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Millions of individuals have acquired or have been born with neuro-motor conditions that limit

the control of their muscles, including those that manipulate the articulators of the vocal tract.

These conditions, collectively called dysarthria, result in speech that is very difficult to un-

derstand, despite being generally syntactically and semantically correct. This difficulty is not

limited to human listeners, but also adversely affects the performance of traditional automatic

speech recognition (ASR) systems, which in some cases can be completely unusable by the

affected individual.

This dissertation describes research into improving ASR for speakers with dysarthria by

means of incorporated knowledge of their speech production. The document first introduces

theoretical aspects of dysarthria and of speech production and outlines related work in these

combined areas within ASR. It then describes the acquisition and analysis of the TORGO

database of dysarthric articulatory motion and demonstrates several consistent behaviours among

speakers in this database, including predictable pronunciation errors, for example. Articula-

tory data are then used to train augmented ASR systems that model the statistical relation-

ships between vocal tract configurations and their acoustic consequences. I show that dynamic

Bayesian networks augmented with instantaneous theoretical or empirical articulatory vari-

ables outperform even discriminative alternatives. This leads to work that incorporates a more

rigid theory of speech production, i.e., task-dynamics, that models the high-level and long-term

aspects of speech production. For this task, I devised an algorithm for estimating articulatory
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positions given only acoustics that significantly outperforms the state-of-the-art. Finally, I

present ongoing work into the transformation and re-synthesis of dysarthric speech in order to

make it more intelligible to human listeners.

This research represents definitive progress towards the accommodation of dysarthric speech

within modern speech recognition systems. However, there is much more research that remains

to be undertaken and I conclude with some thoughts as to which paths we might now take.
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Chapter 1

Introduction

There are several simplifying assumptions in automatic speech recognition (ASR) that have

become particularly ingrained. One such assumption is that the acoustics of speech can be ade-

quately described despite being agnostic to non-surface phenomena. Although ASR takes a few

important cues from the biological perception of speech, such as the Mel scale (O’Shaughnessy,

2000), it rarely models physical production explicitly. Secondly, modern ASR is often built

assuming that models trained on a sufficiently large set of speakers will adequately capture

enough inter-speaker variability to be usable by a typical user. The further one’s voice deviates

from this aggregate, however, the less likely an ASR system is to function as intended.

Each of these simplifications is useful in certain contexts but their utility in the presence

of more atypical patterns of production can be disputed, especially in cases of speech disor-

der. One group of such disorders, called dysarthria, is primarily an endogenous phenomenon

distinguished by its aberrant mechanics of articulation resulting in highly unintelligible speech

that is not accommodating to the traditional assumptions of speech recognition. The intuition

behind this work is that more informed models are also more accurate and that by studying

the phenomena of dysarthria empirically and encoding the results explicitly we can build more

suitable software for those with speech disabilities. Surprisingly, there has so far been relatively

little research that incorporates production knowledge into ASR, especially for this population.

1
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This document describes research that has significantly improved automatic speech recog-

nition accuracy for individuals with dysarthria by augmenting acoustic models with articulatory

information. This information is obtained through the collection of an extensive new database

of dysarthric speech called TORGO. The relationships between acoustics and articulation are

especially relevant for these speakers, for whom normal speech production is compromised.

The TORGO database is also applied to new models of speech recognition that incorporate

high-level abstractions of speech production.

1.1 Central thesis

The thesis presented in this dissertation is that classification systems built using empirical and

theoretical models of speech production can significantly improve recognition accuracy for

speakers with dysarthria. Current automatic speech recognition technology has produced ma-

ture and widespread tools for the general public, but a preponderance of error in recognizing

and adapting to dysarthric speech has kept such software effectively inaccessible to individuals

with severe speech disorders. The driving motivation is therefore to be able to augment the

expressive abilities of those with communicative challenges. This motivation is manifested in

a secondary component of this dissertation, which provides an inaugural step into the applied

areas of augmentative and alternative communication.

The central intuition is that an understanding of the source of a phenomenon will instruct

us on how to manage its consequences. This is a useful heuristic in any scientific domain.

Figure 1.1 provides a motivating example of the utility of studying the articulatory source of

speech. The spectrographic representations of the acoustics of three nasals (the top row of

figure 1.1) are superficially indistinguishable and, indeed, classification of these phonemes is

difficult. However, by simply observing the degree of lip aperture over time (the bottom row

of figure 1.1), we can fairly easily determine which of the three involves bilabial closure and

hence classification becomes significantly simpler.
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(a) /m/ (b) /n/ (c) /ng/
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Figure 1.1: Example spectrograms for nasals (a) /m/, (b) /n/, and (c) /ng/, and all normalized

lip aperture traces over the same phonemes for non-dysarthric speech in the TORGO database.

The distinction between nasals can more easily be made, visually at least, by observing the

relevant articulators. The /m/ shows the clearest directed movement, namely to close the lips.

The lip traces for /n/ and /ng/ are more disordered and their patterns may suggest a dependence

on their phonemic contexts. Except where noted, this thesis uses the ARPAbet phone set.
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1.2 Three perspectives of the thesis

The work described in this dissertation takes place at the intersection of three disciplines –

computer science, speech-language pathology, and rehabilitation science. The following sub-

sections outline this document according to the particular perspectives of these disciplines.

1.2.1 The perspective from computer science and pattern recognition

At one level, dysarthric speech represents a highly entropic data set that is especially challeng-

ing for the less discriminative of statistical models. At another level, however, it is apparent

that the long-term and speaker-dependent nature of dysarthric speech requires a fundamentally

new approach to processing speech data. In either case, additional data is required to con-

struct more complex models, and this data must include supplementary information, such as

the articulatory causes of the acoustic consequences.

Chapter 2 provides some background on anatomical aspects of speech production and clin-

ical aspects of dysarthria. Chapter 3 outlines a number of techniques that have been applied to

the scenario of atypical speech, including discriminative methods and modifications to tradi-

tional hidden Markov models. These methods, however, are limited in their lack of articulatory

knowledge. Chapter 4 describes the collection of our own database of dysarthric articulation,

called TORGO. Since this database was always intended to be used to train ASR systems, a

number of engineering decisions were factored into its design including the selection of stimuli

to elicit a broad range of ecologically valid observations and categories. Chapter 5 incorporates

this database and the additional statistical knowledge it presents into advanced discriminative

classification methods augmented with articulatory knowledge. This leads to completely new

conceptualizations of the very task of ASR in terms of higher-level dynamical models of speech

production, as described in chapter 6. Finally, Chapter 7 is more applied than its predecessors

and sketches a system that transforms dysarthric input audio in order to make it more intelligi-

ble to human listeners.
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1.2.2 The perspective from speech-language pathology

Pattern recognition algorithms depend pervasively on a perspective that speech is a sequence of

very brief and non-overlapping patterns of sound. The true nature of speech, however, involves

overlapping long-term dynamics and hidden behaviours that routinely evade the scrutiny of

such a perspective. This dissertation highlights areas in which traditional ASR lacks the theo-

retical underpinnings of speech science and empirically analyzes approaches that unify those

theoretical aspects with applied systems. The particular influences of speech science used in

this dissertation may suggest other novel ways in which speech theory can be applied to meth-

ods that classify speech sounds into words or phonemes, for example.

Chapter 2 provides some background on algorithms and models used in traditional au-

tomatic speech recognition. Chapter 3, though mostly referring to research in engineering,

demonstrates which aspects of dysarthric speech have traditionally been engaged within ASR.

The creation and nature of a new database of dysarthric articulation, called TORGO, is de-

scribed in chapter 4. In particular, this chapter demonstrates the use of specialized techniques

in the collection of articulatory data and provides insight into a number of relationships be-

tween articulation and acoustics of dysarthric speech. Further insight may be obtained through

the third-party use of this database by speech-language pathologists, clinicians, and speech

scientists.

Chapter 5 describes the use of state-of-the-art discriminative classification methods in the

recognition of dysarthric speech, given articulatory data. Although these methods are relatively

successful, they also indicate a boundary for what is possible using short-term representations

of speech. Chapter 6 challenges this boundary by incorporating a number of long-term rep-

resentations of speech into ASR, including principal differential analysis and Task Dynamics.

This chapter may inspire the use of other behavioural representations of speech such as DIVA

(Guenther and Perkell, 2004) in similar contexts. Finally, chapter 7 explores various acoustic

transformations of dysarthric speech in order to make it more intelligible to human listeners.

The aspects of dysarthric speech selected in this study are of particular relevance, and the
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demonstration that certain problems that may interfere with intelligibility can be identified and

corrected highlights the importance of discovering and systematically identifying those aspects

of disordered speech.

1.2.3 The perspective from rehabilitation science

Rehabilitation science often involves the use of modern and breakthrough technologies in or-

der to manage physical and cognitive disabilities, to empirically evaluate those solutions, and

to improve the quality of life for users of these technologies. The use of language as a means

of personal expression is routinely supported by writing aids both in hardware and software

and by systems that either produce speech output or accept spoken phrases and commands. It

is therefore crucial that such systems correctly identify the words spoken by individuals with

speech disabilities. This ability of speech recognition must necessarily precede the develop-

ment of applications whose interfaces are tuned to these populations.

Chapter 2 provides some background on algorithms and models used in traditional auto-

matic speech recognition and on anatomical aspects of speech production and clinical aspects

of dysarthria. Chapter 3 surveys the prior state-of-the-art in speech recognition, often in semi-

clinical contexts, in which user-driven models of speech are used to handle specific disorders.

The TORGO database of dysarthric speech is introduced in chapter 4. Since this database

includes both detailed acoustic and articulatory data, it can provide clinicians with valuable

insight as to how specific motor deficits affect resulting speech intelligibility and may there-

fore be useful in the development of treatment protocols. Chapter 5 describes experiments with

state-of-the-art speech recognition systems with dysarthric speech and indicates the boundaries

of what is possible or expected in real-world scenarios. Chapter 6 expands on this work with

the presentation of new higher-level models.

Chapter 7 experimentally analyzes modifications to the acoustics of dysarthric speech in

order to make that speech more intelligible. This chapter shows that the effects of dysarthria

on intelligibility can be mitigated by specific adjustments to observed behaviours of dysarthria,
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such as adjusting the phonemes in mispronounced words. This represents the first step towards

building fully automatic augmentative systems capable of assisting individuals to communicate

more effectively with the general public.



Chapter 2

Background

This chapter summarizes the fundamental conceptual building blocks that are used to con-

struct the thesis throughout this dissertation. Section 2.1 describes the relevant features of

the anatomy of speech production, section 2.2 describes some fundamental clinical aspects of

dysarthria, section 2.3 overviews some fundamental knowledge in automatic speech recogni-

tion, and section 2.4 enumerates a few conceptual frameworks by which speech anatomy can

be represented for use in speech recognition.

2.1 Anatomy of speech production

The organs used in speech have all evolved for purposes other than speaking (e.g., breathing,

eating) and have only comparatively recently been adapted to speech, making them in some

sense a suboptimal communication mechanism (O’Shaughnessy, 2000). The speech organs

can be subdivided into three groups: the lungs, the larynx, and the upper vocal tract consisting

of the jaw, lips, tongue, and mouth walls. The lungs provide all of the airflow that is trans-

formed by the rest of the vocal tract into the time-varying air pressure waves that constitute

speech. During speech, the diaphragm muscle compresses the lungs, producing a pressure of

10–20 cm H2O, compared with 1–2 cm H2O required for normal breathing (O’Shaughnessy,

2000). Normal breathing is generally almost inaudible since the air pressure expelled by the

8
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lungs is unobstructed by the vocal tract. Many animals, however, can create vocal noise by

sinusoidally obstructing this air flow by means of the larynx, which is supported by the thy-

roid, cricoid, arytenoid, and epiglottal cartilages (Sundberg, 1977). These cartilages are shown

in figure 2.1, with the cricoid cartilage below the vocal fold, and the arytenoid cartilages in

the posterior section which can move to abduct or adduct the vocal folds. The vocal folds

do not follow muscle contractions directly, but certain muscles are involved in changing the

characteristics of the quasi-periodic airflow. Changes to the fundamental frequency (F0) of

speech1 are primarily caused by two laryngeal muscles – the vocalis muscle in the vocal folds

and the cricothyroid which can increase F0 by tensing and lengthening the vocal folds by up to

4 mm (Löfqvist, McGarr, and Honda, 1984). The fundamental frequency can also be lowered

by active contractions of the thyroarytenoid and sternohyoid muscles (Titze, 1994). If these

muscles cannot be controlled (i.e., contracted or relaxed), the vocal folds are tightly adducted

and cannot vibrate normally, resulting in harsh, irregular F0 (Schneiderman and Potter, 2002).

The muscular and bony tissue structures above the larynx contribute to speech by either

warping the spectral distribution acoustic waves or by generating certain obstruent sounds such

as plosives and fricatives. The jaw is an important articulator controlled by the masseter and

pterygoid muscles, although its function is largely indirect in that its placement is used to

assist the positioning of the tongue and lips. The lips themselves are controlled by a number

of muscles. The orbicularis oris surrounds the mouth, protrudes the lips outward, and rounds

the lips when contracted. The buccinator is a thin muscle below the cheekbones that stretches

toward the mandible and controls retraction and spreading of the lips. The depressor anguli

oris and depressor labii inferioris muscles lie below the lips and away from the midsagittal

plane and pull the lip corners downwards. These muscles have counterparts levator anguli oris

and levator labii superioris above the lips which pull the lips upwards. All of these muscles are

controlled by the facial nerve, described below.

1The fundamental frequency is the rate of vocal fold vibration and generally corresponds to the aspect of per-
ceived pitch (Stevens, 1998). Harmonics in the speech spectrum occur at multiples of the fundamental frequency,
which can be determined using methods described in chapter 7.
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Figure 2.1: The vocal organs, as shown in the midsagittal plane. Illustration by Laszlo Kubinyi

in Sundberg (1977).
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The tongue is perhaps the most complex and most important articulator in speech, con-

sisting of 12 muscle pairs and tissues (O’Shaughnessy, 2000). The tongue provides almost all

movement within the mouth, with the exception of the velum, which lowers and raises the rear

of the oral cavity to allow air to pass into the nasal cavity. In normal conditions there is almost

no significant lateral tongue movement, though the tongue is highly agile and can be recon-

figured between relevant positions in less than 50 ms (Stevens, 1998). The tip and dorsum of

the tongue are two important areas that allow quick constrictions to occur at various positions

along the vocal tract.

It is useful to conceptualize of the speech production system as a conjunction of at least

two parts: a source which generates sound waves, and a filter which shapes those waves. The

source is represented in this source-filter model by the glottis, whose rate of vibration pro-

vides harmonics at higher multiples of that frequency. The locations of these harmonics are

determined by the interaction of the sound waves with the oral cavity walls, but especially by

sudden changes in the width of that cavity. These sudden changes are due almost exclusively

to the configuration of the tongue, which is the primary causative agent of the filter. Figure

2.2 illustrates this relationship between the physical contour of the tongue and the resulting

effect on the distribution of the formants of vowels. The uniform-tube model which artificially

describes this phenomenon is described further in section 7.2.

All of the speech musculature is controlled by the brain where voluntary movement is initi-

ated by the motor cortex. However, messages produced by the higher structures are transmitted

through highly specialized cranial nerves (CN) that emerge through fissures in the lower brain

around the cerebellum and basal ganglia. Figure 2.3 shows the cranial nerves. These nerves

carry the impulses that constrict the musculature but also communicate sensory data back to

the brain. All of the facial musculature is innervated by the primary facial nerve (CN VII),

although submandibular and sublingual motion is also controlled by the intermediate facial

nerve and the muscles of mastication are controlled by the trigeminal nerve (CN V). Perhaps

most important is the hypoglossal nerve (CN XII) which controls almost all intrinsic and ex-
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Figure 2.2: Exemplar configurations of the tongue for three English vowels and the resulting

spectral envelopes, from Jurafsky and Martin (2009). These examples demonstrate the effect

that the dorsoventral (front-back) position of the tongue has on the distribution of F2 and that

the superior-inferior (top-down) position has on F1.
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Figure 2.3: Inferior ventral view of the brain highlighting the cranial nerves, from Moore and

Dalley (2005).

trinsic muscles of the tongue. When these cranial nerves are disrupted or rendered inoperative,

partial paralysis of the respective musculature occurs as signal information is not transmitted.

By contrast, if these nerves are activated involuntarily, the muscles can react in relatively un-

predictable ways. Specific effects of damage to the cranial nerves are discussed in section 2.2

and modelled loosely in section 6.3.

2.2 Dysarthria

Dysarthria is a set of congenital and traumatic neuromotor disorders that impair the physical

production of speech. These impairments reduce or remove normal control of the primary

vocal articulators but do not affect the regular comprehension or production of meaningful,

syntactically correct language. Congenital causes of dysarthric speech are often manifested by

some sort of asphyxiation of the brain, inhibiting normal development in the speech-motor ar-
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eas. Of these causes, cerebral palsy is among the most common2, affecting approximately

0.5% of children in North America (Hasegawa-Johnson et al., 2006b), 88% of whom are

dysarthric throughout adulthood (Augmentative Communication Incorporated (ACI), 2007).

Later-onset causes are more typically traumatic, including cerebro-vascular stroke affecting

approximately 1% of the population aged 45 to 64, and 5% of those aged 65+, with the sever-

ity of impairment varying with the amount of cerebral damage (Augmentative Communication

Incorporated (ACI), 2007). Other sources of dysarthria include multiple sclerosis, Parkinson’s

disease, myasthenia gravis (i.e., blocked acetylcholine receptors), and amyotrophic lateral scle-

rosis (Kent and Rosen, 2004).

Neurological causes of dysarthria involve damage to the cranial nerves that control the

articulatory musculature of speech (Moore and Dalley, 2005). For example, damage to the

recurrent laryngeal nerve typically reduces control over vocal fold vibration (i.e., phonation),

resulting in either guttural or grating raspiness. Inadequate control of soft palate movement

caused by disruption of the vagus cranial nerve may lead to a disproportionate amount of air

being released through the nose during speech (i.e., hypernasality). More commonly, a lack

of tongue and lip dexterity often produces heavily slurred speech and a more diffuse and less

differentiable vowel target space (Kent and Rosen, 2004). The lack of articulatory control

often leads to various involuntary sounds caused by velopharyngeal or glottal noise, or noisy

swallowing problems (Rosen and Yampolsky, 2000). Dysarthria is differentiated from apraxia,

in which damage to Broca’s area in the left frontal lobe reduces the ability to plan rather than

to execute speech articulation.

The following subsections describe common phenomena in dysarthric speech, including

abnormal speaking rates, fatigue, disfluency, and reduced control of volume, articulation, and

pitch.

2The earliest record of a scientific understanding of cerebral palsy dates from 1861 when Dr. William John
Little described a systematic condition in children characterized by “spastic rigidity of the limbs of new-born
children, [and] spastic rigidity from asphyxia neo-natorum” (Little, 1861). This condition gradually came to be
known as Little’s disease, later generalized to incorporate speech and swallowing difficulties (Posey, 1923), and
later still redefined as spastic displegia — a type of cerebral palsy.
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2.2.1 Abnormal speaking rates

Dysarthric speech is often between 10 and 17 times slower than regular speech, at about 15

words per minute in the most severe cases (Patel, 1998). Apart from being more laborious for

the speaker and listener, slow speech has several acoustic consequences. For example, mono-

syllabic words that are prolonged by lengthened voiced phonemes (e.g., vowels) are frequently

misinterpreted as multisyllabic by human listeners (Kent and Rosen, 2004). Also, if lengthy

occlusions precede voiceless plosives such as /k/, /p/, or /t/, listeners often mispartition a

single word into two (Raghavendra, Rosengren, and Hunnicutt, 2001). Despite a great amount

of inter-speaker variability, dysarthric individuals who can maintain a regular speaking rate are

able to repeat individual speech units with fairly normal consistency (Kent and Rosen, 2004).

Abnormally slow speaking rates have been shown to expand the acoustic vowel space, lead-

ing to increased intraspeaker variability for those speakers, and more difficult differentiation

between phonemes (Kent and Rosen, 2004). Tsao et al. contest the significance of this vowel

space expansion in general, but agree that the acoustics of speech is far more variable among

slow speakers, including higher interspeaker variability within that group (Tsao, Weismer, and

Iqbal, 2006). Simple alterations of speaking rate alone, however, do not account for all unin-

telligibility of dysarthric speech (Hammen, Yorkston, and Minifie, 1994).

2.2.2 Muscle fatigue and weakness

Low endurance of the facial muscles is often associated with dysarthria, and may be caused

by deficiencies at different points of the neuromotor process. Reduced lip and tongue strength

and tongue endurance have been associated with Parkinsonism (Solomon, Robin, and Luschei,

2000), stroke (Thompson, Murdoch, and Stokes, 1995), myasthenia gravis (Weijnen et al.,

2000), and traumatic brain injury (Goozee, Murdoch, and Theodoros, 2001). Muscle weakness

may also limit the amount of air these speakers can release, therefore reducing acoustic energy.
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Figure 2.4: Example waveforms of typical (A) and cerebral palsied (B) pronunciation of the

word five (adapted from Chen and Kostov (1997)).

Despite a clear correlation between dysarthria and facial muscle weakness (Umapathi et al.,

2000), the acoustic consequences of that weakness may be less important than other features

of disordered speech (Goozee, Murdoch, and Theodoros, 2001). McHenry and Liss (2006)

suggest that temporal and spatial inconsistencies of hypokinetic and ataxic dysarthria influence

acoustic perception more than increased hypernasality caused by velopharyngeal weakness.

2.2.3 Intense acoustic disfluency

The lack of articulatory control in dysarthria often leads to various involuntary sounds caused

by velopharyngeal or glottal noise, or noisy swallowing problems (Rosen and Yampolsky,

2000). Figure 2.4 shows examples of both involuntary noise and involuntary pausing in dysarthric

versus normal pronunciations of the word five, resulting in two insertion errors and a substitu-

tion error in the former 3.

Other types of disfluency commonly associated with dysarthria include hesitation (e.g.,

false-starts), stuttering, and other involuntary repetition, although these may sometimes result

from higher-level linguistic causes (Kent, 2000). These sorts of disfluencies produce severely

atypical phrasing which is difficult to understand at the utterance level.

3The problem is compounded by a mispronunciation of the labiodental /v/ as the labial /m/.
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2.2.4 Reduced control of articulation and pitch

The most common dysarthric mispronunciations tend to occur with more complex require-

ments on articulatory movement, namely consonants or consonant clusters. Thubthong et al.

(2005) report that among 18 children with CP, word-initial consonants were the most difficult

to pronounce, with only a 62.2% rate of accuracy. Of these, alveolar consonants were the

most troublesome, with /r/ and /t/ being correctly articulated 0% and 27.8% of the time,

respectively. Vowels and word-final consonants were the most accurately articulated phoneme

classes, at 93.7% and 77.1% accuracy respectively. Groups of clustered consonants such as

/tr/ or /kw/ were produced correctly only 11.1% of the time.

Figure 2.5 shows pronunciation of the word yes by both a control and a cerebral palsied

individual. The reduced precision of the fricative /s/ is likely caused by insufficient jaw

movement, and the prolonged duration is almost exclusively due to an extended vowel. In-

terestingly, the distribution of formants in figure 2.5(b) suggests a pronunciation closer to /i/

(O’Shaughnessy, 2000) than to ε as in figure 2.5(a).

Kim et al. (2010) found that speakers with spastic cerebral palsy have drastically reduced

displacement of the tongue tip, in position and in velocity. They also found that directed motion

of the tongue occurred later than voicing onset relative to the general population, which loosely

supports other work that suggest a general difficulty in co-ordinating glottal and supraglottal

systems in dysarthria (Chen and Stevens, 2001).

Pitch prosody

Prosody includes changes in fundamental frequency F0 caused by voluntarily tensing the vocal

folds to stress or decline certain syllables for syntactic effect. Proper control of the pitch aspect

of prosody has several positive effects on intelligibility, and is also an important conveyor of

semantic and emotional content (O’Shaughnessy, 2000).

Dysarthria often reduces voluntary control of the larynx, reducing or diminishing prosody

and resulting in machine-like speech (Mori et al., 2005). Despite this reduction, however,
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(a)

(b)

Figure 2.5: Example waveforms (dB vs time) and spectrograms (frequency vs time) of (a)

typical and (b) cerebral palsied pronunciation of the word yes (from Polur and Miller (2006)).

Note in the latter the suppression of the /s/ fricative in region 1, and the misplaced formants

in region 2.

dysarthric speakers retain at least the ability to reliably form differentiable questions and state-

ments using binary vocal pitch contours (Patel, 2002b; Patel, 2002a). Kim, Hasegawa-Johnson,

and Perlman (2010) suggest that dysarthric speakers use pitch and intensity cues of lexical

stress to a greater degree than non-dysarthric speakers, especially in words that emphasize the

second syllable. Inappropriate pitch prosody may affect up to 50% of suspected dysarthric chil-

dren (Ziegler and Maassen, 2004), but causes can either be physical or learned (e.g., through

compensatory behaviour).

2.2.5 Classifying dysarthria

Some of the more clearly defined subgroups of dysarthria include the following:
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Spastic Due to upper motor neuron lesions, pyramidal tract damage, and especially lesions

to the facial and hypoglossal cranial nerves for jaw and tongue movement, respectively.

Phonation is harsh, and strained with low sustained pitch (Duffy, 2005). Hypernasality

often accompanies phonemes /p/, /b/, /s/, and /k/. Bursts of loudness, slow rate of

speech, and reduced onset time distinction between voiced and unvoiced stops are also

associated with spastic dysarthria (Hasegawa-Johnson et al., 2006b).

Hyperkinetic Due to lesions in basal ganglia, and often accompanies other involuntary move-

ment. Harsh phonation is comparable to spastic dysarthria, although hypernasality is

more common and involuntary movements tend to superimpose on voluntary articula-

tions. Slowness is also common.

Hypokinetic Associated with Parkinsonism, and due to lesions in the basal ganglia, or to

either anti-psychotic medication or blows to the head. Hypokinetic dysarthria results in

mono-pitch hoarse phonation with very low monotonous volume. Compulsive syllabic

repetition (pallilalia) can also occur. It can result in difficulty initiating voluntary speech,

or sudden interruption of movement during speech (Duffy, 2005).

Ataxic Caused by damage to cerebellar control of respiration, phonation, and articulation, but

is chiefly characterized by pronounced bursts of loudness. Equal and excessive stress

on each spoken syllable is also common. Discoordination results in slurred and slow

speech, where patients sound as if inebriated (Duffy, 2005).

Flaccid Caused by damage to the lower motor neurons. May result in complete paralysis

of one or more vocal folds, causing breathiness, low volume, increased nasality and

monotonous pitch. In unilateral paralysis the jaw may deviate to the weakened side while

the tongue moves towards the stronger side, sometimes resulting in drooling (Duffy,

2005).
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Despite many overlapping behaviours between these categories, there may also exist some

clear delineations. For example, Ozawa et al. (2001) have shown that slow speech in spastic

dysarthria is more often caused by lengthened syllables, relative to ataxic dysarthria, which is

categorized by longer pauses. Nishio and Niimi (2001) reach a similar conclusion, although

they focus on flaccid and hypokinetic dysarthria as predictors for longer pauses. Even if invari-

ant distinctions exist between types of dysarthria for certain features, it is not clear that prior

knowledge of differing neuromotor deficiencies can be exploited in ASR.

2.2.6 Evaluating and treating dysarthria

Intelligibility quantifies the degree to which an individual’s speech is discernible to human lis-

teners, typically by measuring the average accuracy of word-level transcriptions of utterances

across groups of naı̈ve listeners (Kent et al., 1989) (Menendez-Pidal et al., 1996; Hasegawa-

Johnson et al., 2006a). If speech samples are phonetically balanced, one can automatically

classify the most prevalent errors according to discrete phonetic features of how the vocal tract

restricts airflow (manner), where along this tract the narrowest constriction occurs (place), and

whether the vocal folds vibrate during production (voicing)4. Other procedures that measure

intelligibility include the Children’s Speech Intelligibility Measure which includes develop-

mental statistics, and the Yorkston-Beukelman-Traynor assessment (Hammen, Yorkston, and

Minifie, 1994) which has been computerized and includes factors such as speaking rate and

rate of intelligibility. Intelligibility scores are also sometimes accompanied by results of the

Frenchay Dysarthria Assessment (Enderby, 1983) that individually scales the strength of the

various articulators, respiration, reflex, and rate (Menendez-Pidal et al., 1996).

Since dysarthrias cannot yet be cured with surgery or medication, behavioural interven-

tions are often used to strengthen the articulatory muscles or develop alternate pronunciation

strategies to improve intelligibility (Kent, 2000). This behavioural intervention often involves

computer-based treatment that can improve intelligibility by exercises and feedback automati-

4These measures may be overly simplistic, but are useful in classification (O’Shaughnessy, 2000).
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cally generated using speech recognition (Thomas-Stonell et al., 1998) that is just as effective

as traditional treatment (Palmer, Enderby, and Hawley, 2007).

The precise relationship between speech repeatability and neurological damage is still an

open question. For instance, although dysarthric utterances are highly variable, those dysarthric

speakers who have maintained a regular speaking rate appear to be able to repeat individual

speech units in isolation with fairly normal reproducibility (Kent and Rosen, 2004; Chen and

Kostov, 1997). Furthermore, although intelligibility strongly correlates with recognition accu-

racy in ASR (Ferrier et al., 1995), consistency does not (Thomas-Stonell et al., 1998).

2.3 Automatic speech recognition (ASR)

The goal of ASR is to decide on the optimal word sequence W = w1 w2 ... wn to describe an

acoustic input speech signal X :

Wc = argmax
W

P(W )P(X |W )

P(X)
(2.1)

where P(W ) and P(X |W ) are the optimal language and acoustic models, respectively. The

input speech signal, X is typically measured at a constant sampling rate, where the ith measure-

ment, x[i], is quantized according to a constant bit rate (e.g., 8 bit values range from −128 to

127, 16 bit values from−32768 to 32767). This discretized signal is first converted to an alter-

native form more amenable to machine learning via feature extraction and it is upon the space

defined by these features that statistical models are trained and used in classifying sounds, as

summarized below.

2.3.1 Feature extraction

Although certain aspects of speech can be identified directly from this superpositional wave-

form representation (e.g., energy, pitch, broad phoneme classes), most of the information that

distinguishes phonemes from one another is found in the relative intensities of the compo-
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nent waveforms at their respective oscillating frequencies (Stevens, 1998). As the oscillating

frequencies of these waveforms increase, their respective amplitudes become weaker, due to

glottal pulse becoming attenuated by its interaction with the vocal tract walls. In order that

the information contained at these frequencies are more accurately encoded by the acoustic

model, the first stage of feature extraction is typically pre-emphasis, where the signal x[n]

is transformed to signal x̂[n] = x[n]−αx[n− 1] for some empirically determined parameter

0.9≤ α ≤ 1.0.

In order to extract spectral information, windows of several consecutive samples must be

collectively analyzed. The width of these windows must include enough consecutive samples

so that they can encapsulate two complete oscillations of the lowest-frequency waveform to

be considered. This requirement of the sampling rate relative to the length of the component

waveforms in time is variously referenced with regards to the Nyquist rate (Jurafsky and Mar-

tin, 2009). Since human speech mostly occupies the frequencies between 100 Hz and 10 kHz

(Stevens, 1998), the minimum window length must be ≈ 2/100Hz = 0.02s. Rarely are analy-

sis windows wider than this, due to the non-stationary nature of the speech signal. In order for

spectral features to be extracted, however, stationarity within these windows is assumed to be

inviolate.

Consecutive windows do not cover mutually exclusive segments of the audio. Indeed,

throughout this thesis consecutive windows overlap in time over half of their lengths (e.g., if

analysis windows are 0.16 s wide, each window begins 0.08 s after its predecessor). This offset

accounts for rapid changes in the speech signal. Moreover, since simple segmentation of the

audio signal results in abrupt cuts to the signal, which can negatively influence proper feature

extraction, each window is modified so that the signal tends to 0 at the boundaries of each

window according to the popular Hamming window method (Quatieri, 2002), where

w[i] =


0.54−0.46cos

(2πi
N

)
0≤ i≤ N−1

0 otherwise
(2.2)

where N is the number of discrete samples in the analysis window. The discrete Fourier trans-
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form then converts this amplitude/time representation to its associated amplitude/frequency

representation over the pre-emphasized windows obtained in this manner, w[n],

X [k] =
N−1

∑
n=0

w[n]e
− j2πnk

N ,0≤ k ≤ N. (2.3)

This transform depends on Euler’s formula e jθ = cosθ + j sinθ for imaginary unit j. In this

work, the discrete Fourier transform is computed by the fast Fourier transform (FFT) algorithm

using a recursive decimation-in-time5 algorithm that forcibly assumes that N is a power of 2.

The FFT computes the frequencies X [k] of a signal in O(N lgN) time complexity, improving

on O(N2) complexity of linear sequential computation. These frequencies are then analyzed

within perceptually-motivated models that imitate the behaviour of the human cochlea (and

the neuronal membrane therein) by means of non-linear scaling functions that warps signal

frequencies f to be more amenable to feature extraction (Huang, Acero, and Hon, 2001). In

this work, occasionally the Bark scale is used

Bark( f ) = 13arctan(7.6×10−4 f )+3.5arctan

((
f

7.5E3

)2
)
, (2.4)

but in general the spectra resultant from FFT are scaled according to the mel scale. A mel is

a unit of pitch that describes the distance between sounds adjacent in their perceptual pitch

(Stevens, Volkman, and Newman, 1937). Frequencies obtained by FFT below around 1000

Hz are mapped linearly to the mel scale, and those above 1000 Hz are mapped logarithmically

according to

mel( f ) = 1127ln
(

1+
f

700

)
. (2.5)

This scale is analogous to the human loss of sensitivity to pitch differences at higher frequen-

cies. The mel-scaled spectrum contains several aspects of the glottal source of speech that

are not particularly useful in distinguishing between phonemes. For example, the spectrum

includes fundamental frequency and energy information, which is not as important to speech

recognition as details of the filter, i.e., the vocal tract. In order to deconvolve the source from

5Decimation in time refers to splitting into sums over even and odd time indices for the purposes of recursion.



CHAPTER 2. BACKGROUND 24

the filter, the first step is to take the logarithm of the magnitude spectrum obtained in equation

2.5. The final step visualizes this log spectrum as if it were itself a waveform and takes into

consideration that the shape of this pseudo-waveform is characterized by high-frequency oscil-

lations caused by the fundamental frequency, and otherwise by broad peaks and valleys. It is

these high-frequency oscillations that correspond to the glottal source, and these broad peaks

and valleys that correspond to the shape of the vocal tract (and formant frequencies, generally).

Taking the spectrum of the log spectrum separates these two components and has the added

benefit that the resulting coefficients are uncorrelated (unlike the spectrum), so that acoustic

models used in classification do not have to encode covariances between all features, which

reduces the number of parameters necessary in machine learning (Jurafsky and Martin, 2009).

This spectrum of the log spectrum, or ‘cepstrum’, is converted from the windowed speech w[n]

to Mel-scaled cepstral coefficients c[k] by

c[k] =
N−1

∑
n=0

log

(
Hk(n)

∣∣∣∣∣L−1

∑
l=0

w[l]e− j 2π

L nl

∣∣∣∣∣
)

e j 2π

N kn (2.6)

where Hk(n) is the magnitude of the mth filterbank evaluated at the nth linear frequency.

Linear predictive coding (LPC)

Linear Predictive Coding (LPC, also known as autoregressive modelling) estimates the main

features of speech using filters H(z) where

H(z) =
X(z)
E(z)

=
1

1−
p

∑
k=1

akz−k
=

1
A(z)

, (2.7)

and A(z) is the inverse filter and X(z) is the z-transform,

X(z) =
∞

∑
n=0

anz−n =
1

1−az−1 . (2.8)

LPC pth-order analysis then predicts the current sample as a linear combination of its past p

samples:
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x̃[n] =
p

∑
k=1

akx[n− k]. (2.9)

Formant candidates in the spectrum can be obtained in each frame by computing the roots of

the pth-order LPC polynomial A(z) (Ahadi-Sarkani, 1996) using such methods as Laguerre’s

method. The ith root can be represented by

zi = exp(−πbi + j2π fi) (2.10)

giving the formant frequency ( fi) and bandwidth (bi). In order to track formants over time and

to decide between many formant candidates, a dynamic programming algorithm is combined

with an a priori state-based formant transition model (Huang, Acero, and Hon, 2001).

Comparing feature extraction on dysarthric speech

Jayaram and Abdelhamied (1995) compared the effects of two feature sets on the classifica-

tion of cerebrally palsied dysarthric speech. Their experiments used a single speaker with

a limited 22-word vocabulary to compare 128-point FFT coefficients (reduced to 16 by the

Turning-point algorithm) against 43 LPC coefficients describing the frequency, amplitude, and

bandwidth of formants in each frame. Each feature set provided the input to fully connected

feed-forward neural networks, with inputs representing the features for 15 consecutive frames.

The network trained on FFT features achieved 76.3% accuracy while the one trained on LPC

formant features only achieved 42.5%.

A possible explanation for the discrepancy between FFT and LPC formants that Jayaram

and Abdelhamied did not mention is that by not modelling non-formant aspects of consonants,

such as the high energy of fricatives or plosives, the LPC network effectively ignores those

phonemes which are most troublesome in dysarthric speech, namely the consonants6. How-

6Formant tracking generally gives very large-bandwidth formant estimates to areas without voiced speech
(Huang, Acero, and Hon, 2001).
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ever, the direction of the F2 slope following a plosive has been shown to accurately identify the

place of articulation of that plosive (O’Shaughnessy, 2000).

Jamieson et al. compared the results of various coders on the intelligibility of a range of

dysarthric speech. Of all lossy coders, GSM 06.107 resulted in the most intelligible speech, re-

ducing relative error by as much as 57% in the most severe cases over simple LPC-reconstructed

speech (Jamieson et al., 1996).

2.3.2 Classification

Dynamic Time Warping (DTW) can be used to compute the distortion between two speech

samples, and hence can be used to identify the phoneme whose template is the least dis-

torted from some unlabelled input. Given vectors of frames representing the reference R =

〈x1 x2 ... xn〉 and target T = 〈y1 y2 ... ym〉 templates, DTW computes a warping function

m = w(n) mapping the time axis n of R onto m of T , as shown in Algorithm 1. This warp-

ing function depends on two cost functions. The first is a Euclidean distance function d(i, j)

between i ∈ R and j ∈ T . The second is a penalty ρ(a,b) applied to alignment jumps of a

steps in R and of b steps in T (i.e., from alignment (xi,y j) to (xi+a,y j+b)). Except where

noted, in this dissertation ρ(1,1) = ρ(0,1) = ρ(1,0) = 0, and ρ(a,b) = ∞ for other combina-

tions. Here, the total distance between two sequences is D(n,m) and the warping function is

described by the state sequence (s1,s2, ...,sl) where sl = (n,m) and B is the backtrace matrix

where B(i, j) = (c,d) indicates that if pair (xi,y j) are aligned, the best previous alignment is

(xc,xd).

Although this approach treats durational variations as noise to be smoothed out, the extent

to which it can overcome the temporal variability in dysarthric speech is unknown. Frequency

warping can also be used for classification if the distance function d(i, j) is somehow aware of

spectral formant positions, (O’Shaughnessy, 2000).

7The Global System for Mobile communications (GSM) with the European Telecommunications Standards
Institute (ETSI) fixed-rate 06.10 speech codec.
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Algorithm 1: DYNAMIC TIME WARPING

Data: Reference R = 〈x1 x2 ... xn〉 and target T = 〈y1 y2 ... ym〉 templates.

begin
D(1,1) = d(1,1),B(1,1) = 1, and ∀2≤ j ≤M, D(1, j) = ∞

for i = 2, ...,N do

for j = 1, ..,M do
D(i, j) = min

1≤q≤i
min

1≤p≤M
[D(q, p)+ρ(i−q, j− p)+d(i, j)]

B(i, j) = argmax
1≤q≤i

argmax
1≤p≤M

[D(q, p)+ρ(i−q, j− p)+d(i, j)]

end

Hidden Markov models (HMMs)

A more popular alternative classification mechanism, hidden Markov models (HMMs), cate-

gorizes observable temporal data sequences according to ‘hidden’ statistical parameterizations

and an underlying connected-state structure. Unless otherwise noted, this document refers to

continuous HMMs that are defined by a multi-dimensional continuous observation space O

with o being a sequence of length T of observation vectors ot ∈O for t = 1 . . .T 8, a state space

Q (where qt is the state at time t), an initial state distribution πi = P(q0 = i), a state transition

matrix A(qi,q j) describing the a priori probability of transitioning from state qi to q j, and a

distribution Bi(o) defining the probability of observing vector o in state i. Typically in ASR,

the distribution Bi(o) will be a mixture of Gaussians, i.e.,

Bi(o) =
M

∑
m=1

ωi,m
1

(2π)d/2|Σi,m|1/2 exp
[
−1

2
(o−µi,m)

>
Σ
−1
i,m(o−µi,m)

]
(2.11)

where d is the number of dimensions in each observation, |Σ| is the determinant of Σ, and there

are M component Gaussians in each state, ωi,m is the weight of the mth Gaussian in state i, µi,m

is its mean, and Σi,m is its covariance.

8This is analogous to the observation alphabet in discrete HMMs.
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Weights in a Gaussian mixture are subject to the condition

M

∑
m=1

ω jm = 1. (2.12)

The complete parameter set of an HMM, Φ, constitutes all parameters of ai j = A(qi,q j),

Bi(o), and πi. In some cases, we are interested in computing the likelihood of a particular

observation o given the parameters Φ. This is performed by the Forward algorithm (Huang,

Acero, and Hon, 2001),

P(o;Φ) = ∑
∀q

P(q;Φ)P(o |q;Φ), (2.13)

which sums over all possible sequences of hidden states q. Here, the probability of a particular

state sequence and the probability of an observation given that state sequence are

P(q;Φ) = P(q1;Φ)
T

∏
t=2

P(qt |qt−1;Φ)

P(o |q;Φ) =
T

∏
t=1

P(ot |qt ;Φ).

(2.14)

More typically, we are interested in finding the state sequence that gives the highest prob-

ability given an observation sequence. This is referred to as ‘decoding’ and is useful since

the state sequence reveals the most likely phoneme or word sequence, assuming that indi-

vidual smaller HMMs, each representing a word or phoneme, are concatenated together with

appropriate bigram state transition probabilities. The Viterbi algorithm is used in decoding

and determines the most likely state sequence to represent an observation, given an HMM’s

parameters. It is summarized in algorithm 2. This algorithm can be generalized to produce a

ranking of the n state sequences that give the highest probability given the observation (i.e., an

‘n-best list’). For the purposes of computational parsimony, this list is often approximated by

generalizing the Viterbi algorithm to withhold only a limited number of state sequences up to

a particular time. This is often referred to as ‘beam search’.
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Algorithm 2: VITERBI

Data: Observation sequence o (length T ) and an HMM with Φ = {A,B,π} and Q states.

begin

for i = [1 . . .Q] do

V1(i) = πiBi(o1) for i = [1 . . .Q] ; // Initialization

β1(i) = 0

for t = [2 . . .T ] do

for j = [1 . . .Q] do

Vt( j) = max
1≤i≤Q

[
vt−1ai j

]
B j(ot) ; // Induction

βt( j) = argmax
1≤i≤Q

[
vt−1(i)ai j

]
bestScore = max

1≤i≤Q
[VT (i)] ; // Termination

q∗T = argmax
1≤i≤Q

[BT (i)]

for t = [T −1,T −2, . . . ,1] do

q∗t = Bt+1(s∗t+1) ; // Backtracking

return Q∗ = (q∗1,q
∗
2, . . . ,q

∗
T ) ; // This is the best sequence

end
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In order for HMMs to model phonetic rather than lexical acoustics, three-state left-to-right

structures are usually used, where the probabilities of B(o,s) are modelled by multivariate

GMMs9.

2.3.3 Computer-assisted interaction

The neurological damage that causes dysarthria usually affects other physical activity, such as

slowing keyboard input 150 to 300 fold in severe cases compared with regular users (Hosom

et al., 2003; Hux et al., 2000). Since dysarthric speech is often only 10 to 17 times slower

than normal (section 2.2.1), ASR is seen as a viable alternative to improve communicativity in

computer-assisted interaction.

Alternative augmentative communication (AAC) devices include speech-synthesis machines

in which touch-panels or keyboards are used to access and concatenate recorded speech utter-

ances to output sentences, such as the Dynavox 3100 ($7,300 CAD) and DeltaTalker ($12,000

CAD) (Messina and Messina, 2007). Some of these devices include a ‘scanning’ interface

where a button is pressed to iteratively cycle through a list of alternative commands, words, or

phrases (Hawley et al., 2007).

Assistive technology for the disabled requires a careful combination of clinical study and

engineering in order to accommodate particular disabilities. The complexity and specificity

of these requirements may have limited the widespread adoption of such technology (Noyes

and Frankish, 1992) which necessitates sophisticated adaptability beyond the training of the

acoustic model P(X |W ). For example, automatic adjustments to the dialogue flow of an ASR

system may be necessary in cases where neurological impairment may make instructions dif-

ficult to follow (Hux et al., 2000). In cases where disfluency or slow speech would result in

faulty word detection, pressing a physical switch can be used to invoke ASR over the duration

of an utterance (Rosen and Yampolsky, 2000), but only when the speaker has enough physical

endurance.

9Other probabilistic alternatives are discussed later.
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Hawley et al. (2007) described an experiment in which 8 disabled users (with either cere-

bral palsy or multiple sclerosis) controlled non-critical devices in their home (e.g., TV, hi-fi)

with ASR. Arrays of microphones were placed between 0.5 and 3.0 m from the usual sitting

positions of the participants, and command vocabularies consisted of very simple phrases (e.g.,

TV channel up, Radio volume down)10. Feedback was provided either through visual displays

or by auditory cues. This ASR-based environmental control was compared with a ‘scanning’

interface. While the ASR interface made more errors (77.3 to 96.9% pre-training, 90.8 to 100%

post-training accuracy) than the scanning interface (100% accuracy), the former was signifi-

cantly faster (7.7s vs 16.9s, on average)11. Participants commented that speech control was

significantly less tiring than the scanning interface, although subjective preference between the

two interfaces was evenly split (Hawley et al., 2007). Similar results were obtained by studying

the STARDUST command-and-control system (Green et al., 2003).

One alternative to both speech and keyboard AAC that avoids issues of accuracy in the

former and fatigue in the latter is to use controlled durations of the vowel /a/, perhaps with

some binary pitch control, to communicate Morse code text to a speech synthesis device (Patel,

2002a). This places some burden on the dysarthric speaker to learn or consult tables of rules,

and would not be necessary if ASR accuracy were improved.

Word prediction

Word- or phrase-based prediction can assist cognitively or physically disabled users type text

by allowing them to select among suggested completions as they write. This assistive tech-

nology has reduced the number of keystrokes required of an individual by as much as ∼ 69%

in adaptive-lexicon systems (Swiffin et al., 1987; Matiasek, Baroni, and Trost, 2002), thereby

increasing communication speed and allowing improved individual expression (Alm, Arnott,

10The types of phrases used would be neatly described by a simple grammar, but the authors appear not to use
one.

11This comparison may be doubly misleading, however, since the scanning interface requires scanning over
irrelevant commands, and higher accuracy can sometimes be improved by adding ASR to a scanning interface
(Havstam, Buchholz, and Hartelius, 2003).
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and Newell, 1992). Prediction is especially valuable to those for whom fatigue or frustration

often accompany attempts at communication (Garay-Vitoria and Abascal, 2006).

The current word wi can be anticipated given an n-gram context augmented by part-of-

speech tags t j. For example, Fazly and Hirst (2003) describe an algorithm that ranks possible

completions based on the estimate

P(wi|wi−1, ti−1, ti−2)≈ ∑
ti∈T (wi)

P(wi|wi−1, ti)P(ti|ti−1, ti−2)

≈ ∑
ti∈T (wi)

P(wi|wi−1)P(ti|wi)

P(ti)
P(ti|ti−1, ti−2)

= P(wi|wi−1) ∑
ti∈T (wi)

P(ti|ti−1, ti−2)P(ti|wi)

P(ti)

(2.15)

where T (wi) is the set of all possible PoS tags associated with word wi. Combining PoS with

lexical context in this way reduces the percentage of keystrokes needed to produce text by

∼ 6% over purely a priori statistical methods (Fazly and Hirst, 2003). Other extensions to text

prediction to further refine the list of hypothesized completions include the use of grammatical

syntax and semantics (Li and Hirst, 2005; Erdogan et al., 2005), as well as trained neural

networks (Garay-Vitoria and Abascal, 2006).

Empirically observed improvements in the rate of typed communication with prediction

might not overcome improvements gained through the use of speech (see above), but apply-

ing the same approach to predicting spoken communication may reduce the amount of effort

required for both the dysarthric speaker and their audience. If speech input is coupled with

a visual display for output, for example, that display could be updated ‘on-the-fly’ with the

results of predicted queries before those queries are completed.
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2.4 Representations for speech production

Articulatory features (AFs) are quantized abstractions of speech production according to dis-

tinctive configurations of the vocal tract 12. They provide an inventory of the types of sounds

humans can produce (O’Shaughnessy, 2000; Huang, Acero, and Hon, 2001). The study

of AFs in recent phonetics dates back at least to Chomsky and Halle (Chomsky and Halle,

1968), who represented sounds of speech as vectors of binary features (e.g., nasal/non-nasal,

voiced/voiceless). That work showed that some context-sensitive phonetic variation could be

specified by transformational rules based on phoneme sequences and syntactic trees (e.g., /p/

is aspirated if it begins a syllable onset consonant cluster, as in prim, but not aspirated if it ends

that onset, as in spin).

Here, articulatory features are collected into seven categories, each with a number of pos-

sible values. For example, a segment of speech can be concurrently voiced, nasal, and static,

which represent values for three distinct features. Parallelizing streams of information in this

manner allows asynchronous modulation of speech acts across phoneme boundaries, which

can partially account for co-articulation effects and speaker variability (Livescu et al., 2007),

which are particularly exacerbated in dysarthric speech. Other useful properties reported of

AFs include language-independence and reliable recovery from acoustics among regular speak-

ers (Frankel, Wester, and King, 2007). The features used here are based on those of Wester

(Wester, 2003; Scharenborg, Wan, and Moore, 2007) and are listed in table 2.1.

In the absense of AF annotations, AF values can be derived directly from phoneme anno-

tations. In this study, we assign to each MFCC frame of data a 7-dimensional vector of AF

values based exclusively on the phoneme annotation at that frame. This assignment is derived

directly from the phoneme-to-AF transformation table in Frankel et al. (Frankel, Wester, and

12Articulatory features are sometimes called phonological features in the literature (e.g., by Clements
(Clements, 1985) and by King and Taylor (King and Taylor, 2000)). However, the latter term has largely been
superseded by the former in the literature (e.g., by Kirchhoff (Kirchhoff, 1999) and by Metze (Metze, 2007)). In
this document, the term articulatory feature must be differentiated from articulatory measurements, which refer
to direct recordings of the vocal tract.
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Feature Description (and values)

Manner (M) high-level categorization of speech sound

approximant, fricative, nasal, retroflex, silence, stop, vowel

Place (Pl) location of primary constriction

alveolar, bilabial, dental, labiodental, velar, silence, nil

High/Low (HL) anterior position of the tongue

high, mid, low, silence, nil

Front/Back (FB) ventral position of the tongue

front, central, back, nil

Voice (V) presence/absence of glottal vibration

voiced, unvoiced

Round (R) circularity of the lips

round, non-round, nil

Static (S) movement of articulators (e.g., diphthong)

static, dynamic

Table 2.1: Articulatory features, a description of their characteristics, and their possible values.
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King, 2007). This incorporates recommendations by Wester et al. (Wester, Frankel, and King,

2004) in which the Front/Back feature includes the normally excluded central value, and diph-

thongs are split in half into their component vowels, which are mapped to their corresponding

AFs. Unlike Frankel et al. (Frankel, Wester, and King, 2007), we label the Place feature of

phonemes /b/ and /m/ as bilabial rather than labiodental to distinguish these from fricatives /f/

and /v/.

A more empirical approach to production knowledge is derived from direct measurement

of the vocal tract during speech with semi-invasive procedures such as electromagnetic artic-

ulography (EMA), magnetic resonance imaging (MRI), X-ray microbeam analysis (Westbury,

1994), or electropalatograph. These procedures capture motions of external (e.g., lips) and

internal (e.g, tongue, velum) actuators with sufficient temporal and spatial resolution to accu-

rately reconstruct physical activity (van Lieshout et al., 2007). Electromagnetic articulography

uses alternating electromagnetic fields generated by a cube that surrounds the speaker’s head

to infer the articulators at a rate of 200 Hz to 500 Hz, usually to within an error of 0.5mm

(Yunusova, Green, and Mefferd, 2009). These systems produce no audible noise, and the coils

do not interfere with regular speech. Figure 2.6 shows typical configurations of the EMA cube

and the placement of the receiver coils.
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(a) (b)

Figure 2.6: Example configuration of electromagnetic articulography. Subfigure (a) shows

a subject connected within the recording environment, and subfigure (b) shows the typical

locations of receiver coils on the midsagittal plane (i.e., V velum, TD tongue dorsum, TB

tongue body, TT tongue tip, UI upper incisor, LI lower incisor, UL upper lip, and LL lower

lip).



Chapter 3

Related work

Explicit use of articulatory knowledge is still rare in automatic speech recognition (ASR) de-

spite evidence that it is far more speaker-invariant and less ambiguous than the resulting acous-

tics (King et al., 2007). For example, the nasal sonorants /m/, /n/, and /ng/ are acoustically

similar but uniquely and consistently involve either bilabial closure, tongue-tip elevation, or

tongue-dorsum elevation, respectively. The identification of linguistic intention would, in some

cases, become almost trivial given access to the articulatory goals of the speaker.

There have been a number of attempts at improving speech recognition for dysarthric

speakers, and other attempts at integrating articulatory knowledge into ASR, but these two

efforts have so far not converged. Section 3.1 describes the state-of-the-art in applying ASR

to dysarthric speech. Section 3.2 describes mechanisms in the literature that apply articulatory

knowledge to speech recognition generally.

3.1 Recognition with dysarthric speech

Since dysarthria is specifically a motor-control disorder, intuition may suggest that the lan-

guage model P(W ) would be effectively regular, but temporal irregularities such as disfluency

and vocal variability make estimation of P(X |W ) difficult. However, applications of speech

recognition for dysarthric speakers have been pervasive, including automatic dictation of spon-

37
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taneous text (e.g., natural communication) (Havstam, Buchholz, and Hartelius, 2003), tele-

phonic access to services (e.g., ticket reservation), and the local control of machines (e.g.,

wheelchair, domestic appliances) (Noyes and Frankish, 1992; Hawley et al., 2007).

Early work in applying ASR to individuals with dysarthria almost exclusively involved the

use of hidden Markov models (HMMs) whose parameters were trained to the general popula-

tion. Usually, these involved small-vocabulary recognition tasks with word-recognition rates

significantly lower for dysarthric speakers, often at least 26.2% lower than the general popu-

lation (Coleman and Meyers, 1991). For example, given a vocabulary of 40 words, Rodman,

Moody, and Price (1985) report mean word-recognition rates of 58.6% for dysarthric speakers

compared with 95% for the general population. Deller and Snider (1990) showed that highly-

connected HMMs could be evaluated efficiently in linear time (relative to the number of states)

for use with speech from an individual with cerebral palsy.

Hux et al. (2000) report similar results with a control subject and an ataxic survivor of

traumatic brain injury in three commercial ASR dictation systems, namely Microsoft Dicta-

tion, Dragon NaturallySpeaking (DNS), and Kurzweil Education Systems’ VoicePad Platinum.

None of these systems modeled grammatical syntax, but instead relied on similar architectures

that augmented HMM phonetic modelling with n-gram language models1. Microsoft Dictation

and DNS both accepted whole sentences, whereas VoicePad Platinum only recognized isolated

words, perhaps providing the dysarthric speaker with more time to plan out her articulatory

movements in the intervening gaps between words.

Figure 3.1 shows average recognition accuracies of these systems across five trials each.

Every trial consisted of 10 constant and pre-selected sentences, followed by 10 novel spon-

taneous sentences. All systems performed significantly better with regular speech, averaging

between 83.4% (Microsoft) and 89.9% (Dragon) word-recognition, compared with between

51.9% (VoicePad) and 64.7% (Dragon) for dysarthric speakers. In all cases, novel sentences

1Little technical documentation exists for VoicePad itself, although this product was sold in 1997 to Lernout
& Hauspie (Felber, 2001), and rebranded as Voice Xpress, which uses this model (Salleh et al., 2000).
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Figure 3.1: Comparison of recognition rates for control and ataxic speakers across Microsoft

Dictation, Dragon NaturallySpeaking, and KES VoicePad Platinum, from Hux et al. (2000).

Boxes represent average accuracy rates, with errorbars representing minimum and maximum

accuracy over 5 trials.

were recognized correctly less frequently than the predetermined ones, but not by a significant

margin. Despite periods of ‘training’ preceding each of the five trials (or during, in the case of

VoicePad), these did not result in significant improvement in accuracy. Despite their relatively

poor results, however, such commercial ASR systems have been shown to improve accuracy

and speed in simple text-entry for physically disabled individuals relative to other modes of

input (e.g., scan-and-switch) (Havstam, Buchholz, and Hartelius, 2003; Hawley et al., 2007).

These results show that ASR recognition rates have not improved significantly over a

decade prior when Coleman and Meyers found that dysarthric speakers typically have recogni-

tion rates between 9.5 and 26.2% lower than normal speakers for isolated-word dictation tasks,

on average (Coleman and Meyers, 1991). Several projects have attempted to adapt discrim-

inative models to dysarthric speech without considering the causes or features of dysarthria.

These are discussed in sections 3.1.2, and 3.1.3. More recently, attempts have been made to

improve ASR rates by focusing on the types of errors made with dysarthric speech. Polur and

Miller (Polur and Miller, 2006), for example, produced ergodic HMMs that allow for ‘back-

wards’ state transitions. This ergodic structure is meant to capture aspects of dysarthric speech
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such as involuntary repetition and disruptions during sonorants (e.g., pauses) and reveals small

but definite improvements over the traditional baseline. Morales and Cox (Morales and Cox,

2009) improved word-error rates by approximately 5% on severely dysarthric speech and ap-

proximately 3% on moderately dysarthric speech by building weighted transducers into an

ASR system according to observed phonetic confusion matrices. The metamodels used in this

work are very similar to those used by Matsumasa et al. (2009), described below, except it

also involved a language model, albeit one based on the highly restricted Nemours database

described in section 4.1. A commonality among all this work is that the actual articulatory

behaviour of the dysarthric speech has not been taken into account.

Adapting HMM acoustic models trained to the general population given dysarthric data has

also shown to improve accuracy, but not as clearly as training those models exclusively with

dysarthric acoustics, especially in the more severe cases (Raghavendra, Rosengren, and Hun-

nicutt, 2001; Sanders et al., 2002a). In clinical settings, automated methods are increasingly

being used to quantify the level of dysarthric severity (Hill et al., 2006; Constantinescu et al.,

2010) as automated systems are less costly and less subject to potential bias than human clin-

icians (Bodt, Huici, and Heyning, 2002; Nuffelen et al., 2009). The accuracy of ASR systems

are often used for this purpose (Doyle et al., 1997; Ferrier et al., 1995; Maier et al., 2009).

3.1.1 Adapting acoustic models to dysarthric speech

Improving ASR accuracy usually involves adapting the underlying models to better represent

observed data, which normally involves acquiring and transcribing indicative data from the tar-

get population, and applying one of many parameter estimation algorithms. Speaker-dependent

(SD) models are trained to an individual speaker, and are therefore more accustomed to the pe-

culiarities of any dysarthric individual. In practice, SD models can improve accuracy relatively

by 20% to 30% (Huang, Acero, and Hon, 2001), but can restrict use to speakers who have previ-

ously trained with the system. Speaker-adaptive (SA) models are initialized by models trained

on some non-atomic subset of a target population, but are later trained with a single user. SA
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models tend to not be as accurate as SD models given the same amount of user-specific train-

ing, but are initially more accurate as they are initialized by real speech data (Huang and Lee,

1993).

Raghavendra, Rosengren, and Hunnicutt (2001) compared what they described as an SA

phoneme recognizer and an SD word recognizer on dysarthric speech. They concluded that

SA modelling is appropriate for mild or moderate dysarthria, with an empirical relative error

reduction (RER) of 22%, but that severely dysarthric speakers are better served by speaker de-

pendence, with 47% RER. Sharma and Hasegawa-Johnson (2010a) contradict these findings,

somewhat, in that they find no evidence that the severity of dysarthria is predictive of the rel-

ative performance of SD and SA systems. They also conclude that left-right HMMs are better

suited to dysarthric speech than transition-interpolated HMMs and that adapting parameters

other than transition probabilities give ideal results in this domain. Noyes and Frankish (Noyes

and Frankish, 1992) reported SD models attaining between 75% and 99% word-level accu-

racy for impaired speakers on a small vocabulary, where human listeners could only correctly

identify between 7% and 61%. Sawhney and Wheeler (1999) found pronounced gains from

SD models, with an RER of ∼ 22% over independent models using an unspecified segmental

phoneme recognizer. These experiments, however, used no more than 5 test subjects each, with

limited training data. Sanders et al. (2002b) also found that speaker-dependent HMM mod-

elling improved word-error rates by 50% to 100% relative to speaker-independent baselines

trained to the Dutch speech corpus, although these experiments involved only two dysarthric

subjects, small vocabularies (i.e., between 39 and 336 words) and very small amounts of data

(i.e., 8.5 or 12.8 minutes of speech recorded in total from each dysarthric subject). It is difficult

to draw reliable conclusions from such small amounts of data.

3.1.2 Support vector machines and dysarthric speech

Hasegawa-Johnson et al. (2006a) compare HMMs and support vector machines (SVMs) within

isolated word recognition in a multi-microphone environment for 4 dysarthric speakers with
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Vocabulary 45 Words 10 Words (Digits)

Algorithm H HV H HV Word-SVM WF-WVM WFV-SVM

Speaker 1 44 55 71 80 97 86 90

Speaker 2 42 49 86 95 70 69 70

Speaker 3 87 89 99 100 90 90 90

Speaker 4 77 80 99 100 97 100 100

Table 3.1: Comparison of word recognition accuracy across 4 speakers with dysarthria of

varying intelligibility, and system types (HMMs (H and HV) and SVMs), from Hasegawa-

Johnson et al. (2006a).

intelligibility ranging from 19.2% (Speakers 1 and 2) and 29.2% (Speaker 4) to 92.5% (Speaker

3). Across all speakers, word-initial and word-final consonant errors accounted for 27.6%

and 30.9% of the errors respectively, with word-medial consonant (18.9%) and vowel errors

(22.6%) rounding out the rest 2.

The four speakers each produced 541 phonetically-balanced words which were then pro-

cessed by 5 systems: The first and second systems use standard triphone HMMs with (< 10)

Gaussian observation densities per state and the HTK toolkit (Cambridge, 2007), where the

first system (H) uses a single microphone and the second (HV) trains separate HMMs for each

of 7 microphones, and combines their hypotheses using majority voting during recognition.

Two types of SVM were trained: the first (Word-SVM) uses 10 SVMs that identify individual

words given a single microphone, and the second using a bank of 170 binary SVMs trained to

identify important features on 17 binary target functions such as sonorance or nasality, each

taking one of 10 different types of superframe as input. One word-feature SVM used a sin-

gle microphone (WF-SVM), and the other used majority voting among the 7 microphones

(WFV-SVM). These results are summarized in table 3.1.

While digit recognition using HMMs alone failed for the speaker most likely to reduce

2The authors do not list the number of correctly enunciated phonemes in each category, so it is impossible to
compare these statistics against those of Thubthong et al. (2005).
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or drop consonants, the SVM, which here relies on fixed-length words, failed for the severely

stuttering speaker. The authors conclude that DTW-like features of the HMM give it robustness

against large-scale word-length fluctuations, but that the SVM is more robust against dropped

or deleted consonants. The authors also conclude that the SVM cannot be meaningfully applied

if its inputs differ in temporal length, which ignores sequence kernels as a direct means for such

a task, as discussed below.

Polynomial DTW kernel

Kernel functions that discriminate among vectors of unequal length often do so by apply-

ing a change of variables on the data. For instance, Wan and Carmichael (2005) convert the

global DTW measure of distance to a dot product for use in an SVM kernel through spher-

ical normalization. This process translates components of vectors X = {x1,x2, ...,xn} and

Y = {y1,y2, ...,ym} to a spherical space defined by their mutual origin (producing X̂ and Ŷ).

The geodesic distance between two points on this sphere, dS(x̂i, ŷ j), is defined by the angle

between them, so

dS(x̂i, ŷ j) = arccos(x̂i, ŷ j) (3.1)

is computed for each local distance. The global distance Ds(X̂ ,Ŷ ) is the mean angle between

all pairs of vectors in (X̂ ,Ŷ ) plus DTW transition costs, giving the linear SVM kernel

KlinearDTW (X̂ ,Ŷ ) = cosDs(X̂ ,Ŷ ). (3.2)

Wan and Carmichael raise Equation 3.2 to the third power to obtain higher-order, non-linear

solution spaces, and compare its classification error against two other word classifiers – a man-

ually endpointed DTW system, and an 11-state HMM with 3 Gaussians per state. These were

compared on a set of 7 dysarthric and 7 non-dysarthric speakers uttering between 30 and 40

samples of each of a small set of 11 command words. All data was parameterized with 13

MFCCs on 32ms windows and their first order derivatives, and silences and non-speech bursts

were removed using a Gaussian detector.
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Figure 3.2: Comparison of recognition error rates for 3 word classification techniques (SVM

with 3rd order DTW kernel, 11-state HMM, and standard DTW template matching) for

dysarthric and non-dysarthric speakers, across training set sizes (from (Wan and Carmichael,

2005)).

Results of this comparison are summarized in Figure 3.2. Standard DTW performs uni-

formly worse than the other methods within each speaker class, with the SVM reducing error

by up to 46% relative to the HMM when training data is most sparse. The success of the DTW-

kernel SVM here is significant, since it clearly improves over the contemporary HMM method,

and because it demonstrates relative competence amid sparse data. Although these results can-

not be directly compared to those of Hux et al. 5 years prior (section 3.1) due to differing

application types, both surveys show a clear disparity between dysarthric and non-dysarthric

speech recognition.

3.1.3 Neural networks and dysarthric speech

Jayaram and Abdelhamied (1995) compared two artificial neural networks (ANNs) taking fast

Fourier transform (FFT) coefficients and formant frequencies as inputs, respectively, given

dysarthric speech. Each network was feed-forward, fully connected, and had two hidden layers



CHAPTER 3. RELATED WORK 45

where all nodes had sigmoid transfer functions. Both networks outperformed human perfor-

mance (42.4%), and the Introvoice HMM-based system (≤ 37.5%) on dysarthric speech, with

the FFT-trained network reaching∼ 75% accuracy after 7000 iterations of backpropagation on

440 samples of speech of the cerebrally palsied speaker.

Polur and Miller (2006) obtain ergodic-HMM state sequences given acoustics from a dysarthric

speaker and pass these along with the original acoustics to a neural network for word-identification.

This approach has reduced error by up to 55.6% relative to HMM-only methods on dysarthric

speech (Polur and Miller, 2006). The authors of that study claim that augmenting HMMs with

neural networks in this way provides better discrimination by relaxing assumption constraints

on the form of the statistical distribution to be modelled.

The only context provided to classification and predictive ANNs for time-varying signals

is the physical input itself, rather than the previous states of the machine. This forces the

size of these networks to expand at least multiplicatively with the size of the input (Krose and

van der Smagt, 1996) in standard back-propagation learning. Recurrent networks can compress

contextual information through additional units in the input frame that are activated solely by

non-input units, usually with a fixed +1 weight. With context units activated solely by output

units (a Jordan network), Robinson, Hochberg, and Renals (1996) learn emission probabilities

for a phone-classification HMM and achieve 87% word accuracy on a 20,000 word vocabulary.

The Elman network, which receives contextual state from hidden units alone, can often achieve

better accuracy than the Jordan network (Wilson, 1995).

3.1.4 Pathological effects on ASR

The unintelligibility of dysarthria is not due to any single behaviour, but to the combination

of many articulatory and phonemic phenomena. These phenomena, however, can have unique

consequences for automatically recognizing speech.

Increased variability among slow speakers described in section 2.2.1 suggests that even

vowel models trained on groups of spastic or ataxic dysarthric or other abnormally slow speak-
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ers may not necessarily be indicative of an individual’s acoustic behaviour within that group.

Muscle fatigue, particularly of the tongue (section 2.2.2), coupled with overall longer speech

events, may also lead to nonlinear alterations of acoustic models over the length of an utterance.

Acoustic disfluency (see section 2.2.3) often leads to phonemic insertion errors in or around

words containing voiceless plosives (Rosen and Yampolsky, 2000) or voiceless fricatives (/ f/,

/θ/, /s/, /sh/, /h/ ) (Raghavendra, Rosengren, and Hunnicutt, 2001). If dysarthric speech

contains hesitations or repetitions, these are likely to be recognized with insertion errors (re-

peated words) or pairs of adjacent substitution errors (Huang, Acero, and Hon, 2001). If invol-

untary sounds are consistent, then a recognizer could be trained to ignore them or to classify

them as an extraneous syntactic part of speech, at the cost of extra training effort (Lease, John-

son, and Charniak, 2006), though it is not clear that these involuntary sounds are consistent

within dysarthric speech (Chen and Kostov, 1997).

Pauses of abnormal lengths may also lead to erroneous end-of-speech estimation (Rosen

and Yampolsky, 2000). For example, the two final high-energy segments in Figure 2.4A will

normally be misinterpreted as two separate words in standard ASR. Chen and Kostov attempt

to deal with this problem by using manually-adjustable thresholds on energy levels, and an

intra-word search function using trained speaker-dependent 8-state HMMs, and were able to

achieve between 81 and 92% recognition on isolated digits (Chen and Kostov, 1997).

3.1.5 Miscellaneous adjustments to traditional processing

There have been many attempts to accommodate dysarthric speech in ASR that have involved

more fastidious adjustments to traditional methods. Matsumasa et al. (2009) propose a sys-

tem for recognition of dysarthric speech that incorporates robust feature extraction and an

HMM-based ‘metamodel’. In this work, feature extraction involves taking the logarithm of

the mel-scaled FFT features, as usual, but instead of taking the discrete cosine transform at

this point, principal component analysis is applied to combine ‘stable’ acoustic features with
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their corresponding fluctuations in dysarthric speech3. Specifically, for analysis windows of

width n, frequencies ω , an ‘unstable’ dysarthric utterance Xn(ω) is represented as the sum of a

component of ‘stable’ speech Sn(ω) and a ‘fluctuation element’ H(ω) in the log space

logXn(ω) = logSn(ω)+ logH(ω). (3.3)

The stable component of the dysarthric speech is then extracted through PCA on the non-

dysarthric speech by

Ŝ =V> logXn(ω) (3.4)

where V is derived from the eigenvalue decomposition of the centered covariance matrix of the

‘stable’ speech set and is composed of the M-dimensional eigenvectors vi corresponding to the

L dominant eigenvalues,

V = [v1, · · · ,vL] . (3.5)

By applying PCA instead of the discrete cosine transform to the mel-scaled filter bank output

in this way, dimensionality is reduced relative to features expected to correspond to features in

non-dysarthric acoustic space. The authors claim that this method alone results in an absolute

improvement of 6.1% in word recognition accuracy over the traditional MFCC baseline of

77.1%, although experiments were performed with only one dysarthric speaker (Matsumasa

et al., 2007). In addition to this approach to feature extraction, the same group learned a

phoneme-classification model P(p |X) for phoneme sequences p and approximated equation

2.1 by Bayes’s rule and

P(W |X)≈ P(W | p∗)P(p∗ |X) (3.6)

for a phoneme sequence p∗ chosen by

p∗ = argmax
p∗∈P

P(p |X) (3.7)

3This work is unclear on the definition of stability. Apparently, each single word uttered by a speaker with
athetoid cerebral palsy was repeated several times by one or more non-dysarthric speakers, although the authors
only explicitly claim to have ‘stable’ versions of the dysarthric speech. The authors also do not describe whether
or how these ‘stable’ utterances are aligned with their ‘unstable’ counterparts.
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for all possible phoneme sequences P . This phoneme-classification model P(p |X) is built

using traditional HMMs, but the a priori presence of each phoneme is represented by a tristate

HMM that encodes the probability of a phoneme being substituted, deleted, or preceded or

followed by an erroneous phoneme insertion. This ‘metamodel’ resulted in an additional 3.8%

improvement in word accuracy over the method of PCA-filtered features described above, al-

though these experiments were performed with only two dysarthric speakers, and their baseline

accuracies were abnormally high at 79.1% (Matsumasa et al., 2009).

3.2 Speech recognition with articulatory information

Although adaptation at the acoustic level alone has led to some increase in accuracy for atypi-

cal speech, there remains much room for improvement. In order to learn discriminating factors

of dysarthric speech, new approaches must combine advanced machine learning with physio-

logical models in order to directly inform causal parameters that would otherwise be hidden.

Articulatory knowledge has had relatively little historical presence in ASR despite evi-

dence that articulatory control is often far more speaker-invariant than the resulting acoustics

(Fujimura, 1986). Typically, such knowledge is manifested as decision trees that support state-

tying in semi-continuous ASR systems (Young et al., 2006). Here, knowledge of common

articulatory features (e.g., nasality in /m/ and /n/) allows states in HMM models for differ-

ent phones to be trained on shared data. There have, however, been a few attempts to build

more explicit production knowledge into phoneme- and word-recognition systems. For exam-

ple, appending articulatory measurements to acoustic observations has been shown to reduce

phone-error relatively by up to 17% on a non-dysarthric speaker in a standard HMM system

(however, if those articulatory measurements are inferred from acoustics, this improvement

disappeared) (Wrench and Richmond, 2000). Similar work on incorporating AFs learned dis-

criminatively with maximum mutual information into HMM systems has reduced word-error

rates from 25% to 19.8% on English spontaneous scheduling tasks (Metze, 2007).
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A number of approaches involved representing words as state-transition graphs embed-

ded within HMMs whose states were conjunctions of discrete phonological or articulatory

features. Erler and Deng (1993), Deng and Sun (1994), and Sun and Deng (2002a), for ex-

ample, annotated words with parallel asynchronous variables representing the lips (which can

be closed or rounded), tongue blade, tongue dorsum, velum, and larynx (which represents,

e.g., vowelization or aspiration) (Sun, Jing, and Deng, 2000; Deng, 2000; Sun and Deng,

2002b). The manners in which these words could be constructed given these annotations were

encoded within HMM transition networks with high-level linguistic constraints such as phrase

boundaries, morphemes, syllables, and word stress. Augmenting HMMs in this way can ex-

plicitly model coarticulation and phonetic reduction while using a relatively small number of

parameters compared with other HMM approaches (Lee, Fieguth, and Deng, 2001). Variations

between pronunciations include anticipatory or inertial feature spreading, for example (Mc-

Dermott and Nakamura, 2006), and are depicted in figure 3.3. Results have been somewhat

humble, however, with this ‘overlapping-feature’ model improving the baseline triphone accu-

racy of 70.86% to 72.95% on the TIMIT database. However, this feature-rich approach has the

advantage of requiring as little as 10% of the training data as the baseline. Richardson, Bilmes,

and Diorio (2000) take a similar approach and reduce the size of the state-transition network by

placing constraints on articulator velocities and continuity. Their approach reduced word-error

rates relative to the state-of-the-art at the time by between 28–35%.

Along these lines, systems incorporating discrete articulatory features derived by neural

networks from acoustics into HMMs have shown some improvement over acoustic-only base-

lines (Fukuda, Yamamoto, and Nitta, 2003; Kirchhoff, 1999). However, these results were

often statistically insignificant except in the presence of extreme environmental noise (King

et al., 2007). Neural network discriminative classifiers have been shown to correctly identify

approximately 53% of simultaneous multivalued articulatory features, on average, for non-

dysarthric speech (King and Taylor, 2000; Kirchhoff, 1999; Scharenborg, Wan, and Moore,

2007).
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Figure 3.3: State-transition graph of feature-based HMM for the word strong as adapted by

McDermott and Nakamura (2006) from Sun and Deng (2002a).

A commonality among all of this work is its reliance on non-dysarthric data where articu-

latory and acoustic patterns are less disordered than in speakers with cerebral palsy and other

neuromotor disabilities (Livescu et al., 2007).

3.2.1 Audio-visual speech recognition

Speech recognition by humans often involves visual information to supplement the audio, es-

pecially in noisy environments where audio input is distorted or obfuscated (Summerfield,

1992). Physical gesticulation is also a common manner of conveying information between hu-

mans, allowing semantic information to be transmitted concurrently among multiple modalities

(Rudzicz, 2006). The compulsion of humans to use visual information in deciphering speech

is so strong that the visual signal will almost invariably supersede the audio signal if the two

conflict in certain circumstances. Specifically, the McGurk effect is an audio-visual illusion

in which audio of an individual saying /ba/ will be superimposed on video sequences of that
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Figure 3.4: Fictionalized lip reading in profile by machine, from Kubrick (1968).

person uttering either /fa/ or /da/. Human listeners, naı̈ve or not, will consistently perceive /fa/

in the first combination and /ga/ in the second (McGurk and MacDonald, 1976).

Lip reading by machine is a field with a long tradition (Stork and Hennecke, 1996) that is

becoming increasingly tractable for widespread use given a preponderance in low-cost video-

capturing systems embedded in today’s personal computers (Neti et al., 2000). A fictional

depiction of this activity is shown in figure 3.4. Unsurprisingly, the incorporation of addi-

tional relevant information into the speech recognition process results in higher rates of correct

recognition than acoustic-only ASR (Adjoudani and Benoit, 1995; Potamianos and Graf, 1998;

Dupont and Luettin, 2000; Papandreou et al., 2009). However, most research in this area con-

tinues to concentrate on small-vocabulary tasks such as digit recognition (Neti et al., 2000).

Coupled HMMs, shown in figure 3.5(b), represent parallel streams of acoustics and vi-

sual observations and are commonly used in audio-visual speech recognition (Chu and Huang,

2000; Nefian et al., 2002b). Coupled HMMs are essentially collections of standard HMMs,

each representing a unique data source, in which the discrete state nodes are conditioned on

the state nodes of the HMMs representing other streams. This work classified pixels in the

visual data into ‘face’ and ‘mouth’ classes by linear discriminant analysis performed offline on

sequences that were manually segmented using chromatic values. The contour of the lips in

this binarized space was obtained via a binary chain encoding method (Castleman, 1996), the

result of which is shown in figure 3.5(a). The efficacy of this approach is especially pronounced

in noisy environments, e.g., at 16 dB SNR. This combined approach gave 69.9% word accu-
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Figure 3.5: Lip contours (a) and Coupled HMM (b) with aligned acoustic and visual observa-

tions, each represented by circular nodes, from Nefian et al. (2002b). The coupled HMM is

essentially two typical HMMs in parallel for each time step t.

racy compared with 28.26% accuracy for the acoustic-only method (this disparity decreases,

naturally, at higher SNR levels). This approach was later shown to outperform a nearly identi-

cal factorial HMM model which conditioned all output and Gaussian mixture indices on both

the acoustic and visual state sequences (Nefian et al., 2002a).

Saenko and Livescu (2006) use a model very similar to that of Nefian et al. (2002b) (al-

though they use more generic topologies, as described in section 3.2.2) for recognizing English

digits given audio and visual representations. This model allows the state sequences for the au-

dio and visual streams to be ‘de-synchronized’ in that state transitions in one do not require

state transitions in the other, which is accomplished by an additional variable in the network

that measures the degree of asynchrony. On the CUAVE database of audio-visual English dig-

its (Patterson et al., 2002) this work showed a word-error rate as low as 3% in the combined

model in a SNR scenario of 12 dB in which the acoustic-only HMM baseline had a word-error

rate of 7%. Larger margins were obtained in noisier environments.
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3.2.2 Dynamic Bayes networks

Dynamic Bayes networks (DBNs) constitute a statistical framework for representing temporal

dynamics of systems of variables (Deng, 2006). The class of DBNs generalize many other pop-

ular statistical models such as HMMs and Kalman filters and are represented by directed acyclic

graphs of variables. A mathematical description of dynamic Bayes networks is provided in sec-

tion 5.1.5. This framework is appealing since DBNS allow for both manual configuration of

the topologies between relevant defined variables (e.g., articulatory parameters) and powerful

statistical machine learning techniques (Zweig, 1998). Here, acoustics can be conditioned into

a myriad of parameters including the type of speaker, their pronunciation variation, and their

speaking rate, or on higher-level effects, such as prosodic or linguistic structure (Ostendorf,

2000). Recently, dynamic Bayes networks have been applied to the problem of AF classifi-

cation by Frankel, Wester, and King (2007) under similar conditions as King et al. (2007)

above using structures expanded upon in section 5.3 and correctly identified 57.8% of simi-

lar multivalued AFs on non-dysarthric speech. These data structures have also been used in

modelling inter-dependencies between acoustics and measured articulation in regular speech

(Nefian et al., 2002a). Stephenson, Magimai-Doss, and Bourlard (2004) showed that simple

Bayes networks relating Mel-frequency cepstral coefficients observations with Wisconsin’s X-

ray microbeam articulatory data (Westbury, 1994) resulted in a 9% word-error rate reduction

when compared with a baseline acoustic-only ASR system.

Markov, Dang, and Nakamura (2006) followed this work with a series of simpler Bayes

networks that estimated the likelihood of acoustic observations given discretized articulatory

parameters, achieving similar results when combined with an HMM-based ASR system. They

point out that modelling speech by non-overlapping disjoint units is not physiologically plau-

sible, and degrades performance with coarticulation phenomena. They suggest that replacing

hidden variables in the standard HMM framework with actual articulatory data may result in

more realistic and robust acoustic models.

The simple BNs in figure 3.6 determine the output probabilities of three-state phonetic
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(a) (b)

Figure 3.6: Simple Bayes networks used to model HMM observation probabilities. Model

(a) models only articulatory position data (A) while model (b) includes transitively dependent

velocity (Av) and acceleration (Aa) coefficients, from Markov, Dang, and Nakamura (2006).

HMMs within an ASR system given discrete state variable Q, continuous acoustic variable X ,

and hidden and discretized articulatory data. The first BN models output probabilities by

P(1)(X = xt |Q = qi) =
P(X = xt |Q = qi)

P(Q = qi)

=
∑

K
j=1 P(X = xt ,M = m j,Q = qi)

P(Q = qi)

=
∑

K
j=1 P(X = xt |M = m j,Q = qi)P(M = m j|Q = qi)P(Q = qi)

P(Q = qi)

=
K

∑
j=1

P(X = xt |M = m j,Q = qi)P(M = m j|Q = qi)

(3.8)

and the second by

P(2)(X = xt |Q = qi) =
Ks

∑
j=1

Kv

∑
n=1

Ka

∑
m=1

P(As = as
j|Q = qi)

·P(Av = av
n|As = as

j,Q = qi)

·P(Aa = aa
m|Av = av

n,Q = qi)

·P(X = xt |As = as
j,Av = av

n,Aa = aa
m,Q = qi).

(3.9)

In all graphical depictions of DBNs in this dissertation, filled and empty nodes represent

observed and hidden variables, respectively, and square and round nodes are discrete and con-

tinuous variables, respectively. During training, when articulatory information is available,

the values of the various A variables can be specified, and the BN parameters updated after
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alignment using simple maximum likelihood estimation. During recognition, when the articu-

latory values are hidden, calculation of the output probabilities above is straightforward since

all parent nodes represent discrete variables.

Across three normal speakers, using velocity and acceleration parameters did not present

much improvement as the model in figure 3.6(b) averaged 84.7% accuracy, against 84.6% for

the model in figure 3.6(a). More significantly, the position-only model outperforms standard

HMM output models, reducing relative error by as much as ∼ 20%. The authors claim that

future work involves experimenting with physiologically-inspired models for HMM state tran-

sitions (Markov, Dang, and Nakamura, 2006).



Chapter 4

The TORGO database of dysarthric

articulation

This chapter describes the acquisition of a new database of dysarthric English speech in terms

of aligned acoustics and articulatory data. This database, called TORGO, is the result of a

collaboration between the departments of Computer Science and Speech-Language Pathology

at the University of Toronto and the Bloorview Kids Rehab hospital in Toronto. The goal

of this resource is to provide developers of speech technology with the tools to tailor their

systems to atypical speech and to incorporate source information (i.e., knowledge of physical

speech production) into these systems. This data is also applicable to linguists, pathologists,

and clinicians who are interested in studying atypical speech production.

TORGO currently includes data from seven individuals with speech impediments caused by

cerebral palsy or amyotrophic lateral sclerosis and age- and gender-matched control subjects.

Each of the individuals with speech impediments are given standardized assessments of speech-

motor function by a speech-language pathologist. Similar databases are surveyed in section

4.1 before the data collection procedure used in TORGO is described in section 4.2, including

descriptions of subjects, assessments, speech stimuli, and instrumentation. Sections 4.3 and

4.4 describe post-processing techniques and observed aspects of the data, respectively.

56
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4.1 Existing databases

To date, no database of combined acoustic and articulatory dysarthric speech is publicly avail-

able. Since dysarthric speakers are in the minority and susceptible to fatigue, collecting data

from this population can be particularly challenging. Data collection with dysarthric speakers

has usually involved fewer than 5 participants (Hasegawa-Johnson et al., 2006a), frequently

producing only about 25 utterances each (Jayaram and Abdelhamied, 1995). Adjustments to

regular ASR training in the presence of data sparsity have included using training algorithms

that require less data (Wan and Carmichael, 2005) or augmenting ‘surface’ data (acoustics)

with the hidden variables on which they depend (articulation) (Markov, Dang, and Nakamura,

2006).

The A.I. duPont Institute’s Nemours database is a popular source of phonemically anno-

tated dysarthric acoustics consisting of 11 dysarthric males with varying degrees of intelli-

gibility and one non-dysarthric male. Each subject utters 74 syntactically invariant and se-

mantically meaningless short sentences and two additional paragraphs (Menendez-Pidal et al.,

1996). Each nonsense sentence has the form The N0 is V ing the N1, where N0 and N1 are

unique monosyllabic nouns and V is a monosyllabic verb. The target words, N0, V , and N1,

were randomly selected without replacement in order to provide closed-set phonetic contrasts

(e.g., place, manner, voicing). Here, phonemic annotations are automatically derived by HMM-

based forced alignment given known orthography. Each speaker is also associated with a com-

plete Frenchay assessment of motor function. Since no physiological information is included,

articulatory features are derived directly from phonemic annotations as described in section 2.4

and provide the bases for production knowledge in section 5.3.

The University of Edinburgh’s MOCHA database consists of 460 sentences derived from

TIMIT (Zue, Seneff, and Glass, 1989) uttered by a male and a female British speaker without

dysarthria (Wrench, 1999). All acoustic data is temporally aligned with electromagnetic ar-

ticulography (recorded at 500 Hz), laryngography (at 16 kHz), and electropalatography (EPG,

at 200 Hz). This study involves eight bivariate articulatory parameters, namely the upper lip
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Figure 4.1: The midsagittal motion of the articulators during the phrase “This was easy for us”.

(UL), lower lip (LL), upper incisor (UI), lower incisor (LI), tongue tip (TT), tongue blade

(TB, 1 cm from the tongue tip), tongue dorsum (TD, 1 cm from the tongue blade), and velum

(V). Each parameter is measured in the two dimensions of the midsagittal plane, resulting in a

16-dimensional articulatory configuration, as shown in figure 4.1.

Recently, Yunusova et al. (2008) have collected x-ray microbeam data with 15 individuals

with ALS and Parkinson’s disease. This data includes point-data in similar positions to the

MOCHA database and generally follows the protocol and methodology of the Wisconsin x-

ray microbeam database for non-dysarthric speakers (Westbury, 1994). This database only

includes 10 stimuli per speaker, however, which is not enough to train ASR systems.

Finally, the Universal Access (UA-Speech) database recorded at the University of Illinois

consists of 17 participants diagnosed with cerebral palsy (Kim et al., 2008). Each participant in

that database utters 765 isolated words from sources such as digits, the radio alphabet, common

dictionary words, and computer commands, which is comparable in scope and in content to

the contributions of participants in the TORGO database. However, the UA-Speech database
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does not include any connected-word sentence-level utterances nor does it provide access to

measurements of the tongue. Furthermore, at the time of this writing, there is little to no

annotation that accompanies this data such as phonemic annotation.

The following sections describe our study population, their speech-motor assessment, and

the data collection process.

4.2 Data collection

Data collection began in 2008 through collaboration between the departments of Computer

Science and Speech-Language Pathology at the University of Toronto, Bloorview Kids Rehab

hospital in Toronto, and the Ontario Federation for Cerebral Palsy. The following section

describes various aspects of the data collection process.

4.2.1 Subjects

Seven dysarthric subjects (4 male, 3 female) have so far been assessed in this study, covering

a wide range of intelligibility. Dysarthric subjects were recruited by a speech-language pathol-

ogist at the Bloorview Research Institute in Toronto (Rudzicz et al., 2008). The subjects were

between the ages of 16 and 50 years old and have dysarthria resulting from cerebral palsy (e.g.,

spastic, athetoid, or ataxic). In addition, one subject with dysarthria from a confirmed diag-

nosis of amyotrophic lateral sclerosis (ALS) was recruited. These individuals were matched

according to age and gender with non-dysarthric subjects from the general population. Hav-

ing an equal number of dysarthric and control speakers is useful for comparing acoustic and

articulatory differences, and for analyzing these relationships mathematically and functionally

(Hosom et al., 2003; Kain et al., 2007).

Each subject began the data collection process with a short questionnaire that covers general

demographic data and health-related questions that can impact speech and language function

including various types of motor problems, both gross (e.g., standing, balancing) and fine (e.g.,
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writing, swallowing). All participants were required to have a negative history of severe hearing

or visual problems and of substance abuse, and to be able to read at a 6th grade elementary

level. This was further quantified by requiring that their cognitive function lie above or at level

VIII (i.e., Purposeful-Appropriate) on the Rancho scale (Herndon, 1997), which is determined

during a pre-visit questionnaire.

Each participant has recorded 3 hours of data (approximately 500 utterances from each

dysarthric speaker and 1200 from non-dysarthric speakers).

4.2.2 Assessment

Clinical assessments of motor function and intelligibility in dysarthric speakers are often used

by speech therapists for rehabilitation (Kent, 2000) and intelligibility correlates well with ASR

accuracy (Ferrier et al., 1995). The motor functions of each experimental subject were as-

sessed according to the standardized Frenchay Dysarthria Assessment (FDA) (Enderby, 1983)

by a speech-language pathologist. This assessment is designed to categorize and diagnose

individuals with dysarthria while being easily applicable to therapy, sensitive to changes in

speech, simple and quick to administer, and easily communicable within professional teams.

There exist other assessment measures of oral motor ability, such as the Assessment of In-

telligibility of Dysarthric Speech (AIDS) (Yorkston and Beukelman, 1981), which quantifies

the intelligibility of single words, sentences, and speaking rates of adults and adolescents with

dysarthria. However, these tend to focus only on speech production, whereas the FDA also

includes analysis of the movement of the articulators in non-linguistic contexts.

The Frenchay assessment measures 28 perceptually-relevant dimensions of speech grouped

into 8 categories, namely reflex, respiration, lips, jaw, soft palate, laryngeal, tongue, and in-

telligibility as described in Table B.1 in Appendix B. Influencing factors such as speech rate

and sensation are also recorded. To measure most of these dimensions, the administering clin-

ician either engages the subject in communication or has the subject perform a simple task

(e.g., drinking from a cup of water) while observing their oral movements. The subject’s oral
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behaviour is rated on a 9-point scale and plotted with a simple bar graph. The assessment

provides characterizations of behaviours across this 9-point scale. For example, for the cough

reflex dimension, a subject would receive a grade of ‘a’(8) for no difficulty, ‘b’(6) for occa-

sional choking, ‘c’(4) if the patient requires particular care in breathing, ‘d’(2) if the patient

chokes frequently on food or drink, and ‘e’(0) if they are unable to have a cough reflex. The

resulting graph provides a high-level overview to the clinician to quickly identify problematic

aspects of speech.

The mildly dysarthric speakers were able to participate in all tasks required of them for the

assessment. The more severely dysarthric speakers also engaged in all tasks but levels of fa-

tigue and poor breath control inhibited them from completing some of these tasks. Assessment

data of this type is useful in analyzing how modifications to ASR software affects achievable

accuracy across the spectrum of intelligibility levels. For example, alterations to the process

by which vowels are categorized by the machine may have greater impact for those individuals

with more atypical tongue movement, as opposed to pronounced velum differences. Table B.1

in Appendix B shows the mean (µ) and standard deviation (σ ) of our participants, split by

gender, across each of the 28 dimensions of the Frenchay assessment.

4.2.3 Speech stimuli

All subjects read English text from a 19-inch LCD screen placed 60 cm in front of them, or

repeated verbal stimuli if the former is not possible. The stimuli were presented to the partici-

pants in randomized order from within fixed-sized collections of stimuli. Dividing the stimuli

into collections in this manner guaranteed a certain degree of overlap between subjects who

speak at vastly different rates, which is the case when dealing with severely dysarthric speak-

ers. There is no dependency relation between the sessions and the presented stimuli. The

collected speech data covers a wide range of articulatory contrasts, is phonetically balanced,

and simulates simple command vocabularies typical of assistive ASR technology. The follow-

ing types of stimuli are included:



CHAPTER 4. THE TORGO DATABASE OF DYSARTHRIC ARTICULATION 62

Non-words These are used to control for the baseline abilities of the dysarthric speakers, espe-

cially to gauge their articulatory control in the presence of plosives and prosody. Speak-

ers are asked to perform the following:

• 5 to 10 repetitions of /iy-p-ah/, /ah-p-iy/, and /p-ah-t-ah-k-ah/, respectively. These

sequences allow us to observe phonetic contrasts around plosive consonants in the

presence of high and low vowels, and have been used in other studies (Bennett, van

Lieshout, and Steele, 2007).

• High-pitch and low-pitch vowels maintained over five seconds (e.g., “Say ‘eee’ in a

high pitch for 5 seconds”). This allows us to explore the use of prosody in assistive

technology, as many dysarthric speakers who have difficulty with articulation can

control pitch to some degree (Patel, 2002b).

Short words These are useful for studying speech acoustics without the need for word-boundary

detection. These stimuli include formant transitions between consonants and vowels, the

formant frequencies of vowels, and acoustic energy during plosive phonemes, as ex-

plored by Roy et al. (2001). This category includes the following:

• Repetitions of the English digits 1 to 10, yes, no, up, down, left, right, forward,

back, select, menu, and the international radio alphabet (i.e., alpha, bravo, charlie,

etc.). These words are useful for hypothetical command-and-control software for

accessibility.

• 50 words from the the word intelligibility section of the Frenchay Dysarthria As-

sessment (Enderby, 1983).

• 360 words from the word intelligibility section of the Yorkston-Beukelman As-

sessment of Intelligibility of Dysarthric Speech (Yorkston and Beukelman, 1981).

These are grouped into phonetically similar words, as was presented in the Nemours

database (Menendez-Pidal et al., 1996) (e.g., hit, hat, and hut are a trio of mono-

syllabic words differing only in their vowel).
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• The 10 most common words in the British National Corpus (Clear, 1993).

• All phonetically contrasting pairs of words from Kent et al. (1989). These are

grouped into 18 articulation-relevant categories that affect intelligibility, including

glottal/null, voiced/voiceless, alveolar/palatal fricatives and stops/nasals; these are

shown in table A.1 in Appendix A.

Restricted sentences In order to utilize lexical, syntactic, and semantic processing in ASR,

full and syntactically correct sentences are recorded. These include the following:

• Preselected phoneme-rich sentences such as “The quick brown fox jumps over the

lazy dog”, “She had your dark suit in greasy wash water all year”, and “Don’t ask

me to carry an oily rag like that”.

• The Grandfather passage from the Nemours database (Menendez-Pidal et al., 1996).

• 162 sentences from the sentence intelligibility section of the Yorkston-Beukelman

Assessment of Intelligibility of Dysarthric Speech (Yorkston and Beukelman, 1981).

These sentences are designed to highlight perceptual contrasts in speech that are

relevant to speaker intelligibility.

• The 460 TIMIT-derived sentences used as prompts in the MOCHA database (Wrench,

1999; Zue, Seneff, and Glass, 1989).

Unrestricted sentences Since a long-term goal is to develop applications capable of accepting

unrestricted and novel sentences, we elicited natural descriptive text by asking partici-

pants to spontaneously describe 30 images of interesting situations taken randomly from

among the cards in the Webber Photo Cards: Story Starters collection (Webber, 2005).

These are similar in nature to images used in other standardized tests of linguistic profi-

ciency (Campbell, Bell, and Keith, 2001). This data complements restricted sentences in

that they more accurately represent naturally spoken speech, including disfluencies and

syntactic variation.
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4.2.4 Instrumentation

In each of three sessions, subjects are prepared for either of two instrumental studies. The first

involves the use of electromagnetic articulography (EMA) and the other involves video record-

ings of facial markers using specialized software to extract their positions over time. For EMA,

the preparation takes approximately 30 minutes in which sensors are placed on the relevant lo-

cations of the speech articulators as described below in section 4.2.4. In the video-based setup,

preparation takes about 20 minutes and involves the placement of phosphorescent markers on

relevant landmark positions of the face, as described in section 4.2.4. The actual data collection

process takes no more than 1 hour thereafter in either the EMA or video configurations. Of the

three recording sessions, two are within the EMA environment since we are interested in the

motion parameters of the tongue, which are unavailable in the video setup. We perform three

sessions for each participant in order to check the reliability and variability of our data over

time. Moreover, the literature suggests that EMA can provide a reliable estimate of speaker

variability of speech parameters over time (van Lieshout et al., 1997).

Electromagnetic articulograph (EMA) kinematics

The collection of movement data and time-aligned acoustic data is carried out using the three-

dimensional AG500 electro-magnetic articulograph (EMA) system (Carstens Medizinelek-

tronik GmbH, Lenglern, Germany) with fully-automated calibration. The 3D-EMA system is

considered state-of-the-art technology for studying speech movements and its principles have

been elaborated elsewhere (Hoole, Zierdt, and Geng, 2003; van Lieshout, Merrick, and Gold-

stein, 2008; Yunusova, Green, and Mefferd, 2009; Zierdt et al., 2000). This system allows for

3D recordings of articulatory movements inside and outside the vocal tract, thus providing a

detailed window on the nature and direction of speech related activity.

In the AG500 system, six transmitters attached to a clear cube-shaped acrylic plastic struc-

ture (dimensions L 58.4 x W 53.3 x H 49.5 centimetres) generate alternating electromagnetic

fields as shown in figure 4.2(a). Each transmitter coil has a characteristic oscillating frequency
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ranging from 7.5 to 13.75 kHz (Yunusova, Green, and Mefferd, 2009). When sensors (also

called transducers) are brought into the field, induction generates a weak current oscillating

with the same frequencies. The energy in each frequency of the induced complex signal de-

pends on the distance of the sensor from the transmitters and its orientation. The spatial position

of the sensor coil in the field is then determined by identifying the strength of the contribution

of each transmitter coil via a process of demodulation of the complex signal induced in the

sensor (Yunusova, Green, and Mefferd, 2009). The induced voltage values in the sensors are

compared to expected values based on a known field model (Zierdt, Hoole, and Tillmann,

1999) and the difference is expressed as root-mean-square (RMS) error. The system translates

these voltages into 3D coordinates of sensor positions over time. As will be discussed later, the

RMS error is used to position the subject within the recording field and in part to measure the

recording accuracy of the system.

As recommended by the manufacturer, the AG500 system is calibrated prior to each session

subsequent to a minimum of a 3 hour warm-up time. It is reported that, at or close to the

cube’s centre, positional errors are significantly smaller (Yunusova, Green, and Mefferd, 2009)

compared to the peripheral regions of the recording field within the cube. For our system, the

stable volume around the center was roughly 0.008m3 (approximately the size of a basketball).

Thus, care was taken to ensure that all participants were as close to the cube centre as possible,

as shown in figure 4.2(a). The subject positioning within the cube was aided visually by the

Cs5view real-time position display program (Carstens Medizinelektronik GmbH, Lenglern,

Germany). This allowed the experimenter to continuously monitor the subject’s position within

the cube (repositioning the subject if required) and thereby maintain low RMS error values1 to

ensure good tracking of the sensor coils.

Sensor coils were attached to three points on the surface of the tongue, namely tongue

tip (TT – 1 cm behind the anatomical tongue tip), the tongue middle (TM – 3 cm behind the

1The Cs5view real-time position display flags a coil in red if the RMS error exceeds 30 units; however, the
RMS during recording rarely exceeded 8 units across all coils, which is suitable for minimizing position tracking
errors (Kroos, 2008; Yunusova, Green, and Mefferd, 2009).
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tongue tip coil), and tongue back (approximately 2 cm behind the tongue middle coil). A

sensor for tracking jaw movements (JA) is attached to a custom mould made from polymer

thermoplastic that fits the surface of the lower incisors and which is necessary for a more

accurate and reproducible recording (van Lieshout and Moussa, 2000). Four additional coils

are placed on the upper and lower lips (UL and LL) and the left and right corners of the

mouth (LM and RM). The placement of some of these coils is shown in figure 4.2(b). Further

coils are placed on the subject’s forehead, nose bridge, and behind each ear above the mastoid

bone for reference purposes and to record head motion. Except for the left and right mouth

corners, all sensors that measure the vocal tract lie generally on the midsagittal plane on which

most of the relevant motion of speech takes place. Sensors are attached by thin and light-

weight cables to recording equipment but do not impede free motion of the head within the

EMA cube. Many cerebrally palsied individuals require metal wheelchairs for transportation,

but these individuals were easily moved to a wooden chair that does not interfere with the

electromagnetic field for the purposes of recording.

Video-based articulatory kinematics

Although EMA provides detailed recordings of the tongue, which is not normally visible, typ-

ical use of speech recognition software will not likely involve such measurements. Therefore,

we implement a second recording environment whose purpose is to derive more varied surface-

level facial information using digital cameras. Here, recorded positions are meant to mimic the

type of information that can be extracted from webcam-based face-recognition software.

Here, two digital video cameras are placed equidistant from the subject, at approximately

45 degree angles to their midsagittal plane, to the front-left and front-right of the subject. Video

is captured at 60 frames per second and audio at 16,000 Hz on both cameras. This audio is

used for synchronizing the frames from both cameras and for separate acoustic measurements.

Two 250 W black lights are used to illuminate small (2 mm radii) glow-in-the-dark markers

placed on the surface of the subject’s face at selected points around the lips and over the orbic-
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Figure 4.2: The AG500 electromagnetic articulography system. Figure 4.2(a) shows a partic-

ipant seated in the center of the EMA cube. Figure 4.2(b) shows the placement coils on the

right mouth (RM), left mouth (LM), upper lip (UL), tongue tip (TT), tongue mid (TM), and

tongue back (TB).
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Figure 4.3: The binocular video recording setup showing the placement of phosphorescent dots

on the subject’s face.

ularis oris, depressor anguli oris, and depressor labii inferioris muscles as in previous studies

on speech production (Craig, van Lieshout, and Wong, 2007) and as shown in figure 4.3.

Facial markers are tracked by specialized vision software based on strong contrasts be-

tween the reflection of the markers and the relatively darker background. These positions are

converted into 3-dimensional co-ordinates using pairs of aligned video images and an esti-

mated inter-camera calibration (Tsai, 1987). Calibration between cameras is performed by

first filming a reference object with a known geometry, namely a cube with 30 cm sides.

Acoustics and microphones

All acoustic data are recorded simultaneously through two microphones. The first is an Acous-

tic Magic Voice Tracker array microphone with 8 recording elements. The device uses ampli-

tude information at each of these microphones to pinpoint the physical location of the speaker

within its 60-degree range and to reduce acoustic noise by spatial filtering and typical ampli-

tude filtering in firmware. This microphone records audio at 44.1 kHz. The second microphone

is a head-mounted electret microphone which records audio at 16 kHz. The electromagnetic

field produced by this microphone does not demonstrably affect the field of the EMA system,

and so it can be worn during all recordings. Using multiple microphones to record speech
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can significantly improve the intelligibility of that speech in the presence of acoustic noise

(Schwander and Levitt, 1987; Aarabi and Shi, 2004; Shi, Aarabi, and Jiang, 2007).

Signals from the two microphones are temporally aligned using simple cross-correlation,

which is a measure of the similarity of one waveform and a second time-lagged waveform.

Namely, given the two discrete signals f and g, we compute the complex conjugate2 of the

first, giving signal f ∗ consisting of real and phase values, and compute the cross-correlation by

( f ?g)[n] = ∑
m

N−1 f ∗[m]g[n+m]

where N is the length of the longer of the two sequences. The maximum value of this cross-

correlation signal is the time delay between the jointly stationary signals, which is the speech

signal recorded by both microphones. An example of this alignment is shown in figure 4.4.

An alternative mechanism for ensuring alignment between signals involved the construction of

an electrical circuit to communicate between the AG500 and the laptop computer connected to

the directional microphone. This system was later abandoned because acoustic alignment with

cross-correlation would be performed regardless, but its diagram is included in Appendix D.

Finally, acoustic noise reduction is performed using spectral subtraction (Ephraim and

Malah, 1985). Here, we assume that the recorded audio y[n] consists of a desired signal x[n]

that has been corrupted by additive noise υ [n], i.e.,

y[n] = x[n]+υ [n].

Here, we assume that the signals x[n] and υ [n] are statistically independent, as are their power

spectra |X( f )|2 and |ϒ( f )|2 3, so that the power spectrum of the recorded audio is

|Y ( f )|2 ≈ |X( f )|2 + |ϒ( f )|2 .

We estimate |ϒ( f )|2 by M-frame estimates over periods containing only noise,∣∣ϒ̂( f )
∣∣2 = 1

M

M−1

∑
i=0
|Yi( f )|2 .

2If z = x+ iy = Aeiφ is a complex signal with i2 =−1, then its complex conjugate is z∗ = x− iy = Ae−iφ .
3A power spectrum is defined as |X( f )|2 = X( f )X∗( f ) where X( f ) is the Fourier transform at frequency f

and X∗( f ) is the complex conjugate counterpart.
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Figure 4.4: Alignment of two acoustic sources with the cross-correlation method. The top

waveform is the signal recorded by the head-mounted microphone. The middle waveform is

the signal recorded by the directional microphone. The bottom superposition of waveforms is

produced by cross-correlation.
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Figure 4.5: Original (a) and enhanced (b) waveforms and spectrograms for audio in TORGO ut-

tered by speaker F03. Enhancement performed by spectral subtraction based on Martin (2001).

Note the reduction in noise below 250 Hz and the general smoothing of the spectra in the en-

hanced spectrogram.

Given a frequency-dependent signal-to-noise ratio

SNR( f ) =
|Y ( f )|2∣∣ϒ̂( f )

∣∣2
we then estimate the source waveform by

∣∣X̂( f )
∣∣2 = max

(
0, |Y ( f )|2−

∣∣ϒ̂( f )
∣∣2)= max

(
0, |Y ( f )|2

(
1− 1

SNR( f )

))
.

The implementation used in this thesis is based on work by Martin (2001) in which spectral

minima are tracked in each frequency band and are used to smoothe |ϒ( f )|2 by minimizing

the conditional mean square estimation error at each time step. Figure 4.5 shows the results of

applying this technique on audio data in the TORGO database.
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Figure 4.6: The MVIEW visualization environment for TORGO EMA data. The upper-left

corner shows the instantaneous 3D locations of 12 articulator points. The upper-right corner

shows the acoustic waveform and spectrogram. The lower-right corner shows the motion of

each articulator point over time, in mm. The lower-left corner shows controls and the instanta-

neous spectrum.

4.3 Data post-processing

All data is being phonemically annotated to the TIMIT phone set (Zue, Seneff, and Glass, 1989)

by a speech-language pathologist to allow supervised frame-level training of phone-dependent

acoustic and kinematic models. These annotations are further checked by two naı̈ve listeners

for consistency. EMA recordings are analyzed in MATLAB with the program shown in figure

4.6, which displays instantaneous spectral acoustics and articulatory positions, as well as their

respective temporal sequences (Tiede, 2008).

The AG500 EMA system has an expected error specification of up to 0.5mm in each di-

mension (X , Y , and Z) and an angular error (θ ) of less than half of a degree. However, in
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reality it is possible that accuracy may vary slightly across different AG500 systems due to set-

up and environmental conditions such as ambient room temperature, type of sensor coils used,

and existing electromagnetic fields in the room. These conditions may also vary across time

(Kaburagi, Wakamiya, and Honda, 2005; Yunusova, Green, and Mefferd, 2009). To estimate

more realistic values, we carried out a series of static and dynamic accuracy measurements for

the AG500 system. For static measurement, 3-dimensional Euclidean distances between pairs

of sensor coils were calculated. The sensors used here were those located on relatively rigid

surfaces, namely the forehead, nose bridge, and behind the ear on the skin covering the right

and left mastoid bone. Under ideal conditions, the distance between the pairs of sensors should

remain constant throughout all trials for a given session. In other words, smaller average stan-

dard deviations for the 3D Euclidean distances between pairs of reference coils would imply

lower static system noise or relative error. Similar methods have been applied to a camera-

based marker tracking system (Craig, van Lieshout, and Wong, 2007) and in other 3D EMA

systems (Hoole and Zierdt, 2010; Yunusova, Green, and Mefferd, 2009). This Euclidean RMS

method provides a real and accurate measure of intrinsic system noise and relative error for

each recording session. The average value was 0.2 mm across all pairs. These numbers may

be taken roughly as the lower limit of the system’s resolution (Kroos, 2008).

Recent studies have indicated that position errors in dynamic measurements, as opposed to

static measurements, may be larger in magnitude and may vary across the three spatial dimen-

sions (Kroos, 2008; Yunusova, Green, and Mefferd, 2009). We therefore ran a set of dynamic

accuracy measurements for all coils using a specific tool recommended by the manufacturer.

This allows us to estimate dynamic spatial errors as a function of sensor orientation. This

accuracy checking tool is a mechanical device that is rigidly fixed in the centre of the cube’s

recording field and allows user defined manipulations of sets of coils in different orientations

and directions. The device is constructed such that sets of coils placed on it can only travel

a fixed distance (70 mm) in a particular direction. For the current study, we displaced 3 sets

of 4 coils (i.e. 〈(1..4,5..8,9..12〉) across the entire 70 mm distance six times in a row in each
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dimension (X , Y , and Z). A custom Matlab algorithm calculated the maximum 3D Euclidean

displacement between points in that trial, as well as the average 3D Euclidean displacement.

The algorithm automatically finds the coils that are being moved and the dimensions in which

they are moving using maximum variance. Ideally, the maximum and average 3D Euclidean

displacement values should be as close to 70 mm as possible. The amount of deviation from

70 mm provides an estimate of direction specific spatial accuracy of the system. We calculated

the accuracy averaged across all 12 sensor coils per dimension. This was in the range of 0.54

to 0.60 mm in the Z (up/down) dimension, 0.34 to 0.59mm in the X (front/back) dimension,

and 0.84 to 1.07 mm in the Y (left/right) dimension.

4.3.1 Data normalization

Position normalizations and corrections for head movements were carried out using custom-

made NormPos software from the manufacturer of the AG500. The NormPos program does

a sample-by-sample head normalization by rotating and shifting the coordinate system such

that all reference sensors remain in the same 3D location across all samples and trials. Compu-

tationally, this is carried out using algorithms similar to 3D pose estimation methods (Kroos,

2008). Such algorithms calculate transformation parameters that can transform head position

of a given sample to an experimenter chosen arbitrary reference position (that defines the ori-

entation of the head and the origin of the coordinate system). The transformation parameters

are derived by minimizing the sum of the squared distances between the reference sensor coils

in the reference position and the actual position in other trials using linear least squares ap-

proaches such as (Kroos, 2008). The NormPos program stores these transformational param-

eters as a normalization pattern file. This normalization pattern file is then used to rotate and

translate all other (non-reference) sensor coils positions in the remaining trails of the experi-

ment to yield articulation trajectories that are corrected for head movements and with a fixed

head-orientation that is identical across trials (and across subjects).

Since the NormPos program uses a normalization pattern file that is based on a single trial,
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the quality of the head movement correction for the entire experiment depends on the quality

of the data from the reference sensor coils in that trial. At times, the quality of data may not be

equally good in all reference coils (as in the case of coil detachment and/or position tracking

errors). For this reason, researchers have recommended the use of more than two reference

sensor coils 4, typically four, to allow for redundancy in the available reference sensor coils

(Hoole and Zierdt, 2010). For the present study, the two noise measures that were previously

discussed were used to decide which two or three reference sensor coils (of the four available)

were suitable to create the normalization pattern file (Hoole and Zierdt, 2010). Generally, the

nose bridge and the two sensor coils behind the ears had the least amount of noise and were

chosen to create the normalization pattern.

All trials are screened for errors in performance using procedures reported in the literature

(Namasivayam and van Lieshout, 2008). Errors in speech production (e.g., coughs, laughs,

misarticulations, false starts) are noted. A research associate, carefully reviewed the movement

data visually and listened to the acoustic recordings (that were collected simultaneously with

the movement data) and then compared these to the error notations that were made during the

experiments. Only error-free and fluent portions of trials were used in this study.

4.3.2 Reconstruction of 3D movement from binocular video

There are various techniques that estimate the 3D structure of the face given stereo (i.e., ‘binoc-

ular’) video images. Some of these involve fitting video images to 3D polygonal models that

have previously been trained by manual facial landmark identification (e.g., eyebrows, nose,

eyes) (Blanz and Vetter, 2003; Park and Jain, 2006), often through the use of generic models

of facial structure (Chowdhury and Chellappa, 2003).

In order to estimate the 3D position of a point P viewed simultaneously by multiple cam-

eras, we must first transform its arbitrary location (XW ,YW ,ZW ) in the coordinate system of the

4Two sensors, in principle, are sufficient to characterize the six degrees of freedom related to rigid-body
motions (Hoole and Zierdt, 2010).
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P

PA PB

CB
CA

Figure 4.7: Reconstructing 3D coordinates of point P given its projections in the 2-dimensional

images of cameras A and B described by their focal points CA and CB, respectively.

world with origin (X (0)
W ,Y (0)

W ,Z(0)
W )5 to its location (Xc,Yc,Zc) in the coordinate system of the

camera with origin (X (0)
c ,Y (0)

c ,Z(0)
c ), as visualized in figure 4.7.

This coordinate transformation is performed by a simple translation and rotation
Xc

Yc

Zc

=M


XW

YW

ZW

+T

=


cosϕ cosκ, sinω sinϕ cosκ− cosω sinκ, cosω sinϕ cosκ + sinω sinκ

cosϕ sinκ, sinω sinϕ sinκ− cosω cosκ, cosω sinϕ sinκ− sinω cosκ

−sinϕ, sinω cosϕ, cosω cosϕ




XW

YW

ZW



+


X (0)

c

Y (0)
c

Z(0)
c


(4.1)

where ω , ϕ and κ are the Euler angles describing rotation in the x, y and z axes, respectively,

as described by Heikkilä and Silvén (1997). We then estimate the intrinsic camera parameters

that describe the focal length f , the scale factor su, and the image center (u0,v0). The pinhole

5The origin in the world’s coordinate system is usually determined manually during calibration by identifying
some point on a calibration pattern.
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model projects a point (xi,yi,zi) to the image plane by ũi

ṽi

=
f
zi

 xi

yi

 . (4.2)

We can estimate the focal length and the image center by direct linear transformation (Gruen

and Huang, 2001). Here, we first solve the linear transformation from object coordinates

(Xi,Yi,Zi) to image coordinates (ui,vi) by introducing a 3×4 homogeneous matrix A,


uiwi

viwi

wi

= A



Xi

Yi

Zi

1


. (4.3)

The parameters of A are then obtained by eliminating wi, which is a free parameter. This is

accomplished by defining matrix L using a set of N observed calibration points (Xi,Yi,Zi) with

known position relative to the origin in the world co-ordinate system. Given a set of calibration

points, the calibration matrix is defined as

L =



X1 Y1 Z1 1 0 0 0 0 −X1u1 −Y1u1 −Z1u1 −u1

0 0 0 0 X1 Y1 Z1 1 −X1v1 −Y1v1 −Z1v1 −v1

...
...

...
...

...
...

...
...

...
...

...
...

Xi Yi Zi 1 0 0 0 0 −Xiui −Yiui −Ziui −ui

0 0 0 0 Xi Yi Zi 1 −Xivi −Yivi −Zivi −vi

...
...

...
...

...
...

...
...

...
...

...
...

XN YN ZN 1 0 0 0 0 −XNuN −YNuN −ZNuN −uN

0 0 0 0 XN YN ZN 1 −XNvN −YNvN −ZNvN −vN



. (4.4)

We then represent A in one dimension as

a = [a11,a12,a13,a14,a21,a22,a23,a24,a31,a32,a33,a34]
> ,

where ai j is the element in the ith row and jth column of A. Then we solve the equation

La = 0 (4.5)
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with least squares (Tsai, 1987; Heikkilä and Silvén, 1997). We can finally obtain our desired

parameters by the decomposition

A = λV−1B−1FMT (4.6)

where M and T are rotation and translation matrices defined in equation 4.1 and

V =


1 0 −u0

0 1 −v0

0 0 1



B =


1+b1 b2 0

b2 1−b1 0

0 0 1



F =


f 0 0

0 f 0

0 0 1



(4.7)

with (b1,b2) providing linear distortion effects, as proposed by Melen (1994). Figure 4.8

shows a calibration pattern used in the recording of the TORGO database, where each square

has a known geometry and the intersections of these squares represent our calibration points in

equation 4.4.

In practice, lenses also incorporate nonlinear distortions that cannot be estimated by this

method. For example, since lenses typically have radial distortion (e.g, the ‘fisheye’ lens)

(Slama, 1980) this distortion is approximated by ∆ũ(r)i

∆ṽ(r)i

=

 ũi
(
k1r2

1 + k2r4
2 + . . .

)
ṽi
(
k1r2

1 + k2r4
2 + . . .

)
 (4.8)

where k1,k2, . . . are the coefficients of radial distortion (typically one or two is sufficient

(Heikkilä and Silvén, 1997)) and ri =
√

ũ2
i + ṽ2

i . This is performed by a nonlinear estima-

tion and correction process described by Heikkilä and Silvén (1997) and Bouguet (1999) and
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Figure 4.8: Example calibration images of left (a) and right (b) video images in TORGO.

implemented in MATLAB by Bouguet (2010). In TORGO, each phosphorescent marker is

manually annotated by a human during post-processing in the first frame of both camera se-

quences. The centroid of this marker is computed by binarizing the black-and-white video im-

age with an empirically-determined threshold6 and computing the center-of-mass of the white

region within a given window. These windows are allowed to move and stretch in the computed

direction of motion given a maximum velocity threshold relative to the video frame rate. This

allows the markers to be tracked automatically without human intervention beyond the initial

annotation.

Given known rotation and translation matrices (Mα and Mβ , and Tα and Tβ ) for each of

our two cameras, α and β relative to a single point of origin in the world co-ordinate system,

it is relatively simple to compute the relative translation and rotation between these cameras

by generalizing equation 4.1. Extensions to computing this relationship, including estimates of

error, are discussed further in Hartley and Zisserman (2004).

6This is relatively easy, since the markers are much brighter than their surroundings.
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4.4 Aspects of dysarthric speech in TORGO

There are a number of features which differentiate dysarthric and non-dysarthric speech in our

recorded data. Table 4.1 shows the proportion of phonemes that were mispronounced according

to manner of articulation for dysarthric speech. Plosives are mispronounced most often, with

substitution errors exclusively caused by errant voicing (e.g. /d/ for /t/). By comparison, 5% of

corresponding plosives in total are mispronounced in non-dysarthric speech. Furthermore, the

prevalence of deleted affricates and plosives in word-final positions, almost all of which are

alveolar, does not occur in the corresponding non-dysarthric speech data.

SUB (%) DEL (%)

i m f i m f

plosives 13.8 18.7 7.1 1.9 1.0 12.1

affricates 0.0 8.3 0.0 0.0 0.0 23.2

fricatives 8.5 3.1 5.3 22.0 5.5 13.2

nasals 0.0 0.0 1.5 0.0 0.0 1.5

glides 0.0 0.7 0.4 11.4 2.5 0.9

vowels 0.9 0.9 0.0 0.0 0.2 0.0

Table 4.1: Proportion of phoneme substitution (SUB) and deletion (DEL) errors in word-initial

(i), word-medial (m), and word-final (f) positions across categories of manner for dysarthric

data.

Figure 4.9 exemplifies some typical acoustic contrasts between dysarthric and non-dysarthric

speech in TORGO, namely the divergences in speed. Figures 4.10 and 4.11 show the durations

of various steady-state phonemes (i.e., vowels and consonants, respectively) averaged across

the dysarthric and control groups of TORGO. All vowels produced by dysarthric speakers are

significantly slower than their non-dysarthric counterparts at the 95% confidence interval and

can be up to twice as long, on average. This might partially be explained by an increase of brief
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(a) (b)

Figure 4.9: Repetitions of /iy pcl p ah/ over 1.5s by (a) a male speaker with athetoid CP, and

(b) a female control in the TORGO database. Dysarthric speech is notably slower and more

strained than regular speech.

staccato gaps in exhalation during sonorants. We note that the divergence of the nasal conso-

nants are most severe, which may be indicative of poor control of the velum, but the degree of

this divergence does not significantly outweigh those among the other consonants.
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Figure 4.10: Duration of vowels among dysarthric speakers (filled circles) and control speakers

(unfilled circles). The heights of the circles correspond to the average duration, in milliseconds,

of the associated vowel and the radii of the circles represent one standard deviation of the data.

Vowels are sorted from left to right according to increasing divergence between groups, with

diphthongs displaying the greatest divergence.
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Figure 4.11: Duration of selected consonants among dysarthric speakers (filled circles) and

control speakers (unfilled circles). The heights of the circles correspond to the average du-

ration, in milliseconds, of the associated consonant and the radii of the circles represent one

standard deviation of the data. Consonants are sorted from left to right according to increasing

divergence between groups.



Chapter 5

Discriminative classification with

discretized articulation

This chapter describes the use of theoretical and empirical knowledge of the vocal tract for

atypical speech in labelling segmented and unsegmented sequences. These combined models

are compared against discriminative models such as neural networks, support vector machines,

and conditional random fields. These experiments constitute the first divergent step from tra-

ditional speech recognition.

Here, we concentrate on EMA recordings in the TORGO and MOCHA databases. Unlike

the MOCHA database, TORGO includes points outside the midsaggital plane, namely the two

lip corners and one point behind each ear, but not on the velum. In addition to typical issues

of speech data collection such as the need to suppress environmental noise, the development

of the TORGO database has incurred some additional challenges specific to the population.

Decreased control of salivation and an increased risk of a severe gag reflex among cerebrally

palsied participants can make placing coils on the tongue very difficult, so approximately 12%

of EMA data from dysarthric individuals does not include the rearmost tongue positions. In-

voluntary movement such as shaking or extension of the neck also presents a problem for video

recording, as the points on the face become occluded.

84
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Section 5.1 describes the characteristics of the classification mechanisms used in the fol-

lowing experiments. Sections 5.2 and 5.3 describe experiments using acoustic observations

in baseline systems and with discrete theoretical knowledge, respectively. Section 5.4 de-

scribes models that are adapted from models including explicit articulatory observations. Fi-

nally, section 5.5 summarizes the findings and provides a mechanism to transform between

non-dysarthric and dysarthric data spaces.

5.1 Classification methods

Throughout the following experiments we apply five classification methods which are de-

scribed below.

5.1.1 Hidden Markov models (HMM)

The default baseline is a tristate left-to-right triphone HMM with observation likelihoods at

each state computed over mixtures of 16 Gaussians through marginalization amenable to nor-

mal expectation-maximization training with Baum-Welch and Viterbi decoding. Details of the

HMM used in these experiments are summarized in section 2.3.2. Prior to training each HMM,

the Gaussian mixtures for all states are first initialized to a common Gaussian mixture obtained

by performing k-means clustering with full covariance over all data for the associated triphone.

If fewer than 5 examples of the triphone exist, data for the associated monophonic root are used

instead. This approach to dealing with sparse triphone data is taken for all other classification

methods as well.

5.1.2 Latent-dynamic conditional random fields (LDCRF)

The discriminative latent-dynamic conditional random field is a sequence classifier differing

from the HMM in that its estimation of the distribution over a sequence of labels l (where the

ith label li ∈L for some vocabulary of labels L ) does not model the observation prior P(o),
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as shown in eq. 5.1. This model extends traditional conditional random fields in that it models

an intrinsic sequential substructure using hidden states, and differs from ‘hidden state’ CRFs in

that labels are assigned dynamically on a frame-by-frame basis, rather than once to the entire

sequence (Morency, Quattoni, and Darrell, 2007).

In CRFs, the parameter set θ defines the weights (θk ∈ θ ) applied to feature functions fk

of the graphical model, which are analogous to state and observation variables in HMMs (see

Lafferty, McCallum, and Pereira (2001)). In fact, the parameters θ are analogous to logarithms

of the conditional probabilities present between variables in HMMs (i.e., transition probabili-

ties and state-specific observation probabilities) and are initialized randomly. In this approach,

we wish to measure the likelihood of a particular labelling l of an observation sequence o given

some parameterization θ . This quantity must be computed over all possible sequences of hid-

den states (where q is a particular state sequence) that produce that label sequence, where each

state qi comes from the set Qli of states associable with a particular label li at time i. For

example, an LDCRF model for phoneme /m/ might have three hidden states (i.e., |Qm| = 3)

which are distinguished from the states in the other phoneme models. In other words,

P(l |o,θ) = ∑
q:qi∈Ql i

P(l |q,o,θ)P(q |o,θ) , (5.1)

where P(q |o,θ) is the standard conditional random field formulation that defines state and

transition functions (Lafferty, McCallum, and Pereira, 2001; Morency, Quattoni, and Darrell,

2007), namely

P(q |o,θ) = exp(∑k θkFk(q,o))
∑r exp(∑k θkFk(r,o))

, (5.2)

where Fk(q,o) is the sum over all state transition feature functions applicable to q and obser-

vation feature functions applicable to o.

Given a training set of labelled sequences (oi, li) where i = 1..N, we apply conjugate gra-

dient ascent to find the optimal parameter values θ ∗ = argmaxθ L(θ) given the following ob-
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jective function:

L(θ) =
N

∑
i=1

logP(li |oi,θ)−
1

2σ2 ||θ ||
2, (5.3)

which is the log-likelihood of the parametrization given by the conditional log-likelihood of

each training sequence logP(li |oi,θ) and the Gaussian prior likelihood of θ with variance σ2.

If the parameter space θ is uniformly distributed, as we assume here, σ2 approaches infinity

and we discount the second term. Further details on training LDCRFs can be found in Morency,

Quattoni, and Darrell (2007).

The label sequence hypothesis l∗ is obtained by marginalizing over the sets of states Qlt

given the label li at time t,

l∗ = argmax
l ∑

q:∀qt∈Ql t

P(q |o,θ ∗) . (5.4)

5.1.3 Neural networks (NN)

Neural networks are parallelizable, multi-layer directed graphs whose arcs and vertices are

associated with weights and activation functions, respectively, that can be adjusted during back-

propagation to learn complex non-linear solutions (Gluck and Myers, 1999). Neural networks

tend to take longer to converge than the Baum-Welch algorithm on HMMs but may be better

suited to modelling duration of steady-state patterns (Tebelskis, 1995).

In modelling speech, multiple frames of input are assigned to the input layer, and output

is either a single vector identifying the phoneme, or p synthesized frames that predict the next

frame of speech assuming each of p phonemes, which are then compared to the actual speech.

Tebelskis (1995) claims that despite apparently attractive features, since predictive ANNs use

separate networks for each class, the resulting lack of categorical discrimination yields weaker

results.

The two types of NN we consider here are the feed-forward multi-layer perceptron (MLP)

and the recurrent Elman network (ELM) (Elman, 1990), which are primarily distinguished

by the latter’s time-delayed replication of the hidden layer as additional contextual input. The
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Feature # hidden units Feature # hidden units

Manner 300 Voice 100

Place 200 Round 100

High/Low 100 Static 100

Front/Back 200

Table 5.1: Number of hidden units per NN, given target feature.

output of each AF NN consists of n nodes, where n is the cardinality of the class being modeled

(i.e., either AF or phone), and the ith node is uniquely active when training the ith value of that

class. Given the presence of 21,464 triphones in our data, this approach is not tenable for

NNs that recognize triphones. In that case, 15 output neurons are used in which each of the

215 possible binary output combinations are mapped to a unique triphone (or a ‘null’ triphone

not considered in classification). The sizes of hidden layers in AF neural networks are based

empirically on similar work on non-dysarthric speech (Scharenborg, Wan, and Moore, 2007;

Frankel, Wester, and King, 2007) and shown in table 5.1. All NN triphone classifiers contain

500 hidden units.

Activation functions at each node are tan-sigmoid (i.e., a(x) =
[
2/
(
1+ e−2x)]− 1) in the

hidden layer, and linear in the output layer, given a weighted sum of all inputs x = ∑ j ω ja j,

where a j is the activation of node j and ω j is the weight of the connection from node j to

the current node, as usual. All NN training is performed by resilient back-propagation, which

adjusts update values according to sign changes in partial derivatives. Here, the degree of

updates is reduced if weights oscillate over several iterations and is increased when weights

continually change in the same direction. This approach is faster than standard steepest descent

on our data, while only requiring a modest increase in memory.

All networks are fully connected between layers and select the class having the highest

posterior probability.
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5.1.4 Support Vector Machines (SVM)

General maximum margin classifiers are of increasing interest in ASR due to their robustness

against both sparse data (Wan and Carmichael, 2005) and rapid transient changes in acoustic

sequences (Niyogi and Burges, 2002). SVMs explicitly minimize a hypothesized upper bound

on the expected classification error by orienting a hyperplane between classes such that the

norm of its orthogonal vector maximizes the margin between the nearest data. We use a soft-

margin SVM here and extend the process to k-class discrimination by training k(k−1)/2 binary

classifiers, each delineating two class regions (Wu, Lin, and Weng, 2003).

SVMs depend on kernel functions, κ , to describe the distance between two points of data.

We consider two of these that differ slightly in the form of their input. The first kernel is

a symmetric radial basis function (RBF), that generalizes to non-linear decision boundaries

using the following function:

κRBF (x,y) = exp

(
−(x−y)2

2σ2

)
, (5.5)

given vectors x and y, and width parameter σ .

The second kernel, κDTW , is a sequence kernel that can be generalized to arbitrary se-

quences u and v having non-equal lengths, as proposed recently by Wan and Carmichael (Wan

and Carmichael, 2005). This kernel exploits the notion of distance between sequences inherent

in dynamic time warping (DTW), and converts it to a form amenable for use in SVMs. The

approach is to convert local Euclidean distances between frame vectors to angles by projecting

these d-dimensional vectors onto a unit hypersphere H centered α units from their origin in

the (d + 1)st dimension. Namely, every vector ui is converted to the unit vector ûi sharing an

origin with H by

ûi =
1√

u2
i +α2

 ui

α

 . (5.6)
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Given two unit vectors, ûi and v̂ j that define points on the surface of H, the angle between

them is by definition

ds(ûi, v̂ j) = θûi,v̂ j = arccos(ûi, v̂ j). (5.7)

Now, given these local distances, we apply symmetric DTW on whole sequences u and v

and get the minimum global distance from the non-linear aligned Viterbi path Γ with

Dglobal(u,v) = min
Γ

1
||Γ||

||Γ||

∑
p=1

ds(ûp, v̂p). (5.8)

This distance is then converted to the kernel

κDTW (u,v) = cosDglobal(u,v), (5.9)

which is symmetric if the symmetric version of DTW is used, which is a requirement for use

in SVM classification. In order for the quadratic programming problem to have a definite

solution, the kernel must either be a valid dot product (Russell and Norvig, 2003), or satisfy

Mercer’s condition, which is to say that given a real-valued kernel κ(x,y), all square integrable

functions g(x) will give
∫ ∫

κ(x,y)g(x)g(y)dx dy ≥ 0 (Vapnik, 1995). While the cosine over

an aggregate of sequences is not strictly a dot-product, it has been shown to be empirically

useful in speech classification nonetheless (Wan and Carmichael, 2005). For multi-category

classification, directed acyclic graphs can be used to discriminate between pairs of classes

until only one remains (Platt, Cristianini, and Shawe-Taylor, 2000).

5.1.5 Dynamic Bayes Networks (DBN)

Popular statistical modelling techniques such as HMMs and CRFs do not permit much flex-

ibility in defining the relationships between variables. Standard HMMs, for example, allow

only one hidden variable (in addition, e.g., to the index of a Gaussian mixture observation dis-

tribution). In practice, there may be many such variables, or variables whose values are only
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intermittently known or recorded over a sequence of observations. Bayes networks provide a

popular statistical framework that allows us to determine precise instantaneous conditional re-

lationships. Traditional Bayesian learning is restricted to universal or immutable relationships

and does not model dynamic systems or time-varying relationships. Dynamic Bayes networks

(DBNs) are directed acyclic graphs connecting random variables that generalize the stochastic

mechanisms of Bayesian learning to time sequences1. Given an N-variable observation se-

quence Y (1:N)
1:T of arbitrary length T , its likelihood is computed by ‘unrolling’ a 2-frame DBN

to T frames, and multiplying all posteriors,

P(Y (1:N)
1:T ) =

N

∏
i=1

PB1(Y
(i)
1 |par(Y (i)

t ))×

T

∏
t=2

N

∏
i=1

PB→(Y
(i)

t |par(Y (i)
t )),

(5.10)

where conditional distributions, B→ are drawn over adjacent frames in time for the ith state at

time t, Y (i)
t by P(Yt |Yt−1) = ∏

N
i=1 P(Y (i)

t |par(Y (i)
t )), given the parents of Y (i)

t , par(Y (i)
t ). This

temporal model generalizes both the hidden Markov model, the coupled hidden Markov model,

the Kalman filter, and many others (Murphy, 2002). Given a specified topology between vari-

ables and a data set D = {Y(1),Y(2), . . . ,Y(N)}, where Y(i) is a sequence of vectors of observed

variables, the likelihood of D is

P(D ; θ ,M ) =
N

∏
i=1

P(Y(i) ; θ) (5.11)

where θ is the set of parameters to the DBN 2. The maximum likelihood parameterization is

obtained by maximizing

L (θ) =
N

∑
i=1

logP(Y(i) ; θ). (5.12)

1Since DBNs are acyclic, they cannot model sequences in time in which future events influence past ones, so
they may not be appropriate for modelling sub-atomic structures in quantum physics; however, that is beyond the
scope of this dissertation.

2The topology of a DBN, M is usually implicit in the parameters θ , but there are algorithms that can modify
this structure given data, so some definitions explicitly include M .
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In general, we have hidden variables so equation 5.12 cannot be decomposed into a sum over

log likelihoods of individual nodes given their parents. Instead, L(θ) = log∑X P(Y,X ; θ),

where X is the set of all hidden data and ∑X is the sum over all the possible permutations of X

to obtain a marginalization. Given a distribution H (·) over the hidden variables, we obtain a

lower bound

L(θ) = log∑
X

P(Y,X ; θ)

= log∑
x

H (X)
P(Y,X ; θ)

H (X)

≥∑
x

H (X) log
P(Y,X ; θ)

H (X)

= ∑
x

H (X) logP(Y,X ; θ)−∑
x

H (X) logH (X)

= F (H ,θ),

(5.13)

where the inequality results from Jensen’s inequality (Jensen, 1906). The expectation-maximization

algorithm then maximizes F with respect to H and θ , respectively. The maximum at the ex-

pectation step occurs when HK+1(X) = P(X |Y ; θK) where K is the iteration of the algorithm

(Ghahramani, 1998). In the maximization step, we consider the first term in the penultimate

line in equation 5.13, thus

θK+1← argmax
θ

∑
X

P(X |Y ; θK) logP(Y,X ; θ), (5.14)

which gives us the general learning procedure for dynamic Bayes networks.

5.2 Experiment set 1: HMM baselines

Our baseline is designed to test the accuracy of ASR as one adapts continuous speaker-independent

HMM systems trained on the general population to dysarthric data, or trained on that dysarthric

data alone.
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5.2.1 MLLR and MAP adaptation

Adaptation of model parameters is used when the conditions in which those parameters were

trained no longer reflects the conditions in which we expect new observations. For example,

if a model is trained in a quiet environment but will be used in a noisy one, we wish to adjust

the model parameters to reflect this new situation using a small amount of calibration data

which typically is much smaller in scope than the original training data. HMM adaptation

is performed in the following experiments using a combination of two standard techniques,

namely maximum a posteriori (MAP) estimation and maximum likelihood linear regression

(MLLR). In the first, given a parameter space Φ defined on HMMs as described in section

2.3.2, we assume that we have prior knowledge that can characterize a probability density

p(Φ). Given a set of observation sequences X, the MAP estimate for the ideal parameters is

Φ̂ = argmax
Φ

p(Φ |X) = argmax
Φ

[p(X |Φ)p(Φ)] . (5.15)

This estimate reduces to the maximum likelihood estimate if p(Φ) is uniform, i.e., when there

is no prior knowledge. Since we use continuous Gaussian mixture HMMs, we assume that the

different components are mutually independent, which is standard practice (Huang, Acero, and

Hon, 2001) and allows us to split the optimization problem into subcomponents. For example,

the prior probability density of a Gaussian mixture bi is

pbi(~ωi,~µi,Σi) = pωi(~ωi)∏
k

pbik( ~µik,Σik), (5.16)

where pωi(~ωi) is the Dirichlet prior over all M mixture weights in state i. That is,

pωi(~ωi) = pωi(ωi[1],ωi[2], . . . ,ωi[M])

=
Γ

(
∑

M
j=1 αi[ j]

)
∏

M
j=1 Γ(αi[ j])

M

∏
j=1

ωi[ j]αi[ j]−1
(5.17)

where αi[ j] is a hyperparameter associated with the jth argument of the Dirichlet distribution

for state i. We can then apply the Lagrange method by

δ

δω̂i[m]

(
log pωi(~ωi)+

M

∑
m=1

∑
t

ξt(i,m) log ω̂i[m]

)
+λ = 0,∀m (5.18)
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with the constraint that ∑
M
m=1 ω̂i[m] = 1. In equation 6.4, λ is the Lagrange multiplier and

ξt(i,m) is the probability that the observation at time t was generated by the mth Gaussian of

the ith state. The solution is

ω̂i[m] =
αi[m]−1+∑t ξt(i,m)

∑
M
l=1 (αi[l]−1+∑t ξt(i, l))

. (5.19)

The density function pbik( ~µik,Σik) in equation 5.16 is the prior probability of the kth Gaus-

sian component in state i. Optimization with respect to the means and covariances of the

Gaussians is accomplished in the same manner (Gotoh et al., 1995; Woodland, 2001). Here,

the form of the conjugate prior is Gaussian for ~µik multiplied by a Wishart distribution for

Σik (Gauvain and Lee, 1994). This process is iterative and can be considered as interpolated

between speaker-dependent and speaker-independent models (Huang, Acero, and Hon, 2001).

Here, this MAP process is embedded within a maximum likelihood regression, as described by

Chesta, Siohan, and Lee (1999).

5.2.2 HMM experiments

We categorize each speaker according to his recognition rate on Nemours data using a baseline

acoustic model trained on spoken transcripts of the Wall Street Journal (Lamere et al., 2003).

The four speakers having word-level recognition rates below 10% with the baseline model are

grouped as ‘severe’, the four with rates between 11% and 30% are grouped as ‘moderate’,

and the three between 31% and 60% are grouped as ‘mild’. The control speaker had a word-

level recognition rate of 84.8%. These initial recognition rates correlate well with subjective

sentence-level intelligibility scores among human listeners.

Both the dependent and adaptive models for each speaker are triphone left-right Hidden

Markov Models (HMMs) with Gaussian mixture output densities decoded with the Viterbi

algorithm on a lexical-tree structure augmented with a context-free grammar. For each speaker,

we initialize the HMM acoustic parameters of the dependent model randomly, and initialize the

adaptive model with the common WSJ-trained baseline. We independently vary the number
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of Gaussians and the amount of training utterances in order to measure how precision and

data coverage accommodate the variability of dysarthric speech, and apply the iterative Baum-

Welch training algorithm on both models for each speaker.

Increasing the amount of training data from 20 to 132 training sentences per speaker does

not show any definite improvement, with accuracy fluctuating around 3% from the mean across

trials. The fact that accuracy does not increase suggests that there is not enough data in

Nemours to represent intra-speaker variation, and that studies using fewer test subjects may

also require more data.

Figure 5.1 shows accuracy increasing monotonically with the number of Gaussians for the

mildly and severely dysarthric speakers. In all cases but the most severe, the adaptive models

outperform their dependent counterparts and reduce relative error by up to 23.1% in the mild

group, by 4.9% in the moderate group, and by 30.7% for the non-dysarthric speaker. This

suggests that taking advantage of pre-existing models of the normal population may best suit

dysarthric speakers with higher intelligibility. This tends to support the abstract conclusions

of Raghavendra et al. (Raghavendra, Rosengren, and Hunnicutt, 2001), except that they also

observed a clear superiority of dependency for severely dysarthric speakers. By contrast, we

only observe slight SD gains over the baseline as the number of Gaussians increases, possibly

due to the distribution of data.

Of the 485 insertion errors Sphinx made among the dysarthric speakers of the Nemours

database, /ih/ and /d/ were the most common with 63 and 51, respectively. The most com-

monly dropped phonemes by these speakers were /b/ (118), /s/ (111), /w/ (60), / f/ (55) and

/l/ (48), among 649 deletion errors in total. The most common substitutions were /ng/ for

/n/ (125) and surprisingly /t/ for /uw/ (87), /ey/ for /ih/ (84) and /t/ for /n/ (77). These

observations suggest that ASR software might be made more accessible to dysarthric speak-

ers by increasing robustness against consonant variations in general. Sawhney and Wheeler

perform similar experiments on the Nemours database using an unspecified segmental context-

independent phoneme recognizer trained on the TIMIT database (Sawhney and Wheeler, 1999).
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Figure 5.1: ASR accuracy measured against acoustic model precision (i.e., number of Gaus-

sians). Baselines represent models trained on the WSJ corpus.

They report∼ 42% accuracy on speaker dependent models, and∼ 25% on independent models

averaged across all dysarthric speakers, the former which is significantly higher than observed

with Sphinx. Sawhney and Wheeler also show far fewer substitution errors initially, where /d/

for /t/ (13), /p/ for /t/ (12), and /ng/ for /t/, /ih/ for /uw/ (11) are the most common.

5.3 Experiment set 2: Discrimination with acoustics alone

We begin by considering the effects of dysarthria in systems trained solely from acoustic data,

which is a considerably more common scenario than one in which kinematic data are available.

However, given phonemic annotations, we can infer articulatory features as representative of

articulatory knowledge, as described in section 2.4. We train each classifier both to identify

articulatory features from acoustics and to identify phones given both acoustics and their iden-

tified AFs. In all cases, acoustic data are sampled at 16kHz and converted to 42-dimensional

feature vectors consisting of 0th- to 12th-order Mel-frequency cepstral coefficients, log energy,

and δ and δδ coefficients. Neither δ nor δδ are appended to AF components, due to the

relative parsimony of tracking changes in step functions. We apply 10-fold cross-validation

on random permutations of 90% training and 10% test data for each speaker in the Nemours
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database. Training sets consist of approximately 93,000 frames per speaker on average.

We test two topologies of AF variables within DBNs. The first is based on similar work by

Frankel et al. (Frankel, Wester, and King, 2007), and is shown in figure 5.2a. The second is a

sparser version of that DBN with certain conditional dependencies removed in order to reduce

the complexity of parameterization, as shown in figure 5.2b. All AFs are observed in the DBN

during training but inferred during testing.

5.3.1 AF classification with acoustics

Frame-level accuracies for each AF averaged over all speakers in the Nemours database are

summarized in table 5.2 for each classifier. Both the LDCRF and SVM methods are excep-

tionally proficient at classifying Manner and Place, which are highly related, and poor at clas-

sifying the Round AF despite its low cardinality. This suggests that there is some other aspect

of those AFs that affects discriminability, at least for SVMs. The nil class is the most poorly

recognized in three of the four AFs having it. The most frequently confused pairs for each

AF are shown in table 5.3, which is generally consistent with the literature for non-dysarthric

speakers (Kirchhoff, 1999).

In general, SVM methods outperform NN on average by 4.9% to 9.3% absolute and pro-

vide a 19.8% relative error reduction on dysarthric speech. On the control subject, AF models

achieved 74.3% accuracy for MLP, and 77.6% for RBF, on average. Results of the SVM

methods with this speaker were comparable though slightly lower than in similar research on

non-dysarthric AF recognition by SVM (Chaudhari and Picheny, 2009), although that work

included far more training data. Other research on speaker-independent recurrent neural net-

works for AF recognition on regular speech report frame-level accuracies between 85.9% and

91.8% given ∼2.2 million frames (Frankel, Wester, and King, 2007).
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Figure 5.2: Two-frame dynamic Bayes networks with articulatory features, (a) DBN-F (de-

fault), and (b) DBN-F (sparse). Nodes Ph and O represent phoneme, state, and MFCC ob-

servations. All other variables are highlighted in table 2.1. Inter-frame conditional links are

dashed for clarity.
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Average accuracy (%)

DBN-F NN SVM

Feature HMM default sparse LDCRF MLP ELM RBF DTW µ σ

Manner 23.8 36.5 32.1 69.1 22.1 30.2 66.8 65.4 43.3 19.0

Place 33.9 39.6 34.7 58.8 35.5 41.9 58.3 56.5 44.9 10.4

Hi/Low 48.6 52.9 49.0 56.2 53.0 58.7 55.7 55.9 53.8 3.3

Voice 76.1 77.8 76.3 79.2 78.7 81.3 76.8 78.1 78.0 1.6

Front/Back 49.0 48.4 49.4 54.0 48.2 52.1 55.1 55.7 51.5 2.9

Round 60.4 64.5 60.6 64.8 68.9 69.7 55.3 54.0 62.3 5.4

Static 61.3 65.2 63.6 70.2 64.2 66.5 67.3 69.2 65.9 2.8

µ 50.4 55.0 52.2 64.6 52.9 57.2 62.2 62.1

Table 5.2: Classifier accuracies averaged over dysarthric speakers (best of row in bold) for AF

recognition.

Feature 1st 2nd

Manner [vowel]→[approx.] (12%) [vowel]→[retro.] (8%)

Place [nil]→[alv.] (10%) [nil]→[dental] (7%)

Hi/Low [nil]→[low] (14%) [mid]→[low] (11%)

Voice [unvoiced]→[voiced] (68%) [voiced]→[unvoiced] (32%)

Front/Back [nil]→[central] (19%) [nil]→[back] (17%)

Round [non]→[nil] (26%) [nil]→[non] (22%)

Static [stat.]→[dyn] (54%) [dyn]→[stat] (46%)

Table 5.3: Most frequent errors for each AF ([actual]→ [hypothesis] (% total error)).
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Effects of dysarthria

Figure 5.3 shows the overall accuracy of each classification technique according to speaker

intelligibility as determined by the Frenchay Dysarthria Assessment (see section 4.2.2). These

results show a general success of SVM and LDCRF methods across all speakers, especially

the less intelligible ones, and a global increase in accuracy with intelligibility. Two speakers

perturb this trend, however, with noticeable drops in accuracy as indicated for speakers ‘RK’

and ‘BB’ in the figure. These two individuals share exceptionally poor tongue elevation and

lateral movement relative to the rest of the group which seems to account for their especially

low accuracy with High/Low and Front/Back AFs, which are predicated on tongue movement

and position. According to their Frenchay assessments, ‘RK’ and ‘BB’ both had scores of 0/9

for tongue elevation and scores of 0/9 and 1/9 for lateral tongue movement, respectively. Only

two other speakers, ‘SC’ and ‘BK’, had similarly poor assessments of tongue control, with the

latter also having the lowest intelligibility of all speakers.

Table 5.4 shows the recognition rates for the two AFs under consideration against the av-

erage of all other AFs given an HMM system. Here, the four speakers identified as having

particularly bad tongue movement have recognition rates for Front/Back and High/Low that

are all between 5.3% and 10.2% lower than for other AFs, on average. By contrast, Front/Back

and High/Low AFs are better recognized than other AFs, on average, for all speakers without

the identified tongue deficit.

Within these AFs, follow-up analysis revealed linear correlation coefficients up to 0.95 be-

tween increased formant deviation and decreased tongue function. While overall intelligibility

may be useful in predicting general trends in figure 5.3, it is an aggregate measure of the func-

tions of component articulators, and may be overridden for speakers having more localized

disabilities.
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Front/Back High/Low avg. other AF

BK 31.2 32.5 37.8

SC 35.3 34.7 41.3

RK 37.1 36.9 47.1

BB 48.6 49.0 55.8

avg. of others 55.3 54.5 54.2

Table 5.4: Recognition rates (% correct) of Front/Back and High/Low AFs compared with

the average recognition rates across all other AFs for 4 speakers and the average of all other

speakers given an HMM recognition system.

5.3.2 Phone recognition with acoustics

Finally, we consider whether AFs are useful in identifying phones. For each of our modelling

techniques, we construct three triphone classifiers that differ by the nature of their observa-

tions. Each of these is trained either with acoustics, with estimated AFs, or with acoustics and

estimated AFs concatenated together. Here, AF estimates are derived both from the outputs of

models having the same type as the phone classifier, or from the outputs of the LDCRF model

which represents the best average AF estimates achievable. No other heterogeneous combina-

tion of models is attempted. Given that the LDCRF is the most accurate AF classifier, we find

it unlikely that other combinations would yield much greater accuracies.

All models are applied over whole unsegmented utterances as continuous tasks. Specifi-

cally, each frame of speech is classified by NN and SVM methods given short windows of input

observations, as described earlier. Connected-state models of the same type (i.e., either HMM,

LDCRF, and DBN) are connected together so that all phonemes are equally likely to follow

all others. This approach is taken to evaluate these models as substitutes to standard acoustic

models, as is our intention. The use of language models is explored in section 5.4.4. Accuracy

is measured at the frame level by converting estimated triphones to their monophonic roots.

The results in table 5.5 indicate relative error reductions of 8.8% and 11.2% merely by re-
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Figure 5.3: Average classifier accuracy against assessed intelligibility level.

placing an HMM model with an SVM-DTW and an LDCRF, respectively, given only dysarthric

acoustics, which is significant at the 99% confidence level. Relative error reduction is the ab-

solute difference between the error rates of the two systems under comparison divided by the

higher error rate of the two. Extending observation vectors to include AFs reduces error rela-

tively by between 0.5% and 7.1% over associated acoustic-only models, which represent sig-

nificant improvements at the 99% confidence level for all models except LDCRF. This result

shows a clear benefit of incorporating AFs into the input of all but one type of acoustic model.

Since the seven AFs are so rarely unanimously correct, they alone cannot be used to infer the

respective phone in practice, and further research should investigate whether it is more useful

to limit the use of AFs to some subset. No explicit weighting was applied between the MFCC

and AF components of heterogeneous vectors, but the relative importance of these parts and

their covariances are inferred during training by each of these classifiers implicitly.
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MFCC AF MFCC+AF MFCC+AFLDCRF

HMM 33.8 7.4 36.3 37.6

DBN-F (default) 34.1 7.8 37.1 37.9

DBN-F (sparse) 33.4 7.5 37.0 38.1

LDCRF 41.2 16.0 41.5 41.5

NN-MLP 31.9 5.8 34.8 35.3

NN-ELM 36.7 11.7 40.2 40.7

SVM-RBF 38.4 16.2 38.7 40.1

SVM-DTW 39.6 17.9 41.0 41.3

Table 5.5: Phone classification accuracies (%) at the frame level averaged over speakers with

dysarthria given various types of observation. Estimated AFs are concatenated with MFCC

observations either by using AF estimators of the same type (MFCC+AF) or by using the

LDCRF AF estimator (MFCC+AFLDCRF ).

5.4 Experiment set 3: Initialization from articulation

There is increasing evidence that replacing the Gaussian mixture observation densities of

HMMs with limited Bayes nets representing spacial vocal tract kinematics can improve ac-

curacy over acoustic-only models for non-dysarthric speakers (Markov, Dang, and Nakamura,

2006). Although it is impractical to perform articulography on each speaker we wish to model,

we can make use of publicly available databases such as MOCHA or TORGO to provide base-

line kinematic knowledge that we can adapt to speakers for whom only acoustic data is avail-

able. This scenario is explored in this section.

We conflate the instantaneous EMA position data from the MOCHA and TORGO databases

by first reducing their dimension to Np = 4 or Np = 8 principal components by singular value

decomposition specific to each phone in which K = 4, K = 8, or K = 16 mean vectors are

computed according to the sum-of-squares error function. During training, the DBN variable

A is the observed index of the mean vector nearest to the current frame of EMA data at time t.
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Figure 5.4: Two-frame dynamic Bayes networks with EMA measurements differing by their

connectivity. Nodes Ph, Q, O, A, Av, and Aa represent phoneme, state, MFCC observations,

and EMA position, velocity, and acceleration, respectively. Inter-frame conditional links are

dashed for clarity.

During inference, this variable is hidden and we marginalize over all its values when computing

the likelihood. In this way, DBN-A is essentially a DBN representation of an HMM with the

hidden mixture index replaced by observed quantized articulation. Similarly, we follow the

same procedure on the velocities and accelerations of the articulators, producing indices Av

and Aa. These variables are used in alternative DBN topologies DBN-A2 and DBN-A3. In the

first, the observation vector is trisected, with each 14-dimensional vector (i.e., MFCC, δ , and

δδ ) being conditioned on P, Q, and one of A, Av and Aa. The second alternative structure,

DBN-A3, conditions Aa on Av, and Av on A and conditions the 42-dimensional observation

vector on all variables. The three kinematic DBN topologies are shown in figure 5.4.

The MOCHA database uniquely includes velum position and the TORGO database uniquely

includes left and right lip corners. Both databases include three midsagittal tongue positions,

upper and lower lip, and lower incisor positions.
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DBN-A DBN-A2 DBN-A3

Np K MOC. TOR. MOC. TOR. MOC. TOR.

4

4 57.6 58.9 56.9 57.4 57.8 57.5

8 66.8 67.2 66.5 67.2 66.8 67.1

16 68.9 69.0 69.1 68.8 69.3 69.3

8

4 63.3 62.7 63.4 63.0 63.8 63.6

8 71.0 70.8 71.1 71.3 71.3 71.6

16 72.4 72.4 72.2 72.1 72.7 72.7

16

4 64.7 65.0 65.1 65.2 65.2 65.2

8 72.5 72.6 72.4 72.4 72.7 72.5

16 73.6 73.8 73.6 73.9 74.0 74.1

Table 5.6: Accuracies of frame-level phone recognition across kinematic DBNs with vary-

ing quantities of principal components, Np, and Gaussians, K, for speaker-dependent, non-

dysarthric speech. Data is obtained from the MOCHA and TORGO databases.

5.4.1 Recognition with non-dysarthric speech

The three DBN models are compared on non-dysarthric speech across the number of principal

components, Np, and the number of Gaussians, K, used in quantization. Reducing dimen-

sionality across heterogeneous acoustic/articulatory observations in this way has previously

been shown to preserve important features of both articulatory and acoustics (Wrench and

Richmond, 2000; Fukuda and Nitta, 2003). Results of frame-level phone recognition are sum-

marized in table 5.6. Across all topologies and data, Np = 16 is significantly more accurate

than Np = 8 at the 95% confidence level and Np = 4 at the 99% confidence level. Results

across MOCHA and TORGO, and across the three topologies, are statistically indistinguish-

able. However, both DBN-A2 and DBN-A3 are several times slower than DBN-A to train.
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5.4.2 Retraining dysarthric acoustics

We retrain models initialized on non-dysarthric data given new dysarthric acoustics. We retrain

each kinematic DBN with dysarthric acoustics by making indices A, Av, and Aa hidden after

training on non-dysarthric acoustic/articulatory data (MOCHA and TORGO), and retraining

on dysarthric acoustics (Nemours and TORGO). All HMM and kinematic DBN models are

trained with EM and smoothed junction-tree inference, given their hidden variables. When

retraining the HMM, DBN, NN, and LDCRF models to dysarthric speech, we initialize new

instantiations with the distributions learned on regular speech and retrain on speaker-specific

acoustics until convergence. All training of the fully observed DBN-F is with maximum likeli-

hood, so retraining involves concatenating the non-dysarthric and dysarthric training data and

learning once. SVM models from previous sections are not included here, due to the dissimilar

manner in which those models are trained. In all cases, training data include all phones ob-

served during testing and are applied to the 46 phones that MOCHA, Nemours, and TORGO

have in common. Data are randomly split into 90% training and 10% test data. We split

dysarthric TORGO and Nemours data by speaker into three categories according to the level

of intelligibility as determined by the Frenchay assessment (Enderby, 1983). Individuals with

intelligibility levels between 0 and 25% are ‘severe’, between 25% and 62.5% are ‘moderate’,

and between 62.5% and 87.5% are ‘mild’.

Table 5.7 shows the frame-level accuracy of unsegmented phone labelling on speaker-

dependent and speaker-retrained distributions for each model, according to the severity of

dysarthria. Here, DBN-A, -A2, and -A3 are trained to mixtures of 16 Gaussian clusters de-

termined by unreduced (16-dimensional) articulatory data. These results show an increasing

benefit of retrained over dependent training on dysarthric speech as intelligibility increases,

with absolute rates of improvement of 0.86%, 1.96%, and 6.03% on severely, moderately, and

mildy dysarthric speech, respectively. Although speaker-dependent kinematic models are more

successful than other models, they do not adapt as well as the DBN-F or LDCRF models.

These results are generally consistent with similar work that retrained acoustic-only DBNs
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sev mod mild ctrl

HMM
Depend. 14.1 27.8 51.6 72.8

Retrain. 16.8 32.1 58.9 -

LDCRF
Depend. 15.2 28.0 51.8 73.5

Retrain. 16.8 32.4 59.1 -

DBN-F
Depend. 15.0 28.0 51.6 73.3

Retrain. 16.7 32.3 59.4 -

DBN-A
Depend. 16.4 31.1 54.2 73.6

Retrain. 16.2 31.7 58.3 -

DBN-A2
Depend. 16.3 31.1 54.3 73.6

Retrain. 16.3 31.9 58.4 -

DBN-A3
Depend. 16.4 31.3 54.5 73.8

Retrain. 16.5 32.0 58.7 -

NN-MLP
Depend. 15.5 28.6 51.4 72.6

Retrain. 16.0 29.0 58.6 -

NN-ELM
Depend. 15.6 30.5 51.2 72.7

Retrain. 16.1 30.7 57.5 -

Table 5.7: Average accuracy (%) of correctly labelled phones of speaker-dependent and

speaker-retrained (EMA-initialized) models, according to the severity of dysarthria.
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Figure 5.5: Labelling accuracy of four models with increasing amount of dysarthric retraining

data.

to Japanese kinematic data (Markov, Dang, and Nakamura, 2006) over 1 or 2 iterations of EM.

That work showed error reduction of between 0.7% and 3.8% on phone classification among a

selection of alternative speaker-dependent DBNs relative to a baseline DBN. The performances

of DBN-F and HMM are also consistent with similar work on non-dysarthric models (Frankel,

Wester, and King, 2007).

5.4.3 Effect of sample size

We examine the effect of increased sample size by retraining non-dysarthric models with cross-

sections of data selected uniformly at random among all speakers with dysarthria in Nemours

and TORGO, and testing on proportionally increasing test sets. Figure 5.5 suggests that as the

amount of dysarthric speech is increased, the LDCRF model outperforms all others, with an

absolute error reduction of 1.2% over HMM with 670 training utterances for retraining.
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5.4.4 The use of language models

Although this work is concentrated on articulatory enhancements to acoustic models, in prac-

tice the latter are rarely used alone without some contextual information. Often, bigrams are

used in order to weigh the likelihood of transitioning from one phoneme or word to another.

Since our data consist of many single-word utterances, we consider phoneme bigrams in which

the probability of one phoneme pt following another pt−1 at time t is given by

P(pt | pt−1) =
N(pt−1, pt)

N(pt−1)
, (5.20)

where N(pt−1) is the total number of occurrences (i.e., whole sequences of frames) of pt−1 in

the data and N(pt−1, pt) is the total number of times pt immediately follows pt−1 in the data.

We gather these counts from TIMIT which includes 2472 unique bigrams covering 172,460

adjacent pairs of phonemes, as determined by the included phonetic annotations. Similarly, the

unigram probability of phoneme pt is determined from the same data by

P(pt) =
N(pt)

∑ρ N(ρ)
, (5.21)

where ρ is iterated over all 61 phonemes in the training data.

In order to implement systems that incorporate either bigram or unigram information, we

first train individual HMM and DBN-A models for each phoneme, as before, where training

data consist of whole sequences of phonemes. The result is 61 HMMs and 61 DBN-A models,

each consisting of 3 states with reflexive and left-to-right transitions. We first connect the

HMMs together and the DBN-As together by creating transitions from the last state of each

phoneme model to the first state of all other phoneme models of the same type. First, the

probabilities associated with these transitions are their bigram probabilities of equation 5.20.

Expectation-Maximization is then performed for 2 iterations on each of the large connected

HMM and DBN-A models in order to learn reflexive transition probabilities on the last state for

each phoneme without over-fitting. This is a common approach producing all-phoneme ergodic

models (Miyazawa, 1993). This process is then repeated, but with initial transition probabilities

between phoneme models being derived from their unigram probabilities (equation 5.21).
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Severity HMM DBN-A

unigram bigram unigram bigram

sev 17.2 20.8 17.4 21.0

mod 33.4 37.3 34.1 37.9

mild 60.1 63.5 60.5 63.7

ctrl 74.0 74.2 74.2 74.6

Table 5.8: Average frame-level accuracy (%) of unsegmented phoneme labelling given ergodic

HMMs and DBN-As with unigram and bigram phoneme transition probabilities.

Given these connected models, the same data as in section 5.4.2 is used to measure the

average proportion of correctly labelled phones given phoneme models trained by the speaker-

dependent method. Table 5.8 shows the frame-level phoneme recognition accuracies of each

model across the same speaker intelligibility levels of table 5.7. While there are clear improve-

ments in accuracy, these are still lower than one would expect if full word-level bigrams were

used, given more testing data. Trigram models were not attempted due in part to this relative

sparsity of data and to inherent constraints of the implementation.

5.5 Discussion

Preceding sections summarize an extensive series of experiments concerning the recognition

of dysarthric speech given knowledge of speech production. Our purpose is to discover which

combinations of articulatory knowledge and modelling give improved rates of recognition for

individuals with speech disabilities. In situations where no kinematic data is available, in-

corporating theoretical articulatory knowledge into generative dynamic Bayes networks shows

some improvement in phone recognition over traditional HMM models, but far greater im-

provements are possible through the application of discriminative methods, particularly latent-

dynamic conditional random fields. However, generative DBN models that are trained by

aligned kinematic electromagnetic articulographic data give the greatest improvement over
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standard models, also outperforming acoustic-only discriminative methods.

The following subsections explore possible explanations for some of the behaviour ob-

served in these experiments above.

5.5.1 Synthesizing dysarthric acoustics

We compare the generative abilities of DBN-A and DBN-F on our data. We iteratively set

Ph to each phone in the available DBN-A and DBN-F models and marginalize over all other

variables to get the distribution on O from which we sample virtual data for each phone. These

generated likelihood functions are fitted with Gaussians and compared with the true MFCC

distributions of each phone by means of Kullback-Leibler relative divergence. The likelihood

functions generated by DBN-F diverge from true distributions by a factor of 0.22016 on regular

speech and by 0.2246 on dysarthric speech. However, while virtual DBN-A data diverge from

true data by a factor of 0.1690 for regular speech, speaker-retrained DBN-As for dysarthric

speech diverge by 0.3378, on average, from true phone MFCC distributions. This disparity is

exemplified in figure 5.6.

5.5.2 Statistical transformation of articulator space

In order to better understand some recognition results, we relate the distributions of the vow-

els in acoustic and articulatory spaces across dysarthric and non-dysarthric speech. Vowels in

acoustic space are characterized by the steady-state positions of the first two formants as de-

termined automatically by applying pre-emphasis and the Burg algorithm (Press et al., 1992).

Vowels in articulatory space are characterized by the positions of the articulators when their

accelerations are minimum. We fit Gaussians to these data, as exemplified in figure 5.7 for

the most frequent vowels in TORGO and compute the entropy of the data within these dis-

tributions. Surprisingly, the entropies of these distributions were relatively consistent across

dysarthric (34.6 nats) and non-dysarthric (33.3 nats) speech, with some exceptions (e.g., iy).
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Figure 5.6: Contours representing 2 standard deviations of Gaussians fitted to real data (solid

line), samples from DBN-F (dashed line), and samples from DBN-A (dash-dotted line) on the

first two mel-frequency cepstral coefficients. Subfigures represent (a) regular speech (/aa/), (b)

regular speech (/ey/), (c) severely dysarthric speech (/aa/), and (d) severely dysarthric speech

(/ey/).
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Figure 5.7: Contours showing first standard deviation in F1 vs F2 space for distributions of

the six of the most frequent vowels in continuous speech for the dysarthric and non-dysarthric

males from the TORGO database.

However, vowel spaces overlap considerably more in the dysarthric case signifying that, while

speakers with CP can be nearly as consistent as speakers without dysarthria in the acoustic

space, the locations of their targets in that space are not as discernible. Moreover, we note

linear correlation coefficients of over 0.95 between F2 standard deviation and the extent of

tongue protrusion, as determined by the Frenchay assessment described above. Some research

has shown larger variance among dysarthric vowels relative to our findings (Kain et al., 2007).

This may partially be due to our use of natural connected speech as data, rather than restrictive

consonant-vowel-consonant non-words.

In an attempt to tease apart the acoustic targets in dysarthric speech, and to give them

meaningful conditioning articulatory variables within the DBN framework, we learn statistical

mappings between dysarthric and non-dysarthric speech. Namely, we learn two functions, f
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and g, which produce the expected frames in the acoustic and articulatory spaces of a speaker

with dysarthria given corresponding frames for a regular speaker. For each function, we define

Gaussian distributions, N(·), for each phone, p, by the means of the regular and dysarthric

speech, respectively µ
(x)
p and µ

(y)
p , and the covariances, Σ

(xx)
p , of the regular speech. We can

then apply the following statistical transformation function between non-dysarthric acoustic

vectors, x, and their dysarthric counterparts, y:

f (x) = E(y|x)

=
P

∑
i=1

hi

[
µ
(y)
i +Σ

(yx)
i

(
Σ
(xx)
i

)−1(
x−µ

(x)
i

)]
,

(5.22)

where

hi(x) =
αiN

(
x; µ

(x)
i ,Σ

(xx)
i

)
∑

P
j=1 α jN

(
x; µ

(x)
j ,Σ

(xx)
j

) , (5.23)

αp is the proportion of the occurrences of phone p in the data, and Σ
(yx)
p is the cross-covariance

matrix in phone p across speakers with and without dysarthria. The function g is identical in

articulatory space, but with vectors defined by articulator positions from EMA. We learn cross-

covariance matrices on aligned sequences from both sets of speakers. Since each speaker in

the TORGO database recites the same set of phrases, we achieve frame-by-frame alignment by

applying dynamic time warping on corresponding acoustic segments of pre-annotated speech,

and applying the resulting alignment on the raw articulatory data. This is effectively the reverse

of the approach suggested by Hosom et al., who propose transforming dysarthric acoustic space

to regular acoustic space in order to be made more intelligible (Hosom et al., 2003).

Once we have the transformed acoustic and articulatory spaces of a regular speaker that

resemble those of our speaker with dysarthria, we quantize the latter using k-means clustering

and train the DBN-A model as described in section 5.4. We then update this model given either

dysarthric acoustics only (see section 5.4.2), or aligned dysarthric acoustics and quantized

articulation. These three models are then tested with either additional transformed acoustics,
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Training Retraining Testing

Data Data Data Accuracy (%)

Trans. acous.

∪

Trans. artic.

- Trans. acous. 72.9

Dys. acous. 72.6

Dys. acous.
Trans. acous. 73.7

Dys. acous. 73.4

Dys. acous.

∪ Dys. artic.

Trans. acous. 74.3

Dys. acous. 74.2

Table 5.9: Phoneme accuracy of DBN model trained and retrained across various combinations

of transformed regular acoustics and articulation, and dysarthric acoustics and articulation.

or actual dysarthric acoustics. These results are shown in table 5.9. Notably, models tested with

the transformed speech show slightly higher accuracies of recognition than models tested on

the target dysarthric speech, which may be an artifact of suprasegmental effects of dysarthria

on intelligibility. We note that models initialized with transformed regular speech perform

better than any dependent or adaptive combination for dysarthric test data in section 5.4.2.



Chapter 6

Task-dynamics in ASR

Although results in previous chapters may be applicable to improving current ASR systems for

the dysarthric population, these successes were tempered by the relatively unconstrained nature

of the underlying statistical methods and the short-time observation windows. Several funda-

mental phenomena of dysarthria such as increased disfluency, longer sonorants, and reduced

pitch control (Rudzicz et al., 2008) could not be readily represented in any of the methods

described before. Representing speech as a sequence of non-overlapping (though restricted)

syllabic or phonemic units is the basis for automatic speech recognition, and has been useful in

describing certain types of dysarthria where speech is broken into syllables either due to res-

piratory problems or to improve overall intelligibility (Ziegler and Maassen, 2004). However,

such models cannot inherently account for more complex aspects of articulatory organization,

for which parallel and self-organizing theories may be more appropriate (Smith and Goffman,

2004). In order to study the long-term dynamics of dysarthria in particular, and speech gener-

ally, we require a framework of dynamical systems into which our data can be explored.

The theory of task-dynamics is a combined model of skilled articulator motion and the

planning of vocal tract configurations (Saltzman, 1986; Saltzman and Munhall, 1989). This

theory introduces the notion that the dynamic patterns of speech are the result of overlapping

gestures, which are high-level abstractions of goal-oriented reconfigurations of the vocal tract

116
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such as bilabial closure or velar opening. Indeed, the quantal theory of speech is based on the

empirical observation that acoustics depend on a relatively discrete set of distinctive underlying

articulatory configurations (Stevens, 1972; Stevens and Keyser, 2010).

This chapter introduces this theory in section 6.1. Section 6.2 describes a method to derive

the instantaneous articulatory positions in task-dynamics given only acoustic information. Sec-

tion 6.3 describes the information content in observed articulatory data and proposes dysarthria

as a noisy-channel perturbation of underlying task-dynamics. Section 6.4 describes a mecha-

nism of using inferred task-dynamics to correct errors made by traditional speech recognition,

generally. Finally, section 6.5 describes a new method for deriving the parameters of task-

dynamics from observed data.

6.1 Tract variables and task dynamics

The interaction between linguistic and motor capabilities is not easily diagnosed, or under-

stood. In psycholinguistic theory the linguistic hierarchy is often decomposed into conceptual,

syntactic, morphological and phonological representations independent from the motor sys-

tem through which these aspects are realized (Levelt, Roelofs, and Meyer, 1999). Articulatory

phonology (AP) bridges the gap between phonetics and phonology by encapsulating them as

the physical (constraining) and abstract (planning) stages of a single system (Goldstein and

Fowler, 2003). Articulatory phonology has also been directly applied to the study of speech

disorders such as apraxia (Bahr, 2005), which is believed to affect the exact part of the neuro-

logical interface that AP describes (Dogil and Mayer, 1998).

Task-dynamics is a combined model of skilled articulator motion and the planning of ab-

stract vocal tract configurations (Saltzman, 1986). Here, the dynamic patterns of speech are the

result of overlapping gestures, which are high-level abstractions of reconfigurations of the vo-

cal tract. An instance of a gesture is any articulatory movement towards the completion of some

speech-relevant goal, such as bilabial closure, or velar opening. The progenitors of this theory
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Figure 6.1: Lip aperture (LA) over time for all instances of phoneme /m/ in MOCHA.

claim that all the implicit spatiotemporal behaviour underlying speech is the result of the inter-

action between the abstract intergestural dimension (between tasks) and the geometric interar-

ticulator dimension (between physical actuators) (Saltzman and Munhall, 1989). Each gesture

in task-dynamic theory occurs within one of the following tract variables (TVs): lip aperture

(LA), lip protrusion (LP), tongue tip constriction location (TTCL) and degree (TTCD)1, tongue

dorsum constriction location (TDCL) and degree (TDCD), velum (VEL), glottis (GLO), and

lower tooth height (LTH). For instance, a gesture to close the lips would occur within the LA

variable and would set that variable close to zero, as shown in figure 6.1 where the relevant

articulatory goal of lip closure is evident.

For example, the syllable pub consists of an onset (/p/), a nucleus (/ah/), and a coda (/b/).

Four gestural goals are associated with the onset, namely the shutting of GLO and of VEL,

and the closure and release of LA. Similarly, the nucleus of the syllable consists of three goals,

namely the relocation of TBCD and TBCL, and the opening of GLO. The presence and extent

1Constriction locations generally refer to the front-back dimension of the vocal tract and constriction degrees
generally refer to the top-down dimension.
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Figure 6.2: Canonical example pub from Saltzman and Munhall (1989) representing overlap-

ping goals for tongue blade constriction degree (TBCD), lip aperture (LA), and glottis (GLO).

Boxes represent the present of discretized goals, such as lip closure. Black curves represent the

output of the TADA system.

of these gestural goals are represented by filled rectangles in figure 6.2. Inter-gestural timings

between these goals are specified relative to one another according to human data as described

by Nam and Saltzman (2003).

The dynamic influence of each gesture in time on the relevant tract variable is modeled

by the following non-homogenous second-order linear differential equation (Saltzman and

Munhall, 1989):

Mz′′+Bz′+K(z− z∗) = 0, (6.1)

where z is a 9-dimensional vector of the instantaneous positions of each tract variable, and z′

and z′′ are its first and second differentials. Here, M, B, and K are diagonal matrices represent-

ing mass, damping, and stiffness coefficients, respectively, and z∗ is the 9-dimensional vector

of target (equilibrium) positions. This model is built on the assumption that the tract variables

are independent and do not interact dynamically, although these matrices could be adjusted to

reflect dependencies, if desired (Nam and Saltzman, 2003). If the targets z∗ of this equation are

known, the identification of linguistic intent becomes possible. For example, given that a bil-

abial closure occurs simultaneously with a velar opening and glottal vibration, we can identify

the intended phone as /m/. This represents a dimensionality reduction for classification of an
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instantaneous frame of speech from 14 (typical of Mel-frequency cepstral coefficients) to 9, of

which only 3 are relevant in the example above.

A primary problem to solve on the path towards task-dynamic speech recognition is how to

infer the tract variable values in the first place. Obviously, for general recognition we cannot

measure the tract variables directly and will have to estimate them from acoustics. One prin-

cipled approach may be to first estimate the positions of the physical articulators, and to use

these to infer gestural activity. Once the m instantaneous articulator positions, Φ, are known,

we can infer the instantaneous impulsion of the tract variables (z) towards their targets with the

following direct kinematic equation of active control:

Φ
′′
A = J(P)(Φ)

(
M−1 [−BJ(Φ)Φ′−K (z− z0)

])
− J(P)J′(Φ,Φ′)Φ′ (6.2)

where J(Φ) represents the Jacobian matrix of partial derivatives of Φ over time, J(P)(Φ) =

W−1J(Φ)T (J(Φ)W−1J(Φ)T)−1 is the Jacobian pseudo-inverse, W is an articulatory weighting

matrix specific to each gesture, and M, B, K, and z0 carry the same meaning as in equation 6.1

(Saltzman and Munhall, 1989)2. Obviously, the values of Φ and its derivatives are specific to

the geometry of the virtual speaker assumed during simulation.

Articulatory data consists of spoken utterances and their aligned articulator positions as

described in chapter 4. In order to convert the articulator space to tract variable space, we

transform the midsagittal articulatory data using a combination of principal component anal-

ysis and sigmoid activation functions. For example, we describe VEL by calculating the first

principal component of velum motion in the midsagittal plane, finding the minimum and max-

imum deviations from the mean in this transformed space, and applying a sigmoid to that uni-

dimensional space to retrieve a real function on [0..1]. Similarly, the first and second principal

components of the distance between UL and LL are used for the determination of lip aperture

and protrusion, respectively, the first and second principal components of TT are used for the

determination of TTCL and TTCD, respectively, and the first and second principal components

2Note that an augmented form of this equation includes an orthogonal projection operator that eliminates
extraneous motion by including supplementary dissipative forces proportional to articulatory velocity.
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of TB are used for the determination of TBCL and TBCD, respectively. Voicing detection on

energy below 150 Hz (O’Shaughnessy, 2000) is used to estimate the GLO tract variable.

6.2 Adaptive kernel canonical correlation analysis for esti-

mation of task dynamics from acoustics

Differences between speakers are the result of purely endogenous phenomena distinguished

by their mechanics of articulation. Such distinctions cannot be codified into automatic speech

recognition (ASR) systems that are agnostic of speech production, however. Although direct

measurements of the vocal tract are not typical during speech recognition, it is nonetheless de-

sirable to find an accurate method of projecting acoustic speech data onto a lower-dimensional

space which is more indicative of the linguistic intentions of the speaker, namely, to the space

of physical properties of vocal tract motion. Evidence that such inversion takes place during

speech perception in humans suggests that the discriminability of speech sounds depends pow-

erfully on their production (D’Ausilio et al., 2009). For example, the motor theory of speech

perception is a branch of speech science that assumes that the same processes that are involved

in the production of speech are used to decode speech acoustics during perception (Liberman

et al., 1957; Liberman et al., 1967; Liberman and Mattingly, 1985). This theory may also be

applicable, or at least provide ecological support to our design decisions.

Despite the one-to-many relationship in acoustic-to-articulatory inversion (Roweis, 1999;

Ananthakrishnan, Neiberg, and Engwall, 2009), such protestation has not limited research in

this area. For example, Richmond et al. (Richmond, King, and Taylor, 2003) estimated the

2-dimensional midsagittal positions of 7 articulators given kinematic data using both a multi-

layer perceptron and discriminatively trained Gaussian mixture models to within 0.41 mm and

2.73 mm. Toda et al. (Toda, Black, and Tokuda, 2008) achieved almost identical results on

the same data by applying expectation-maximization using both minimum mean-squared error

and maximum likelihood estimation to a Gaussian mixture mapping function with low-pass
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filtering. Simpler approaches achieved similar results (errors less than 2mm, typically around

1mm) using simple vector quantization with an appropriate number of vectors (Hogden et al.,

1996; Hogden et al., 2007). This work, called MALCOM (Maximum Likelihood Continu-

ity Map), uses band-limited low-pass filtering of around 8–15 Hz on articulatory trajectories,

which is a common practice (Yehia, 2002). These trajectories are low-dimensional and smooth

relative to their acoustic counterparts. Here, vector-quantized codes that partition the acoustic

space are each associated with a Gaussian probability density in a pseudo-articulatory space de-

fined in the frequency domain based on multidimensional kinematic data. During recognition,

acoustics are encoded in VQ space and then a smooth trajectory is computed in the pseudo-

articulatory space that maximizes the conditional likelihood given the discretized acoustics

(Hogden, 1996; McDermott and Nakamura, 2006).

One commonality in existing work is that the target dimensions consist of the absolute

physical positions of points in the vocal tract. Typical points include the upper and lower lips

(UL, LL), the upper and lower incisors (UI, LI), the tongue tip, body, and dorsum (TT, TB,

TD), and the velum (V). Despite the popularity of this approach, neither its generalizability

among speakers nor its representation of linguistic intent has been justified. Why would the

physical position of the upper lip be as explicative of intent or of acoustic consequence as a

measure of the distance between the lips, for example?

In this section we estimate features of the vocal tract from acoustics using adaptive kernel

canonical correlation analysis (KCCA). We choose features of the vocal tract derived from the

theory of task dynamics, as described below.

6.2.1 Adaptive KCCA

Canonical correlation analysis (CCA) is a popular technique in statistical analysis used in a va-

riety of contexts, including communication theory and statistical signal processing, to measure

linear relationships between sets of variables. Given vector variables x ∈ Rmx and y ∈ Rmy ,

CCA finds a pair of directions ωx ∈Rmx and ωy ∈Rmy such that the correlation ρ(x,y) is max-
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imized between the two projections ωT
x x and ωT

y y. Given joint observations X = [x1x2...xN ]
T

and Y = [y1y2...yN ]
T , where xi co-occurs with yi, CCA is equivalent to finding projection

vectors ωx and ωy that maximize

ρ(X,Y;ωx,ωy) =
ωT

x XYT ωy√
ωT

x XXT ωx

√
ωT

y YYT ωy

. (6.3)

Although this method can find good linear relationships between sets of data, it is incapable

of capturing nonlinear relationships, which limits its application in many aspects of speech. In

order to overcome this limitation, we employ the “kernel trick” in which a nonlinear transfor-

mation Φ of the data obtains a higher-dimensional feature space (e.g., X̂ = Φ(X)). In effect,

this approach extends the data into a higher dimension with which the categories are more lin-

early separable. The linear solution of CCA within this higher-dimensional space is equivalent

to a non-linear solution in the original data space (Lai and Fyfe, 2000). We can avoid the need

to explicitly define Φ, however, since positive definite kernel functions κ(x,y) satisfying Mer-

cer’s condition can implicitly map their input to higher-dimensional spaces. We specify a set

of such kernels in section 6.2.2.

Reformulating eq. 6.3 within a framework of least-squares regression allows us to minimize

1
2‖Xωx−Yωy‖2 such that 1

2 (‖Xωx‖+‖Yωy‖) = 1. This allows us to solve the following

generalized eigenvalue problem on the transformed data X̂ ∈ RN×m′x and Ŷ ∈ RN×m′y by the

method of Lagrange multipliers:

1
2

 X̂T X̂ X̂T Ŷ

ŶT X̂ ŶT Ŷ

 ω̂ = β

 X̂T X̂ 0

0 ŶT Ŷ

 ω̂, (6.4)

where ω̂ = [ω̂xω̂y]
T is the concatenation of the transformed direction vectors and β is the La-

grange multiplier. We can now avoid explicit data transformation by applying a kernel function.

Since the kernel matrix describing our transformed data, Kx = X̂kX̂T
k ∈ RN×N , has elements

Kx[i, j] = κ(xi,x j) defined by vectors in our original data space (Ky is defined similarly for Ŷ),

we left-multiply eq. 6.4 by

 X̂ 0

0 Ŷ

, giving
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(a) Nonlinear Hammerstein system (feedforward).

ĝ(.)X[n] - Ĥ-1(.)
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(b) System for identifying the parameters of the nonlinear Hammerstein system.

Figure 6.3: The feedforward Hammerstein system and its associated identification system.

1
2

 K2
x KxKy

KyKx K2
y

α = β

 K2
x 0

0 K2
y

α. (6.5)

Here, α = [αxαy]
T ∈ R2N such that ω̂x = X̂T αx and ω̂y = ŶT αy (Vaerenbergh, Via, and San-

tamaria, 2006b). This gives a generalized eigenvalue problem in the higher-dimensional space

where we can minimize (Kxαx +Kyαy)/2 by adjusting αx and αy according to our original

data space (Vaerenbergh, Via, and Santamaria, 2008).

KCCA and Hammerstein systems

A nonlinear Hammerstein system is a memoryless nonlinear function g() followed by a linear

dynamic system H() in series, as shown in Figure 6.3(a). Our goal is to input acoustic obser-

vations, X, of Mel-frequency cepstral coefficients (MFCC) to such a system and to infer the

associated articulation vectors, Λ. In order to accomplish this accurately, we must learn the

parameters of the two components of the Hammerstein system.

A mechanism for identifying these parameters has recently been proposed that takes ad-
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vantage of the cascade structure by inverting the linear component, as in Figure 6.3(b), and

minimizing the difference, e[n], between g(X[n]) and H−1(Λ[n]) using KCCA (Aschbacher

and Rupp, 2005). Since H() is linear, we can reformulate eq. 6.5 to

1
2

 K2
x KxΛ̂

Λ̂T Kx Λ̂T Λ̂


 αx

ωΛ

= β

 Kx(Kx + cI) 0

0 Λ̂T Λ̂


 αx

ωΛ

 , (6.6)

where we add a regularizing constant c to prevent overfitting (Aschbacher and Rupp, 2005).

Here, ωΛ provides the parameters of the linear part of the system, H()−1, and αx provides

the parameters of the nonlinear part, g(). Given a combined average of the output of these

two systems, r = (rx + rΛ)/2 = (Kxαx +ΛωΛ)/2, the eigenvalue problem decomposes to two

coupled least squares problems:

βαx = (Kx + cI)−1r

βωΛ = (ΛT
Λ)−1

Λ
T r

(6.7)

This representation allows us to minimize a Euclidean error measurement ‖rx− rΛ‖ by

analytically solving for αx and ωΛ. In order to estimate articulation at run time, we compute

rx = Kxαx, since we can construct the kernel matrix from observed acoustics, and then solve

for Λ≈Kxαxω
−1
Λ

, since ΛωΛ = rΛ ≈ rx = Kxαx.

Adaptive algorithm

Unfortunately, for problems involving large amounts of data, as is typical in speech, the sizes

of the kernel matrices described above become prohibitively large. An online algorithm that

iteratively adjusts the estimates of αx and ωΛ based on subsequent segments of data is there-

fore desirable. We assume that we have a sliding context window covering L aligned frames

from each data source, namely, x(n) = [xn,xn−1, ...,xn−L+1] and Λ(n) = [Λn,Λn−1, ...,Λn−L+1].

Assuming that we have matrix K(n−1)
reg for the (n− 1)th window of speech, and K̂(n−1)

reg is the

matrix formed by its last n− 1 rows and columns, then the regularized matrix for the current
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window is

K(n)
reg =

 K̂(n−1)
reg kn−1(x(n))

kn−1(x(n))T knn + c

 , (6.8)

where kn−1(x(n)) = [κ(x(n−L+1),x(n), ...,κ(x(n−1),x(n)]T and knn = κ(x(n),x(n)). The inverse

of K(n)
reg can also be computed quickly, given the inverse of K(n−1)

reg (Vaerenbergh, Via, and

Santamaria, 2006a). We then iteratively update our parameter estimates for ωΛ and αx as new

data arrives using eq. 6.7. This entire process is summarized in algorithm 3 and is based on

work on Wiener systems by Vaerenbergh et al. (Vaerenbergh, Via, and Santamaria, 2006b).

Algorithm 3: The adaptive KCCA algorithm.

begin

Initialize K(0)
reg = (1+ c)I

Initialize αx and ωΛ with random data

for n = 1..N do

Calculate K(n)
reg from x(n) as in eq. 6.8

r(n)x = κ(x(n),x(n−1))α
(n−1)
x

r(n)
Λ

= Λ(n)ω
(n−1)
Λ

r(n) = r(n−1)
x +r(n−1)

Λ

2

Calculate
(

K(n)
reg

)−1

Update solutions for αx and ωΛ as in eq. 6.7

Normalize solutions with β = ‖ωΛ‖

end

6.2.2 Experiments

Our experiments evaluate the stability of the error-correction method and the estimation of tract

variables from acoustics. We apply four kernel functions, namely the homogenous polynomial

(K(i)
h poly), the non-homogenous polynomial (K(i)

nh poly), the radial-basis function (K(σ)
rb f ), and the
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sigmoid (K(κ,c)
sigmoid) kernels:

K(i)
h poly (x1,x2) = (x1x2)

i

K(i)
nh poly (x1,x2) = (x1x2 +1)i

K(σ)
rb f (x1,x2) = exp

(
−‖x1− x2‖2

2σ2

)
K(κ,c)

sigmoid (x1,x2) = tanh(x1x2 + c) .

Training data consists of midsagittal tract variables (10-dimensional vectors) and aligned

acoustics (42-dimensional MFCCs) selected from approximately 460 sentences uttered by a

male speaker from Edinburgh’s MOCHA database (Wrench, 1999). The positions and veloci-

ties of the jaw, lips, and tongue, are recorded with electromagnetic articulography as described

in section 2.4. These data are then converted to the tract variable space as described in section

6.1. Results reported below are averages of 10-fold cross validation. Until otherwise indicated,

the window length L = 150.

Stability and convergence during training

The goal of auto-correction is for the Euclidean error (Kxαx−ΛωΛ) (i.e., e[n] in Figure 6.3(b))

to approach zero during training. Figure 6.4 shows the best, average, and worst mean squared

errors in decibels during training given the homogenous polynomial kernel and 10 random

initial parameterizations. This example is indicative of all other kernels whereby a period of

fluctuation tends to follow a rapid decrease in error. Table 6.1 shows the total decrease in mean

squared error (dB) between the first 20 and last 20 windows of the adaptive KCCA training

process. As one increases the order of both the homogenous and non-homogenous kernels,

the MSE reduction also increases. In both the tan-sigmoid and radial-basis function kernels,

however, our choice of parameters seems to have little discernible effect.

Vaerenbergh et al. apply a nearly identical approach to learning Wiener systems on the

comparatively simple problem of estimating a hyperbolic tangent function given univariate

input (Vaerenbergh, Via, and Santamaria, 2006b; Vaerenbergh, Via, and Santamaria, 2008),
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Figure 6.4: Normalization error, e[n], for the first-order homogenous polynomial kernel at

window size L = 150.

Homogenous polynomial Nonhomogenous polynomial

i MSE reduction i MSE reduction

1 421.6 1 441.9

2 403.6 2 413.1

3 394.5 3 382.9

Sigmoid Radial-basis function

(κ , c) MSE reduction σ MSE reduction

(0.2,0.1) 313.2 0.1 406.5

(0.2,0.5) 321.5 0.5 410.4

(0.5,0.1) 309.7 1.0 406.7

(0.5,0.5) 314.3

Table 6.1: Total reduction in MSE (dB) between Hammerstein components during training

across kernels and parameterizations.
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Figure 6.5: Example intensity map of Gaussian mixtures produced by a mixture density net-

work trained to estimate the tongue tip constriction degree. Darker sections represent higher

probability. The true trajectory is superimposed as a black curve.

reaching MSE between −30dB and −40dB within 1000 to 1500 iterations. Surprisingly, most

of the error in our experiments is dispelled much earlier, within 200 iterations, with MSE

fluctuating between −76.9dB and 39.5dB thereafter across all kernels and parameterizations.

KCCA versus mixture density networks

In order to judge the accuracy of the articulatory estimates produced by adaptive KCCA against

the state-of-the-art, we consider mixture density neural networks (MDNs) that output parame-

ters of Gaussian mixture probability distributions, as described by Richmond (2003). We train

MDNs to estimate the likelihood of tract variable positions given MFCC input and 2 frames of

surrounding acoustic context. Figure 6.5 shows an example of the estimated likelihood of tract

variable positions over time produced by a trained MDN as an intensity map superimposed

with the true trajectory. MDNs are trained on the same data as KCCA. Articulatory estimates

for KCCA are smoothed with third-order median filters.
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TV MDN KCCA TV MDN KCCA

µ(σ2) µ(σ2) µ(σ2) µ(σ2)

VEL −0.28 (0.08) −0.23 (0.07) TTCD −1.60 (0.17) −1.60 (0.17)

LTH −0.18 (0.12) −0.18 (0.14) TTCL −1.62 (0.17) −1.57 (0.16)

LA −0.32 (0.11) −0.28 (0.10) TBCD −0.79 (0.14) −0.80 (0.15)

LP −0.44 (0.12) −0.41 (0.13) TDCL −0.20 (0.11) −0.18 (0.09)

GLO −1.30 (0.16) −1.14 (0.15)

Table 6.2: Average log likelihoods of true tract variable positions in test data, under distribu-

tions produced by mixture density networks (MDNs) and the KCCA method, with variances.

We assess the accuracy of the MDN and KCCA methods by comparing their estimates

of the log likelihood of the true articulatory trajectories. A more accurate method will as-

sign a higher probability to the actual trajectory. The likelihood of a frame of articulation is

easily computed by MDNs whose output is a probability distribution over tract variable posi-

tions. We approximate the likelihood of a frame of articulation in the KCCA approach with the

radial-basis kernel by fitting a Gaussian to the estimates of 10 trials having different initial pa-

rameterizations. Test data in each trial consists of approximately 60 utterances from our male

speaker.

The mean and variance of the log likelihoods of true articulatory positions across all test

frames is summarized in Table 6.2 for both methods. According to the t test with 9.6E4 <

n1 = n2 < 9.9E4 frames and one degree of freedom, KCCA is significantly more accurate than

the MDN method at the 95% confidence level for VEL, LA, LP, TTCL, and TDCL and at

the 99% confidence level for GLO, and statistically indistinguishable at these levels for the

remaining tract variables.
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6.2.3 Summary of KCCA approach

Some high-level questions remain. For example, if the eventual aim is to use estimated ar-

ticulatory trajectories to constrain hypotheses in speech recognition, then it is possible that a

quantized representation may be more amenable to training in such systems. A similar (though

non-adaptive) kernel-based system has recently been proposed that inverts acoustic to articula-

tory data according to discrete categories (Zheng et al., 2006). Likewise, a k-means clustering

of the tract variable motion estimated by our adaptive KCCA process might be applicable as

conditioning variables in dynamic Bayes networks for speech classification (Rudzicz, 2009a).

Our analysis has demonstrated that adaptive KCCA can effectively learn non-linear re-

lationships between co-occurring variables in speech, and perform more accurate acoustic-

to-articulatory inversion than the state-of-the-art. This approach combines a semi-analytical

(non-statistical) kernel-based approach with an iterative, adaptive learning process and could

be used for online trajectory estimation.

6.3 A noisy-channel model of dysarthria

Dysarthria is sometimes characterized as a distortion of parallel biological pathways that cor-

rupt motor signals before execution (Kent and Rosen, 2004; Freund et al., 2005). In this section

we cast the speech-motor interface within the mathematical framework of the noisy-channel

model. Within this information-theoretic approach, we aim to infer the nature of the motor

signal distortions given appropriate measurements of the vocal tract. That is, we ask the fol-

lowing question: Is dysarthric speech a distortion of typical speech, or are they both distortions

of some common underlying representation?

First, in section 6.3.1, we ask whether the incorporation of articulatory data is theoretically

useful in reducing uncertainty in dysarthric speech. Second, in section 6.3.2, we ask which of

the two noisy channel models in figure 6.6 best describe the observed behaviour of dysarthric

speech.
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Data for this study are collected as described as in chapter 4. Here, we use data from three

dysarthric speakers with cerebral palsy (males M01 and M04, and female F03), as well as their

age- and gender-matched counterparts from the general population (males MC01 and MC03,

and female FC02). For this study we restrict our analysis to 100 phrases uttered in common by

all six speakers.

6.3.1 Entropy

We wish to measure the degree of statistical disorder in both acoustic and articulatory data

for dysarthric and non-dysarthric speakers, as well as the a posteriori disorder of one type of

data given the other. This quantification will inform us as to the relative merits of incorporating

knowledge of articulatory behaviour into ASR systems for dysarthric speakers. Entropy, H(X),

is a measure of the degree of uncertainty in a random variable X . When X is discrete, this value

is computed with the familiar

H(X) =−
n

∑
i=1

p(xi) logb p(xi),

where b is the logarithm base, xi is a value of X , of which there are n possible, and p(xi) is its

probability. When our observations are continuous, as they are in our acoustic and articulatory

database, we must use differential entropy defined by

H(X) =−
∫

X
f (X) log f (X)dX ,

where f (X) is the probability density function of X . For a number of distributions f (X), the

differential entropy has known forms (Lazo and Rathie, 1978). For example, if f (X) is a

multivariate normal,

fX(x1, ...,xN) =
exp
(
−1

2(x−µ)T Σ−1(x−µ)
)

(2π)N/2 |Σ|1/2

H(X) = 1
2 ln
(
(2πe)N |Σ|

)
,

(6.9)

where µ and Σ are the mean and covariances of the data. However, since we observe that both

acoustic and articulatory data follow non-Gaussian distributions, we choose to represent these
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spaces by mixtures of Gaussians. Huber et al. (2008) have developed an accurate algorithm for

estimating differential entropy of Gaussian mixtures based on iteratively merging Gaussians

and the approximate upper bound of the entropy,

H̃(X) =
L

∑
i=1

ωi
(
− logωi +

1
2 log((2πe)N |Σi|

)
,

where ωi is the weight of the ith(1 ≤ i ≤ L) Gaussian and Σi is that Gaussian’s covariance

matrix. This method is used to approximate entropies in the following study, with L = 32.

Note that while differential entropies can be negative and not invariant under change of vari-

ables, other properties of entropy are retained (Huber et al., 2008), such as the chain rule for

conditional entropy

H(Y |X) = H(Y,X)−H(X),

which describes the uncertainty in Y given knowledge of X , and the chain rule for mutual

information

I(Y ;X) = H(X)+H(Y )−H(X ,Y ),

which describes the mutual dependence between X and Y . Here, we quantize entropy with the

nat, which is the natural logarithmic unit, e (≈ 1.44 bits).

Experiments

We measure the differential entropy of acoustics (H(Ac)), of articulation (H(Ar)), and of acous-

tics given knowledge of the vocal tract (H(Ac |Ar)) in order to obtain theoretical estimates as

to the utility of articulatory data. Table 6.3 shows these quantities across the six speakers in

this study. As expected, the acoustics of dysarthric speakers are much more disordered than for

non-dysarthric speakers. One unexpected finding is that there is very little difference between

speakers in terms of their entropy of articulation. Although dysarthric speakers clearly lack

articulatory dexterity, this implies that they nonetheless articulate with a level of consistency

similar to their non-dysarthric counterparts3. However, the equivocation H(Ac |Ar) is an order

3This is borne out in the literature (Kent and Rosen, 2004).
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Speaker H(Ac) H(Ar) H(Ac |Ar)

Dys.

M01 66.37 17.16 50.30

M04 33.36 11.31 26.25

F03 42.28 19.33 39.47

Average 47.34 15.93 38.68

Ctrl.

MC01 24.40 21.49 1.14

MC03 18.63 18.34 3.93

FC02 16.12 15.97 3.11

Average 19.72 18.60 2.73

Table 6.3: Differential entropy, in nats, across dysarthric and control speakers for acoustic ac

and articulatory ar data.

of magnitude lower for non-dysarthric speakers. This implies that there is very little ambiguity

left in the acoustics of non-dysarthric speakers if we have simultaneous knowledge of the vocal

tract, but that quite a bit of ambiguity remains for our dysarthric speakers, despite significant

reductions. Further investigation should confirm the causes of this remnant ambiguity, but po-

tential sources include unmeasured interaction between the glottis and the other articulators

(e.g., aberrant voicing) or unmeasured lateral asymmetry in the tongue.

Table 6.4 shows the average mutual information between acoustics and articulation for each

type of speaker, given knowledge of the phonological manner of articulation. In table 4.1 we

noted a prevalence of pronunciation errors among dysarthric speakers for plosives, but table

6.4 shows no particularly low congruity between acoustics and articulation for this manner of

phoneme. Those pronunciation errors tended to be voicing errors, which would involve the

glottis, which is not measured in this study.

Table 6.4 appears to imply that there is little mutual information between acoustics and

articulation in vowels across all speakers. However, this is almost certainly the result of our
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Manner
I(Ac;Ar)

Dys. Ctrl.

plosives 10.92 16.47

affricates 8.71 9.23

fricatives 9.30 10.94

nasals 13.29 15.10

glides 11.92 12.68

vowels 6.76 7.15

Table 6.4: Mutual information I(Ac;Ar) of acoustics and articulation for dysarthric and control

subjects, across phonological manners of articulation.

exclusion of tongue blade and tongue dorsum measurements4 in order to standardize across

speakers who could not manage these sensors. Indeed, the configuration of the entire tongue

is known to be useful in discriminating among the vowels (O’Shaughnessy, 2000). An ad hoc

analysis including all three tongue sensors for speakers F03, MC01, MC03, and FC02 revealed

mutual information between acoustics and articulation of 16.81 nats for F03 and 18.73 nats for

the control speakers, for vowels. This is compared with mutual information of 11.82 nats for

F03 and 13.88 nats for the control speakers across all other manners. The trend is that acoustics

are better predicted given more tongue measurements, as expected.

6.3.2 The noisy channel

The noisy-channel theorem states that information passed through a channel with capacity C

at a rate R ≤ C can be reliably recovered with an arbitrarily low probability of error given

an appropriate coding. Here, a message from a finite alphabet is encoded, producing signal

x ∈ X . That signal is then distorted by a medium which transmits signal y ∈ Y according to

some distribution P(Y |X). Given that there is some probability that the received signal, y, is

4We retained the tongue tip, jaw, and four lip measurements.
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P(Y | X)
Dysarthric speech

signal, Y
Typical speech

signal, X

(a) Dysarthric speech as a distortion of control speech

P(Yd 
| X)

Dysarthric speech
signal, Y

dAbstract speech
signal, X

P(Yc 
| X)

Control speech
signal, Y

c

(b) Dysarthric and control speech as distortions of a common abstraction

Figure 6.6: Sections of alternative noisy channel models for the neuro-motor interface in speak-

ers with dysarthria.

corrupted, the message produced by the decoder may differ from the original (Shannon, 1949).

To what extent can we describe the effects of dysarthria within an information-theoretic

noisy channel model? We pursue two competing hypotheses within this general framework.

The first hypothesis models the assumption that dysarthric speech is a distorted version of

typical speech. Here, signal X and Y represent the vocal characteristics of the general and

dysarthric populations, respectively, and P(Y |X) models the distortion between them. The

second hypothesis models the assumption that both dysarthric and typical speech are distorted

versions of some common abstraction. Here, Yd and Yc represent the vocal characteristics of

dysarthric and control speakers, respectively, and X represents a common, underlying mech-

anism and that P(Yd |X) and P(Yc |X) model distortions from that mechanism. These two

hypotheses are visualized in figure 6.6. In each of these cases, signals can be acoustic, articu-

latory, or some combination thereof.

Common underlying abstractions

In order to test our hypothesis that both dysarthric and control speakers share a common high-

level abstraction of the vocal tract that is in both cases distorted during articulation, we incor-
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porate the theory of task dynamics (Saltzman and Munhall, 1989) as descried above in section

6.1.

The open-source TADA system (Nam and Goldstein, 2006) estimates the positions of var-

ious articulators during speech according to parameters that have been carefully tuned by the

authors of TADA according to a generic, speaker-independent representation of the vocal tract

(Saltzman and Munhall, 1989). Given a word sequence and a syllable-to-gesture dictionary,

TADA produces the continuous tract variable paths that are necessary to produce that sequence.

This takes into account various physiological aspects of human speech production, such as

interarticulator co-ordination and timing (Nam and Saltzman, 2003).

In this study, we use TADA to produce estimates of a global, high-level representation of

speech common to both dysarthric and non-dysarthric speakers alike. Given a word sequence

uttered by both types of speaker, we produce five continuous curves prescribed by that word se-

quence in order to match our available EMA data. Those curves are lip aperture and protrusion

(LA and LP), tongue tip constriction location and degree (TTCL and TTCD, representing front-

back and top-down positions of the tongue tip, respectively), and lower incisor height (LIH).

These curves are then compared against actually observed EMA data, as described below.

Experiments

Our task is to determine whether dysarthric speech is best represented as a distorted version of

typical speech, or if both dysarthric and typical speech ought to be viewed as distortions of a

common abstract representation. To explore this question, we design a transformation system

that produces the most likely observation in one data space given its counterpart in another and

the statistical relationship between the two spaces. This transformation in effect implements

the noisy channel itself.

To accomplish this, we learn probability distributions over our EMA data. First, we collect

all dysarthric data together and all non-dysarthric data together. We then consider the acoustic

(Ac) and articulatory (Ar) subsets of these data. In each case, we train Gaussian mixtures,
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each with 60 components, over 90% of the data in both dysarthric and non-dysarthric speech.

Here, each of the 60 phonemes in the data is represented by one Gaussian component, with

the weight of that component determined by the relative proportion of 10 ms frames for that

phoneme. Similarly, all training word sequences are passed to TADA, and we train a mixture

of Gaussians on its articulatory output.

Across all Gaussian mixtures, we end up with 5 Gaussians tuned to various aspects of

each phoneme p: its dysarthric acoustics and articulation (NAc
p (Yd) and NAr

p (Yd)), its control

acoustics and articulation (NAc
p (Yd) and NAr

p (Yd)), and its prescribed articulation from TADA

(NAr
p (X)). Each Gaussian NA

p(B) is represented by its mean µ
(A,B)
p and its covariance, Σ

(A,B)
p .

Furthermore, we compute the cross-covariance matrix between Gaussians for a given phoneme

(e.g., Σ
(Ac,Yc)→(Ac,Yd)
p is the cross-covariance matrix of the acoustics of the control (Yc) and

dysarthric (Yd) speech for phoneme p). Given these parameters, we estimate the most likely

frame in one domain given its counterpart in another. For example, if we are given a frame of

acoustics from a control speaker, we can synthesize the most likely frame of acoustics for a

dysarthric speaker, given an application of the noisy channel proposed by Hosom et al. (2003)

used to transform dysarthric speech to make it more intelligible. Namely, given a frame of

acoustics yc from a control speaker, we can estimate the acoustics of a dysarthric speaker yd

with:

fAc(yc) =E(yd |yc)

=
P

∑
i=1

hi(yc)
[
µ
(Ac,Yd)
i +

Σ
(Ac,Yc)→(Ac,Yd)
i ·

(
Σ
(Ac,Yc)
i

)−1
·(

yc−µ
(Ac,Yc)
i

)]
,

(6.10)

where

hi(yc) =
αiN

(
yc; µ

(Ac,Yc)
i ,Σ

(Ac,Yc)
i

)
∑

P
j=1 α jN

(
yc; µ

(Ac,Yc)
j ,Σ

(Ac,Yc)
j

) ,



CHAPTER 6. TASK-DYNAMICS IN ASR 139

where αp is the proportion of the frames of phoneme p in the data. Transforming between

different types and sources of data is accomplished merely by substituting in the appropriate

Gaussians above.

We now measure how closely the transformed data spaces match their true target spaces.

In each case, we transform test utterances (recorded, or synthesized with TADA) according to

functions learned in training (i.e., we use the remaining 10% of the data for each speaker type).

These transformed spaces are then compared against their target space in our data. Table 6.5

shows the Gaussian mixture phoneme-level Kullback-Leibler divergences given various types

of source and target data, weighted by the relative proportions of the phonemes. Each pair of

N-dimensional Gaussians (Ni with mean µi and covariance Σi) for a given phone and data type

is compared with

DKL(N0 ||N1) =
1
2

(
ln
(
|Σ1|
|Σ0|

)
+ trace(Σ−1

1 Σ0)

+(µ1−µ0)
T

Σ
−1
1 (µ1−µ0)−N

)
.

Our baseline shows that control and dysarthric speakers differ far more in their acoustics than

in their articulation. When our control data (both acoustic and articulatory) are transformed to

match the dysarthric data, the result is predictably more similar to the latter than if the con-

version had not taken place. This corresponds to the noisy channel model of figure 6.6(a),

whereby dysarthric speech is modelled as a distortion of non-dysarthric speech. However,

when we model dysarthric and control speech as distortions of a common, abstract represen-

tation (i.e., task dynamics) as in figure 6.6(b), the resulting synthesized articulatory spaces are

more similar to their respective observed data than the articulation predicted by the first noisy

channel model. Dysarthric articulation predicted by transformations from task-dynamics space

differ significantly from those predicted by transformations from control EMA data at the 95%

confidence interval.
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KL divergence

(10−2 nats)

Type 1 Type 2 Acous. Artic.

Ctrl. Dys. 25.36 3.23

Ctrl. → Dys. Dys. 17.78 2.11

TADA→ Ctrl. Ctrl. N/A 1.69

TADA→ Dys. Dys. N/A 1.84

Table 6.5: Average weighted phoneme-level Kullback-Leibler divergences of acoustic and

articulatory spaces given transformed and untransformed control and dysarthric models,

weighted by the relative proportions of the phoneme.

6.3.3 Summary of entropy in dysarthric speech

These experiments demonstrate a few acoustic and articulatory features in speakers with cere-

bral palsy. First, these speakers are likely to mistakenly voice unvoiced plosives, and to delete

fricatives regardless of their word position. We suggest that it might be prudent to modify

the vocabularies of ASR systems to account for these expected mispronunciations. Second,

dysarthric speakers produce sonorants significantly slower than their non-dysarthric counter-

parts. This may present an increase in insertion errors in ASR systems (Rosen and Yampolsky,

2000).

Although not quantified here, we detect that a lack of articulatory control can often lead

to observable acoustic consequences. For example, our dysarthric data contain considerable

involuntary types of velopharyngeal or glottal noise (often associated with respiration), audi-

ble swallowing, and involuntary repetition. We intend to work towards methods of explicitly

identifying regions of non-speech noise in our ASR systems for dysarthric speakers.

We have considered the amount of statistical disorder (i.e., entropy) in both acoustic and

articulatory data in dysarthric and non-dysarthric speakers. The use of articulatory knowledge
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reduces the degree of this disorder significantly for dysarthric speakers (18.3%, relatively),

though far less than for non-dysarthric speakers (86.2%, relatively). In real-world applications

we are not likely to have access to measurements of the vocal tract; however, many approaches

exist that estimate the configuration of the vocal tract given only acoustic data (Richmond,

King, and Taylor, 2003; Toda, Black, and Tokuda, 2008), often to an average error of less than

1 mm. The generalizability of such work to new speakers (particularly those with dysarthria)

without training is an open research question.

We have argued for noisy channel models of the neuro-motor interface assuming that the

pathway of motor command to motor activity is a linear sequence of dynamics. The biological

reality is much more complicated. In particular, the pathway of verbal motor commands in-

cludes several sources of sensory feedback (Seikel, King, and Drumright, 2005) that modulate

control parameters during speech (Gracco, 1995). These senses include exteroceptive stimuli

(auditory and tactile), and interoceptive stimuli (particularly proprioception and its kinesthetic

sense) (Seikel, King, and Drumright, 2005), the disruption of which can lead to a number of

production changes. For instance, Abbs, Folkins, and Sivarajan (1976) showed that when con-

duction in the mandibular branches of the trigeminal nerve is blocked, the resulting speech

has considerably more pronunciation errors, although is generally intelligible. Barlow (1989)

argues that the redundancy of sensory messages provides the necessary input to the motor

planning stage, which relates abstract goals to motor activity in the cerebellum.

As we continue to develop our articulatory ASR models for dysarthric speakers, one po-

tential avenue for future research involves the incorporation of feedback from the current state

of the vocal tract to the motor planning phase. This would be similar, in premise, to the DIVA

model (Guenther and Perkell, 2004). There is also ample evidence for a ‘phonological store’

or ‘phonological loop’ in the cerebellum in which articulatory rehearsals and their expected

acoustic consequences are stored for between 1.5 and 2.0 seconds during speech comprehen-

sion and production (Baddeley, Gathercole, and Papagno, 1998; Beaman, 2007). Under this

model, speakers with dysarthria show a normal capacity for articulatory rehearsal, which sug-
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gests that distortions occur after the planning stage but before motor execution (Baddeley and

Wilson, 1985).

6.4 Correcting errors in ASR with articulatory dynamics

This section describes an integration of task-dynamics theory into an ASR system for word

recognition on non-dysarthric data. In section 6.4.1, we augment traditional models of ASR

with probabilistic relationships between acoustics and articulation learned from appropriate

data. This leads to the incorporation of a high-level, goal-oriented, and control-based theory of

speech production within a novel ASR system in section 6.4.3. Experiments with these models

are described in section 6.4.4 and summarized in section 6.4.5

6.4.1 Baseline systems

We examine two baseline systems. The first is the standard acoustic hidden Markov model

(HMM) augmented with a bigram language model, as shown in figure 6.7(a). Here, Wt →

Wt+1 represents word transition probabilities, learned by maximum likelihood estimation, and

Pht → Pht+1 represents phoneme transition probabilities whose order is explicitly specified

by the relationship Wt → Pht . Likewise, each phoneme Ph conditions the sub-phoneme state,

Qt , whose transition probabilities Qt → Qt+1 describe the dynamics within phonemes. The

variable Mt refers to hidden Gaussian indices so that the likelihoods of acoustic observations,

Ot , are represented by a mixture of 4, 8, 16, or 32 Gaussians for each state and each phoneme.

See Murphy (2002) for a further description of this representation.

The second baseline model is the articulatory dynamic Bayes network (DBN-A). This aug-

ments the standard acoustic HMM by replacing hidden indices, Mt , with discrete observations

of the vocal tract, Kt , as shown in figure 6.7(b). The pattern of acoustics within each phoneme is

dependent on a relatively restricted set of possible articulatory configurations (Roweis, 1999).

To find these discrete positions, we obtain k vectors that best describe the articulatory data
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Figure 6.7: Baseline systems in evaluating the correction of errors with articulatory dynamics:

(a) acoustic hidden Markov model and (b) articulatory dynamic Bayes network. Node Wt

represents the current word, Pht is the current phoneme, Qt is that phoneme’s dynamic state,

Ot is the acoustic observation, Mt is the Gaussian mixture component, and Kt is the discretized

articulatory configuration. Filled nodes represent observed variables during training, although

only Ot is observed during recognition. Square nodes are discrete variables while circular

nodes are continuous variables.

according to k-means clustering with the sum-of-squares error function. During training, the

DBN variable Kt is set explicitly to the index of the mean vector nearest to the current frame

of EMA data at time t. In this way, the relationship Kt →Ot allows us to learn how discretized

articulatory configurations affect acoustics. The training of DBNs involves a specialized ver-

sion of expectation-maximization, as described in the literature (Murphy, 2002; Ghahramani,

1998). During inference, variables Wt , Pht , and Kt become hidden and we marginalize over

their possible values when computing their likelihoods. Bigrams are computed by maximum

likelihood on lexical annotations in the training data.
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6.4.2 Switching Kalman filter

Our first experimental system attempts speech recognition given only articulatory data. The

true state of the tract variables at time t−1 constitutes a 9-dimensional vector, xt−1, of contin-

uous values. Under the task dynamics model of section 6.1, the motions of these tract variables

obey critically damped second-order oscillatory relationships. We start with the simplifying

assumption of linear dynamics here with allowances for random Gaussian process noise, vt ,

with variance σvt since articulatory behaviour is non-deterministic. Moreover, we know that

EMA recordings are subject to some error (usually less than 1 mm (Yunusova, Green, and

Mefferd, 2009)), so the actual observation at time t, yt , will not in general be the true position

of the articulators. Assuming that the relationship between yt and xt is also linear, and that

the measurement noise, wt , is also Gaussian with variance σwt , then the dynamical articulatory

system can be described by

xt = Dtxt−1 +vt

yt =Ctxt +wt .

(6.11)

Equations 6.11 form the basis of the Kalman filter which allows us to use EMA measure-

ments directly, rather than quantized abstractions thereof as in the DBN-A model. Obviously,

since articulatory dynamics vary significantly for different goals, we replicate eq. (6.11) for

each phoneme and connect these continuous Kalman filters together with discrete conditioning

variables for phoneme and word, resulting in the switching Kalman filter (SKF) model. Here,

parameters Dt and vt are implicit in the relationship xt → xt+1, and parameters Ct and wt are

implicit in xt→ yt . Each of these parameters depends on the hidden discrete state and switches

with the state. In this model, observation yt is the instantaneous measurements derived from

EMA, and xt is their true hidden states.

In order to train the SKF model, we perform a specialized expectation-maximization over

its parameters, assuming that the conditioning state is St at time t and that it has Markovian

dynamics with state transition matrix Z(St−1,St), initial state distribution π1 (sequences are 1-
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indexed here), mean vectors µt , and covariance Σt . The complete log likelihood of all training

data (of length T ) in the SKF model is

L = logP(x1:T ,S1:T ,y1:T ) =−
1
2

T

∑
t=1

(
[yt−Ctxt]

>
σ
−1
wt

[yt−Ctxt ]
)
− 1

2

T

∑
t=1

log‖σwt‖

− 1
2

T

∑
t=2

(
[xt−Dtxt−1]

>
σ
−1
vt

[xt−Dtxt−1]
)
− 1

2

T

∑
t=2

log |σvt |

− 1
2
[x1−µ1]

>
Σ
−1
1 [x1−µ1]−

1
2

log‖Σ1‖−
T (n+m)

2
log2π

+ logπ1 +
T

∑
t=2

logZ(St−1,St).

(6.12)

During expectation-maximization training, the quantity we maximize is

L̂ = EP(x1:T ,S1:T ,y1:T )[L]

= EP(S1:T ,y1:T )

[
EP(x1:T |S1:T ,y1:T )[L]

]
≈ EP(S1:T ,y1:T )

[
EP(x1:T |y1:T )[L]

]
= P(y1:T )

T

∑
t=2

∑
St

(
∑

{Sτ ,τ 6=t}
P(S1:T |y1:T )

)
Ê [logP(xt |xt−1,St)]+ . . . ,

(6.13)

where Ê [·] = E [· |y1:T ]. The approximation is used because E [xt |y1:T ] does not result in an

exponential expansion as does E [xt |y1:T ,S1:T ]. If xt |T is the expected value of xt given y1:T ,

Vt |T is the covariance of xt given y1:T , and Vt,t−1 |T is the cross covariance of xt with xt−1

given y1:T , then given a set of N independent and identically distributed sequences indexed by

` and the definitions

W j
t = P(St = j |y1:T )

x̂t = Ê[xt ]

Pt = Ê[xt |x>t ] =Vt |T +xt |T x>t |T

Pt,t−1 = Ê[xt |x>t−1] =Vt,t−1 |T +xt |T x>t−1 |T ,

(6.14)

where W j
t is analogous to the weight component of a Gaussian mixture, then we can set the
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derivative of eq. 6.13 with respect to our desired parameters to zero and solve, giving

Di =

(
∑
`

T

∑
t=2

W i
t Pt,t−1

)(
∑
`

T

∑
t=2

W i
t Pt−1

)−1

σvt =

(
1

∑`∑
T
t=2W i

t

)(
∑
`

T

∑
t=2

W i
t Pt−Di ∑

`

T

∑
t=2

W i
t P>t,t−1

)

Ci =

(
∑
`

T

∑
t=1

W i
t yt x̂t

>

)(
∑
`

T

∑
t=1

W i
t Pt

)−1

σwt =

(
1

∑`∑
T
t=1W i

t

)
∑
`

T

∑
t=1

W i
t (yty>t −Cix̂ty>t )

(6.15)

and

µi =
∑`W i

1x̂1

∑`W i
1

Σi =
∑`W i

1(x̂1−µ1)(x̂1−µ1)
>

∑`W i
1

Z(i, j) =
∑`∑

T
t=2 P(St−1 = i,St = j |y1:T )

∑`∑
T−1
t=1 W i

t

πi =
1
N ∑

`

W i
1.

(6.16)

Further details are described in the literature (Murphy, 1998; Deng, Bouchard, and Yeap,

2005).

6.4.3 Recognition with task dynamics

Our goal is to integrate task dynamics within an ASR system for continuous sentences called

TD-ASR. Our approach is to re-rank an N-best list of sentence hypotheses according to a

weighted likelihood of their articulatory realizations. For example, if a word sequence Wi :

wi,1 wi,2 ... wi,m has likelihoods LX(Wi) and LΛ(Wi) according to purely acoustic and articula-

tory interpretations of an utterance, respectively, then its overall score would be

L(Wi) = αLX(Wi)+(1−α)LΛ(Wi) (6.17)

given a weighting parameter α set manually, as in section 6.4.4. Acoustic likelihoods LX(Wi)

are obtained from Viterbi paths through relevant HMMs in the standard fashion.
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The TADA component

In order to obtain articulatory likelihoods, LΛ(Wi), for each word sequence, we first generate

articulatory realizations of those sequences according to task dynamics. To this end, we use

components from the open-source TADA system (Nam and Goldstein, 2006), which is a com-

plete implementation of task dynamics. From this toolbox, we use the following components:

• A syllabic dictionary supplemented with the International Speech Lexicon Dictionary

(Hasegawa-Johnson and Fleck, 2007). This breaks word sequences Wi into syllable se-

quences Si consisting of onsets, nuclei, and coda and covers all of MOCHA and TORGO.

• A syllable-to-gesture lookup table. Given a syllabic sequence, Si, this table provides

the gestural goals necessary to produce those syllables. For example, given the syllable

pub in figure 6.2, this table provides the targets for the GLO, VEL, TBCL, and TBCD

tract variables, and the parameters for the second-order differential equation, eq. 6.1,

that achieves those goals. These parameters have been empirically tuned by the authors

of TADA according to a generic, speaker-independent representation of the vocal tract

(Saltzman and Munhall, 1989).

• A component that produces the continuous tract variable paths that produce an utterance.

This component takes into account various physiological aspects of human speech pro-

duction, including intergestural and interarticulator co-ordination and timing (Nam and

Saltzman, 2003; Goldstein and Fowler, 2003), and the neutral (“schwa”) forces of the

vocal tract (Saltzman and Munhall, 1989). This component takes a sequence of gestural

goals predicted by the segment-to-gesture lookup table, and produces appropriate paths

for each tract variable.

The result of the TADA component is a set of N 9-dimensional articulatory paths, TVi,

necessary to produce the associated word sequences, Wi for i = 1..N. Since task dynamics is

a prescriptive model and fully deterministic, TVi sequences are the canonical or default artic-

ulatory realizations of the associated sentences. These canonical realizations are independent
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of our training data, so we transform them in order to more closely resemble the observed ar-

ticulatory behaviour in our EMA data. Towards this end, we train a switching Kalman filter

identical to that in section 6.4.2, except the hidden state variable xt is replaced by the observed

instantaneous canonical TVs predicted by TADA. In this way we are explicitly learning a rela-

tionship between TADA’s task dynamics and human data. Since the lengths of these sequences

are generally unequal, we align the articulatory behaviour predicted by TADAwith training data

from MOCHA and TORGO using standard dynamic time warping (Sakoe and Chiba, 1978).

During run-time, the articulatory sequence yt most likely to have been produced by the human

data given the canonical sequence TVi is inferred by the Viterbi algorithm through the SKF

model with all other variables hidden. The result is a set of articulatory sequences, TV∗i , for

i = 1..N, that represent the predictions of task dynamics that better resemble our data.

Acoustic-articulatory inversion

In order to estimate the articulatory likelihood of an utterance, we need to evaluate each trans-

formed articulatory sequence, TV∗i , within probability distributions ranging over all tract vari-

ables. These distributions can be inferred using acoustic-articulatory inversion with mixture

density networks as described in section 6.2.2. We choose the MDN here, rather than the

KCCA approach, because of the relatively demanding computational requirements of the latter

and the desire to have complex probability distributions over the range of possible articulatory

positions. Our networks are trained with acoustic and EMA-derived data from TORGO and

MOCHA, as described in chapter 4.

Recognition by reranking

During recognition of a test utterance, a standard acoustic HMM produces word sequence

hypotheses, Wi, and associated likelihoods, L(Wi), for i = 1..N. The expected canonical motion

of the tract variables, TVi is then produced by task dynamics for each of these word sequences

and transformed by an SKF to better match speaker data, giving TV∗i . The likelihoods of these
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Figure 6.8: The TD-ASR mechanism for deriving articulatory likelihoods, LΛ(Wi), for each

word sequence Wi produced by standard acoustic techniques.

paths are then evaluated within probability distributions produced by an MDN. The mechanism

for producing the articulatory likelihood is shown in figure 6.8. The overall likelihood, L(Wi) =

αLX(Wi)+(1−α)LΛ(Wi), is then used to produce a final hypothesis list for the given acoustic

input.

6.4.4 Experiments

Experimental data is obtained from two sources, as described in chapter 4. We procure 1200

sentences from Toronto’s TORGO database, and 896 from Edinburgh’s MOCHA. In total,

there are 460 total unique sentence forms, 1092 total unique word forms, and 11065 total

words uttered. Except where noted, all experiments randomly split the data into 90% training

and 10% testing sets for 5-cross validation. MOCHA and TORGO data are never combined in

a single training set due to differing EMA recording rates. In all cases, models are database-

dependent (i.e., all TORGO data is conflated, as is all of MOCHA).

For each of our baseline systems, we calculate the phoneme-error-rate (PER) and word-

error-rate (WER) after training. The phoneme-error-rate is calculated according to the pro-

portion of frames of speech incorrectly assigned to the proper phoneme. The word-error-rate

is calculated as the sum of insertion, deletion, and substitution errors in the highest-ranked

hypothesis divided by the total number of words in the correct orthography. The traditional
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System Parameters PER (%) WER (%)

HMM

|M|= 4 29.3 14.5

|M|= 8 27.0 13.9

|M|= 16 26.1 10.2

|M|= 32 25.6 9.7

DBN-A

|K|= 4 26.1 13.0

|K|= 8 25.2 11.3

|K|= 16 24.9 9.8

|K|= 32 24.8 9.4

Table 6.6: Phoneme- and Word-Error-Rate (PER and WER) for different parameterizations of

the baseline HMM and DBN-A systems.

HMM is compared by varying the number of Gaussians used in the modelling of acoustic

observations. Similarly, the DBN-A model is compared by varying the number of discrete

quantizations of articulatory configurations, as described in section 5.1.5. Results are obtained

by direct decoding. The average results across both databases, between which there are no

significant differences, are shown in table 6.6. In all cases the DBN-A model outperforms the

HMM, which highlights the benefit of explicitly conditioning acoustic observations on articu-

latory causes.

Efficacy of TD-ASR components

In order to evaluate the whole system, we start by evaluating its parts. First, we test how

accurately the mixture-density network (MDN) estimates the position of the articulators given

only information from the acoustics available during recognition. Table 6.7 shows the average

log likelihood over each tract variable across both databases. These results are consistent with

the state-of-the-art (Toda, Black, and Tokuda, 2008). In the following experiments, we use

MDNs that produce 4 Gaussians.



CHAPTER 6. TASK-DYNAMICS IN ASR 151

No. of Gaussians

1 2 3 4

LTH −0.28 −0.18 −0.15 −0.11

LA −0.36 −0.32 −0.30 −0.29

LP −0.46 −0.44 −0.43 −0.43

GLO −1.48 −1.30 −1.29 −1.25

TTCD −1.79 −1.60 −1.51 −1.47

TTCL −1.81 −1.62 −1.53 −1.49

TBCD −0.88 −0.79 −0.75 −0.72

TDCL −0.22 −0.20 −0.18 −0.17

Table 6.7: Average log likelihood of true tract variable positions in test data, under distributions

produced by mixture density networks with varying numbers of Gaussians.

We evaluate how closely transformations to the canonical tract variables predicted by TADA

match the data. Namely, we input the known orthography for each test utterance into TADA,

obtain the predicted canonical tract variables TV, and transform these according to our trained

SKF. The resulting predicted and transformed sequences are aligned with our measurements

derived from EMA with dynamic time warping. Finally, we measure the average difference

between the observed data and the predicted (canonical and transformed) tract variables. Table

6.8 shows these differences according to the phonological manner of articulation. In all cases

the transformed tract variable motion is more accurate, and significantly so at the 95% confi-

dence level for nasal and retroflex phonemes, and at 99% for fricatives. The practical utility of

the transformation component is evaluated in its effect on recognition rates, below.

Recognition with TD-ASR

With the performance of the components of TD-ASR better understood, we combine these and

study the resulting composite TD-ASR system. Figure 6.9 shows the WER as a function of
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Manner Canonical Transformed

approximant 0.19 0.16

fricative 0.37 0.29

nasal* 0.24 0.18

retroflex 0.23 0.19

plosive 0.10 0.08

vowel 0.27 0.25

Table 6.8: Average difference between predicted tract variables and observed data, on [0,1]

scale. (*) Nasals are evaluated only with MOCHA data, since TORGO data lacks velum mea-

surements.

α with TD-ASR and N = 4 hypotheses per utterance. Recall that the overall likelihood of a

word sequence hypothesis W is L(W ) = αLX(W )+ (1−α)LΛ(W ) (higher α signifies higher

weight to the acoustic likelihood LX relative to the articulatory likelihood LΛ). The effect of

α is clearly non-monotonic, with articulatory information clearly proving useful. Although

systems whose rankings are weighted solely by the articulatory component perform better than

the exclusively acoustic systems, the lists available to the former are procured from standard

acoustic ASR. Interestingly, the gap between systems trained to the two databases increases

as α approaches 1.0. Although this gap is not significant, it may be the result of increased

inter-speaker articulatory variation in the TORGO database, which includes more than twice

as many speakers as MOCHA.

Figure 6.10 shows the WER obtained with TD-ASR given varying-length N-best lists and

α = 0.7. TD-ASR accuracy at N = 4 is significantly better than both TD-ASR at N = 2 and

the baseline approaches of table 6.6 at the 95% confidence level. However, for N > 4 there is

a noticeable and systematic worsening of performance.

The optimal parameterization of the TD-ASR model results in an average word-error-rate

of 8.43%, which represents a 10.3% relative error reduction over the best parameterization
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of our baseline models. The SKF model of section 6.4.2 differs from the HMM and DBN-A

baseline models only in its use of continuous (rather than discrete) hidden dynamics and in its

articulatory observations. However, its performance is far more variable, and less conclusive.

On the MOCHA database the SKF model had an average of 9.54% WER with a standard

deviation of 0.73 over 5 trials, and an average of 9.04% WER with a standard deviation of 0.64

over 5 trials on the TORGO database. Despite the presupposed utility of direct articulatory

observations, the SKF system does not perform significantly better than the best DBN-A model.

Finally, the experiments of figures 6.9 and 6.10 are repeated with the canonical tract vari-

ables passed untransformed to the probability maps generated by the MDNs. Predictably, re-

sulting articulatory likelihoods LΛ are less representative and increasing their contribution α

to the hypothesis reranking does not improve TD-ASR performance significantly, and in some

instances worsens it. Although TADA is a useful prescriptive model of generic articulation, its

use must be tempered with knowledge of inter-speaker variability.

6.4.5 Summary of integrating task-dynamics into ASR

We have demonstrated that the use of direct articulatory knowledge can substantially reduce

phoneme and word errors in speech recognition, especially if that knowledge is motivated by

high-level abstractions of vocal tract behaviour. Task-dynamic theory provides a coherent and

biologically plausible model of speech production with consequences for phonology (Brow-

man and Goldstein, 1986), neurolinguistics (Guenther and Perkell, 2004), and the evolution

of speech and language (Goldstein, Byrd, and Saltzman, 2006). We have shown that it is also

useful within speech recognition.

We have overcome a conceptual impediment in integrating task dynamics and ASR, which

is the former’s deterministic nature. This integration is accomplished by stochastically trans-

forming predicted articulatory dynamics and by calculating the likelihoods of these dynamics

according to speaker data. However, there are several new avenues for exploration. For ex-

ample, task dynamics lends itself to more general applications of control theory, including
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automated self-correction, rhythm, co-ordination, and segmentation (Friedland, 2005). Other

high-level questions also remain, such as whether discrete gestures are the correct biological

and practical paradigm, whether a purely continuous representation would be more appropriate,

and whether this approach generalizes to other languages.

In general, our experiments have revealed very little difference between the use of MOCHA

and TORGO EMA data. An ad hoc analysis of some of the errors produced by the TD-ASR

system found no particular difference between how systems trained to each of these databases

recognized nasal phonemes, although only those trained with MOCHA considered velum mo-

tion. Other errors common to both sources of data include phoneme insertion errors, normally

vowels, which appear to co-occur with some spurious motion of the tongue between segments,

especially for longer N-best lists. Despite the relative slow motion of the articulators relative

to acoustics, there remains some intermittent noise.

6.5 Identifying articulatory goals using principal differential

analysis

Previous sections applied task-dynamics given fixed parameterizations as obtained by the TADA

component, namely the coefficients in equation 6.1. In order to generalize some of those find-

ings and to extend task-dynamics in ASR, one requires a mechanism for obtaining these pa-

rameters directly from data. Typically, however, second-order equations of this type can only

be solved given known parameterizations. This section describes a new approach to obtaining

the parameters in task-dynamics from data.

Here, we examine a subset of the discrete articulatory features shown in table 2.1 of section

2.4. Of these representations, we are interested in the Front/Back and High/Low AFs, the

values of which are derived directly from phonemic annotations as described in previous work

(Wester, 2003; Scharenborg, Wan, and Moore, 2007), and as shown in table 6.9. Furthermore,

we are interested in the binary features Voiced/Unvoiced and Bilabial/Non-bilabial. The former
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Front/Back Front Central Back

/ae, aw, ay, eh, ey, ix,

iy, ih/

/ax, ah/ /ao, ow, oy, uh, uw,

aa, ux/

High/Low High Mid Low

/ix, iy, uh, uw, ih, ux/ /ax, eh, ey, ow, ah/ /ae, ao, aw, ay, oy,

aa/

Table 6.9: Annotated phonemes used to derive specific AF classes, after Wester (Wester, 2003).

distinguishes all voiced sounds (i.e., vowels and sonorant consonants) from non-voiced sounds.

The Bilabial/Non-bilabial AF has the value bilabial during phonemes /m/, /em/ (i.e., an /m/

preceded by a vowel mora), /p/, and /b/, and the value non-bilabial otherwise.

Articulatory and acoustic data in this study are derived from the public MOCHA database

from the University of Edinburgh (Wrench, 1999) as described in chapter 4. We use eight of

the male speaker’s articulatory parameters, namely the upper lip, lower lip, upper incisor, lower

incisor, tongue tip, tongue blade, tongue dorsum, and velum. Each parameter is measured in

the two dimensions of the midsaggital plane.

6.5.1 Principal differential analysis

The term principal differential analysis (PDA) is derived from principal components analysis

(PCA) (Ramsay and Silverman, 2002; Ramsay and Silverman, 2005). PCA can also be applied

to functional data, by treating each corresponding set of frames across the training sequences

as measurements of an independent random variable. This is called functional PCA (FPCA),

as explained by Ramsay and Silverman (2002).

Articulators are mechanical systems and, as such, are constrained in ways not captured

by FPCA but which are expressible in terms of differential equations. Principal differential

analysis (PDA) (Ramsay and Silverman, 2002) is similar to FPCA, but aimed at optimizing the

parameters of a linear differential operator that hypothetically constrains a function from which
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multiple noisy samples are available. Let L be a second order differential operator defined as

Lxi(t) = β0(t)xi(t)+β1(t)x′i(t)+ x′′i (t) = fi(t), (6.18)

where xi(t) is the functional observation from the ith sample at time t, x′i(t) and x′′i (t) are its first

and second derivatives, β j are the coefficients to be estimated, and fi(t) is the forcing function

of the ith sample at time t. If no forcing function has been observed then we make a simplifying

assumption that all fi(t) are 0, giving us a linear homogeneous differential equation. In this

case, PDA finds values of the coefficients β0(t) and β1(t) that minimize the residual Lxi(t),

which can be obtained by Gaussian elimination. On this basis we can build a classifier for

functional data by looking at the residuals that result from applying the learned coefficients of

a given class to a new sequence.

6.5.2 PDA Classifier

We assume that we have functional observations on an arbitrary number of independent tracts,

and that we wish to classify an unseen sequence as having an articulatory value or class c from

the set of possibilities C for one articulatory feature.

The training procedure begins by normalizing the length of training sequences within each

class, which is necessary in order to use PDA. We experimented with several normalization

methods, and settled on finding the maximal sequence length within the class (according to the

annotation), then shifting the end frame of all other training sequences so as to extend them to

that length without distorting those sequences through time warping. This preserves all of the

useful information from every sequence, at the cost of introducing some noise in later frames.

Next, all tracts of all sequences are smoothed using a set of b-spline basis functions and by

penalizing high fourth derivatives. Finally, for each c ∈ C we run PDA, as described in the

previous section, on the aggregated training sequences for c. For each tract, this gives us two

coefficient vectors, β0 and β1.

In order to classify a new sequence, we compute its first and second derivatives on all tracts
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by the method of central finite differences. Then for each c ∈ C we find a residual vector on

each tract t using the differential operator learned on t. Now we can calculate coefficients of

determination R2
t as

R2
t =

SSYt−SSEt

SSYt
, (6.19)

where SSYt is the sum of squared second derivatives on tract t and SSEt is the sum of squared

residuals. The resulting value is less than or equal to 1, with 1 indicating a perfect fit. Finally,

we generate a score for c by averaging the coefficients of determination across all tracts t. The

sequence is classified as having the articulatory value that assigns it the highest score.

Frame Weighting (FW)

One side-effect of the method that we chose to normalize sequence lengths is that the perfor-

mance of PDA degrades in later frames of the training sequences, in the sense that the residuals

it yields grow larger. This is due to some examples that were annotated as ending earlier having

moved into irrelevant or possibly contradictory territory. To counteract this effect, we weight

each frame according to the inverse of the squared residual that PDA yields on training data for

that frame. During classification, we can multiply the residuals of the unknown sequence by

the frame weights for the class in question, which generally places more emphasis on earlier

frames.

6.5.3 Experiments with PDA

EMA data from MOCHA are first transformed to an approximation of the tract variable space

as described in section 6.1. Our dataset consisted of 15,243 phoneme instances with aligned

acoustic and articulatory data. For all experiments, the data were randomly segregated into a

training set and a held-out evaluation set. For each articulatory feature we limited our training

and testing data to a subset of the available tracts. For the bilabial AF we used only the lip

aperture tract, LA. For the high-low and front-back AFs, we used all of the tongue tip tracts -

TTCL, TTCD, TBCL, and TBCD. For the voice AF we used only the glottis tract, GLO.
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Articulatory domain

Our first set of experiments compares classifiers using only articulatory data. The baseline is a

5-state left-to-right HMM with observation likelihoods at each state computed over mixtures of

8 Gaussians. Training is performed with Baum-Welch expectation-maximization, and evalua-

tion is performed by Viterbi decoding (Huang, Acero, and Hon, 2001). Each HMM is trained

given observation sequences of a particular AF value (e.g., non-bilabial) and each Gaussian

mixture in these HMMs is initialized given k-means clustering with full covariance over all

data of the associated AF value. Table 6.10 shows the results of these experiments. We com-

pared these with a most-frequent baseline classifier in which the most frequent class is blindly

chosen for each test sequence, which averaged 67% accuracy. This naı̈ve classifier obtained

87.2% accuracy on the bilabial AF, 62.8% on the high-low AF, 70.2% on the voicing AF, and

47.6% on the front-back AF. On average, PDA significantly outperforms HMMs.

Acoustic domain

We also compare the proposed PDA method given articulatory data against HMM and neural

network (NN) baselines given acoustic data, which is a more common scenario, on the task of

AF classification. In these experiments we use the full range of articulatory values for each

articulatory feature. Specifically, the high-low feature has 5 classes (adding nil and silence),

and the front-back feature has 4 classes (adding nil).

Here, the HMM baseline consists of tristate ergodic HMMs with 16 Gaussians per state.

These take observations which are 42-dimensional MFCCs that include δ and δδ coefficients,

and all models are initialized using k-means clustering on acoustic data. The NN baseline is

based on similar work by Kirchhoff (1999) and Frankel, Wester, and King (2007). Each NN

has three layers with full feed-forward connections, and is trained by resilient backpropagation.

Input layers consist of 42 units, and output layers consist of one unit per class. The size of the

hidden layers are dependent on the AF being recognized. The NNs that recognize the high-low

and voicing features have 100 hidden units each, while the front-back feature has 200 units, as
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HMM PDA PDA+FW

Bilabial 94.5 87.8 96.7

Non-bilabial 74.6 94.6 93.3

All 76.1 93.8 93.8

High 53.2 47.6 44.9

Mid 28.7 43.1 100.0

Low 85.9 71.7 67.7

All 45.2 50.1 84.7

Voiced 98.1 98.0 99.8

Unvoiced 99.8 74.0 86.8

All 99.0 90.9 95.9

Front 22.4 46.1 39.3

Central 47.3 48.0 100.0

Back 62.6 43.8 65.0

All 43.5 46.6 74.9

Average 66.0 70.4 87.3

Table 6.10: Accuracy (%) of articulatory-domain classifiers, including principal differential

analysis (PDA) with and without frame weighting (FW) across articulatory features.
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Acoustic HMM NN PDA+FW

High-low 48.6 64.8 67.4

Voice 71.6 83.3 95.9

Front-back 49.0 66.1 68.9

Average 56.4 71.4 77.4

Table 6.11: Average accuracies (%) of AF-recognition for HMM and NN classifiers as com-

pared with the PDA approach given acoustic information only.

determined empirically in the literature (Frankel, Wester, and King, 2007).

Table 6.11 shows the results of the acoustic-domain experiments. Once again PDA is a

clear winner. These results also demonstrate that the PDA classifier’s performance holds up

well as the number of classes increases.

The PDA classifier presented here offers a substantial improvement over the baselines.

This may suggest that discrimination of speech sounds is highly dependent on how they are

produced. Speech production can be modelled as a mechanical process, and the resulting

models can be used to constrain our interpretations of articulatory motion in a very natural

way. In the acoustic domain, on the other hand, it is very difficult to account for mechanical

constraints.



Chapter 7

Speech transformation and synthesis

In previous chapters our focus has been on improving the rates of recognition of speech recog-

nition for dysarthric speakers, given knowledge of the vocal tract. Despite advances made in

this area, unrestricted large-vocabulary ASR remains a difficult problem for severely dysarthric

speech. While this investigation must continue, we can already make use of our discover-

ies related to dysarthric speech production to develop applied software that can benefit such

speakers. Our goal in this chapter is to establish and evaluate a set of techniques that modify

dysarthric input acoustics to produce a more intelligible equivalent of that speech. These tech-

niques include simple acoustic transformations, some of which are dependent on an annotation

of the input. This exercise is meant to precede the eventual creation of application software

for human-human interaction. In order to isolate the evaluation of these transformations from

the ambiguities that can arise from imperfect dependencies such as speech recognition, we will

assume that perfect phonemic annotations are available a priori.

Background on speech transformation and synthesis is provided in section 7.2 before the

TORGOMorph transformations are proposed in section 7.3. This is followed by a brief series

of experiments on the results of certain types of modification to the intelligibility of speech in

section 7.4 and a discussion in section 7.5.

162
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Figure 7.1: Hypothetical conversation between a speaker with dysarthria (left) and a member

of the general population (right). The black box mounted on the wheel chair accepts spoken

input and transmits a transformed version of that speech which is more intelligible to the typical

hearer.

7.1 Usage scenario

Consider a dysarthric individual who is traveling into a city by transit to attend an appoint-

ment. This might involve purchasing tickets, asking for directions, or indicating their presence

or intention to fellow passengers, which must often be done in a noisy and crowded environ-

ment. A personal portable communication device in this scenario (either held or attached to

a wheelchair) would transform relatively unintelligible speech spoken into a microphone and

play the results of that transformation over a set of speakers so that it could be better under-

stood by a listener in that environment. Such a system could facilitate interaction and overcome

difficult or failed attempts at communication in daily life. Such an interaction is represented in

figure 7.1.

Many aspects of daily living are duplicated in order to provide access to individuals with

disabilities. The Wheel-Trans service in Toronto, for example, provides accessible transit to

persons with physical disabilities who cannot use regular transit and is operated by the city’s

general transit commission. However, this type of service can be more expensive than the
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generic systems and it requires booking trips well in advance which can be inconvenient. In

some cities, this type of service does not exist at all. Furthermore, such services still require

the communication of one’s destination or route in which augmentative systems would still be

applicable or necessary.

There are augmentative communication devices that employ synthetic text-to-speech in

which messages can be written on a specialized keyboard or played back from a repository

of pre-recorded messages. However, the type of acoustics produced by such systems often

lacks a sufficient degree of individual affectation or natural expression that one might expect in

typical human speech (Kain et al., 2007). The use of prosody to convey personal information

such as one’s emotional state is simply not supported by such systems but is part of a general

communicative ability. Transforming one’s speech in a way that preserves the natural prosody

will therefore also preserve extra-linguistic information, such as emotions, and is therefore a

pertinent and crucial response to the limitations of current technology.

7.2 Background on speech transformation and synthesis

We often modify an input signal x(t) (or its spectral envelope X( f )) into an output signal y(t)

(or its spectral envelope Y ( f )) by means of a transfer function H(·). This transfer function can

operate on several domains, such as short-term frequency characteristics of a signal. In equa-

tion 2.3 of section 2.3.1 we introduced the Fourier transform, which determines the amplitude

of an arbitrary component sinusoid with frequency f in a signal. However, those component si-

nusoids can also be described in terms of their phases which are their respective offsets in time.

In this chapter, the component phases are important in the accurate definition of transformation

functions H(·).

In order to obtain a more general parameterization of a signal to include its component

phases, we define the two-dimensional complex space s = σ + j2π f , where f is the frequency

as before, σ is the phase, and j is the imaginary unit j =
√
−1. The Laplace transform gener-



CHAPTER 7. SPEECH TRANSFORMATION AND SYNTHESIS 165

alizes the Fourier transform for continuous signals as

X(s) =
∫

∞

t=−∞

x(t)e−st
δ t. (7.1)

Given the Laplace transform of a signal and the complex space s, a transfer function relating

an input signal X(s) and output Y (s) is

H(s) =
Y (s)
X(s)

=
∑

M
k=0 bksk

∑
N
k=0 aksk

(7.2)

where the roots of the numerator and denominator polynomials are the zeros and poles of the

signal, respectively, and N and M are arbitrary orders of those polynomials 1 (O’Shaughnessy,

2000). When given only a discrete sampling of the signal, Laplace is replaced by the z-

transform

X [z] =
∞

∑
n=−∞

x[n]z−n (7.3)

where z is a complex frequency variable analogous to s in equation 7.1. Since equation 7.3

only sums to a finite value on circles in the complex domain, it is normally described in polar

coordinates z= ‖z‖exp( j2π f/FS) where FS is the sampling frequency (O’Shaughnessy, 2000).

7.2.1 Concatenative and articulatory synthesis

In order to produce speech that is as human-like as possible, a naı̈ve approach is to record, split,

and re-assemble actual human utterances. While individual segments can be highly intelligible

and natural, their concatenation often results in an unnatural-sounding discord, especially when

adjacent phonemes are incompatible (Huang, Acero, and Hon, 2001). To avoid discontinuities

of this type, vast corpora of speech segments reflecting various phonetic and emotional contexts

are often stored in order to maintain some continuity. Moreover, the boundaries between sono-

rants are often blended using a technique called time-domain pitch-synchronous overlap-add

(Moulines and Charpentier, 1990) in which signals are reconstructed by positioning adjacent

segments so that they overlap according to the estimated glottal closure (Schroeter, 2008).

1An ‘all-pole’ model defines only coefficients in the denominator.
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The vocal tract is often modelled as a concatenation of many idealized cylindrical tubes

aligned at their centers where the kth tube has a cross-sectional area of Ak, as shown in figure

7.2(a). Here, the volume beyond the lips is typically modelled as a tube with an infinite width.

In the simplest realization of this model, the glottis produces an oscillating volume velocity,

uG(t) as a function of time t, such as the spline2 in figure 7.2(b). Here, the wave produced by

the glottis is often assumed to be planar and propagated along the axis of the tubes without loss

due to viscosity or thermal conduction along the walls3 (Huang, Acero, and Hon, 2001). If the

area of a tube A is fixed, ρ ≈ 1.2 kg/m3 is the density of air, and c ≈ 344 m/s is the speed of

sound in a human mouth, the sound waves in this model satisfy

−δ p(x, t)
δx

=
ρ

A
δu(x, t)

δ t

−δu(x, t)
δx

=
A

ρc2
δ p(x, t)

δ t

(7.4)

where u(x, t) and p(x, t) are the volume velocity (in m/s) and pressure (in kg/m3) at position x

(the glottis is the origin) in the tube at time t (Quatieri, 2002). The pressure and volume of the

kth tube is then

uk(x, t) = u+k (t− x/c)−u−k (t + x/c)

pk(x, t) =
ρc
Ak

[
u+k (t− x/c)−u−k (t + x/c)

] (7.5)

where u+k (·) and u−k (·) are are the waves travelling towards the lips and glottis, respectively,

and x is measured from the left-most point in the kth tube (Huang, Acero, and Hon, 2001). The

shaping of the sound spectrum occurs because of the changes in the areas of adjacent tubes. At

the junction between the kth and k+1st tubes, part of the outgoing wave is reflected back into

its originating tube by the reflection coefficient

rk =
Ak+1−Ak

Ak+1 +Ak
(7.6)

with larger differences in tube areas reflecting more energy (Deller, Hansen, and Proakis,

2000). The transfer function between the z-transforms of the wave velocities at the lips uL

2Generally, a spline is a piecewise function composed of polynomials.
3Not all models are so naı̈ve. The Hagen-Poiseuille flow model, for instance, assumes a parabolic acoustic

wave whose velocity is maximal at the axis in the direction of motion and zero at the walls (Boersma, 1998).



CHAPTER 7. SPEECH TRANSFORMATION AND SYNTHESIS 167

and the glottis uG given N concatenated idealized tubes is

V (z) =
UL(z)
UG(z)

=
0.5z−N/2 (1+ rG)∏

N
k=1 (1+ rk)

[1− rG]

∏
N
k=1

 1 −rk

−rkz−1 z−1



 1

0


(7.7)

where rG and rN = rL are the reflection coefficients of the glottis and lips, respectively (Deller,

Hansen, and Proakis, 2000). In practice, these reflection coefficients are functions of frequency

so, for example, rL = 1 when measuring lower frequencies of z so that all energy is transmitted,

but rL < 1 at higher frequencies (Huang, Acero, and Hon, 2001). In this model, equation 7.7

describes the spectrum of speech at the lips given knowledge of the produced and reflected

waves in the leftmost tube. To account for non-sonorant phonemes such as plosives, fricatives,

and affricates, the glottal pulse train is typically replaced with a low-amplitude white-noise

generator whose signal passes through V (z) as before (Quatieri, 2002). Extensions exist that

allow for nasals by introducing a three-way boundary at a tube midway along the simulated

vocal tract to emulate the lowering of the velum (usually with an associated closing of the

rightmost tube representing the lips) (Boersma, 1998; Huang, Acero, and Hon, 2001).

Dynamic models of articulation

Over the past several decades, a number of instantiations of the basic principles outlined above

have arisen that implement control by an active speaker of the basic uniform-tube model

through the exertion of simulated muscles. Coker (1968) proposed a model that shaped the

uniform-tube model to a more realistic arrangement mimicking the midsagittal plane of a hu-

man vocal tract. Crucially, this allowed for the articulators to be explicitly identified and moved

during synthesis, so that particular phonemes could be associated with desired configurations

of these articulators, which were described in a code book (Coker, 1976). The configurations of

these articulators would warp the physical model of the uniform tube along horizontal, vertical,

and radial dimensions, as indicated in figure 7.3. The timing and motion between articulatory

positions were in some cases explicitly defined and in others interpolated automatically through
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Figure 7.2: Acoustical model of speech production. (a) Uniform-tube model and (b) six pitch

periods of the glottal pulse at F0 = 250 Hz.
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Figure 7.3: Coker model of the vocal tract for speech synthesis. Movable articulators include

the tongue body (TB), tongue tip (TT), lower incisor (LI), and upper and lower lips (UL, LL),

which move in tandem. Articulators move in dimensions determined by the shape of the vocal

tract, adapted from Boersma (1998).

simple linear transformations. This model is in almost all important respects reflected in the

independently-developed model of Mermelstein (1973), which was later extended by Rubin,

Baer, and Mermelstein (1981) and would come to be known as the CASY (Configurable Artic-

ulatory Synthesis) model (Iskarous et al., 2003) used in the TADA system discussed in section

6.3, for instance. Other re-implementations of this same underlying model would later include

low-level compensation for allophones in different articulatory contexts (Maeda, 1990), en-

coding of myoelastic effects between artificial muscles and their elastic connected tissues by

means of spring-mass systems (Boersma, 1998), and a full complement of articulatory mus-

cles that deform the vocal tract tube model, including the stylo-, genio-, and hyo-glossus tongue

muscles and sternohyoid, for instance (Boersma, 1999).

The Klatt synthesizer

Synthesis-by-rule is a less biologically plausible approach to speech synthesis that nevertheless

focuses on the realistic acoustic properties of the generated speech. Here, a formant resonance



CHAPTER 7. SPEECH TRANSFORMATION AND SYNTHESIS 170

can be generated at a specified frequency Fi and bandwidth Bi with

Hi(z) =
1

1−2e−πBi/sr cos(2πFi/sr)z−1 + e−2πBi/srz−2
(7.8)

where sr is the sampling rate (Huang, Acero, and Hon, 2001). Klatt (1980) proposes a model

which independently simulates acoustic resonances of this type given parameters determined

‘by hand’ for various parts of speech. For vowels, a bank of six of these resonators is activated

in parallel and their outputs are summed together. For nasals, similar resonances are summed

together, although the zeros between resonances are also specified (McLennan, 2000). This

basic approach is one of the most popular in rule-based synthesis, and a number of derivative

implementations have refined the specification of parameter values according to human data

(O’Shaughnessy, 2000). In particular, in the following sections we assume the formant param-

eters for frequency and bandwidth for a stereotypical male speaker as determined by Allen et

al. (1987) and listed in appendix C.

7.2.2 Measuring intelligibility

The intelligibility of both purely synthetic and modified speech signals can be measured objec-

tively by simply having a set of participants transcribe what they hear from a selection of word,

phrase, or sentence prompts (Spiegel et al., 1990), although no single standard has emerged

as pre-eminent (Schroeter, 2008). Occasionally, ASR systems are used to approximate intel-

ligibility (see section 3.1). Hustad (2006) suggests that orthographic transcriptions provide a

more accurate predictor of intelligibility among dysarthric speakers than the more subjective

estimates used in clinical settings, e.g., Enderby (1983) and Yorkston and Beukelman (1981).

That study had 80 listeners who transcribed audio (which is atypically large for this task). It

showed that intelligibility increases from 61.9% given only acoustic stimuli to 66.75% given

audiovisual stimuli on the transcription task in normal speech. In the current work, we modify

only the acoustics of dysarthric speech; however future work might consider how to prompt

listeners in a more multimodal context.
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7.2.3 Acoustic transformation

Kain et al. (2007) propose the voice transformation system shown in figure 7.4. This system

produces output speech by concatenating together original unvoiced segments with synthesized

voiced segments that consist of a summation of the original high-bandwidth signal with synthe-

sized low-bandwidth formants. These synthesized formants are produced by modifications to

input energy, F0 generation, and formant modifications. Modifications to energy and formants

are performed by Gaussian mixture mapping, as described below, in which learned relation-

ships between dysarthric and target acoustics are used to produce output closer to the target

space. This process was intended to be automated, but Kain et al. (2007) performed extensive

hand-tuning and manually identified formants in the input. This will obviously be impossible

in a real-time system, but these processes can to some extent be automated. For example, voic-

ing boundaries can be identified by the weighted combination of various acoustic features (e.g.,

energy, zero-crossing rate, first LPC coefficient) (Kida and Kawahara, 2005; Hess, 2008), and

formants can be identified by the Burg algorithm (Press et al., 1992) or through simple LPC

analysis (see section 2.3.1) with continuity constraints on the identified resonances between

adjacent frames (O’Shaughnessy, 2008).

Spectral modifications traditionally involve spectral filtering or amplification methods such

as spectral subtraction or harmonic filtering (O’Shaughnessy, 2000), but these are not useful for

dealing with more serious mispronounciations (e.g., /t/ for /n/). Hosom et al. (2003) show

that Gaussian mixture mapping can be used to transform from one set of spectral acoustic

features to another space. During analysis, context-independent frames of speech are analyzed

for bark-scaled energy and their 24th order cepstral coefficients with

X(k) =
N−1

∑
n=0

x[n]e− j 2π

N kn

X̂(k) = log |X (Bark(k))|

c[n] =
1
N

N−1

∑
k=0

X̂(k)e j 2π

N kn.

(7.9)

For synthesis, a cepstral analysis approximates the original spectrum, and a high-order



CHAPTER 7. SPEECH TRANSFORMATION AND SYNTHESIS 172

Audio recordings

Voicing
detector

2-band
filter bank

Energy
analysis

Formant
analysis

Energy
modification

F0
generation

Formant
modification

Formant
synthesis+

Overlapp-add

Input speech

voiced

unvoiced

highpass

lowpass

energy

energy'

CV boundaries

formants

formants'F0''

voiced'

Figure 7.4: Voice transformation system proposed by Kain et al. (2007).
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LPC filter is applied to each frame, and excited by impulses or white noise (for voiced and

unvoiced segments). Hosom et al. show that given 99% human accuracy in recognizing normal

speech data, this method of reconstruction gives 93% accuracy on the same data. They then

trained a transformative model between dysarthric and regular speech using aligned, phoneme-

annotated, and orthographically identical sentences spoken by dysarthric and regular speakers,

and a Gaussian Mixture Model (GMM) to model the probability distribution of the dysarthric

source spectral features x as the sum of D normal distributions with mean vector µ , diagonal

covariance matrix Σ, and prior probability α:

p(x) =
D

∑
d=1

αdN(x; µd,Σd) . (7.10)

The GMM parameters were trained in an ‘unsupervised’ mode using the EM algorithm and

1, 2, 4, 8, and 16 mixture components, with D = 4 apparently being optimal. A probabilistic

least-squares regression mapped the source features x onto the target (regular speaker) features

y, producing the model Wd(x)+bd for each class, and a simple spectral distortion is performed

to produce regularized versions of dysarthic speech ŷ:

ŷ(x) =
D

∑
d=1

hd(x)(Wd(x)+bd) (7.11)

for posterior probabilities hd(x). This model is interesting in that it explicitly maps the acoustic

differences for different features between disordered and regular speech4. Reconstructing the

dysarthric spectrum in this way to sound more ‘normal’ while leaving F0, timing and energy

characteristics intact resulted in a 59.4% relative error rate reduction (68% to 87% accuracy)

among a group of 18 naive human listeners for a total of 206 dysarthric test words each (Hosom

et al., 2003).

4This model can also be used to measure the difference between any two types of speech.
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7.3 The TORGOMorph transformations

TORGOMorph encapsulates of a number of transformations of the acoustics uttered by a

speaker with dysarthria. Each modification is implemented to counter a particular effect of

dysarthria on intelligibility as determined by observations on the TORGO data described in

section 4.4. Currently, these modifications are uniformly preceded by noise reduction by spec-

tral subtraction (see section 4.2.4) and either phonological or phonemic annotations. This latter

step is currently necessary, since certain modifications require either knowledge of the manner

of articulation or the identities of the vowel segments, as explained in the subsections below.

The purpose of this exercise is to determine which modifications result in the most significant

improvements to intelligibility, so the correct annotation sequence is vital to avoid the introduc-

tion of an additional dimension of error. Therefore, the annotations used below are extracted

directly from the professional markup in the TORGO database. In practice, however, phonemic

annotations determined automatically by speech recognition would be imperfect, which is why

investigations of this type often forgo that automation altogether (e.g., see Kain et al. (2007) in

section 7.2.3). Possible alternatives to full ASR are discussed in section 7.5.

In some cases, the dysarthric speech must be compared or supplemented with another vocal

source. Here, we synthesize segments of speech using a text-to-speech application developed

by Black and Lenzo (2004). This system is based on the University of Edinburgh’s Festival

tool and synthesizes phonemes using a standard LPC-based method introduced above with a

pronunciation lexicon and part-of-speech tagger that assists in the selection of intonation pa-

rameters (Taylor, Black, and Caley, 1998). This system is invoked by providing the expected

text uttered by the dysarthic speaker. In order to properly combine this purely synthetic signal

and the original waveforms we require identical sampling rates, so we resample the former

by a rational factor using a polyphase filter with low-pass filtering to avoid aliasing (Hayes,

1999). Since the discrete phoneme sequences themselves can differ, we find an ideal align-

ment between the two by the Levenshtein algorithm (Levenshtein, 1966), which is similar to

dynamic time warping (see algorithm 1 in section 2.3.2) and which provides the total number
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of insertion, deletion, and substitution errors.

The following sections detail the components of TORGOMorph, which is outlined in figure

7.5. These components allow for a cascade of one transformation followed by another, although

in the experiments in section 7.4 these are performed independently to isolate their effects. In

all cases, the spectrogram is derived with the fast Fourier transform given 2048 bins on the

range of 0–5 kHz. Voicing boundaries are extracted in a unidimensional vector aligned with

the spectrogram using the method of Kida and Kawahara (2005) which uses GMMs trained

with zero-crossing rate, amplitude, and the spectrum as input parameters. A pitch contour

is also extracted from the source by the method proposed by Kawahara et al. (2005), which

uses a Viterbi-like potential decoding of F0 traces described by cepstral and temporal features.

That work showed an error rate of less than 0.14% in recognizing F0 curves as compared with

simultaneously-recorded electroglottograph data. Similar methods exist that use GMMs and

neural networks for global optimization (Ewender, Hoffmann, and Pfister, 2009). This pitch

contour is not in general modified by the methods proposed below, since Kain et al. (2007)

showed that using original F0 curves results in the highest intelligibility among alternative

systems. Over a few segments, however, this curve can sometimes be decimated in time during

the modification proposed in section 7.3.3 and in some cases removed entirely (along with all

other acoustics) in the modification proposed in section 7.3.2.

7.3.1 High-pass filter on unvoiced consonants

The first acoustic modification is based on the observation that unvoiced consonants are im-

properly voiced in up to 18.7% of plosives (e.g. /d/ for /t/) and up to 8.5% of fricatives (e.g.

/v/ for /f/) in dysarthric speech in the TORGO database (see section 4.4). Voiced consonants

are typically differentiated from their unvoiced counterparts by the presence of the voice bar,

which is a concentration of energy below 150 Hz indicative of vocal fold vibration that of-

ten persists throughout the consonant or during the closure before a plosive (Stevens, 1998).

Empirical analysis of TORGO data suggests that for at least two male dysarthric speakers this
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Figure 7.5: Outline of the TORGOMorph transformations. Black path indicates hypothesized

cascade system to be used in practice. Solid arrows indicate paths taken during evaluation.
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voice bar extends considerably higher, up to 250 Hz.

In order to correct these mispronunciations, the voice bar is filtered out of all acoustic sub-

sequences annotated as unvoiced consonants. For this task we use a high-pass Butterworth

filter, which is “maximally flat” in the passband5 and monotonic in magnitude in the frequency

domain (Butterworth, 1930). This is in contrast to the popular Chebyshev filter, for instance,

which contains distorting ripples in the passband (Parks and Burns, 1987). Here, this filter

is computed on a normalized frequency range respecting the Nyquist frequency, so that if a

waveform’s sampling rate is 16 kHz, the normalized cutoff frequency for this component is

f ∗Norm = 250/(1.6× 104/2) = 3.125× 10−2. The effect of this cutoff frequency is shown in

the magnitude response in figure 7.6. The Butterworth filter is an all-pole transfer function

between signals as described in section 7.2. Here, we use the 10th order low-pass Butterworth

filter whose magnitude response is

|B(z;10)|2 = |H(z;10)|2 = 1

1+
(

jz/ jz∗Norm
)2×10 (7.12)

where z is the complex frequency in polar coordinates and z∗Norm is the cutoff frequency in that

domain (Hayes, 1999). This translates into the transfer function

B(z;10) = H(z;10) =
1

1+ z10 + c1z9 + . . .+ c9z+ c10
(7.13)

whose poles occur at known symmetric intervals around the unit complex-domain circle (But-

terworth, 1930). These poles are then transformed by the Matlab function zp2ss, which

produces the state-space coefficients αi and βi that describe the output signal resulting from

applying the low-pass Butterworth filter to the discrete signal x[n]. These coefficients are fur-

ther converted by

~a = z∗Norm~α
−1

~b =−z∗Norm

(
~α−1~β

) (7.14)

5The passband is the frequency range in which the component magnitudes in the original signal should not be
changed.
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Figure 7.6: The Butterworth high pass filter with a cutoff frequency of 250 Hz in speech

sampled at 16 kHz. The solid curve indicates the magnitude response in decibels relative to

the original signal over the normalized frequency range, and the dashed curve represents the

frequency response which measures the amount of phase shift in the resulting signal in radians.

giving the high-pass Butterworth filter with the same cutoff frequency of z∗Norm
6. This continu-

ous system is converted to the discrete equivalent through the impulse-invariant discretization

method and is implemented by the difference equation

y[n] =
10

∑
k=1

aky[n− k]+
10

∑
k=0

bkx[n− k]. (7.15)

as shown in figure 7.6. As previously mentioned, this equation is applied to each acoustic sub-

sequence annotated as unvoiced consonants, thereby smoothly removing the energy below 250

Hz.

6See the Matlab function lp2hp.
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7.3.2 Splicing: correcting dropped and inserted phoneme errors

The Levenshtein algorithm mentioned above finds a best possible alignment of the phoneme

sequence in actually uttered speech and the expected phoneme sequence, given the known

word sequence. Isolating phoneme insertions and deletions are therefore a simple matter of

iteratively adjusting the source speech according to that alignment. There are two cases where

action is required:

insertion error In this case a phoneme is present where it ought not be. In every such case

for speaker M04, these insertion errors are repetitions of phonemes occurring in the first

syllable of a word, according to the International Speech Lexicon Dictionary (Hasegawa-

Johnson and Fleck, 2007). When an insertion error is identified the entire associated seg-

ment of the signal is simply removed. In the case that the associated segment is not sur-

rounded by silence, adjacent phonemes can be merged together with time-domain pitch-

synchronous overlap-add (Moulines and Charpentier, 1990), although in the data used

here this is unnecessary, since inserted phoneme subsequences are always surrounded by

stop-gaps.

deletion error Speaker M04 follows the same general behaviour as outlined in table 4.1 of

section 4.4 in that the vast majority of accidentally deleted phonemes are fricatives, af-

fricates, and plosives. Often, this involves not pluralizing nouns (e.g., book for books).

Given the preponderance of error with these phonemes, these are the only classes we

insert into the dysarthric source speech. Specifically, when the deletion of a phoneme

is recognized, we simply extract the associated segment from the aligned synthesized

speech and insert it into the appropriate spot in the dysarthric speech. For all unvoiced

fricatives, affricates, and plosives no further action is required. When these phonemes are

voiced, however, we first extract and remove the F0 curve from the synthetic speech, lin-

early interpolate the F0 curve from adjacent phonemes in the source dysarthric speech,

and resynthesize with the synthetic spectrum and interpolated F0. If interpolation is
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not possible (e.g., the synthetic voiced phoneme is to be inserted beside an unvoiced

phoneme), we simply generate a flat F0 equal to the nearest natural F0 curve.

7.3.3 Morphing in time

Figures 4.9, 4.10, and 4.11 in section 4.4 show that vowels uttered by a dysarthric speaker are

significantly slower than those uttered by a typical speaker and can be up to twice as long, on

average. In this modification, phoneme sequences identified as sonorant are simply contracted

in time in order to be equal in extent to the greater of half their original length or the equivalent

synthetic phoneme’s length. In all cases this involved shortening the dysarthric source sonorant.

Since we wish to contract the length of a signal segment here without affecting its pitch

or frequency characteristics, we use a phase vocoder based on digital short-time FFT analysis

(Portnoff, 1976). Here, Hamming-windowed segments of the source phoneme are analyzed

with a z-transform giving both frequency and phase estimates for up to 2048 frequency bands.

During pitch-preserving time-scaled warping, we specify the magnitude spectrum directly from

the input magnitude spectrum with phase values chosen to ensure continuity (Sethares, 2007).

Specifically, for the frequency band at frequency F and frames j and k > j in the modified

spectrogram, the phase is predicted by

θ
(F)
k = θ

(F)
j +2πF( j− k). (7.16)

In our case the discrete warping of the spectrogram involves simple decimation by a constant

factor. The spectrogram is then converted into a time-domain signal modified in tempo but

not in pitch relative to the original phoneme segment. This conversion is accomplished simply

through the inverse Fourier transform in which the transformation in equation 2.3 of section

2.3.1 is inverted with

ws[n] =
1
N

K−1

∑
k=0

X [k]e
j2πnk

N , (7.17)

where w[n] is the generated waveform at discreet time n, k is a frequency band of the spectrum

X , and K is the total number of such bands (Press et al., 1992).
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7.3.4 Morphing in frequency

Formant trajectories inform the listener as to the identities of vowels, but the vowel space

of dysarthric speakers tends to be constrained (see section 5.5.2). In order to improve a lis-

tener’s ability to differentiate between the vowels, this modification component identifies for-

mant trajectories in the acoustics and modifies these according to the known vowel identity

of a segment. Here, formants are identified through a simple LPC analysis with a 14th order

linear-predictive coder with continuity constraints on the identified resonances between adja-

cent frames (Snell and Milinazzo, 1993; O’Shaughnessy, 2008). Bandwidths are determined

by the negative natural logarithm of the pole magnitude, as implemented in the STRAIGHT

analysis system (Banno et al., 2007; Kawahara, 2006).

For each identified vowel in the dysarthric speech7, formant candidates are identified at

each frame in time up to 5 kHz. Only those time frames having at least 3 such candidates

within 250 Hz of expected values are then considered. The expected values of formants are

derived from analyses performed by Allen et al. (1987) and are shown in appendix C. Given

these subsets of candidate time frames in the vowel, the one having the highest spectral energy

within the middle 50% of the length of the vowel is established as the anchor position, and the

three formant candidates within the expected ranges are established as the anchor frequencies

for formants F1 to F3. If more than one formant candidate falls within expected ranges, the one

with the lowest bandwidth becomes the anchor frequency.

Given identified anchor points and target sonorant-specific frequencies and bandwidths (see

appendix C), there are several methods to modify the spectrum. The most common appears

to be to learn a statistical conversion function based on Gaussian mixture mapping, as de-

scribed elsewhere in this dissertation (e.g., sections 5.5.2, 6.2, and 7.2.3), typically preceded

by alignment of sequences using dynamic time warping (Stylianou, 2008). Here, we use the

STRAIGHT morphing implemented by Kawahara and Matsui (2003), among others. Here,

7Accidentally inserted vowels are also included here, unless previously removed by the splicing technique in
section 7.3.2.
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Figure 7.7: Spectrograms for (a) the dysarthric original and (b) the frequency-modified rendi-

tions of the word fear. Circles represent indicative formant locations.

the transformation of a frame of speech xA for speaker A is performed with a multivariate

frequency-transformation function TAβ given known targets β using

TAβ (xA) =
∫ xA

0
exp
(

log
(

δTAβ (λ )

δλ

))
δλ

=
∫ xA

0
exp
(
(1− r) log

(
δTAA(λ )

δλ

)
+ r log

(
δTAβ (λ )

δλ

))
δλ

=
∫ xA

0

(
δTAβ (λ )

δλ

)r

δλ ,

(7.18)

where λ is the frame-based time dimension and where 0≤ r≤ 1 is an interpolative rate at which

to perform morphing (i.e., r = 1 implies complete conversion of the parameters of speaker A to

parameter set β and r = 0 implies no conversion.) (Kawahara et al., 2009). An example of the

results of this morphing technique is shown in figure 7.7 in which the three identified formants

are shifted to their expected frequencies.

This method tracks formants and warps the frequency space automatically, whereas Kain et

al. (2007) perform these functions manually. A future implementation may use Kalman filters

to reduce the noise inherent in trajectory tracking. Such an approach has shown significant

improvements in formant tracking, especially for F1 (Yan et al., 2007).
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7.4 Intelligibility experiments with individual transforma-

tions in TORGOMorph

In order to gauge the intelligibility of our modifications, we designed a simple experiment in

which human listeners attempt to identify words in sentence-level utterances under a number

of acoustic scenarios. Sentences are either uttered by a speaker with dysarthria, modified from

their original source acoustics, or manufactured by a text-to-speech synthesizer. Each partic-

ipant is seated at a personal computer with a simple graphical user interface with a button

which plays or replays the audio (up to 5 times), a text box in which to write responses, and

a second button to submit that response. Audio is played over a pair of headphones. The par-

ticipants are told to only transcribe the words with which they are reasonably confident and

to ignore those that they cannot discern. They are also informed that the sentences are gram-

matically correct but not necessarily semantically coherent, and that there is no profanity. Each

participant listens to 20 sentences selected at random with the constraints that at least two utter-

ances are taken from each category of audio, described below, and that at least five utterances

are also provided to another listener, in order to evaluate inter-annotator agreement. Partici-

pants are self-selected to have no extensive prior experience in speaking with individuals with

dysarthria, in order to reflect the general population. Although dysarthric utterances are likely

to be contextualized within meaningful conversations in real-world situations, such pragmatic

aspects of discourse are not considered here in order to concentrate on acoustic effects alone.

No cues as to the topic or semantic context of the sentences is given, as there is no evidence

that such aids to comprehension affect intelligibility (Hustad and Beukelman, 2002). In this

study we use sentence-level utterances uttered by speaker M04 from the TORGO database.

Baseline performance is measured on the original dysarthric speech. Two other systems are

used for reference:

Synthetic Word sequences are produced by the Cepstral commercial text-to-speech system

using the U.S. English voice ‘David’. This system is based on Festival in almost every
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respect, including its use of linguistic pre-processing (e.g., part-of-speech tagging) and

rule-based generation (Taylor, Black, and Caley, 1998). This approach has the advantage

that every aspect of the synthesized speech (e.g., the word sequence) can be controlled

although here, as in practice, synthesized speech will not mimic the user’s own acoustic

patterns, and will often sound more ‘mechanical’ due to artificial prosody (Black and

Lenzo, 2007).

GMM This system uses the Gaussian mixture mapping type of modification suggested by

Toda, Black, and Tokuda (2005) and Kain et al. (2007) and discussed in section 7.2.3.

Here, we use the FestVox implementation of this algorithm, which includes F0 extrac-

tion, some phonological knowledge (Toth and Black, 2005), and a method for resyn-

thesis. Parameters for this model are trained by the FestVox system using a standard

expectation-maximization approach (Reynolds and Rose, 1995) with 24th order cepstral

coefficients and 4 Gaussian components. The training set consists of all vowels uttered

by speaker M04 and their synthetic realizations produced by the method above.

Performance is evaluated on the three other acoustic transformations, namely those de-

scribed in sections 7.3.2, 7.3.3, and 7.3.4 above. Tables 7.1 and 7.2 respectively show the

percentage of words and phonemes correctly identified by each listener relative to the expected

word sequence under each acoustic condition. In each case, annotator transcriptions were

aligned with the ‘true’ or expected sequences using the Levenshtein algorithm described in

section 7.3. Plural forms of singular words, for example, are considered incorrect in word

alignment although one obvious spelling mistake (i.e., ‘skilfully’) is corrected before evalua-

tion. Words are split into component phonemes according to the CMU dictionary, with words

having multiple pronunciations given the first decomposition therein.

In these experiments there is not enough data from which to make definitive claims of sta-

tistical significance, but it is clear that the purely synthetic speech has a far greater intelligibility

than other approaches, more than doubling the average accuracy of the TORGOMorph mod-

ifications. The GMM transformation method proposed by Kain et al. (2007) gave very poor
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performance, although our experiments are distinguished from theirs in that our formant traces

are detected automatically, rather than by hand. The relative success of the synthetic approach

is not an argument against the type of modifications proposed here and by Kain et al. (2007),

since our aim is to avoid the use of impersonal and invariant utterances. Indeed, future study

in this area should incorporate subjective measures of ‘naturalness’. Further uses of acoustic

modifications not attainable by text-to-speech synthesis are discussed in section 7.5.

In all cases, the splicing technique of removing accidentally inserted phonemes and insert-

ing missing ones gives the highest intelligibility relative to all modifications in TORGOMorph

and the Gaussian mixture mapping method. Although more study is required, this result em-

phasizes the importance of a lexically correct phoneme sequence. In the word-recognition

experiment, there were an average of 5.2 substitution errors per sentence in the unmodified

dysarthric speech against 2.75 in the synthetic speech. There were also 2.6 substitution errors

on average per sentence for the speech modified in frequency, but 3.1 deletion errors, on aver-

age, against 0.24 in synthetic speech. No correlation was found between the ‘loudness’ of the

speech (determined by the overall energy in the sonorants) and intelligibility results, although

this might change with the acquisition of more data. Neel (2009), for instance, found that loud

or amplified speech from individuals with Parkinson’s disease was more intelligible to human

listeners than quieter speech.

Our results are comparable in many respects to the experiments of Kain et al. (2007),

although they only looked at simple consonant-vowel-consonant stimuli and had 64 listen-

ers annotate the center phoneme. Their results showed an average of 92% correct synthetic

vowel recognition (compared with 94.2% phoneme recognition in table 7.2) and 48% correct

dysarthric vowel recognition (compared with 52.9% in table 7.2). Our results, however, show

that modified timing and modified frequencies do not actually benefit intelligibility in either

the word or phoneme cases whereas slight improvement in vowel recognition, up to 54%, with

modified durations and formants. This disparity may in part be due to the fact that our stimuli

are much more complex (quicker sentences do not necessarily improve intelligibility).
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Listener Original GMM Synthetic Splice Timing Frequency

L01 22.1 15.6 82.0 40.2 34.7 35.2

L02 27.8 12.2 75.5 44.9 39.4 33.8

L03 38.3 14.8 76.3 37.5 12.9 21.4

L04 24.7 10.8 72.1 32.6 22.2 18.4

Average 28.2 13.6 76.5 38.8 27.3 27.2

Table 7.1: Percentage of words correctly identified by each listener relative to the expected

word sequence under each acoustic condition.

Listener Original GMM Synthetic Splice Timing Frequency

L01 52.0 43.1 98.2 64.7 47.8 55.1

L02 57.8 38.2 92.9 68.9 50.6 53.3

L03 50.1 41.4 96.8 57.1 30.7 46.7

L04 51.6 33.8 88.7 51.9 43.2 45.0

Average 52.9 39.1 94.2 60.7 43.1 50.0

Table 7.2: Percentage of phonemes correctly identified by each listener relative to the expected

word sequence under each acoustic condition.
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7.5 Discussion

Tolba and Torgoman (2009) claimed that significant improvements in recognition of dysarthric

speech are attainable by modifying formants F1 and F2 to be more similar to expected val-

ues. In that study, formants were identified using standard LPC-based techniques, although

no information is provided as to how these formants were modified nor how their targets were

determined. However, they claimed that modified dysarthric speech results in ‘recognition

rates’ (by which they presumably meant word-accuracy) of 71.4% in the HMM-based HTK

ASR system, as compared with 28% on the unmodified dysarthric speech from 7 individu-

als. The results in section 7.4 show that human listeners are more likely to correctly identify

utterances in which phoneme insertion and deletion errors are corrected than those in which

formant frequencies are adjusted. Therefore, one might hypothesize that such pre-processing

might provide even greater gains than those reported by Tolba and Torgoman (2009). Ongoing

work ought to confirm or deny this claim.

A prototypical client-based application based on this research for unrestricted speech trans-

formation of novel sentences is currently in development. Such work would involve improving

factors such as accuracy and accessibility for individuals whose neuro-motor disabilities limit

the use of modern ASR, and for whom alternative interaction modalities are insufficient. This

application is being developed for Google’s Android platform under the assumption that it will

be used in a mobile device embeddable within a wheelchair. If word-prediction is to be incor-

porated, the predicted continuations of uttered sentence fragments can be synthesized without

requiring acoustic input, as in section 7.2.3.

In practice, the modifications presented above will have to be based on automatically-

generated annotations of the source audio. This is especially important to the ‘splicing’ module

in which word-identification is crucial. There are a number of techniques that can be exercised

in this area. Czyzewski, Kaczmarek, and Kostek (2003) apply both a variety of neural net-
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works and ‘rough sets’8 to the task of classifying segments of speech according to the presence

of stop-gaps, vowel prolongations, and incorrect syllable repetitions. In each case, input in-

cludes source waveforms and detected formant frequencies. They found that stop-gaps and

vowel prolongations could be detected with up to 97.2% accuracy and that vowel repetitions

could be detected with up to 90% accuracy using the rough set method. Accuracy was sim-

ilar although slightly lower using traditional neural networks (Czyzewski, Kaczmarek, and

Kostek, 2003). These results appear generally invariant even under frequency modifications

to the source speech. Nakatani (1993), Plauché and Shriberg (2007), and Arbisi-Kelm (2010),

for example, also suggest that disfluent repetitions can be identified reliably through the use

of pitch, duration, and pause detection (with precision up to 93% (Nakatani, 1993)). If more

traditional models of speech recognition such as HMMs are to be employed in order to iden-

tify vowels, the probabilities that they generate across hypothesized words might be used to

weight the manner in which acoustic transformations are made, although the exact mechanism

of this weighting is yet to be determined. For example, modifications to the formant frequen-

cies might only be performed if the identity of the phoneme involved can be estimated above

some minimum threshold of likelihood.

8Rough sets in this context are sets of items whose memberships in subsets are ‘fuzzy’ according to the
indistinguishability of their parameter sets (Pawlak, 1982).



Chapter 8

Concluding remarks

The purpose of this thesis was to determine whether classification systems built using empirical

and theoretical models of speech production can significantly improve recognition accuracy for

dysarthric speakers. This has been answered affirmatively through the experiments performed

in chapters 5 and 6 that are based on the new data described in chapter 4. Despite the advances

described in this dissertation, there yet remains much work to follow. This chapter summarizes

contributions made by this work in section 8.1, projects future work that follows naturally from

this thesis in section 8.2 and concludes with a closing thought in section 8.3.

8.1 Summary of contributions

A number of contributions have originated from the research described in this thesis. The most

significant of these are the following:

• The design and construction of TORGO, one of the first and most extensive databases of

dysarthric articulation (Rudzicz et al., 2008; Rudzicz, Namasivayam, and Wolff, 2010),

described in chapter 4.

• The construction of various generative models (HMM, DBN) and discriminative mod-

els (CRF, neural network,SVM) that recognize discrete articulatory features and replace

189
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standard acoustic models in ASR systems. This work showed that the performance of

generative methods with articulatory knowledge is similar to that of advanced discrim-

inative methods (Rudzicz, 2009a; Rudzicz, 2009b; Rudzicz, 2010a), as described in

chapter 5.

• The introduction of an acoustic-to-articulatory inversion system based on Hammerstein

systems that significantly outperforms the state-of-the art on the task of inferring the

positions of task-dynamics parameters, described in section 6.2.

• The demonstration in section 6.3 that articulatory data removes ambiguity from the

acoustic data in the TORGO database, even if the mutual information between these

spaces is not as great for dysarthric speakers as for non-dysarthric speakers (Rudzicz,

2010d; Rudzicz, 2010c).

• The construction of an ASR reranking system that reduces word-error rate significantly

over acoustic-only baselines by incorporating information present in task-dynamics mod-

elling, described in section 6.4. This represents the first incorporation of the long-term

dynamics of task-dynamics into ASR (Rudzicz, 2010b).

This research has also made a number of secondary contributions, including a comparison

of adaptive and dependent speaker modelling in HMMs for speakers with dysarthria (section

5.2.2), an investigation into a noisy-channel model of dysarthric speech (section 6.3.2), and

the use of principal differential analysis in the recognition of non-dysarthric speech (section

6.5). We have also designed a number of automatic transformations to improve the intelligi-

bility of dysarthric speech, as described in chapter 7. As previously discussed, it is possible

for automatic methods to outperform human rates of recognition on disordered speech (Ja-

yaram and Abdelhamied, 1995), but it is not yet clear whether there is some fundamental limit

to the achievable accuracy of automatic methods. We are currently performing intelligibility

assessments with naı̈ve human listeners which may help to answer this question.
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In general, this dissertation represents a novel confluence of disparate disciplines and re-

lated research areas within speech recognition. In our opinion, there has not hitherto been

sufficient interaction between engineering (signal processing and artificial intelligence, specif-

ically) and speech science (i.e., speech language pathology) despite a tremendous amount of

knowledge and perspective that each could provide the other. This dissertation provides a bi-

ological basis for the models used in classification, and applies advanced machine learning to

ecologically interesting data.

8.2 Future work

This section outlines three research avenues for exploration that the work described in this

dissertation has opened.

8.2.1 Dysarthria in task-dynamics

Several high-level models of speech production have been discussed throughout this thesis,

including task-dynamics and DIVA. A commonality among these models is that they represent

the synthetic behaviour of an idealized average human speaker, which avoids certain biolog-

ical realities. Future work should be based upon the study of the dysarthric data collected

for TORGO within the framework of task-dynamics. Here, articulatory behaviour of six or

seven of the dysarthric speakers for whom there is enough data should be compared against

the behaviour of control speakers by applying and extending methods introduced in section

6.5 that learn the parameters of second-order differential equations with principal differential

analysis. In practice, however, there are several other aspects of task-dynamics that are not

represented by the fundamental underlying spring-mass equation. For each speaker and each

linguistic unit (i.e., syllable), several parameters can be derived. First, the damping and stiff-

ness coefficients of tract variables can be derived using PDA as described earlier for each tract

variable available in the data, namely tongue tip constriction degrees and locations, tongue
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body constriction degrees and locations, lip protrusion and aperture, and lower tooth height.

The target (i.e., equilibrium) position (z∗ in equation 6.1 of section 6.1) of the relevant gesture

can be derived from data by finding zeros in second-order regression analysis. More subtly,

the articulatory weights set the effectiveness of the associated tract variables in the production

of a gesture. A high articulatory weight reduces the amount of motion associated with a given

articulator as if it is ‘heavier’. This parameter is similar to the mass coefficient of the spring-

mass equation and may be derived through a combination of examining the average amplitude

of articulatory motion during production along with the relative entropy of the acoustics, given

the articulation (see section 6.3). Other parameters in TADA may be carried over from the de-

faults, such as α which specifies the strength of a gesture in the presence of other gestures on

the same tract variable. If α = 0, for example, the associated gesture participates in additive

rather than averaging blending (Nam and Goldstein, 2006).

Additionally, the geometry of each vocal tract in the data should be measured, along with

the ‘natural attractor’ position (Saltzman and Munhall, 1989), which is normally associated

with the schwa. These parameters modulate the behaviour of the TADA system for task-

dynamics, which is utilized in the speech recognition system described in section 6.4. By

adapting the parameters of this system and repeating experiments in section 6.4, future work

could measure the usefulness of task-dynamics in speech recognition for dysarthric speak-

ers. This system could then be compared against further baselines, including ergodic hidden

Markov Models designed to capture involuntary repetition, which is more common among

dysarthric speakers (Sharma and Hasegawa-Johnson, 2010b).

8.2.2 Discriminative training of language models

Discriminative training based on generalized probabilistic descent and the minimum classifi-

cation error criterion can overcome some of the limitations of maximum likelihood estimation

with acoustically confusable speech signals by increasing the discriminative power of P(W )

(Gopalakrishnan et al., 1991; Katagiri, Juang, and Lee, 1998). The score applied to a hypothe-
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sized word sequence Wi is usually some perturbation of

g(Wi,X) = α logP(X |Wi)+(1−α) logP(Wi) (8.1)

for some parameter α . Classification errors depend on the relative scores of the top N hypothe-

ses, g(Wi,X) for i = 1..N, where the correct hypothesis is WC. The combined score of the best

incorrect hypotheses of this list is modelled by the anti-discriminant function

G(X ,W1, ...,WN ,c) = log

[
1
N

N

∑
h=1,h6=c

exp(g(Wh,X)η)

]η

, (8.2)

where the weight given to the best of the N alternatives relative to the worst increases with

parameter η . The misclassification function is then just

d(X) =−g(Wc,X)+Gc(X ,W1, ...,WN ,c) (8.3)

The idea is for d(X) to be negative with all correct classifications. The concept of ‘loss’ in-

curred by misclassification is neatly encapsulated with

l (d(X)) =
1

1+ exp(−ρd(X)+θ)
(8.4)

whose derivative is also continuous and in the range [0..1]. Using generalized probabilistic

descent, the language model Γ can be updated iteratively by a factor of ε

Γt+1 = Γt− ε5 l (d(X)) (8.5)

where

5l =
δ li
δdi

δd(Xi)

δΓ

= ρl(di)(1− l(di))
δd(Xi)

δΓ
.

(8.6)

If px,y = logP(wy|wx) is a bigram parameterizing Γ, and n(W,wx,wy) is the number of times

wxwy appears in W , then

δd(Xi)

δ px,y
=

[
−n(Wc,wx,wy)+

N

∑
r=1

Crn(Wr,wx,wy)

]
(8.7)
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where

Cr =
exp(g(Wr,Xi)η)

∑
N
j=1 exp(g(Wj,Xi)η)

. (8.8)

Intuitively, the likelihoods of bigrams in the correct string but not in competing hypotheses is

increased, and diminished for those only in the chief competitors. Using this approach, Na

et al. were able to improve accuracy on isolated Korean digits from 92.7% to 94.5% using a

training set of only 50 utterances (Na, Rheem, and Ann, 1994), eliminating all substitution

errors between the most confusable pairs of words. Similarly, Kuo et al. (2002) were able to

reduce error by as much as 15% relative to an MLE-trained language model. Discriminative

training has also been applied to training acoustic (Sandness, 2000) models using essentially

the same algorithm and discriminant functions. Discriminative training of language models

does not yet appear to have been applied to dysarthric speech. We can therefore include some

of this work in augmenting language models used in our previous experiments.

8.2.3 Multimodal interaction for individuals with special needs

Despite the relative speed and ease with which information can be conveyed verbally, espe-

cially by speakers with neuromotor disorders (see section 2.3.3), certain kinds of information

may best be communicated by other means. Deixis, for example, is a phenomenon in which

contextual information is required to resolve semantic ambiguity in an utterance. To fully un-

derstand the phrase put that there, for example, requires that the demonstrative pronouns that

and there resolve to a specific object and a specific location in the world, respectively. In this

example and others like it, arm gestures can be used naturally to provide information otherwise

absent in the referring words, as in the seminal work of Bolt (1980) and in similar research

(Cohen et al., 1989; Cheyer and Julia, 1998). Multimodal technology has since diversified

considerably as new hardware platforms permit profuse permutations of physical interaction,

from portable devices to large-screen environments (Kettebekov et al., 2002; Sharma et al.,

2003). There is also a practical benefit to co-ordinating multiple concurrent streams, with er-

ror suppression in certain contexts in excess of 40% relative to unimodal counterparts (Oviatt,
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2003; Tamura, Iwano, and Furui, 2004; Motlcek, Burget, and Cernock, 2005).

The research described in this dissertation and its predecessor (Rudzicz, 2006) has involved

the co-ordination of various technologies that are commonly combined in multimodal human-

computer interaction, especially video and audio. A natural progression of this work, therefore,

would use these technologies in an applied domain to improve the expressive abilities of end-

users. For example, the use of video to determine head pose, in addition to lip-reading, has been

successfully used as a method of hands-free interaction with graphical user interfaces (Karpov

et al., 2004). Further research should compare the EMA and video data collected in TORGO

to determine whether observable features in the latter are suitably informative substitutes for

those in the former. Speech recognition is also being developed as a mode of communication

with automated emergency response systems in home environments in which video tracking

of humans is already being performed for people with special needs (Hamill et al., 2009). The

continued development of word-prediction and speech transformation described respectively in

section 2.3.3 and chapter 7 may eventually be inclined towards potential commercial products.

8.3 Closing thought

Our species distinguishes itself by its exceptional capacity to understand and to overcome lim-

itations presented by nature. Our technology has given us abilities that we once thought impos-

sible and our science has raised questions that were once unfathomable. Future technological

responses to the limitations of communication should continue to expose latent abilities both

individually and collectively.

We shape our tools and thereafter our tools shape us.

– Marshall McLuhan (1964)



Appendix A

Articulatory contrasts

Front-back vowel
knew/knee pat/pot him/hum shoot/sheet beet/boot

geese/goose feed/food air/are chop/chap fill/full

High-low vowel

knew/know knew/gnaw him/hem him/ham shoot/shot

geese/gas geese/guess pit/pet pit/pat feet/fat

heat/hate had/hid

Vowel duration
beat/bit slip/sleep leak/lick knot/nut read/rid

ship/sheep feet/fit lip/leap ease/is reap/rip

Voicing, initial

consonants

pat/bat bad/pad pit/bit sip/zip coat/goat

dug/tug cash/gash tile/dial bunch/punch

Voicing, final

consonants

feet/feed bad/bat leak/league knot/nod write/ride

side/sight coat/code dug/duck ate/aid at/add

Alveolar-palatal
sip/ship shoot/suit shy/sigh sell/shell sin/shin

sew/show see/she sheet/seat

Consonant place
bug/dug tile/pile cake/take meat/neat bill/dill

bill/gill ache/ape ache/ate lip/lit

Table A.1: Articulatory contrasts, after Kent et al. (1989).
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Other fricative

sheet/feet sigh/thigh hill/fill hand/sand sew/foe

see/he nice/knife hat/fat sell/fell feet/heat

hat/that hold/fold hail/sail harm/farm seed/feed

Fricative-affricate
chair/share wish/witch much/mush ship/chip chop/shop

cash/catch sheer/cheer hash/hatch harm/charm

Stop-affricate chair/tear much/mut chop/top witch/wit much/muck

Stop-nasal
beat/meat knot/dot side/sign nice/dice steak/snake

bill/mill dock/mock dock/knock bunch/munch tile/mile

Initial glottal-null
air/hair ate/hate at/hat hand/and hold/old

heat/eat hash/ash harm/arm had/add hail/ail

Initial

consonant-null

air/fair ate/fate at/at sin/in sheet/eat

chair/air spit/it blend/end ease/peas ease/cheese

sink/ink cake/ache rise/eyes row/ow

Final

consonant-null

feed/fee side/sigh blow/bloat fork/four rake/ray

leak/lee meat/me bunch/bun seed/see

Initial

cluster-initial

singleton

slip/sip slip/lip spit/pit spit/sit blend/bend

blend/lend sticks/six sticks/ticks steak/take steak/sake

blow/low blow/bow

Final cluster-final

singleton

sticks/stick rock/rocks seed/seeds sink/sing cake/cakes

meat/meats fork/forks rake/rakes leak/leaks ache/aches

wax/wack docks/dock

/r/-/l/
read/lead write/light leak/reek rock/lock rake/lake

lip/rip reap/leap rise/lies row/low racks/lax

/r/-/w/
read/weed write/white rich/witch rock/walk reap/weep

rise/wise row/woe racks/wax

Table A.2: Articulatory contrasts, after Kent et al. (1989) continued.
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Frenchay Assessment in TORGO

Category Test Observation
Males Females All

µ(σ) µ(σ) µ(σ)

Reflex

Cough Presence of cough during eating

and drinking.

6(2.45) 7.3(0.96) 6.6(1.85)

Swallow Speed and ease of swallowing liq-

uid.

7(2.0) 8(0.0) 7.5(1.41)

Dribble Presence of drool generally. 6.5(2.38) 7.5(1.0) 7(1.77)

Lips

At rest Asymetry of lips during rest. 6.3(2.36) 8(0.0) 7.1(1.81)

Spread Distortion during smile. 6(2.31) 8(0.0) 7(1.85)

Seal Ability to maintain pressure at lips

over time.

3.3(3.4) 7(2) 5.1(3.27)

Alternate Variability in repetitions of “oo

ee”.

3.8(2.87) 7(2) 5.4((2.88)

In speech Excessive briskness or weakness

during regular speech.

4.3(1.89) 6.5(1.91) 5.4(2.13)

Table B.1: Frenchay Dysarthria Assessment dimensions (Enderby, 1983), each on a scale of 0

(no function) to 8 (normal function).
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Category Test Observation
Males Females All

µ(σ) µ(σ) µ(σ)

Respiration

At rest Ability to control breathing during

rest.

4(2.71) 8(0.0) 6(2.78)

In speech Breaks in fluency caused by poor

respiratory control.

4(2) 6.5(3) 5.3(2.71)

Jaw

At rest Hanging open of jaw at rest. 7(1.15) 8(0.0) 7.5(0.93)

In speech Fixed position or sudden jerks of

jaw during speech.

5.8(2.63) 6.3(2.36) 6.1(2.42)

Velum

Fluids Liquid passing through velum

while eating.

7(2.0) 8(0.0) 7.5(1.41)

Maintenance Elevation of palate in repetitions of

“ah ah ah”.

5.8(2.06) 7.5(1.0) 6.6(1.77)

In speech Hypernasality or imbalanced nasal

resonance in speech.

6.3(2.36) 6(2.83) 6.1(2.42)

Laryngeal

Time Sustainability of vowels in time. 5.3(2.5) 7.5(1.0) 6.4(2.13)

Pitch Ability to sing a scale of distinct

notes.

2(2.16) 5.3(2.5) 3.6(2.77)

Volume Ability to control volume of voice. 3.5(3.11) 4.8(3.2) 4.1(3.0)

In speech Phonation, volume, and pitch in

conversational speech.

3.3(2.87) 6(2.83) 4.6(3.02)

Intelligibility

Words Interpretability of 10 isolated spo-

ken words from a closed set.

4(2.94) 4.5(2.52) 4.3(2.55)

Sentences Interpretability of 10 spoken sen-

tences from a closed set.

3.5(3.32) 5.3(3.4) 4.4(3.25)

Conversation General distortion or decipherabil-

ity of speech in casual conversa-

tion.

4.5(2.38) 6.5(1.91) 5.5(2.27)

Table B.2: Frenchay Dysarthria Assessment dimensions (Enderby, 1983), each on a scale of 0

(no function) to 8 (normal function) continued.
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Category Test Observation
Males Females All

µ(σ) µ(σ) µ(σ)

Tongue

At rest Deviation of tongue to one side, or

involuntary movement.

5.5(2.08) 5.5(1.73) 5.5(1.77)

Protrustion Variability, irregularity, or tremor

during repeated tongue protrusion

and retraction.

3.8(3.1) 5.3(1.5) 4.5(2.39)

Elevation Laboriousness and speed of re-

peated motion of tongue tip to-

wards nose and chin.

3.3(3.2) 4.3(1.71) 3.7(2.43)

Lateral Laboriousness and speed of re-

peated motion of tongue tip from

side to side.

3.8(3.1) 3.5(1.91) 3.6(2.39)

Alternate Deterioration or variability in rep-

etitions of phrase “ka la”.

4(2.71) 5.3(1.91) 4.9(2.9)

In speech Correctness of articulation points

and laboriousness of tongue mo-

tion during speech generally.

4(2.71) 6(2.83) 5(2.78)

Table B.3: Frenchay Dysarthria Assessment dimensions (Enderby, 1983), each on a scale of 0

(no function) to 8 (normal function) concluded.
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Formant targets in synthesis

F1 F2 F3 BW1 BW2 BW3

el 450 800 2850 65 60 80

en 200 900 2100 120 60 70

em 200 1600 2700 120 70 110

l 330 1050 2800 50 100 280

n 480 1400 2700 40 300 260

m 480 1050 2100 40 175 120

ng 480 1460 2050 160 150 100

r 330 1060 1380 70 100 120

w 285 610 2150 50 80 60

Table C.1: Formant target frequencies (F1–3) and bandwidths (BW1–3) in Hz for synthesis in

sonorant consonants for a male speaker of English, after Allen et al. (1987).
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F1 F2 F3 BW1 BW2 BW3

aa 700 1220 2600 130 70 160

ae 620 1660 2430 70 130 300

ah 620 1220 2550 80 50 140

ao 600 990 2570 90 100 80

aw 640 1230 2550 80 70 110

ax 550 1260 2470 80 50 140

axr 680 1170 2380 60 60 110

ay 660 1200 2550 100 120 200

eh 530 1680 2500 60 90 200

er 470 1270 1540 100 60 110

ey 480 1720 2520 70 100 200

ih 400 1800 2670 50 100 140

ix 420 1680 2520 50 100 140

iy 310 2200 2960 50 200 400

ow 540 1100 2300 80 70 70

oy 550 960 2400 80 120 160

uh 450 1100 2350 80 100 80

uw 350 1250 2200 65 110 140

Table C.2: Formant target frequencies (F1–3) and bandwidths (BW1–3) in Hz for synthesis in

vowels for a male speaker of English, after Allen et al. (1987).



Appendix D

Electrical synchronization in TORGO

Audio in the TORGO database is recorded simultaneously by a head-worn microphone con-

nected to the AG500 EMA machine and by a directional microphone connected to the system

that randomizes and presents prompts graphically to the participant. An electronic circuit was

devised to communicate between these two systems. The AG500 system includes a breakout

box called the Sybox-Opto4, shown in figure D.1, which allows access to some of the system’s

low-level signals. Specifically, there are 4 DB9 RS-232 connectors on the front of this box,

each of which operates at +5V and 50 mA. The circuitry of these connectors is shown in figure

D.3. On each of these connectors, pin 4 is the sweep signal, which is in the active state as long

as speech is being recorded by the EMA system and has a timing precision of < 50 ns.

A laptop is required to connect to the presentation monitor, to manage prompt lists, and to

record directional audio for each prompt. The sweep signal from the Sybox-Opto4 is used to

trigger audio recording on this laptop synchronously. The presentation software used to prompt

the speaker includes a threaded component which monitors the system’s serial bus for a binary

change of the sweep signal which indicates either the start or end of recording, depending on

its direction. Since most laptop RS-232 connectors1 operate at ± 12V, an amplifier circuit had

to be constructed to bring the sweep signal up to a voltage that could be read by the second

1Some laptops include embedded serial connectors; however, often this has to be replicated via a USB/RS-232
dongle (e.g., a KeySpan serial adapter) and the laptop’s USB system.
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Figure D.1: The Sybox-Opto4 synchronization device for the AG500. Image taken from doc-

umentation from Carstens Medizinelektronik GmbH, Lenglern, Germany.

laptop, as shown in figure D.2. This system was later abandoned because acoustic alignment

with cross-correlation would be performed regardless, but this circuitry can be replicated in

situations where no such software method is available.

Figure D.2: Circuitry to amplify the 5V sweep signal from the AG500 to the 12V required

by the PC serial bus. The component ‘1N5821’ is a Schottky barrier diode which converts

alternating current to direct current and the component ‘LM2577-12’ is a switching regulator.
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Figure D.3: The internal wiring of the Sybox-Opto4 synchronization device. Image taken from

documentation from Carstens Medizinelektronik GmbH, Lenglern, Germany.
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