
JADT 2010 : 10 th International Conference on Statistical Analysis of Textual Data

Party status as a confound in the  
automatic classification of political speech by ideology

Graeme Hirst, Yaroslav Riabinin, Jory Graham

Department of Computer Science, University of Toronto, Toronto, Canada M5S 3G4

Abstract 
A number of recent papers have used support-vector machines with word features to classify political texts – in 
particular, legislative speech – by ideology. Our own work on this topic led us to hypothesize that such classifiers 
are sensitive not to expressions of ideology but rather to expressions of attack and defence, opposition and 
government. We test this hypothesis by training on one parliament and testing on another in which party roles 
have been interchanged, and we find that the performance of the classifier completely disintegrates. Moreover, 
some features that are indicative of each party “swap sides” with the change of government. And combining 
ideologically inconsistent opposition parties together in the classifier does not in most cases seriously degrade its 
performance. Our results suggest that the language of attack and defence, of government and opposition, dominates 
and confounds any sensitivity to ideology in these kinds of classifiers.
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1. Introduction
There have been a number of attempts recently to develop methods to automatically determine 
the ideological position of a political text. For example, one might wish to take a newspaper 
editorial or a blog and classify it as socialist, conservative, or Green. In practice, much of 
the research has taken speeches by members of a legislature (such as the U.S. Congress or 
the European Parliament) as the text to be classified and indicators such as party membership 
or legislative voting patterns as a proxy for ideology (indeed, Yu et al., 2008, use the terms 
party classifier and ideology classifier almost interchangeably); thus the problem becomes one 
of predicting one of these indicators from speech. One might expect, a priori, that methods 
based solely on the vocabulary used in a text would not be effective, because the members of 
a legislature, regardless of ideology, are all discussing the same topics – e.g., the legislation 
before them or the issues of the day – and hence would all be using the same topic-derived 
vocabulary (Mullen and Malouf 2006). The ideology expressed in a text would thus be apparent 
only at the sentence- and text-meaning levels. Nonetheless, one might hypothesize that different 
ideological frameworks lead to sufficiently different ways of talking about a topic that vocabulary 
can be a discriminating feature (Lin et al., 2006). And indeed, several studies have obtained 
notable results merely from classification by support-vector machines (SVMs) with words as 
features (“bag-of-words classification”).

For example, Thomas et al. (2006) examined speeches made by members of the U.S. House of 
Representatives to try to determine whether each speaker supported or opposed the proposed 
legislation under discussion. They combined bag-of-words text classification by SVMs with 
textual information about each speaker’s agreement or disagreement with other speakers, 
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obtaining an accuracy of around 70% (the majority baseline was 58%). Greene (2007) obtained 
an improved accuracy of over 74% on the same task by annotating each word with its grammatical 
relation from a dependency parse. Jiang and Argamon (2008), on the related task of classifying 
political blogs as liberal or conservative, improved results over using word features of the 
whole text by first trying to identify subjective sentences and the expressions of opinion that 
they contain, and then limiting the features to those parts of the text.

Diermeier et al. (2007) used SVMs with bag-of-words features to classify members of the U.S. 
Senate by ideology, labelling each speaker as a liberal or a conservative, and achieved up to 
94% accuracy. However, in these experiments, the authors focused on “extreme” senators – the 
25 most conservative and the 25 most liberal members in each Senate. On “moderate” senators, 
the results were notably poorer (as low as 52% accuracy). Moreover, there was considerable 
overlap between the training and testing portions of Diermeier et al.’s dataset, since they 
extracted content from multiple Senates (101st to 108th) and since members of Congress tend 
to preserve their beliefs over time. Specifically, 44 of the 50 “extreme” Senators in their test set 
were also represented in the training data, which means that the classifier was already trained on 
speeches made by these particular individuals. Thus the classifier might be learning to discern 
speaking styles rather than ideological perspectives. 

Later work by the same authors (Yu et al., 2008) made no distinction between moderates and 
extremes; rather, they tried to classify all members of the 2005 U.S. Congress by party affiliation, 
achieving an accuracy of 80.1% on the House of Representatives and 86.0% on the Senate. The 
goal of their study was to examine the person- and time-dependency of the classifier by using 
speeches from both the Senate and the House and comparing the results. They found that party 
classifiers trained on House speeches could be generalized to Senate speeches of the same year, 
but not vice versa. They also observed that classifiers trained on House speeches performed 
better on Senate speeches from recent years than older ones, which indicates the classifiers’ 
time-dependency. 

We began the present work to see whether these kinds of bag-of-words SVM classification 
methods would hold up in analysis of speech in the Canadian Parliament (section 3 below). 
Our results, however, led us to question whether vocabulary differences between parties really 
reflected ideology or whether they had more to do with each party’s role in the Parliament, and 
we investigate this in section 4 below.

2. Background: The Canadian party system and Parliament
The Canadian Parliament is a Westminster-style parliament. The party with the most seats in the 
House of Commons (albeit possibly a minority of them) forms the government; the other parties 
are the opposition. There may also be a few Independent (unaffiliated) members. In the last 12 
years, there have been four or five parties in each Parliament. In broad terms the parties may be 
classified as conservative (Reform Party, Canadian Reform Conservative Alliance, Progressive 
Conservative Party, Conservative Party of Canada), liberal or centre (Liberal Party) 1, or left-
wing (New Democratic Party and Bloc Québécois).

Both English and French are official languages of Canada. A speaker in Parliament may use either 
language, and will sometimes even switch between the two within a speech. Everything said in 

 1 Thus in our data, all liberals are Liberals, but not all conservatives are Conservatives. Similarly, we distinguish 
between opposition parties – any party that is not the governing party – and the Opposition party – the opposition 
party from which the Leader of the Opposition is drawn.
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Parliament is professionally translated into the other official language, and the proceedings are 
published in both languages. Thus the published English text of the debates is a mixture of original 
English and translations from French, and the French text has the complementary distribution.

3. First set of experiments: Classifying by party
The present work was intended as a prelude to a larger project on ideological analysis of text. 
Our first task, intended as a baseline, was to apply bag-of-words support-vector machine 
classification, as used by Diermeier et al. (2007) and Yu et al. (2008) on U.S. Congressional 
speech, to speech in the Canadian Parliament, to see whether we could classify the speech by 
party affiliation (as a proxy for ideology) and obtain similar results, despite the differences in 
the political systems of the two countries. 

In Canadian politics, unlike those of the U.S., party discipline is strong and (with only rare 
exceptions) all members of a party will vote the same way. The governing party will always vote 
to support its legislation; an opposition party might oppose it or support it. Thus (in contrast to 
the tasks described by Diermeier et al. and Yu et al.), there is no meaningful distinction between 
predicting voting records from parliamentary speech and predicting party affiliation. On one 
hand, it might be argued that this makes the task easier because parliamentary speech is likely 
to be highly partisan. On the other hand, it might be argued that it makes the task more difficult, 
because there is a greater diversity of views with precisely the same voting pattern, and so the 
classification is less straightforward.

In order to avoid the problems inherent in cross-time analysis, as highlighted by the work of 
Diermeier et al. (2007), we focus in this section on a single time period, so that there is a one-
to-one mapping between members of Parliament (MPs) and documents in our dataset. Each 
document is a concatenation of all the speeches made by a speaker, and no other document 
contains text spoken by that person. Thus no speaker appears in both training and test data.

3.1. Data

We used both the English and French House of Commons Debates (“Hansard”) for the first 
350 sitting days of the 36th Parliament (1997-09-22 to 2000-05-10). In the 36th Parliament, 
a majority government was formed by the Liberal Party, led by Jean Chrétien. This data was 
available in a convenient plain-text form with sentence breaks identified (Germann, 2001), as it 
has been widely used for research in machine translation. 

We considered two sections of the proceedings: the debates on legislation and other statements 
by members (“Government Orders”) and the oral question period. And we focused on the 
governing Liberal Party and the opposition conservative parties 2, in order to do a binary 
discrimination, liberal versus conservative; the left-wing parties had relatively few members in 
this Parliament and were excluded from the analysis. 

For each MP who was a member of one of the liberal or conservative parties, and for each 
language, we formed a ‘document’ by concatenating all their utterances in debates, question 
period, or both throughout the Parliament. (For simplicity, we will refer to all utterances as 
‘speeches’, regardless of their length, including questions and answers in the oral question 

 2 At the time of this Parliament, the conservative parties were in disarray. The Opposition was the conservative 
Reform Party (which became the Canadian Reform Conservative Alliance in March 2000), but the conservative 
Progressive Conservative Party also held a number of seats. 
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period.) We experimented with a variety of pre-processing methods, including stemming 
the words or leaving them whole, removing or retaining stop words (defined as the 500 most 
frequent words in the text), and removing or retaining rare words (defined as those occurring 
in fewer than five documents). (Details of these and other pre-processing matters are given 
by Riabinin, 2009.) In some of our experiments, we discarded the data for members who said 
very little, or nothing at all, in question period or in debates, using 200 documents representing 
121 liberals and 79 conservatives; in other experiments, we considered all 156 liberal and 79 
conservative members who spoke at all 3. In all, depending on our choices in pre-processing, 
we had about 4 million words in each language for liberals (of which approximately 900.000 
were from the question periods) and 2.7 million for conservatives (of which approximately 
500.000 were from the question periods).

Generally, these variations in pre-processing made little difference to the results. In this paper 
we report results for experiments on the texts for all speakers, with words left unstemmed and 
with rare words removed, which usually, though not invariably, gave the best results.

3.2. Method

Taking word-types as the features for classification – that is, regarding the document for each 
speaker as a bag of words – for each language we trained an SVM classifier for ideology as 
indicated by party membership, liberal or conservative. In training and testing, we used five-
fold cross-validation. We experimented with four weighting schemes: boolean (presence of 
feature), tf (term frequency), tf-norm (term frequency normalized by document length) and 
tf-idf (term frequency by inverse document frequency). The best results were obtained with tf-
norm and tf-idf; the results we present below all use the latter.

3.3. Results

Tab. 1 shows the accuracy of classification of party membership by the SVM for each language on
the documents of each data set: oral question period (OQP), debates (GOV) and the two combined 
(OQP+GOV). In all cases, retaining the 500 most frequent features led to higher accuracy than 
removing them. The baseline method of choosing the larger class (liberal) for all members 
would give an accuracy of 65.5%. All our results are well above this baseline, and in fact reach 
almost 97% for oral question period in English when frequent words are retained. The reason 
for the discrepancy between this result and the 89.5% obtained for the same data in French is 
unclear, as the two texts are mutual translations and no such effect was seen with the debates 
texts. We also observe that in three cases out of four, combining debates and question period in 
a single classifier is deleterious to accuracy compared to classifying each separately. Generally 
speaking, our results are similar to, or better than, those of Yu et al. (2008) on the U.S. Congress.

3.4. Discussion

The higher accuracy of classification for question period than for debates suggests that the language 
of question period is in some way more partisan than that of debates. However, our  examination 
of the most discriminative words suggests that this partisanship is not so much ideological as a 
matter of attack and defence. In particular, in the Canadian Parliament, the oral question period 

 3 Several members of the conservative parties either defected to the Liberal party or became independents during 
this Parliament; and one member of the left-wing NDP defected to a conservative party. We treated all these 
members as conservatives in our experiments; for details and rationale, see Riabinin (2009).
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consists largely of hostile questions from members of the opposition parties to ministers of the 
government, with only occasional friendly questions from government backbenchers, which 
themselves often serve primarily to set up an attack on the opposition 4. It’s possible, therefore, 
that our classifier may be learning – at least in part – not to distinguish ideologies but to 
distinguish questions from answers or attack from defence, which is not the goal of our research.

 OQP+GOV OQP GOV

With 500 most frequent features retained
English 83.8 96.9 83.3
French 83.2 89.5 86.0

With 500 most frequent features removed
English 78.7 92.9 79.6
French 80.8 84.8 83.5

Table 1: Accuracy (%) of classification by ideology on speech in the oral question period (OQP) and 
debates (GOV) by liberal and conservative members of the 36th Parliament, with and without removal 

of the 500 most frequent features (majority baseline = 65.5%)

Tab. 2 shows the ten most discriminative English words for each side in question period.
For the governing liberals, the top words are hon and member, as in the hon. member for
Halifax West, which is how a minister from the governing party typically addresses a member 
who has asked a question. Also, the word we might be used by a minister to speak on behalf of 
the entire party or government when responding to questions. For the opposition conservatives, 
the word why serves the obvious purpose of posing a question, and the words he and her are 
likely used to refer to government ministers who are the targets of the questioning. Also, 
observe the use of words such as bloc, reform, and opposite by the liberals, and prime (as in 
Prime Minister) and liberal and liberals by the conservatives 5. This lends further support to 
the hypothesis that the classifier is partially learning to distinguish government members from 
opposition members.

 Rank liberal conservative
  (government) (opposition)

 1 hon prime
 2 member why
 3 we liberal
 4 opposite solicitor
 5 quebec farmers
 6 housing finance
 7 bloc he
 8 reform liberals
 9 québécois hrdca

 10 women banks

Table 2: The top 10 English words characterizing each class in the oral question period
aHRDC = Human Resources Development Canada, a federal government department.

 4 This contrasts with the practice in similar Parliaments, such as those of Australia and the U.K., in which 
questions are more evenly balanced between those of the opposition and those of government backbenchers. 

 5 Interestingly, this tendency for the names of opponents to be discriminating features is the converse of what 
Lin et al. (2006) found in their analysis of an Israeli–Palestinian debate, in which naming one’s own side was 
discriminating.
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When frequent words are removed we see this effect less, with a corresponding drop in accuracy 
(second part of Tab. 1), but it does not disappear entirely. In this condition, we certainly see 
reflections of ideology in vocabulary. The liberal lexicon is characterized by words related to 
Québec (French, Francophonie, MAI [Montréal Arts Interculturels], PQ [Parti Québécois]) 
and various social issues (housing, violence, humanitarian, youth, society, technology), while 
the conservatives tend to focus on monetary concerns (APEC, taxpayer, dollar, millions, paying, 
premiums), aboriginal affairs (native, Indian, chief), and, to a lesser degree, national defence 
(military, marshall). Nonetheless, the governing liberals use language that is generally positive 
(congratulate, excellent, progress) and is intended to create the appearance of a government 
at work (established, inform, improve, assist, developing, promote). In contrast, the opposition 
conservatives use negative words that are meant to call the government’s competence into 
question (justify, resign, failed, admit, refusing, mismanage). So again, it seems that many of 
the features relate not to ideology but to attack and defence – not to the party’s beliefs but to its 
status as government or opposition.

4. Second set of experiments: Classifying by party status
Even if a classifier for political speech were truly using features related to ideology, we would 
expect that at least some of these features would specifically pertain to views of current events 
and therefore, if it is trained on one Parliament, it will not perform as well on a different 
Parliament in which different events are current, as in the results of Diermeier et al. discussed 
in section 1 above. Nonetheless, we would expect that many of the features will be invariant 
over time and that such a classifier will still perform much better than a baseline.
On the other hand, if the ‘ideological’ classifier is in reality using (solely or primarily) features 
related to government and opposition status, then training on one Parliament would carry over 
only to other Parliaments in which the parties hold the same status; if they swap roles, then the 
classifier will fail. Indeed, in such a case it might (or should!) perform worse than the majority 
baseline, tending to classify liberals as conservatives and vice versa.
In our second set of experiments, we tested the hypothesis that the latter is the case – that an 
SVM bag-of-words classifier for Canadian parliamentary speech is primarily sensitive to party 
status, not ideology.

4.1. Data
To test our hypothesis, we needed a Parliament in which, in contrast to the 36th Parliament, 
a conservative party was in government. We chose the recent 39th Parliament (2006-04-03 
to 2008-09-07), with a minority Conservative Party 6 government led by Stephen Harper; the 
Liberal party was in opposition, along with the New Democratic Party and the Bloc Québécois. 
The proceedings were downloaded from the Parliament of Canada website 7 in HTML-formatted 
documents and processed into a format similar to that of the 36th Parliament data. 

4.2. Method and results

4.2.1. Replication of the first experiments on the new data
We first replicated the experiments of section 3 on the new data, discriminating liberal members 
from conservative members (there was sufficient data for 104 liberals and 130 conservatives) 

 6 So in this Parliament, unlike the 36th, all conservatives are Conservatives.
 7 http://www2.parl.gc.ca/housechamberbusiness/ChamberSittings.aspx.

http://www2.parl.gc.ca/housechamberbusiness/ChamberSittings.aspx
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within the same Parliament. Training and testing with five-fold cross-validation on the 39th 
Parliament, we achieved results similar to those of the 36th Parliament, albeit with slightly 
lower accuracy, especially for the English OQP documents; see Tab. 3 and compare Tab. 1. In 
particular, the accuracy of the classification on French text of speakers in Government Orders 
is anomalously low (baseline level) compared to all our other results including those for the 
English translation of the same text; we have no explanation for this. We also observe that for 
this data, unlike the 36th Parliament, the strategy of removing the 500 most frequent words is 
sometimes superior to that of retaining them.

 OQP+GOV OQP GOV

With 500 most frequent features retained
English 83.8 88.3 72.3
French 75.5 88.8 56.8

With 500 most frequent features removed   
English 79.9 83.5 73.2
French 79.0 88.2 57.2

Table 3: Accuracy (%) of classification by ideology on the 39th Parliament, with 
and without the 500 most frequent words retained (majority baseline = 55.8%)

Examining the primary features used in the classification for oral question periods, we observed 
that several words “swapped sides”: four of the top 10 English words that characterized the 
liberals in the 36th Parliament characterized conservatives in the 39th Parliament, and the 
primary word that characterized conservatives in the 36th Parliament was the second word 
that characterized liberals in the 39th; see Tab. 4. This is evidence for our hypothesis that the 
classifier is really picking up features related to government and opposition status.

 36th Parliament 39th Parliament
 Rank liberal conservative liberal conservative
  (government) (opposition) (opposition) (government)

 1 hon prime conservatives bloc
 2 member why prime liberals
 3 we liberal conservative senate
 4 opposite solicitor immigration violent
 5 quebec farmers mulroney we
 6 housing finance kyoto québécois
 7 bloc he admit greenhouse
 8 reform liberals minority ndp
 9 québécois hrdc promise corruption
 10 women banks her member

Table 4: The top 10 English words characterizing each class in oral question periods 
in each Parliament (extending table 2).

Boldface indicates words that “swap sides” between the two Parliaments. Boldface italic words characterize the 
governing side; the boldface roman word characterizes the opposition

4.2.2. Classifying across Parliaments

Again we used the proceedings of the 36th and 39th Parliaments, both English and French, but 
in each language we took the classifiers trained on one Parliament and tested them on the other. 
(In these experiments, we have the deprecated situation that some individual speakers, being 
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members of both parliaments, occur in both the training data and the test data and thereby might 
give the classifier an unfair boost.) 

The results, shown in Tab. 5, are in all cases well below the majority baseline scores, just as we 
hypothesized.

Training  Testing OQP+GOV OQP GOV

36  39 (Majority baseline = 55.8%)
With 500 most frequent features retained

English 44.9 43.3 44.6
French 45.7 46.1 47.0

With 500 most frequent features removed
English 46.2 44.6 44.1
French 43.5 49.6 43.5

39  36 (Majority baseline = 65.5%)
With 500 most frequent features retained

English 36.8 34.5 36.2
French 35.2 51.10 33.5

With 500 most frequent features removed
English 35.0 49.6 42.7
French 36.4 51.1 33.5

Table 5: Accuracy (%) of classification by ideology when training on one Parliament (36th or 39th) 
and testing on the other

4.2.3. Including the other opposition parties

Another way to see whether the classifier is more sensitive to party status than to ideology is 
to muddy the ideological waters by including the left-wing parties, which were in opposition 
in both Parliaments, in the analysis. If the classification were truly ideological, lumping these 
parties in with the other conservative (36th Parliament) or liberal (39th Parliament) opposition 
parties would markedly degrade the performance of the classifier. On the other hand, if party 
status is what matters, there should be little effect in doing so as the opposition parties will be 
more or less indistinguishable. We carried out this experiment on the English data with frequent 
words retained 8.

The results are shown in Tab. 6. They should be compared with the liberal/conservative results 
for the same Parliament and same processing method, shown in the first lines of Tab. 1 (96.9%, 
83.3%) and Tab. 3 (88.3%, 72.3%). There is almost no degradation of performance on the 36th 
Parliament; for the 39th Parliament, there is a noticeable drop (10.12 percentage points) for the 
question period, but little for the debates.

 OQP GOV

36th 95.6 82.6
39th 78.2 70.9

Table 6: Accuracy (%) of classification of government and opposition (all parties) 
on English text of the 36th and 39th Parliaments with the 500 most frequent words 

retained (majority baselines = 51.5% and 59.4% respectively)

 8 We have not yet completed these experiments for other conditions, for the French texts, or for the OQP+GOV 
English texts.
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4.3. Discussion

The results seen in sections 4.2.1-3 are consistent with the hypothesis that the SVM bag-of-words 
classifier is sensitive not to expressions of ideology for which party membership is a reasonable 
proxy, but rather to expressions of attack and defence, opposition and government. When we 
train on one parliament and test on another in which party roles have been interchanged, the 
performance of the classifier completely disintegrates; the degradation is far worse than can 
be explained merely by the difference between the two parliaments in the vocabulary of the 
current topics of discussion. Some features that are indicative of each party “swap sides” with 
the change of government. And combining ideologically inconsistent opposition parties in the 
classifier does not in most cases seriously degrade its performance.

5. Classification based on the emotional content of speeches
Recall that our feature analysis of the 36th Parliament showed that liberal members tended to 
use words that convey a more positive sentiment than those used by conservatives. This suggests 
that it might be possible to distinguish parties or ideologies (solely) by the emotional content 
of their speeches. Indeed, researchers such as James Pennebaker have made something of an 
industry of interpreting politicians from a statistical analysis of their use of a single category 
of words. For example, during the 2008 U.S. presidential election, Pennebaker (2008) wrote: 
Over the last few years, some have argued that the use of negations (e.g., no, not, never) indicate [sic] a sign 
of inhibition or constraint. Low use of negations may be linked to impulsiveness. … Across the election cycle, 
Obama has consistently been the highest user of negations – suggesting a restrained approach – where as [sic] 
McCain has been the lowest – a more impulsive way of dealing with the world. 

Similarly, Pennebaker concluded that McCain’s greater use than Obama of the first-person 
singular (I, me, my) signaled a likely greater openness and honesty 9.

In the context of our results above, the questions we ask are not just whether liberals can be 
distinguished from conservatives in the Canadian Parliament merely by the emotional content 
of their speeches, but also, if so, whether the feature actually discriminates ideology (in line 
with the stereotype of happy liberals, dour conservatives) or is again confounded by the parties’ 
status in the Parliament.

5.1. Method and data

To test these questions, we used Pennebaker et al.’s (2007b) software Linguistic Inquiry and 
Word Count (LIWC2007). LIWC counts the proportion in a text of particular words and word 
stems in over 60 categories, including linguistic properties (pronouns, adverbs, prepositions, 
etc.), psychological denotation (positive emotion, negative emotion, etc.) and various topics 
(work, money, religion, etc.); it does not, itself, provide any interpretation of the counts.

For these experiments, we used the English speeches of the oral question periods and debates 
of the 36th and 39th Parliaments, excluding MPs who spoke very little. This gave us a dataset 
of documents for 200 MPs (121 liberals, 79 conservatives) in the 36th Parliament and 220 
MPs (125 conservatives and 95 liberals) in the 39th Parliament. First, we ran LIWC on this 

 9 The validity of this kind of analysis is discussed and defended by Pennebaker et al. (2007a). But Pennebaker 
(2008) also writes: «No one should take any text analysis expert’s opinions too seriously. The art of computer-
based language analysis is in its infancy. We are better than tea-leaf readers but probably not much».
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data, which gave us a 64-component vector for each document, each component being the 
value that LIWC computed for the document for one of its categories. We then performed 
classification experiments on the data (with five-fold cross-validation) using this 64-component 
representation of the documents, in order to see whether positive and negative emotion were 
among the top discriminating features for liberals and conservatives, respectively. Then we 
repeated the classification, using only positive emotion and negative emotion (referred to as 
posemo and negemo) as features. Finally, we performed a third experiment, in which affect 
was reduced to a single feature, the amount by which the positive emotion in the text exceeded 
the negative (i.e., posemo minus negemo); this representation doesn’t distinguish a completely 
unemotional text from one that contains emotion of each polarity in equal amounts.

5.2. Results

Tab. 7 shows the results of these experiments. In the first experiment, with 64 features, the 
accuracy for both datasets was equal to the majority baseline, because all MPs were classified 
as members of the majority party! In contrast, using only posemo and negemo, either as two 
features or as a single feature, yielded a substantial improvement of up to 20.5 percentage points 
over the baseline (a relative error reduction of 51.9%) for the 36th Parliament and 16.3 points 
for the oral question periods of the 39th. However, performance remained around baseline for 
the debates of the 39th Parliament.

Nonetheless, a feature analysis confirmed that in the 36th Parliament, positive emotion was 
among the top five liberal features and negative emotion was among the top ten conservative 
features, whereas in the 39th Parliament, positive emotion was the fourth feature for conservatives 
in oral question periods and sixth in debates, whereas negative emotion was eighth and tenth 
respectively for liberals. Hence, we can see that positive emotion is a characteristic of members 
of the governing party, and negative emotion is a characteristic of members of an opposition 
party; again, party status confounds ideological classification. The result of the classifier on all 
64 features may be explained by the fact that no LIWC category had a significant impact on the 
classification. In other words, even though some LIWC categories were discriminating features 
for liberals and others were discriminating features for conservatives, the overall difference 
between the two groups was so slight that without feature selection the resulting classifier 
simply labelled all test instances as belonging to the majority class. This seems to be the case 
also for posemo and negemo by themselves in debates in the 39th Parliament.

 36th 39th
 OQP GOV OQP GOV

64 features 60.5 60.5 56.8 56.8
posemo and negemo	 80.5 79.5 73.1 55.0
posemo minus negemo	 81.0 78.5 72.2 59.1

Table 7: Accuracy (%) of classification by party using LIWC features for English 
text of the 36th and 39th Parliaments’ oral question period (OQP) and debates (GOV) 

(majority baseline = 60.5% and 56.8% respectively)

6. Conclusion
Our results cast doubt on the results of research that uses words as features in classifying the 
ideology of speech in legislative settings – and possibly in political speech more generally. 
Rather, the language of attack and defence, of government and opposition, seems to dominate 
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and confound any sensitivity to ideology. Such research therefore reduces in effect to the 
classification of support or opposition, much as in the linguistic component of the work of 
Thomas et al. (2006) described in section 1 above. However, even if our classifiers are construed 
as distinguishing support from opposition, our results are much more accurate than those of 
Thomas et al., even though we did not use any explicit component for detecting agreement 
or disagreement between individual speakers. This may be partly attributed to one of the 
differences between Canadian and U.S. politics: Canadian parties have strong party discipline, 
and agreement between speakers may be reliably inferred from shared party membership.

Our results contrast with the conclusions of Diermeier et al. (2007), who argue from their own 
results that speakers’ words in debates in the U.S. Congress are “expressions or representations 
of an underlying belief system”. Again, political differences might be a partial explanation of 
the difference. Perhaps the weak party discipline of the U.S. and the separation of the Congress 
from the Executive branch motivates greater attention to ideological substance in debates than 
does the Canadian (Westminster-style) system in which an explicit governing party, including 
the head of government and all cabinet ministers, is represented as such in the legislature. But 
this is speculation; our results have demonstrated a confound that must be taken into account in 
research on ideological classification of speech in any context.
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