990). Selection: Salience, relevance and the coupling

between domain-level tasks and text planning. In Fifth International Workshop on

Natural Language Generation, pages 79{86, Dawson, PA.

Pollack, M. (1990). Plans as complex mental attitudes. In Cohen, P. R., Morgan, J.,

and Pollack, M., editors, Intentions in Communication, pages 77{103. MIT Press,

Cambridge, Mass.

Psathas, G. (1986). The organization of directions in interaction. Word, 37:83{91.

Psathas, G. (1991). The structure of direction-giving in interaction. In Boden, D. and

Zimmerman, D. H., editors, Talk and Social Structure, pages 195{216. Polity Press,

Cambridge, England.

Psathas, G. and Kozlo�, M. (1976). The structure of directions. Semiotica, 17(2):111{130.

Reiter, E. (1990). The computational complexity of avoiding conversational implicatures.

In Proceedings of the 28th Annual Meeting of the Association for Computational Lin-

guistics, pages 97{104.

Reiter, E. and Dale, R. (1992). A fast algorithm for the generation of referring expres-

sions. In Proceedings of the 14th International Conference on Computational Linguis-

tics (COLING-92), pages 232{238.

Riesbeck, C. K. (1980). \You can't miss it!": Judging clarity of directions. Cognitive

Science, 4:285{303.

Searle, J. R. (1969). Speech Acts: An Essay in the Philosophy of Language. Cambridge

University Press, Cambridge.

Svartvik, J. and Quirk, R., editors (1980). A Corpus of English Conversation. C.W.K.

Gleerup, Lund.

127

Appendix A

Glossary

This glossary contains de�nitions for the various predicates that we use in our system.

The predicates fall into three categories. First, propositions are similar to Prolog facts

(or goals), except that an agent has beliefs about propositions. Second, mental actions,

similar to Prolog goals, can only be used in the decomposition of the action schemas. Their

satisfaction either instantiates the arguments or a�ects the mental state of the agent by

changing or adding beliefs (side-e�ects). Third, a few predicates are considered common

knowledge, and are similar to Prolog goals. These predicates are not mental actions, but

are used as constraints and where-clauses.

Belief

bel(Agt,Prop): Agt1 believes that Prop is true.

mb(Agt1,Agt2,Prop): Agt1 and Agt2 mutually believe that Prop is true. An agent can
infer mutual belief if bel(Agt1,Prop) and bel(Agt1,bel(Agt2,Prop)).

ab(Agt1,Agt2,Prop): Agt1 and Agt2 have an alternating belief that Prop is true. An
agent can infer an alternating belief if bel(Agt1,Prop) or bel(Agt1,ab(Agt2,Agt1,
Prop).

Con�dence

confidence-headnoun(C,Entity,Category): A mental action that determines the con�-
dence value C of referring to a discourse entity Entity of category Category. This
action accesses an agent's category salience hierarchy.

confidence-attrib(C,Entity,Pred): A mental action that determines the con�dence
value C of using an attribute Pred of the entity Entity. This action accesses an
agent's property salience hierarchy.

confidence-attrib-rel(C,Entity,RelEntity,Pred): A mental action that determines
the con�dence value C of using the attribute Pred that describes Entity relative to

128

the other entity RelEntity. This action also accesses the agent's property salience
hierarchy.

confidence-add(C,C1,C2): A mental action that combines two con�dence values, C1 and
C2, to form a new con�dence value C. Simple arithmetic addition is used.

confidence-exceed(Entity,C): A mental action that succeeds if the con�dence value C

exceeds the con�dence threshold for a reference to the entity Entity.

confidence-threshold(Cat,Threshold): An object of category Cat has the con�dence
threshold of Threshold.

Focus

focus(Plan,SubPlan,Goal): The subplan SubPlan of Plan intended to achieve Goal is a
focus element.

focus-current(Focus): The focus element Focus encodes the subplan in focus.

Plan Derivation Predicates

content(Plan,N,C): Node named by N of Plan has content C.

constraint(Plan,A,C): Node C is a constraint of action node A of Plan.

step(Plan,A,S): Node S is a step in the decomposition of action node A of Plan.

yield(Plan,A,Y): The set of primitive actions Y is the yield of node A of Plan.

Plan Repair

construct(Goal,Plan,SActs,Actions): A mental action that constructs a plan Plan

that achieves goal Goal that contains the set of primitive actions SActs in its yield of
Actions, if possible.

substitute(Plan,Node,NewPart,NewPlan,NewActions): A mental action that undoes
all variable bindings in Plan (except those in primitive actions that are not object
terms of discourse entities), and then substitute content of Node in Plan by NewPart.
The result of this is the plan NewPlan and the new primitive actions NewActions.
(See Heeman and Hirst (1992).)

evaluate(Plan): A mental action that succeeds if Plan is valid.

replace(Plan,NewPlan): The plan derivation NewPlan replaces Plan.

Plans and Goals

speaker(Agt): Agt is the current speaker. (A Prolog goal.)

hearer(Agt): Agt is the current hearer. (A Prolog goal.)

cstate(Agt1,Agt2,Plan,Goal): Agt1 is engaged in a collaborative activity with Agt2.
They are currently considering the domain plan Plan to achieve the goal Goal.

129

goal(Agt,Goal): Agt has goal Goal. Agents act to make their goals true.

plan(Agt,Plan,Goal): Agt has plan derivation Plan that is intended to achieve Goal.
The agent may not believe that the plan is valid.

achieve(Plan,SubPlan,Goal): Executing subplan SubPlan of Plan causes Goal to be
true.

entity(Id,Obj): The discourse entity used to represent the referent of the referring ex-
pression being built. Id is a unique identi�er, and Obj is the referent object. The
discourse entity is only used within other propositions and mental actions. (See Hee-
man and Hirst (1992).)

error(Plan,SubPlan,Node): Subplan SubPlan of Plan has an error at node Node. That
is, SubPlan is invalid.

Reference

entity(Id,Obj): The discourse entity used to represent the referent of the referring ex-
pression being built. Id is a unique identi�er, and Obj is the referent object. The
discourse entity is only used within other propositions and mental actions. (See Hee-
man and Hirst (1992).)

ref(Entity,Obj): A mental action that uni�es Obj to the object term of the discourse
entity Entity. If the identi�er term of Entity is not bound, this action will create a
unique identi�er for it and will make the value of Obj the referent.

identify(Agt1,Agt2,Entity): Agt1 is con�dent that she will be able to identify the ref-
erent that Agt2 associates with the discourse entity Entity.

set-context(Place1,Place2,Path,Orient): A mental action that sets the current ref-
erence context for the next reference by considering all places (including landmarks
and intersecting paths) on Path between Place1 and Place2 given the orientation
Orient. This action accesses the topological structure.

set-context(Place): A mental action that sets the current reference context by consid-
ering all objects, including paths that enter or leave, at Place. The two set-context
actions are speci�c to the direction-giving domain.

context-current(Context): A mental action that determines the set of objects, Context,
in the current reference context. A reference is made with respect to this set.

Route Description

knowroute(Agt1,Agt2,Route): Agt1 knows the route Route that Agt2 describes. Know-
ing a route is to know a sequence of actions that link the origin to the destination,
and to be con�dent in the adequacy of all the references to paths and places made in
the route description.

route-origin(Origin): Origin is the origin of the route being described. The origin is
assumed to be common knowledge before a route description is made. (A Prolog
goal.)

130

route-dest(Dest): Dest is the destination of the route being described. The destination
is also assumed to be common knowledge before a route description is made. (A
Prolog goal.)

what-route(Route): Route is the route that the direction giver will describe. (A Prolog
goal.)

Salience

salient-attrib(Entity,Pred,UsedPred,NewUsedPred): A mental action for determin-
ing a lambda expression Pred that encodes the most salient attribute for the category
of the entity Entity that is not in the list UsedPred. The action appends Pred to
UsedPred giving the list NewUsedPred.

salient-attrib-rel(Entity,RelEntity,Pred,UsedPred,NewUsedPred): A mental ac-
tion similar to salient-attrib except that the most salient attribute that describes
Entity relative to the other entity RelEntity is chosen.

Set Operators

subset(Set,Lambda,Subset): A mental action that computes the subset Subset of the
set Set that satis�es the lambda expression Lambda. (A Prolog goal.)

seteq(Set1,Set2): Set1 is equal to Set2 (i.e., they are subsets of one another). (A Prolog
goal.)

subset(Set1,Set2): Set1 is a subset of Set2. (A Prolog goal.)

psubset(Set1,Set2): Set1 is a proper subset of Set2. (A Prolog goal.)

partition(Set,Set1,Set2): An action that partitions Set by removing all elements of
Set1 from Set to give Set2. (A Prolog goal.)

Suggestion

suggest(Plan,SubPlan,Actions): The set of actions Actions is a suggestion to expand
subplan SubPlan of Plan by using the actions.

salience-suggest-actions(Plan,SubPlan,Entity,Actions): A mental action that re-
turns the set of primitive actions Actions that is the yield of a modifier plan for the
most salient modi�er not used in the subplan SubPlan of Plan. This action accesses
an agent's property salience hierarchy.

World Knowledge

category(Object,Cat): The object with internal name Object is of category Cat.

called(Object,Name): The object with internal name Object has the external name Name.

has(Object,Landmark): The object with internal name Object has the landmark (also an
object) with internal name Landmark.

131

place(Object,Intersection,LocalGeometry): The place with internal name Object is
the intersection of the paths whose names are listed in Intersection. LocalGeometry
speci�es the angle and orientation of each path that enters of leaves the intersection.

path(Object,Row): The path with internal name Object has the places listed in Row on
it in that order.

132

