
COROLLARIES & 
EMPIRICAL RESULTS 
1. We prove the long-standing conjecture 

(Pennington et al., 2014) that “a is to b 
as x is to y’"  holds iff for every word ! ,  

!  

2. In a noiseless space, the squared 
Euclidean distance between words is a 
decreasing linear function of csPMI:  

!  

Empirically, the correlation is quite 
strong (Pearson’s ! ): 

3. The change in mean csPMI mirrors a 
change in the type of analogy, from 
geography to verb tense to adjectives: 

4. When the variance in csPMI is lower, 
analogy solutions are more accurate 
(Pearson’s ! ). 
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MOTIVATION 
Why can vector arithmetic be used to 
operate on word embeddings generated 
by non-linear models? 

!  

Current theories make untenable 
assumptions about the word frequency 
distribution or embedding space. 

vking − vman + vwoman ≈ vqueen
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THE STRUCTURE OF 
WORD ANALOGIES 

Definitions 
A word analogy is an invertible 
transformation !  that holds over a set of 
ordered word pairs iff 

!  

When !  is of the form ! , it is a 
linear word analogy.  When linear word 
analogies hold exactly, they form a 
parallelogram in the embedding space:

f

∀ (x, y) ∈ S, f(x) = y ∧ f −1(y) = x

f ⃗x ↦ ⃗x + ⃗r

Interpreting Inner Products 
GloVe and SGNS implicitly factorize a 
word-context matrix containing a co-
occurrence statistic (Levy and Goldberg, 
2014). 

• !  holds over !  in an SGNS or GloVe 
word space iff !  holds 
in the corresponding context space. 

• We can write !  as the inner 
product !  scaled by ! .

f S
g : ⃗x c ↦ ⃗x c + λ ⃗r

∥ ⃗x − ⃗y ∥2

⟨ ⃗x − ⃗y , ⃗xc − ⃗yc⟩ 1/λ

THEORETICAL RESULTS 
What conditions have to be satisfied by 
the training corpus for these linear word 
analogies to hold in a noiseless space? 

Co-occurrence Shifted PMI Theorem 
Let the co-occurrence shifted PMI be
! , !  be 
a noiseless SGNS or GloVe word space, 
!  be the word-context matrix that is 
implicitly factorized, and !  a set of ordered 
word pairs.  

A linear analogy !  holds over !  iff 
• csPMI!  is the same for every word 

pair in !  
• csPMI! csPMI!  for any two 

word pairs in !  
• !  is 

linearly dependent (“contextually 
coplanar”)

csPMI(x, y) = PMI(x, y) + log p(x, y) W

M
S

f S
(x, y)
S
(x, y) = (a, b)

S
{Ma,⋅ − My,⋅, Mb,⋅ − My,⋅, Mx,⋅ − My,⋅}

Robustness to Noise 
In practice, word analogies are quite 
robust to noise. Why? 

• The definition of vector equality is looser 
in practice: !  is solved by 
finding the word vector closest to 
! . 

• Analogies mostly hold over frequent 
word pairs, which are associated with 
less noise.

(a,?) : (x, y)

⃗a + ( ⃗y − ⃗x )


