
Word segmentation using grouped semantic networks

by

Misha Schwartz

A thesis submitted in conformity with the requirements
for the degree of Masters

Graduate Department of Computer Science
University of Toronto

c© Copyright 2018 by Misha Schwartz

Abstract

Word segmentation using grouped semantic networks

Misha Schwartz

Masters

Graduate Department of Computer Science

University of Toronto

2018

This paper introduces the WuGS (Word segmentation using Grouped Semantic networks)

algorithm for training word segmentation models that use parallel translated corpora to

infer semantic and morphological similarities between words. These similarities are used

to break down the words of a language into morphemes, the minimally semantically

significant component parts of a language. The WuGS algorithm builds models in the

form of grouped semantic networks which allows for the classification of words according

to shared root morphemes in a way that respects allomorphy. We evaluate these models

on three languages and show that these models perform on par with two existing baseline

models and that parallel corpora are a good source of semantic data for this task. We

also show that a reliance on semantic data results in an overly conservative approach to

morphological segmentation.

ii

Contents

1 Introduction 1

1.1 Morphological Segmentation . 2

1.1.1 Types of morphemes . 3

1.1.2 Comparative morphology . 4

1.2 Motivation . 5

2 Related Work 7

3 Model 13

3.1 Input Data . 13

3.2 Training . 14

3.3 Putting the model to work . 23

3.3.1 Output . 28

4 Evaluation 31

4.1 Comparing Models . 33

4.1.1 Morphological precision and recall 33

4.2 Orthography vs. phonology . 37

4.3 Target language variation . 39

5 Discussion 42

5.1 Reducing over-segmentation with semantic data 42

5.1.1 Hunting for more data . 43

5.1.2 Better data processing . 44

5.2 Language independence . 46

5.3 Additional future work . 47

5.4 Conclusion . 50

Bibliography 51

iii

Appendices 54

A Additional Algorithms 55

B Data Tables 57

iv

List of Figures

3.1 Translation probability distribution of the word ‘linguistique’ translated

to English . 16

3.2 Partial bipartite graph showing English-French word translations 16

3.3 Semantic network derived from figure 3.2 using symmetric translations . 18

3.4 Semantic network derived from figure 3.2 using asymmetric translations . 18

3.5 Example semantic network with multiple groupings 20

4.1 Precision, recall, and F-measure reported by EMMA2 34

4.2 Precision, recall, and F-measure reported by BPR 36

4.3 Precision, recall, and F-measure reported by BPR for previously seen and

novel words . 37

4.4 Precision, recall, and F-measure reported by BPR by morphs per word . 38

4.5 Average morpheme count delta from gold-standard for orthographic and

phonological training data . 39

4.6 Precision, recall, and F-measure reported by BPR with varying target

languages . 40

v

List of Tables

B.1 Precision, recall, and F-measure reported by EMMA2 57

B.2 Precision, recall, and F-measure reported by BPR 58

B.3 Precision, recall, and F-measure reported by BPR for previously seen and

novel words . 58

B.4 Precision, recall, and F-measure reported by BPR by morphs per word . 59

B.5 Average morpheme count delta from gold-standard for orthographic and

phonological training data . 59

B.6 Precision, recall, and F-measure reported by BPR with varying target

languages . 59

B.7 Precision, recall, and F-measure reported by BPR for previously seen and

novel words by language . 60

B.8 Precision, recall, and F-measure reported by BPR by morphs per word

and language . 61

vi

Chapter 1

Introduction

The words in this sentence are not indivisible semantic units of language. Just as sen-

tences can be divided into words, words can also be divided into smaller meaningful

units called morphemes. It is relatively easy to pick out individual words from a written

sentence due to separators such as white-space and punctuation, which make it easy to

determine where one word stops and another begins. However, this is not necessarily the

case with morphemes. A morpheme boundary could be at the edge of a word but it could

equally be somewhere in the middle. This makes the task of morphological segmentation

a difficult and by no means straightforward task.

The goal of this paper is to describe an algorithm that trains and constructs language

models that can be used for morphological segmentation. Models can theoretically be

constructed for any language, assuming training data is available. The model itself is

a semantic network with words represented as vertices and semantic similarity between

words represented as edges. Vertices are grouped according to both their semantic and

orthographic similarities in order to train and refine the model. These groups allow

the model to incorporate concepts such as root words, affix sequences, and allomorphy

without the need for complex language specific rules. This is not the first algorithm to

employ both semantic and orthographic information to achieve this task, but it is unique

in its use of translational equivalence in order to estimate semantic relatedness instead

of more statistics-heavy approaches such as measuring cosine similarity between word

vectors. It is also unique in its use of groups within a semantic network as a way of

modeling morphological segmentations.

Morphological segmentation algorithms typically fall into two categories, unsuper-

vised and semi-supervised. Unsupervised approaches generate models from unlabeled

data (Harris, 1970; Sirts and Goldwater, 2013) whereas semi-supervised models use a

minimal amount of labeled data combined with unlabeled data to generate models (Ko-

1

Chapter 1. Introduction 2

honen et al., 2010; Ruokolainen et al., 2014). Semi-supervised models typically are used

in cases where there is limited language data available and there are some available ex-

perts to manually label a subset of the available data (Ruokolainen et al., 2016). But

what if there is limited language data available and no one to manually label data? The

algorithm presented in this paper considers the case where minimal data is available but

it is in a specific format: parallel translated texts.

1.1 Morphological Segmentation

If you are reading this paper than by definition you can interpret at least one natural

language, in this case English. This is probably something that comes naturally and

does not require the active analysis it once did. However, the process of extracting

meaning from speech or written text is by no means simple and involves many complex,

interacting processes (see: the entire field of linguistics, cognitive science). One of these

processes involves analyzing and understanding the structure of individual words. In

order to analyze the structure of words, we must first determine how to differentiate one

sub-word component from another. The process of splitting a word up into its component

parts is called morphological segmentation and these components are called morphemes.

For the moment let us define a word as a string of graphemes surrounded by either

whitespace or punctuation. There are many ways to split this word up into parts, assum-

ing that each grapheme is an indivisible component of the word and that all parts must

contain at least one letter. In fact there are 2n−1 possible ways to split a word containing

n graphemes1. However, we are only interested in segmentations where each sub-word

component has intrinsic semantic content that can be combined to construct the meaning

of the larger word. For example, the word papers can be divided into the morphemes

paper and s which each have the meaning of ‘a thin sheet of dried wood pulp’ and ‘multi-

ple/plural’ respectively. By combining these two sub-word components, we interpret the

meaning ‘multiple thin sheets of dried wood pulp’; a reasonable definition for the word

papers. It should be noted that neither of the two segments can be further segmented in

this way (there are no meanings of pap and er for example that combine to give us the

meaning of paper). Morphemes therefore, are defined as meaningful units of language

that cannot be segmented further (Haspelmath, 2002). The main goal of this paper is

to present an algorithm that can construct a language model that in turn can can be

used to split any word in a given language into its component morphemes. Essentially,

the model should be able to detect morpheme boundaries that are not explicitly marked

12n−1 is the number of ordered partitions of n

Chapter 1. Introduction 3

with a space character2 or other explicit boundary marker.

1.1.1 Types of morphemes

There are many ways to define, and describe the interactions between morphemes (Haspel-

math, 2002), but the distinction between root morphemes and affixes is most important

for this paper. Roots tend to be free, non-productive morphemes whose meaning is some-

times analyzed as contributing the ‘core’ meaning to a word. Affixes on the other hand

are typically bound, productive morphemes that contribute additional meaning to the

word it belongs to. For example, paper would be considered a root, whereas s would be

an affix.

A free morpheme is one that can be either part of a larger word or may appear

as a word in its own right, whereas a bound morpheme is one that must be part of a

larger word. In our previous example paper is a free morpheme since it can appear in

a sentence as its own word, but s will never appear by itself (except in some specific,

contrived examples). With this in mind, we can look for evidence of free morphemes by

identifying instances where a word appears within a larger word. For example, paper is

a free morpheme because it can occur independently but also as part of the larger word

papers

Morphological researchers have long modeled the process of word creation as starting

from a root morpheme, onto which other morphemes are sequentially added, adding to

the overall meaning of the word at each step (Selkirk, 1982). Morphemes which are used

most often in this process of word formation are considered productive, whereas those

that are rarely used are considered non-productive. The morpheme s is very productive

since it can be added to the majority of nouns in the English language, whereas there

are very few root morphemes onto which we add the morpheme paper to construct a new

word. We can therefore look for evidence of productive morphemes by identifying strings

that occur much more frequently and attach to a wide variety of roots.

Most languages have syntactic rules which govern the order in which words can com-

bine to form sentences. The same is true for the way in which morphemes can combine

to form words. In English for example, we can combine paper and s as papers but never

as spaper, or unimaginable as ableimaginun. Often these rules describe where a given

morpheme will occur relative to the root; the s in papers for example always occurs after

the root paper. English speakers are probably most familiar with the concept of prefixes

(morphemes that occur before the root) and suffixes (morphemes that occur after the

2in morphology: space is not the final frontier.

Chapter 1. Introduction 4

root). However, there are many other ways a morpheme can appear relative to the root.

For example, infixes are inserted within a root (abso-fucking-lutely) and circumfixes ap-

pear both before and after (em-bold-en). Collectively, these morpheme types are called

affix morphemes, in contrast to root morphemes. It should also be noted that languages

typically prefer certain types of affixes to others. English words for example contain more

suffixes than other affix types, whereas Berber words favour prefixes instead (Kossmann,

1997; Dryer and Haspelmath, 2013).

To complicate matters further, a single morpheme can take on many forms. Consider

the plural morpheme s that appears in the word papers and the plural morpheme es that

appears in the word beaches. These two morphemes clearly convey the same meaning and

they are orthographically similar enough that most English speakers would recognize that

they should be analyzed as different forms of the same underlying morpheme. Multiple

forms of the same morpheme are called allomorphs and must be accounted for in any

morphological segmentation model.

1.1.2 Comparative morphology

By limiting our definition of a word to a string of characters separated by whitespace

or punctuation we are already showing our bias towards certain types of language. Or-

thographies (written language) allow us to approximate and represent spoken language

in a written form. However, not all orthographies are created equal. On the one hand,

we have phonemic orthographies which represent each phoneme (speech sound) with a

single unique grapheme (written character). On the other hand, we have logographic

orthographies where each character represents a concept or phrase with no relation to

the sound of a given word. In between these two extremes there are other types of writing

system such as partial or defective phonemic orthographies, syllabic orthographies, and

abjads. By assuming that orthography is a good proxy for pronunciation we are already

creating a bias for languages with phonemic orthographies. This bias is addressed here by

by allowing the algorithm to be modified to accommodate languages with less phonemic

orthographies.

A further distinction can be made between languages with higher or lower morpheme-

to-word ratios. Isolating languages have a low morpheme-to-word ratio; there is whites-

pace or punctuation between almost every written morpheme. Synthetic languages on

the other hand have a high morpheme-to-word ratio; morphemes are typically written

with very little whitespace. The higher the ratio, the harder it is to detect boundaries

between morphemes, because there are more boundaries to detect. Morphological seg-

Chapter 1. Introduction 5

mentation for an isolating language is almost trivial since the orthography does all the

segmentation for you. On the other hand, morphological segmentation is more difficult

for synthetic languages but it is more worthwhile since it allows you to gain much more

information about the morphological structure of a languages than is initially apparent.

The actual meaning of certain morphemes and the way they appear relative to each

other is something else that differs between languages. For example, one language may

describe grammatical gender using one morpheme and number using another, whereas a

different language may describe both gender and number using a single morpheme. This

makes translation complicated, since what can be described with a few morphemes in

one language may require many more to describe the same concept in another.

Even if two languages do use the same number of morphemes to describe a concept,

the way those morphemes are arranged can also differ in terms of ordering and degree

of isolation. Just as syntactic rules describe the order of words in a sentence, morpho-

syntactic rules may also describe the order of morphemes in a word. For example, one

language may always mark gender with a prefix, another with an infix, another as an en-

tirely separate word, and another may not mark gender at all. This variation often makes

it difficult to describe a one-to-one mapping between morphemes of different languages

but it does provide a framework to detect morphemes by comparing their representation

between two languages.

This may mean that if we are using this technique of language comparison to detect

morphemes, the result will likely vary depending on the languages being compared. In

other words, the morphemes detected by comparing language A to language B may be

different than those detected by comparing language A to language C. This assumption

will be explored further in chapter 4.

1.2 Motivation

The original motivation for developing this algorithm came from the observation that

many language-agnostic morphological segmentation algorithms over-segment words. In

other words, they are typically a little too eager to break a word into its (assumed)

component parts. For example, an algorithm may be trained to recognize that the string

ing is a common suffix in English. The training data may contain words like: making,

cooperating, opening, etc. which prompts the algorithm to train a model that predicts

all instances of ing at the right edge of a word are morphemes. Then, when the model

is given a word like bring, it may incorrectly predict that it should be segmented as

br -ing. The algorithm may have even determined that br is a valid root since it observes

Chapter 1. Introduction 6

contrasting words like bred, brine and recognizes that ed and ine are also English suffixes.

One way to prevent this over-segmentation problem is to provide more context about

specific words (like bring) that help the algorithm learn not only what a possible seg-

mentation could look like, but which words should be considered for segmentation in

the first place. This context could be provided explicitly, but that defeats one of the

main purposes of language-agnostic algorithms — not having to rely on language specific

data. A better solution is to try and infer this context from existing data. The algorithm

presented here attempts to infer a semantic context for each word in question and to

use that context to avoid this type of over-segmentation. To go back to the previous

example, it should recognize that bring, bred, and brine should not be considered to have

a common root because they are not semantically related.

Using semantic data in order to improve and refine morphological segmentation mod-

els is not a new idea (Narasimhan et al., 2015; Schone and Jurafsky, 2000). But the

technique typically used to extract semantic data is to analyze very large corpora in

order to extract word vectors. This is a great approach for languages where such large

corpora are readily available. However there are many languages where the amount of

data required to use these techniques is simply not available; or at least not available in

a form that is ready to be analyzed. In order to overcome this hurdle for low-resource

languages, this algorithm instead looks at translated corpora. We assume that the nec-

essary semantic relationships between words can be extracted from translated corpora

with less raw data than monolingual corpora. This is because the translations themselves

provide a lot of semantic information, so we don’t only have to rely on context clues to

determine semantic relatedness. This gives us the ability to extract the same sort of

semantic similarity from less, but more structured training data. Consider the difference

that the discovery of the Rosetta stone made in the study of Egyptian hieroglyphics —

even short translated texts can make all the difference.

Another observation of existing language-agnostic models shows that their design

prioritizes languages with relatively linear, simple morphemic structures and those with

phonemic orthographies. In order to level the playing field, the algorithm presented

here does not assume a single basic morphemic structure or orthographic-to-phonemic

mapping for all languages. The algorithm presented here allows for some flexibility in

terms of how each of these components of a given language are parsed and analyzed —

not so much that an advanced knowledge of the morphological structures for a given

language are required, but enough so that the algorithm does not inherently perform

better for one specific group of languages.

Chapter 2

Related Work

The task of unsupervised morphological segmentation has been a common subject of

study for computational linguists for more than half a century (Harris, 1955). Most

recent papers make a distinction between morphological segmentation and morphological

analysis. The former is concerned with determining morpheme boundaries based solely

on the immediate orthographic or phonemic context. The latter takes a more syntactic

approach, which incorporates the idea of hierarchical syntactic structures and morpheme

categories into the model (Goldsmith, 2010). In this chapter we will look at several

examples of each type with a focus on the way that each chooses to represent morphemes

in the models they build. For a more in-depth review of the various morphological

segmentation methods see Goldsmith (2010).

Harris (1955)

Some of the earliest morphological segmentation algorithms approached the problem from

the perspective of determining the most likely morpheme boundary given the immediate

linear context. In his 1955 paper, Harris considered the problem in terms of splitting

a sentence into morphemes by calculating peaks in “successor frequency” and defining

morpheme boundaries as falling at these peaks. This technique is driven by the obser-

vation that the types of phonemes that can occur at a given point in an utterance are

dependent on the phonemes that come directly before it. However, this chain of phoneme

dependency is weaker when a phoneme is morpheme-initial. This means that if it is rel-

atively difficult to predict the next phoneme in a sequence, there is a higher chance that

the next phoneme will begin a new morpheme.

Harris gives the example utterance “he’s quicker” which can be represented pho-

netically as /hiyzkwIk@ô/ and segmented into morphemes as /hiy/-/z/-/kwIk/-/@ô/. He

7

Chapter 2. Related Work 8

calculates the successor frequency (SF) of each sequence of phonemes (starting from the

first phoneme in each utterance) by counting the number of phoneme types that follow

each sequence in his corpus. For example, he found nine phonemes in his corpus that

follow /h/ (SF/h/ = 9), fourteen that follow /hi/ (SF/hi/ = 14), and so on. Morpheme

boundaries were then calculated to be placed directly after a peak in SF. For example,

if SF/hiy/ = 29 but SF/hiyz/ = 11, then a boundary was placed at /hiy/-/z/. Several

variations on this technique of determining morpheme boundaries are also discussed in-

cluding: calculating SF based on the following phonemes (instead of the preceding) and

calculating SF based on n-grams (as opposed to individual phonemes).

The main drawback to this method is that it requires the input data to already be

segmented into short two- or three-word utterances. This essentially means that the

input data must already be pre-segmented to a certain extent before this technique can

work properly. Also, this method assumes that each utterance is represented as a string

of phonemes instead of orthographically, which means that an initial tokenizing step

(splitting the input into words based on punctuation and whitespace) would be much

more difficult. Interestingly, Harris does go into some detail about the drawbacks of

using an overly complex phonemic alphabet to represent each utterance.

Harris’s technique introduces the idea of detecting morphemes according to the distri-

butional properties of groups of phonemes. This inspired many later approaches to this

problem such as Harris’s later work (Harris, 1970) and the morfessor family of algorithms

which are discussed below.

Creutz and Lagus (2007)

The original morfessor algorithm (Creutz and Lagus, 2007) attempts to segment words

into their component morphemes by asking the question: what is the most efficient way

to store the representation of these words in memory? This approach uses the Mini-

mum Description Length (MDL) principle (Jorma, 1998) in order to construct a model

that tries to minimize both the model’s lexicon (the morphemes described by the model)

and grammar (the “rules” dictating the usage of each morpheme). The grammar of a

morfessor model is a Hidden Markov Model (HMM) describing transition probabilities

between categories of morphemes in the lexicon and the emission probabilities of mor-

phemes given these categories. Segmentation is performed by finding the most likely

string of morphemes that can be chained together to form a word, given the probabilities

described in the HMM.

The morfessor algorithm described above is the most simplified form; other adap-

tations of this algorithm attempt to improve on this baseline by incorporating other

Chapter 2. Related Work 9

information about the morphemes themselves. This information includes morpheme fre-

quency, length, and left-right perplexity — a measure of the likelihood that a morpheme

occurs near the right or left edge of a word. The left-right perplexity measure can be

used to categorize morphemes into distributional categories such as prefix, suffix, and root

categories. This information is used to inform certain heuristics used in these adapted

morfessor models in order to determine whether a segmentation of a given word is a good

one. For example, one algorithm (morfessor-baseline-length) enforces the heuristic that

a string may only be split into two segments if at least one of the segments already exists

in the model’s lexicon. Another adaptation (categories-ML) first builds a regular mor-

fessor model but then categorizes certain members of the lexicon as “non-morphemes”

and attempts to remove them from the model by merging these non-morphemes with

adjacent segments.

In the description of the morfessor algorithm, Creutz and Lagus explain that they

recognize that some nuances will necessarily be lost when attempting to create a mor-

phological segmentation algorithm purely from a list of unannotated words. This lack

of nuance is mostly reflected in the tendency for this model to split most words into too

many segments (over-segmentation). This model also does not incorporate the concept

of allomorphy at all. Adaptations to the baseline morfessor algorithm attempt to im-

prove on it by introducing additional linguistically motivate heuristics. A side-by-side

evaluation of several of these adaptations on the baseline seems to show that no single

algorithm is best for all languages. The best model for Finnish (a highly synthetic lan-

guage) is not necessarily the best model for English (a more isolating language). For

example, the morfessor-baseline-length had the best precision scores when tested against

a Finnish corpus but the worst against the English corpus. This demonstrates that it

may not be possible to create a single best morphological segmentation algorithm for all

languages without allowing for significant language specific adaptations (Bender, 2009).

Cotterell et al. (2016a)

Originally, the task of morphological segmentation only considered splitting a word into

a flat structure. However, Cotterell et al. argue that the composition of morphemes in

words is similar to the syntactic structure of sentences and therefore should be modelled

using a hierarchical tree structure. This allows for a more in-depth analysis of the seg-

mentation of a given word. A tree structure is able to show the order in which morphemes

can be joined to create a full word as well as the dependency structure between each of

these component morphemes.

This concept is not new and is actually explored in an adaptation to the morfessor

Chapter 2. Related Work 10

algorithm (Creutz and Lagus, 2005). However Cotterell et al. expand on this method

by introducing an algorithm that not only produces segments in a tree structure but

also incorporates the idea of allomorphy by learning how certain morphemes change the

orthography of the morpheme they attach to. For example, the suffix ly changes the

word untestable when added (the result is untestably not untestablely). Their models are

able to reconstruct the original form of a word from the version modified after combining

it with an affix. This allows the model to produce segmentations that lend themselves

to a more in-depth morphological analysis since both underlying and surface forms of

morphemes are represented.

Cotterell et al. evaluate their algorithm by showing that it outperforms their previous

model which produces a flat structured output (Cotterell et al., 2016b). However, they

only provide an evaluation based on a single language (presumably English) so it is

difficult to say whether these results are generalizable to other languages.

This paper also introduces a morphological tree-bank, created by applying their model

to 7000+ English words. This is the first morphological tree-bank of its kind and may

be useful for developing future supervised morphological segmentation algorithms that

want to train on more structured data.

Sirts and Goldwater (2013); Eskander et al. (2016)

All the algorithms discussed so far have been unsupervised, meaning the inputs to these

algorithms do not require the data to be pre-segmented (manually or otherwise). Sirts

and Goldwater demonstrate a semi-supervised algorithm that generates an adaptor gram-

mar (AG) from a large amount of unsegmented data and a small amount of segmented

data. They show that starting their model off with a little bit of segmented data does

significantly improve the performance of the model.

An AG is a probabilistic context-free grammar (PCFG) which also includes an “adap-

tor” which modifies the probabilities of generating sub-trees according to the frequency

that these sub-trees occur in the training data. Sirts and Goldwater use the small amount

of segmented training data to tune the adaptor probabilities and to prune some non-

terminals in the PCFG which can be shown to be inconsistent with the segmented data.

They also use their pre-segmented training data in their AG-select model training tech-

nique. This technique involves first generating multiple possible parse trees for the words

in the training set and then categorizing these possible parses based on the shape of the

parse tree (number of branches, depth, etc.). Then they can use their pre-segmented

training data to rank the categories of parse trees, not just the individual parse trees for

a given word. This allows their model to generalize and perhaps provide better segmen-

Chapter 2. Related Work 11

tations for words with more uncommon constructions that would not have been parsed

properly otherwise.

Results from their experiments show that their semi-supervised algorithms are com-

petitive when compared to other segmentation algorithms. However, the most interesting

claim made in this paper is that their AG-select model can be initially trained on data in

one language and then adapted for use with another language by adapting it with a small

amount of segmented data. This technique is explored further by Eskander et al. (2016),

who describe a technique for using AG models to perform morphological segmentation

for a previously unseen language using AG models trained on multiple other languages.

They train multiple models for several languages and select the top performing model

according to the average F-measure score across all languages. The model that does the

best on average across all known languages is assumed to be the best for the unknown

language. The results of their experiment show that models selected in this way perform

as well as or better than morfessor but worse than an AG model trained specifically for

that language.

Schone and Jurafsky (2000); Narasimhan et al. (2015)

The algorithm introduced by Schone and Jurafsky is the first to explicitly incoporate

semantic information. Their goal is to reduce the probability that their model will at-

tempt to segment a mono-morphemic word simply because the word looks like it could

be segmented into morphemes that occur with a high frequency in the training data.

They give the example of the English word ally which should not be parsed as all -y.

In order to solve this over-segmentation problem they propose incorporating semantic

information about each word into the model. This would allow the model to rule out the

all -y parse if it has sufficient evidence that all and ally are not semantically related.

Schone and Jurafsky present an algorithm that takes not only words as input but

also semantic vectors for each of these words. The algorithm first generates several

possible segmentations by inserting the words into a trie structure and hypothesizing

that morpheme boundaries occur where the trie branches. Segmentations for a given

word are only considered valid if the segmentation implies that two words should be

related (because they share a common root morpheme) and the semantic relation can

be shown using the vectors for each of these words. For example, a parse that supposes

that ally contains the root all could be eliminated if we can show that ally and all are

not semantically related. Two words are considered sufficiently semantically related if

their cosine similarity is greater than the average cosine similarity between a word and

each word in the corpus. Schone and Jurafsky’s evaluation of this algorithm shows that

Chapter 2. Related Work 12

it performs similarly to an adaptation of the morfessor algorithm and they conclude that

incorporating semantic data may be a useful supplement to existing algorithms.

Narasimhan et al. expand on Schone and Jurafsky’s work by also incorporating seman-

tic data into their MorphoChains algorithm. They take a similar approach by first finding

multiple possible segmentations for words and then eliminating possibilities that conflict

with the semantic data. They attempt to model words by detecting root morphemes

and then showing how affix morphemes can be iteratively added in “chains” to form new

words. For example, the root word play can take the suffix ful to form the word playful

which is described by the chain play→playful — chains are described as parent-child

pairs with the parent on the left and the child on the right. The MorphoChain models

are log-linear models that predict these parent child pairs from a list of candidates (all

possible segmentations of a given word made by splitting the word exactly once). The

features used to train these log-linear models include a cosine similarity measure between

each parent and child. By including this as a feature, the models are able to incorporate

semantic similarity in the hopes of eliminating incorrect segmentations.

Narasimhan et al. evaluate their method against several baselines and show that their

model does in fact typically perform better in terms of overall F-measure score. However,

they also show that their models have a problem of under-segmenting words in English

and Turkish, and over-segmenting words in Arabic. This is likely due to their model’s

over-reliance on the semantic data. This tendency is discussed further in the following

chapters.

Chapter 3

Model

This chapter introduces an algorithm for Word segmentation using Grouped Semantic

networks (WuGS). By using translated texts as training data, the WuGS algorithm gen-

erates not one but two morphological segmentation models at a time. These models

come in the form of grouped semantic networks that are constructed using multilingual

parallel translated texts as training data. First, the translations are analyzed in order

to extract semantic relationships between individual words in each of the translated lan-

guages. Then, the orthography of semantically related words is compared in order to

determine the most likely morphological segmentation of each word in the training data.

By categorizing each predicted morpheme according to its productiveness and whether

it is free or bound, these models should be able to predict possible segmentations even

for previously unseen words. Also, by accounting for allomorphy and patterns in seman-

tically related groups of words, the models should avoid over-segmentation. The details

of how this fine balance is achieved are presented below.

3.1 Input Data

The input data used to construct the morphological segmentation models comes in the

form of multilingual parallel translated texts. These texts are sentence aligned such that

the nth sentence in text A, is a translation of the nth sentence in text B. For example,

an excerpt from some English/French translations of subtitles from the movie Big Fish

extracted from the OpenSubtitles corpus (Tiedemann, 2012) are as follows:

I saw an iceberg once.
J’en ai vu un, un jour

13

Chapter 3. Model 14

They were hauling it down to Texas for drinking water.
On le halait jusqu’au Texas pour avoir de l’eau potable.

They didn’t count on there being an elephant frozen inside.
On ne s’attendait pas y trouver un éléphant congel.

A single piece of text containing these sort of pairings for multiple sentences is typ-

ically called a bitext (or a multitext when more than two languages are represented).

The languages represented in bitexts are often differentiated as the source and the tar-

get. The source is the text in its original language, either as originally written or a

transcribed version of the original speech. The target is a human-translated version of

the source. However, it is not uncommon for a bitext to contain texts that were actually

both translated from a third text entirely.

One important thing to notice about the bitext example above is that the translations

are sentence to sentence and not word to word. Also, the translations for each sentence

are often in the context of a larger text. For example, the first French sentence in

the example above could just have easily been translated as “I saw one once”, with no

reference to icebergs at all. This is because the French translator is making use of an

anaphoric reference to the iceberg, introduced previously in the text1. This means that

a given word may be translated multiple ways even within the same text. This variety

of possible translations can be exploited to help our translation model learn semantic

similarities between words as will be demonstrated below.

3.2 Training

In order to train morphological segmentation models the algorithm executes the following

steps. First it takes the sentence aligned input data and finds the n most likely word-to-

word translations for each word in each language. Then it uses these word translations

to create a network where vertices are individual words that are connected by an edge

if they are semantically similar. Semantic similarity is deduced from the word-to-word

translations. The vertices are also grouped based on whether they share a common root

morpheme. A group therefore contains words that have a root morpheme in common

but may differ in terms of which affixes are connected to that root.

By looking at the co-occurrence patterns between these affixes we can begin to get

an idea of which affixes co-occur most frequently. After this initial grouping, a node may

belong to multiple groups or none at all. The subsequent steps attempt to minimize

1The previous line in the film is “You know about icebergs, Dad?”

Chapter 3. Model 15

the number of nodes that a single word belongs to while still respecting the affix co-

occurrence patterns observed in the data. The last step involves recognizing cases where

our algorithm has incorrectly parsed a string of morphemes as a single morpheme and

splitting up these strings in our models. Each of these steps is described in detail below.

Word-to-word translation

For the purpose of the WuGS algorithm, we consider two words to be semantically similar

if they are translated similarly. For example, the words house, houses, home and homes

are considered semantically similar if we can demonstrate that they can all be translated

as ‘maison’ and/or ‘maisons ’ in French. However, our input data aligns translated texts

at the sentence level, not the word level. In order to proceed, we must extract word-to-

word translations from our input data for both languages. The WuGS algorithm does

not introduce a novel way of doing word alignment. Instead we rely on existing word

alignment algorithms to do this initial data processing. There are many such algorithms

available and most behave similarly: they take a sentence-aligned corpus as input and try

to determine what is the most likely translation for a given word in a given sentence using

an iterative expectation-maximization approach. The experiments described in chapter

4 all use Percy Liang’s aligner (Liang et al., 2006) but in reality, any word alignment

model can be used.

At this point we should have a mapping from each word in language A to all possible

translations of that word in language B, as determined by the word alignment algorithm.

For example, the top five translations for the French word linguistique translated into

English (according to the cross-em aligner trained on the Europarl v7 corpus) are: lin-

guistic (0.408), linguistics (0.176), language (0.069), linguistically (0.046), word (0.043)2.

The aligner also predicts a long tail of very low-probability translations which we could

choose to ignore by only considering translations with a translation probability above a

certain threshold if desired. Figure 3.1 below shows the typical distribution of translation

probabilities for a given word.

The semantic network

A semantic network is a graph where each word is a vertex and edges connect vertices

that are semantically related. We want to create one semantic network for each of our

translated languages, using the translation probabilities discovered in the previous word

alignment step. The output of the word alignments can be displayed as a bipartite graph

2Translation probabilities are shown in brackets.

Chapter 3. Model 16

Figure 3.1: Translation probability distribution of the word ‘linguistique’ translated to
English

with unidirectional edges. These edges are present between a word wa in language a and

word wb in language b if our word alignment output predicts that wa can be translated

as wb. Note that our model may predict that wa can translated as wb but wb cannot be

translated as wa; hence the unidirectional nature of the edges. For example, a partial

bipartite graph showing these relationships might look like figure 3.2.

Figure 3.2: Partial bipartite graph showing English-French word translations

In order to transform this bipartite graph into two semantic network graphs (one for

Chapter 3. Model 17

each language), we can connect all words in a given language that share a translation.

In other words we can create a semantic network for language A by removing all nodes

in our bipartite graph that correspond to words in language B and collapsing some or all

of the edges. Then we do the same for language B by removing the nodes corresponding

to words in language A. An algorithm demonstrating this step is shown in pseudo-code

in algorithm 1. The input variable EdgesA is an array of triples corresponding to a word

in language A, a translation of that word in language B and the translation probability

between those words. EdgesB is the same but from language B to language A. Helper

function definitions can be found in appendix A.

Algorithm 1 From word translation to semantic network

FUNCTION create_semantic_network(edges_a, edges_b, min_prob)

hash_b = edges_to_hash(edges_b, min_prob) # see helper functions

network = Hash() # a new hash table

FOR edge IN edges_a

word, translation, prob = edge

IF prob >= min_prob AND hash_b.has_key(translation)

IF NOT network.has_key(word)

network[word] = []

FOR word_2 IN hash_b[translation]

network[word] = network[word] + [word_2]

RETURN network

min_prob = 0.2 # for example

SemNetA = create_semantic_network(EdgesA, EdgesB, min_prob)

SemNetB = create_semantic_network(EdgesB, EdgesA, min_prob)

There are several options regarding which types of semantic relationships we want

to consider. There are two types of relationships between words of the same language

demonstrated in figure 3.2; those where both words in language A can be translated as the

same word in langauge B (symmetric translation), and those where one word in language

A can be translated into a word in language B which in turn can be translated back as

another word in language A (asymmetric translation). For example, the French words

linguistique and linguistiques demonstrate a symmetric translation relationship in figure

3.2 because they both can be translated as the English word language. However, the

English words linguistic and language demonstrate an asymmetric translation because

linguistic can be translated into French as linguistiques which in turn can be translated

back to English as language but the relationship does not go the other way.

We have the option of constructing our semantic networks considering only symmetric,

Chapter 3. Model 18

asymmetric, or both types of translation. Algorithm 1 considers asymmetric relations but

could be adapted to consider symmetric relations instead (see algorithm 10 in appendix

A). Figures 3.3 and 3.4 show the difference between semantic networks built with each

of the two strategies outlined above.

Figure 3.3: Semantic network derived from figure 3.2 using symmetric translations

Figure 3.4: Semantic network derived from figure 3.2 using asymmetric translations

At first glance it may seem that we should always use both strategies since doing

so will always provide us with a semantic network with more connections at this point.

However, we must consider the fact that the word alignment algorithms we use are not

perfect and may introduce some error into our models by misaligning words. It is possible

that these misalignments are realized more as one strategy compared to the other which

means that we might in fact get better results by choosing only one strategy.

Network pruning and grouping

The semantic networks constructed in the previous section connect words that have some

degree of translational equivalence, which is a measure of semantic similarity. However,

just because words are semantically similar does not necessarily mean that they also

share a root morpheme. In the example semantic network shown in figure 3.4, the

words linguistic and language are shown to be semantically related even though they

do not share a common root morpheme3. In order to determine which words are both

3It should be noted that this paper takes a synchronic approach to language analysis, meaning that
we do not consider historical roots of words as valid interpretations of a given word’s root morpheme.
This is the approach taken by most modern morphological segmentation corpora such as the Celex
morphology corpus (Baayen et al., 1995). In this example it means that linguistic and language should
not be analyzed as having the same historical root morpheme: either the Latin lingua or the Proto-Indo-
European *dnghu- both meaning tongue (Quiles et al., 2012)

Chapter 3. Model 19

semantically related and share a common root morpheme, the next step is to define a

string similarity measurement and threshold and to remove the edges between any two

words that are not sufficiently similar. One solution is to measure string similarity using

a longest common substring (LCS) algorithm and to remove edges between words that

do not have an LCS of some minimum number of characters. This would preserve the

edge between linguistic and linguistics (an LCS of 10 characters: linguistic) but remove

the edge between linguistic and language (an LCS of 3 characters: ngu).

By pruning edges of the semantic networks using a string similarity measurement, we

are not only reducing the number of edges in the graph but also identifying sub-networks

defined by a shared LCS. These subnetworks are called groups and each group has a

label corresponding to the shared LCS of its members. For example, the words make,

maker, remakes are semantically related and the LCS of these words is the string make;

therefore we can create a group for these words with the label make. In many cases, the

group label should end up corresponding to the root morpheme that all the words in the

group have in common. This is similar to a technique used in Cotterell et al. (2016a) to

reconstruct the underlying form of morphemes.

At this point, a word may belong to more than one group. For example, in the make

group described above, all of the words are also semantically related to the word making

which does not contain the substring make — the LCS between these words including

making is simply mak. This means that words like make, maker, and remakes belong to

both the make group and the mak group. This example illustrates the case where there

are several allomorphs of a given root morpheme. Another case where a word may belong

to multiple groups occurs in the case of compounds. The word shoemaker is semantically

related to words like shoe and shoes as well as words like make and making. This means

that it is likely to be put into the groups: make, mak, and shoe. These groupings are

illustrated in figure 3.5.

The next goal of the WuGS algorithm is to determine which group is most appropriate

for each word. This is done by examining patterns of affix morphemes within groups and

maximizing occurrence probabilities of these affixes.

Building the model

After grouping words according to potential shared root morphemes, the next step is

to determine which of these potential shared roots is the correct root for a given word.

This can be done by first segmenting a word according to its predicted roots, seeing

which affixes are predicted by this segmentation and then ranking each potential root

according to the occurrence probabilities of the affixes. For example, consider the words

Chapter 3. Model 20

Figure 3.5: Example semantic network with multiple groupings

precognition, recognition, and cognition, all of which are semantically related. Based on

these relations, the word precognition could either have the root recognition (with the

prefix p) or cognition (with the prefix pre). By showing that pre is a much more probable

prefix than p we predict that cognition is a better candidate as the root morpheme of

precognition than recognition.

The probability of a given affix is determined by collecting co-occurrence data of

predicted affixes already present in the model. For example, the words remakes and

maker are in both the make and mak groups which means they can be segmented as

either re-make-s and ∅-make-r 4 or re-mak-es and ∅-mak-er. This can be analyzed as two

counts of re and ∅ co-occurring, one count of es and er co-occurring and one count of

s and r co-occurring. This data collection algorithm is described in algorithm 2. The

group’s input is a hash table mapping a potential root morpheme to a list of words. For

example, groups[‘mak’] may contain the words make, making, etc.

After collecting basic co-occurrence statistics, we can begin to eliminate low-probability

roots based on several heuristics. These heuristics are based on the assumptions that af-

fixes are productive morphemes and that they co-occur predictably. In other words, the

morphemes we identify as affixes should occur with a much higher frequency than those

we identify as roots. For example, we may see the root morpheme make (or mak) occur

several times in a given corpus in words like make, maker, remakes. But the suffix er will

occur much more frequently as a productive affix in words like maker, baker, producer,

etc. As a more concrete example, consider the Celex English Morphology Lemma (EML)

corpus (Baayen et al., 1995) which contains 24 examples of words with the root mak and

4The ∅ character is used to show the absence of an affix, not an example of null-derivation (Haspel-
math, 2002).

Chapter 3. Model 21

Algorithm 2 co-occurence data

FUNCTION co_occurrence_data(groups)

data = Hash()

FOR root IN groups

affixes = get_affixes(groups[root], root)

FOR aff IN affixes

IF NOT data.has_key(aff)

data[aff] = []

data[aff] = data[aff] + [root]

RETURN data

data = co-occurrence_data(groups)

the number of co-occurrences between two affixes

can be calculated with the following function

FUNCTION co_occurrences(aff_a, aff_b, data)

shared_roots = data[aff_a] INTERSECTS data[aff_b]

RETURN shared_roots.length

1426 examples of words with the affix er. Affixes are also assumed to co-occur predictably

because of the tendency for languages to use affixes to mark the syntactic category of a

given word (Haspelmath, 2002). For example, in English, both the suffixes ing and ed

are used to mark tense on verbs. Therefore, if we have evidence of a word containing an

ing suffix, we can expect to also find a word with the same root morpheme with an ed

suffix (eg: baked/baking, feared/fearing)5.

Possible roots for a given word are determined by the groups that word currently

belongs to. To eliminate a possible root, we can simply remove a word from a group.

For example, the word precognition may be removed from the group defined by the root

recognition if we determine that recognition is not a likely root. With all this is mind,

the following steps can be used to eliminate low-probability roots for specific words:

1. eliminate non-productive affixes.

2. redefine group labels according to their members.

3. account for allomorphy.

Eliminate non-productive affixes

After the data collection step described in algorithm 2, if we inspect the counts for each

affix a familiar pattern emerges. There are several affixes that occur many times but there

5While the WuGS algorithm does not identify irregular forms directly (e.g. fell/falling) they may be
identified by their conspicuous absence. This is discussed further in section 5.

Chapter 3. Model 22

is a long tail of affixes that occur very few times, maybe only once. Since we predict

that affixes are productive morphemes we can choose to remove words from a group that

implies the existence of a very low-frequency affix. For example, if the word carbonation

has the potential root bon (it belongs to the bon group), then this implies the existence

of two affixes: the prefix car and the suffix ation. Although the suffix may occur quite

frequently, the prefix occurs very infrequently. Perhaps this is the only example of car as

a prefix in the entire corpus. If a single affix implied by a given root occurs with a low

enough frequency, we can remove that word from the group. An implementation of this

step is shown in algorithm 3.

Algorithm 3 remove low-frequency affixes

FUNCTION remove_low_freq_affixes(groups, min_occurrences)

data = co-occurrence_data(groups)

FOR root IN groups

words = groups[root]

FOR word IN words

affixes = get_affixes([word], root)

FOR affix IN affixes

IF data[affixes].length < min_occurrences

groups[root].remove(word)

BREAK

Algorithm 3 can actually be applied iteratively until there are no more words to

remove from groups. This is because words are removed on the evidence of a single

low-frequency affix even though there may be several affixes implied by the word and its

root (the affixes returned by calling the function get affixes([word], root)). Given

the carbonation example above, if we have set the threshold to min occurrences = 2

and there are two examples of the affix ation and one example of the affix car, then after

the first pass there will be no examples of car and a single example of ation. This then

reduces the number of occurrences of ation below the the threshold which means that

on the second pass, the other word/root combination that implies ation would also be

eliminated. The advantage of iterative application of this step is that it is able to remove

low-frequency affixes that initially occur at rates above the min occurrences threshold.

Redefine group labels

After this first elimination step the group definitions themselves must be re-evaluated.

This is because the label for each group was defined as the string of characters that

each of the members of that group had in common. After removing some members of

Chapter 3. Model 23

the group, the string in common may have changed. For example, if a group label is

defined as the longest common substring (LCS) of the words in the group consisting of

prepare, prepared, and paris, then the group label should be par. But if the word paris is

removed from this group in the previous step since is is determined to be a sufficiently

low-frequency affix, then the new group consists of prepare and prepared only. At this

point, the group label should be changed to prepare since that is now the LCS of the

words in the group.

Account for allomorphy

It should be noted at this point that the algorithm has not taken allomorphy into account.

This means that the model currently contains overlapping groups that should really be

combined. For example, the word maker would likely belong to both the make and mak

groups. If we consider that both of these group labels are allomorphs of the same root

this implies that er and r are also allomorphs of the same suffix.

The evidence for allomorphy comes from two sources in our data. If there are two

groups whose members intersect, they are potential candidates for root allomorphy. If

the affixes implied by the two roots for words belonging to the intersection of the two

groups are also candidates for allomorphy then the two groups can be merged.

Affixes are candidates for allomorphy if they regularly co-occur in overlapping groups

and rarely co-occur in the same group. For example, the affix er is implied by the presence

of the word maker in the group mak and the affix r is implied by the same word in the

group make. Because the word maker appears in both groups this is evidence that both

groups overlap. However, the two affixes er and r are not both implied by words in a

single group. In other words, there is no word makr in the mak group and no word

makeer in the make group.

After merging, the group labels are changed to reflect both allomorphs by bracketing

the extra characters. In the example above, the label of the group created by merging

the make and mak groups would be mak(e). Subsequently, the word maker in this group

now is analyzed as having the root mak(e) with the affix (e)r. Adjacent characters in

brackets should be interpreted as overlapping, as opposed to consecutive.

3.3 Putting the model to work

Now that the model has been finalized, it is ready to be used to segment words. There

are two steps to word segmentation, which involve first discovering all roots present in

a word and then segmenting the word into roots and affixes. Where multiple possible

Chapter 3. Model 24

segmentations exist for a given word, they can be ordered based on the degree of semantic

relatedness between the word being segmented and the words in the group predicted by

the segmentation. The degree of semantic relatedness is calculated by counting the

number of edges between the word in question and the other words in the group.

Segmenting compounds

Up to this point, the algorithm has considered words that contain a single root. However

this is not always the case; a word may contain multiple roots as well as affixes, and the

algorithm described here must be able to account for these words. Just like before, we

can use both semantic and orthographic clues to determine which words contain multiple

roots; which we will refer to generally as compound words (or compounds). Compounds

are defined here as being words that belong — or used to belong before one of the pruning

steps — to multiple groups where the label for at least one of the groups is also a word

that the compound is semantically related to. For example, the word houseboats belonged

(before pruning) to two groups whose labels are house and boat, and there is an edge in

the semantic network connecting the vertex for houseboats to the vertex for boat.

The reason why the criteria includes groups that a word used to belong to is because

of the various pruning steps described in previous sections. For example, algorithm

3 describes a method for removing all words from groups that imply non-productive

affixes. By applying this algorithm, the word houseboats would likely be removed from

the group house because the proposed suffix boats is not productive. Similarly it would

likely be removed from the group boat since house is not a productive prefix. Luckily, the

semantic network is implemented in a way which makes it easy to query which groups a

word used to belong to as well as which groups it currently belongs to.

Using these criteria, we can determine whether a given word is a compound and

determine where the morpheme boundary between the two root words lies. The boundary

may not be totally clear if the two roots of the word are not adjacent, as is the case with

a word like cupsful (a plural of cupful) which contains the plural affix s after the root

cup. In cases with non-adjacent roots, the algorithm will analyze the middle section as an

infix if there is evidence for it as an affix either following the left-most root or preceding

the right-most root. In the cupsful example, we should see if there is a word cups with

the root cup or the word sful with the root ful. If neither are present in the model, we

can conclude that the word should not be analyzed as a compound.

This method can also be adapted slightly to accommodate words with more than two

roots by iteratively applying the method described above until no more compounds are

found. For example, the word crossbowman may belong to both the groups bow and man

Chapter 3. Model 25

which allows us to initially determine that it can be split into crossbow -man. The man

segment is a root and so cannot be segmented further. However, the crossbow segment

contains the root bow as well as the remainder cross. This remainder should first be

analyzed to see if it is a productive affix on the root (can we analyze cross as a prefix of

bow?). If not, then crossbow should be analyzed as a second compound.

It may also be the case that crossbowman also belongs to the group cross. In this

case we may be able to determine from the outset that cross-bow -man is a possible way

of segmenting this word as a triple compound.

Segmenting affixes and accounting for affix sequences

The affixes described by this model so far are discovered by taking a word, removing

its root, seeing what is left, and determining whether what is left is a productive affix.

However, this process is not sufficient if there are several sequential affixes. Lets take

the classic example of the word antidisestablishmentarianism. The root of this word is

establish but our model will have eliminated the group establish because the potential

affixes antidis and mentarianism are not productive. The proper analysis is to treat

these potential affixes not as a single morpheme but as a sequence of morphemes (anti

+ dis and ment + arian + ism).

Evidence for affix sequences comes from the fact that many group labels are actually

words themselves. For example, the word creationism may belong to the group creation,

but creation itself is also a word in the network which belongs to the group creat(e). This

indicates that creation is not a root in itself (even though it is the label of a group) but

is a root combined with an affix. In this case, the correct segmentation for creationism

is creat(e)+ion+ism.

By analyzing each group label to see whether it could itself be segmented further,

the model can account for these affix sequences. The recursive algorithm 4 demonstrates

how a word can be segmented even if there are multiple possible affix sequences.

Algorithm 4 possible segmentations

FUNCTION possible_segmentations(groups, word)

segs = []

FOR group IN get_groups(groups, word)

affixes = get_affixes([word], group)

IF is_word(group) # returns true if the argument is a word in groups

affixes = affixes + possible_segmentations(groups, group)

segs.append(affixes)

RETURN segs # in the actual implementation there is a step that sorts this as well

Chapter 3. Model 26

However, there is a major flaw in algorithm 4 that becomes obvious if we reconsider

the antidisestablishmentarianism example. In order to determine that establish is the

root of this word, all intermediate words must be present in the network. To take a

simpler example, we cannot determine that creat(e) is the root of creationism if the

intermediate word creation is not present. One solution would be to adapt the algorithm

to recognize that ionism can be decomposed into two productive affixes present in the

model (ion and ism) and just assume that this is the correct segmentation if we can

show that creationism once belonged to the creat(e) group. The drawback of this is that

it introduces too many opportunities for over-segmentation based on minimal evidence,

something WuGS is designed to avoid. The solution is to introduce the concept of

potential words that can be verified or eliminated during online training.

Potential words are words that do not exist in the model, but are predicted to exist

in the language in question based on ‘holes ’ in the model. An example of a ‘hole’ is

exactly like the creation example above. During segmentation, the model may predict

that there exists an intermediate word — in our example, the intermediate word is

creation in between the word creationism and the root creat(e) — by determining that

an affix that has been determined to not be productive enough is actually composed of

multiple productive affixes. Potential words are inserted into the model as if they were

actual words but given a ‘potential ’ label. Words with a ‘potential ’ label are ignored

by the segmentation algorithms. The ‘potential ’ label may be removed if evidence of its

existence is provided as the model is updated.

Updating the model and guided training

Because the model is essentially just a semantic network, it can be updated after training

by adding or removing vertices or edges from the network. Adding a vertex is the

equivalent of learning a new word, adding an edge is the equivalent of learning that

two words are semantically related. Simply adding to the network will not change the

segmentations the model predicts. In order to do that the newly added words must be

sorted into groups by predicting their roots. The roots can be predicted for the newly

added words by applying the same grouping algorithm to the sub-network containing

the newly added vertices and any other adjacent vertices (those that are connected to at

least one new vertex by an edge). If a word is added that already exists in the model as a

potential word, then the ‘potential’ label can be removed. However, any edges that were

predicted for the potential word that are not also confirmed by new data must remain

as potential edges.

The existence of potential vertices and edges in the graph means that the model can

Chapter 3. Model 27

guide its own learning by forming hypotheses and then seeking out data to confirm or

invalidate them. As a very basic example, it is possible to interactively train the model

by iterating over all potential vertices and edges and asking a speaker of the language

either: “Is X a word?” where X is a potential vertex or “Is the word X related to the word

Y” where there is a potential edge between vertices X and Y. It may even be possible to

conduct semi-guided training that uses additional unstructured input data in a focused

way, essentially using the initial model to bootstrap multiple iterations of unsupervised

learning. These techniques will be discussed in more detail in chapter 5.

Manual configuration

It should be clear by now that the morphology of any language can be complex and

many factors can go into determining where boundaries between morphemes lie. It may

be possible to create an algorithm that performs equally well for all languages out of the

box, but if that algorithm exists, the WuGS algorithm as described is unlikely to be it.

The simple fact that WuGS uses orthographic data means that it is biased in favour of

languages with more phonemic writing systems. In order to mitigate these biases, WuGS

provides the opportunity to be customized based on limited linguistic knowledge. These

customizations can either be applied as phonemic regularization rules or as root detection

algorithms.

Phonemic regularization rules essentially make an orthography more phonemic. For

example, a grapheme to phoneme (g2p) algorithm may translate a written word to its

phonological representation. For example, the word laughter can be represented phono-

logically as /læftô/. This makes sure that both au and gh are treated as indivisible units

of speech, which eliminates the possibility that the model will consider segmentations like

la-ug-hter. Phonemic regularization rules can be applied to each word as a preprocessing

step, essentially converting the input data before it is seen by the algorithm. Additionally,

they can be applied to individual morphemes after each step of the algorithm.

Root detection algorithms describe the process by which we can analyze multiple

words in order to discover their shared root morpheme. One possible root detection

algorithm discussed above is to take the longest common substring (LCS) of two words,

but that is not the only option. Some languages have root morphemes composed of non-

adjacent characters, in which case using a longest common subsequence algorithm may

be more appropriate6. Or, you may decide that you don’t want to consider a certain set

6The difference between these two is that the longest common substring considers only adjacent
characters, whereas the longest common subsequence considers non-adjacent characters as well. The
longest common substring of the words wake and woke is ke whereas the longest common subsequence

Chapter 3. Model 28

of characters — like vowels for example — when detecting roots. These are just a few

examples but possibilities are endless, as long as an algorithm can compare two strings

and return what they have in common, it can be used to build these models.

3.3.1 Output

After the model described above is constructed, it can now be used to actually perform

morpheme segmentation. If the input word is already present in the model (i.e. it exists as

a vertex in the network), the segmentation procedure is exactly as described in algorithm

4 after first determining whether a word is a compound and splitting it into its component

parts if so. If multiple possible segmentations are present for a given word, they can be

ordered according to the degree of semantic relatedness between the input word and the

other words with the same root implied at each segmentation step. For example, imagine

the word unimaginable belongs to two groups with labels unimagin(e) and imagin(e).

In order to determine whether this word should be initially segmented as unimagin(e)-

able or un-imagin(e)-able, we can count how many edges there are between the words

in the unimagin(e) group and unimaginable and the words in the imagin(e) group and

unimaginable. The segmentation created based on the group with more connected edges

is then ordered first.

If a word is not present in the model, a best guess is made as to where to insert the

word in the model and the same segmentation procedure is performed. If the input word

is present as a potential word then that word is treated as non-potential for the purposes

of its segmentation. On the other hand, if a word is not present in the model at all, it

is inserted into the model by choosing a group and performing the same segmentation

procedure as if that word belonged to that group. The group detection procedure is

described in algorithm 5 below where groups is a list of all group labels, word is the

input word, and root detection function is a function that performs the root detection

algorithm described in section 3.3.

Algorithm 5 possible groups

FUNCTION possible_groups(groups, word, root_detection_function)

possibilities = []

FOR group IN groups

IF group == root_detection_function(word, group)

possibilities.append(group)

RETURN possibilities

is wke.

Chapter 3. Model 29

If we are also provided some context for the word not present in the model, it is

possible to limit the groups argument to just those groups that contain at least one

word that is semantically related to the unknown input word. For example, if the

root detection function used for a given model finds the longest common subsequence

between two words, it might predict that the input word homeowner belongs to the group

meow which contains the words meow, meowing and meows. However, if we can show

that homeowner is not semantically related to any of these words, we can eliminate the

meow group as a possibility.

Additionally, the number of possibilities can be limited based on the affixes that

are implied by the input word belonging to a given group. This is the same initial

pruning procedure that was used initially to construct the model where low-frequency

(non-productive) affixes were eliminated early on. In the homeowner example, the affixes

implied by its inclusion in the meow group are ho and ner, neither of which are likely to

be high-frequency affixes. If it can be shown by inspecting the other affixes in the model

that ho or ner are not productive, we can safely eliminate meow as a possible root.

If there are no possible groups found, then there is one other possibility; the input

word might be a compound. The same procedure for detecting compounds as described

in 3.3 can be applied. If there has been semantic information provided for the input

word then those semantic relationships are used. Otherwise the word is assumed to be

semantically related to all other words.

A high-level description of the segmentation procedure is shown below in algorithm

6.

Chapter 3. Model 30

Algorithm 6 segment

FUNCTION segment(word, model)

IF word IN model

IF word.is_a_compound()

part_a, part_b = split_compound()

segmentation = segment(part_a).combine_segmentations(segment(part_b))

ELSE

segmentation = possible_segmentations(model, word)

ELSE IF potential(word) IN model # is the word a potential word in the model

depotentialize(word, model) # remove the potential label from the word

segmentation = segment(word, model)

repotentialize(word, model) # add a potential label to the word

ELSE

insert_unknown_word_in_model(word, model)

segmentation = segment(word, model)

remove_from_model(word, model)

RETURN segmentation

Chapter 4

Evaluation

The Word segmentation using Grouped Semantic networks (WuGs) algorithm described

in chapter 3 is evaluated here by comparing segmentations generated by the model to

a gold-standard corpus containing morphological segmentations. These comparisons can

be made in several ways, each resulting in an evaluation that reveals something specific

about the accuracy of the models being tested. The evaluations presented below will test

both morphological precision and recall as well as boundary precision and recall. Each of

these concepts and the means of evaluating them are explained in further detail below.

Since the algorithm described here trains models using parallel corpora, models can

also be evaluated by comparing the target language it has been trained with. For example,

an English model can be trained using an English-French corpus, an English-Arabic

corpus, etc. By comparing results between these models, we can investigate how the

target language affects the accuracy of a model.

Baseline models and settings

In order to provide a frame of reference, the results from evaluating two other models

will also be shown as a baseline comparison whenever possible. The baseline models

are generated using the morfessor2.0 algorithm (Virpioja et al., 2013) and the Mor-

phoChain algorithm (Narasimhan et al., 2015). The morfessor2.0 algorithm is a very

popular morphological segmentation algorithm that can be trained using raw text data.

It is a python based implementation of the original morfessor algorithm (Creutz and

Lagus, 2007). The MorphoChain algorithm on the other hand is trained using both raw

text data and word embeddings. This makes it an interesting baseline to compare to

since, like the algorithm described in this paper, it also uses semantic data. The word

embeddings for MorphoChains were generated by extracting vectors from the training

31

Chapter 4. Evaluation 32

corpus using word2vec software (Mikolov et al., 2013).

For each algorithm compared here, the basic settings were used and no attempt was

made to manipulate the settings in order to get better performance for a given model.

This was done in order prevent bias in favour of one model over another. It is assumed

that for both the morfessor 2.0 and the MorphoChain algorithms, the default settings

are intended as the recommended settings for using each algorithm “out of the box”1.

For the algorithm described in this paper, the base settings are as follows:

• words that have a likelihood of being translational equivalents less than 10% are

not considered;

• both symmetric and asymmetric translations are used;

• a root must be at least two characters long;

• affixes that occur less than five times in the model are removed.

For one final experiment involving the conversion of words to their phonological rep-

resentation during training, the grapheme to phoneme model epitran (Mortensen et al.,

2018) was used during the segmentation step. This final experiment tests the assumption

that a phonological representation of a word results in better segmentations.

Gold-standard corpus

The gold-standard corpus used in these evaluations is the Celex2 corpus which contains

morphological segmentations for English (en), German (de), and Dutch (nl). All of

the models used in this evaluation were trained on the TED Talks 2013 parallel corpus

(Tiedemann, 2012) which was selected because it contained corpora for each of the three

gold-standard languages as well as several other languages with non-Latin orthographies

such as Arabic and Chinese. It was also chosen because the content of the corpus itself

covered a large variety of topics, meaning there would be a lot of semantic diversity in

order to test how the models perform outside of a narrow semantic domain.

1Also note that while the morfessor algorithm is incredibly easy to use, it was very difficult to get the
MorphoChain algorithm to produce a model trained on any corpus other than their minimal example.
For this reason, the MorphoChain results shown here are from a slightly modified algorithm. I tried to
make as few changes possible in order to maintain the integrity of the code. However it should be noted
that since I am not the author of this algorithm, I cannot be certain that my changes did not affect the
results.

Chapter 4. Evaluation 33

4.1 Comparing Models

4.1.1 Morphological precision and recall

Morphological precision and recall are calculated by comparing the morphemes generated

from the output of a given model (test morphemes) to the gold-standard morphemes

described in the Celex2 corpus (gold morphemes). Precision is calculated as the number

of test morphemes that also appear as gold morphemes for a given word, divided by the

total number of words. Conversely, recall is calculated as the number of gold morphemes

that also appear as test morphemes for a given word, divided by the total number of

words. Both of these scores are calculated using the EMMA2 (Evaluation Metric for

Morphological Analysis 2) software (Kurimo et al., 2009), a more efficient version of

the original EMMA algorithm (Spiegler and Monson, 2010). EMMA2 also reports an

F-measure which is calculated as 2pr/(p + r) where p is the precision score and r is the

recall score. The F-measure is used to merge the precision and recall scores into a single

value which can be used to directly compare the results of each model.

Figure 4.1 shows these three scores for the WuGS and the two baseline models across

all three languages. Both the WuGS model and the MorphoChain model show quite

high precision scores but relatively low recall scores whereas the morfessor model is more

consistent. A high precision score with a low recall score indicates that the segmentations

that the model is making are accurate but that there are many cases where the model

is not making segmentations where it should. This is evidence of under-segmentation in

both the WuGS and the MorphoChain model. On the other hand, the morfessor model

seems to make more incorrect segmentations (lower precision) but makes more correct

segmentations more often (higher recall). This is evidence of over-segmentation by the

morfessor model.

One of the stated goals behind developing the WuGS algorithm was to reduce the

effects of over-segmentation by ensuring that segmentations were made only with suf-

ficient semantic and orthographic evidence. The results shown here seem to indicate

that this approach was too conservative. In other words, WuGS has improved precision

at the expense of recall. This also seems to be a flaw in the MorphoChain algorithm,

which also requires semantic evidence. On the other hand, the morfessor algorithm is

not conservative enough and that is reflected in its relatively low precision score.

By comparing the performance between languages, it seems that all models seem to

perform better for English compared to German or Dutch. This may be because there

are slightly fewer segmentations to make in English. The average number of morphemes

per word in the English gold-standard corpus is 1.7 whereas for Dutch and German it is

Chapter 4. Evaluation 34

Figure 4.1: Precision, recall, and F-measure reported by EMMA2

(See table B.1 for complete data)

closer to 1.95. There may be other factors at play as well, these will be discussed further

in chapter 5.

Boundary precision and recall

The Boundary Precision and Recall (BPR) metric (Kurimo et al., 2009) calculates similar

precision, recall, and F-measure scores, but instead of looking at the morphemes described

by a given segmentation of a word, BPR is concerned with the boundary points between

these morphemes. A boundary point exists wherever there is a morpheme boundary

between two letters in a word. For example, the segmentation pre-meditat-ed for the word

premeditated implies morpheme boundaries after the third and tenth letters. Precision

from BPR can be calculated by checking how many of the predicted boundary points

are correct (i.e., how many match the gold reference) and recall can be calculated by

checking how many of the boundary points in the gold reference were predicted.

The advantage of comparing the segmentation boundaries as compared to the mor-

phemes themselves is that it also evaluates the order of morphemes. For example, mor-

pheme precision tests whether a given predicted morpheme appears anywhere in the

gold-standard segmentation whereas a boundary only matches if the segmentation was

Chapter 4. Evaluation 35

made between the correct letters.

Regardless, this distinction seems to have made very little difference compared to

the EMMA2 analysis. This may be because all three languages being evaluated do not

allow for significant reordering of morphemes within words and they also do not use

a lot of reduplication (Dryer and Haspelmath, 2013). We would expect the EMMA2

and BPR results to be drastically different only if the morpho-syntactic rules of the

language being evaluated were flexible enough to allow for free ordering of morphemes

or if the gold-standard that is being compared against presents words segmented into

morphemes using the longest forms of all allomorphs. For example, if the gold-standard

describes the segmentation of the word making as make-ing then the BPR may consider

the boundaries to be wrong even for a correct parse of mak -ing. In order to prevent this

and to get the most accurate results, the Celex2 corpora were pre-processed to ensure

that all segmentations contained the exact same number of characters as the original

word.

The table in figure 4.2 also shows the recall scores for a simple model that returns the

word being segmented2. In other words, it always predicts that there are no segmentations

to be made for the input word. This shows that the WuGS outperforms this simple

baseline by 7–10% which shows that it performs better than a naive guess.

Since the BPR and EMMA2 analysis results are so similar, let us focus on just BPR

for the moment. We have already seen that the results for each model differ depending on

the source language. By controlling for source language, we can also see how the model

behaves when being asked to segment words that occur in the training data compared to

previously unseen words. This was tested by splitting the gold-standard into the set of

words that were in the training model, and the set of words that were not in the training

model, and analyzing these sets with the BPR algorithm. Figure 4.3 shows the results

of this test.

As might be expected, the F-measure is higher for all models for the ‘in-training’

data. This is because a model is likely to have more available evidence for a word it was

trained on. For the models that are trained using semantic evidence, that evidence is

only available for previously seen words. For all other words the semantic relatedness

must either be guessed at or an analysis must be made without it. See chapter 5 for a

discussion of incorporating semantic information at the testing stage.

One thing to note is that the percentage of ‘in-training’ words out of all words in the

test set varies from language to language. For English, 38% of words are ‘in-training’ but

2Precision and F-measure are not shown, since precision will trivially always be 1.0 and the F-measure
is calculated from this trivial precision score.

Chapter 4. Evaluation 36

Figure 4.2: Precision, recall, and F-measure reported by BPR

(See table B.2 for complete data)

for German it is 30% and for Dutch it is 19%. Interestingly, this did not seem to have

a major effect on the results as compared to the overall scores shown here. For all the

data broken down by language see table B.7 in appendix B.

Another way to break down the test data is by the number of morphemes in the

gold-standard. We have already hypothesized that the algorithms that rely on semantic

information (WuGS and MorphoChain) typically under-segment whereas the morfessor

algorithm seems to over-segment. If this is true we should see the results for the morfessor

models improve as the number of morphemes increases and we should see an opposite

trend for the other two.

Figure 4.4 shows the result of this experiment. The gold-standard corpus was divided

according to how many morphemes are in each word. For example, the scores in the

‘2’ column were evaluated on words that can be segmented in to exactly 2 morphemes

according to the gold-standard. Both the WuGS and the MorphoChain models have

very good precision scores throughout but the recall scores start off low and decrease

as the number of morphemes increase. The morfessor model on the other hand starts

with relatively low precision and recall scores3 and they both increase as the number

3Note that the recall score will always be 1.0 when there is exactly one morpheme in the gold-standard.
This is due to a quirk in how the BPR algorithm treats words with a single morpheme. Since there
are no morpheme boundaries to analyze when there is only a single morpheme per word, BPR does not
calculate any mismatched boundaries and assigns a perfect recall score.

Chapter 4. Evaluation 37

Figure 4.3: Precision, recall, and F-measure reported by BPR for previously seen and
novel words

(See table B.3 for complete data)

of morphemes increases. The fact that the precision rates remain high for both WuGS

and MorphoChain reaffirms that the observation that when these models do predict

segmentations they are usually the correct ones.

4.2 Orthography vs. phonology

Chapter 1 discusses the fact that unsupervised morphological segmentation models may

be able to produce better results for languages with more phonemic orthographies. Test-

ing this proved to be a challenge, since simply showing that a given model performs

better for a language with a more phonemic orthography is not conclusive, since many

other factors can influence that result, given that two entirely different languages are

being compared. Therefore, in order to test this, two models were trained for the same

language: English. One model was trained with orthographic input data (the input data

was not changed) and one with phonological input data. The phonological input was

obtained by converting all the words in the English half of a translated parallel corpus to

their phonological representation using epitran (Mortensen et al., 2018), a multilingual

grapheme-to-phoneme converter.

Chapter 4. Evaluation 38

Figure 4.4: Precision, recall, and F-measure reported by BPR by morphs per word

(See table B.4 for complete data)

The second challenge arose because there was no gold-standard corpus containing

phonological representations of morphological segmentations for English. Because of this,

it was not possible to test the models in the typical way by comparing their segmentations

to a gold-standard. However it is still possible to run a limited test on the phonological

model by testing whether it correctly predicts the number of morphemes per word. This

analysis is not as precise as the EMMA2 or BPR analyses but can be used as a rough

guide to compare the performance of the orthographic or the phonological model relative

to each other.

Figure 4.5 shows the results of an experiment which calculated the average difference

between the number of morphemes in the (orthographic) gold-standard for a given word

and the number of morphemes predicted by each model for the same word. Figure 4.5

shows the results binned according to the number of morphemes in the gold-standard

segmentation. The values are predicted as follows for each model:

∑|gold segs|
n=1 |gold segsn| − |model segsn|

|gold segs|

Where gold segs is the set of gold-standard segmentations, model segs is the set of

segmentations for the model being tested, and where gold segn and model segn refer to

the segmentations for the same word. A positive value indicates that the model predicted

Chapter 4. Evaluation 39

Figure 4.5: Average morpheme count delta from gold-standard for orthographic and
phonological training data

(See table B.5 for complete data)

more segmentations on average than the gold-standard and a negative value indicates that

the model predicted fewer.

As we saw in previous experiments, both models under-segment in most cases. For

example, both models predict that there are almost 1.5 fewer morphemes per word on

average than the gold-standard when the gold-standard shows that there should be three

morphemes.

Interestingly, the actual results from the orthographic and phonological models are

very similar. The phonological model performs slightly better when the number of mor-

phemes per word should be exactly one and slightly worse in all other contexts. This

result shows that the assumption that a phonological representation will inevitably result

in a more accurate model is not necessarily true. Possible reasons for why this assumption

does not hold are discussed in chapter 5.

4.3 Target language variation

As discussed in chapter 1, detecting morphemes by comparing languages may produce

different results depending on the languages being compared. In order to test this in the

context of morphological segmentation, we created seven morphological segmentation

Chapter 4. Evaluation 40

Figure 4.6: Precision, recall, and F-measure reported by BPR with varying target lan-
guages

(See table B.6 for complete data)

models for English trained using seven different translations4 from the TED Talks 2013

corpus (Tiedemann, 2012), and evaluated each using BPR analysis.

Figure 4.6 shows the results of this test. The differences between the models trained

on different target languages are minimal. The only slight outlier is the model trained

with an English-Slovenian translation with an F-measure 5% lower than the average of the

other models. This variability is probably not due to any difference in language however,

and is more likely due to the fact that the English-Slovenian corpus was significantly

shorter than any of the others5.

The ‘all’ column in figure 4.6 shows the results from a model trained using all seven of

the translated corpora. This model performs much better than any of the single language

models by at least a 10% increase in the F-measure score. Note that the number of

English words used to train a WuGS model would not be any higher than for any of

the single language models, but the amount of semantic data would be much greater.

In other words, the number of English words in the training data would not increase by

adding more translations of the same text to the model’s input. This allows us to rule

4Arabic, German, French, Russian, Slovenian, Turkish, Chinese (simplified).
514,822 sentences for Slovenian compared to all the other languages which contained between 132,640

and 159,241 sentences.

Chapter 4. Evaluation 41

out a “reverse Slovenian effect” in which the performance increases as the raw number of

words in the source language that the model is trained on increases. This indicates that

increasing the amount of semantic data provided to WuGS does in fact improve its overall

performance. It also shows that providing data from multiple languages also increases

the amount of information available to the model instead of just repeating the same

semantic information over and over again. For example, the model may learn that music

is semantically related to musical from one source and that it is related to musician in

another. This finding that combining data from a variety of languages has implications

for the future improvement of the WuGS algorithm and will be discussed in more detail

in chapter 5.

Chapter 5

Discussion

The goal of this paper was to describe a method for constructing a morphological seg-

mentation model that improves on the current state of the art by reducing the tendency

for over-segmentation by incorporating semantic data from parallel translated corpora

into the model. This chapter discusses whether or not this goal was reached, other ob-

servations encountered in the pursuit of achieving this goal, and suggestions for future

improvements.

5.1 Reducing over-segmentation with semantic data

When compared to the morfessor 2.0 algorithm (Virpioja et al., 2013), the models created

using the method described in this paper do drastically reduce the amount of over-

segmentation. Especially, when presented with a monomorphemic word, this model is

likely to correctly parse it as containing a single morpheme. From this observation alone,

we can conclude that the algorithm is successful at achieving its stated goals.

However, stopping the analysis here would be misleading. As the results of the exper-

iments in chapter 4 show, the reduction of over-segmentation came at a price — namely

an increase in under-segmentation. In other words, the advantage gained in precision was

drastically offset by a decrease in recall when compared to the morfessor 2.0 baseline.

However, this trade-off was not unique to WuGS — tests using the MorphoChain algo-

rithm also showed the same pattern of high precision and low recall. This indicates that

the problem may not be with any single algorithm but with an over-reliance on semantic

data in general.

42

Chapter 5. Discussion 43

5.1.1 Hunting for more data

Both WuGS and the MorphoChain algorithm use semantic information (albeit from dif-

ferent sources) in order to decide when not to segment a given word. It seems that in

many cases, the semantic information provides too strong a restriction and many segmen-

tations that should be made by the model are prevented. In order to improve the recall

of WuGS models, we should therefore limit the influence the semantic information has

on making the decision to segment or not. However, blindly ignoring the semantic data

in the pursuit of a better recall score would just bring us back around to an algorithm

with an over-segmentation problem. The question is therefore, not how do we reduce the

limiting effect of the semantic data on segmentation but how do we make better use of

this data.

One possibility is to simply look for other sources of semantic data. Figure 4.6 in

chapter 4 already shows that by providing additional semantic information, the recall

score can be improved without negatively affecting the precision score. This is because

a word is only segmented if it can be compared to another word that it is semantically

related to. By increasing the amount of semantic data, we also increase the chance that

the semantic relationships present in the model reflect the state of the language itself.

We have already seen that more semantic data can be obtained by including multiple

translations of the same text. However, this evidence is not always available, especially

when we are building a model for a low-resource language where only a few parallel

corpora may be available. Instead, it may be possible to incorporate semantic data

extracted by other means. For example, we could use the same technique used by the

MorphoChain algorithm and extract word embeddings and then use those embeddings

to supplement our model’s semantic network. It might even be possible to use other

texts entirely. Suppose you have a single parallel corpus for a given language and several

additional monolingual texts; it would be possible to use the translated corpus to initially

build a semantic network which could then be supplemented with word embedding data

from the monolingual texts. This raises the question of whether it is even worth extracting

semantic data from parallel corpora in the first place. If semantic data can be extracted

from a monolingual text using word embeddings, what is the point in restricting the type

of possible input data to the model? Firstly, as previously discussed, translation data can

be used to supplement monolingual data, which means you can get more information out

of a single source. Secondly, the results from the experiments in chapter 4 seem to show

that the quality of semantic data from translated corpora may be better than monolingual

corpora for morphological segmentation tasks. This comes from the observation that

WuGS seemed to outperform the MorphoChain model in most cases. This of course

Chapter 5. Discussion 44

could be down to the model design and not the quality of the input data, but it does

seem to indicate that both sources of semantic data are valid and useful.

Finally, the model is not using all the semantic information it is given. The semantic

network created by WuGS currently contains unweighted edges. However, it would be

simple to add weights to the edges according to the translation probabilities used to build

this network. At the moment, the translation probabilities are only considered to ensure

that they exceed some minimum threshold before being added to the network. The in-

formation that weighted edges provide could theoretically be used to determine the most

likely group a given word belongs to or even to help determine the most likely of several

segmentation options. In practice however, any attempt to incorporate weighted edges

into the model design drastically reduced the performance of the model and so any at-

tempt to incorporate this information was abandoned. This drop in performance seemed

to be due to the fact that the translation probabilities were simply messy. The word-to-

word translation algorithm almost always found a large number of possible translations

for each word, and the ones which looked to be the best subjectively were often not the

ones with the highest translation probabilities. This meant that relying on the reported

probabilities to determine degrees of semantic similarity was often misleading. No good

method was discovered for reliably parsing this messy data so the weights were simply

ignored. It may be possible to make use of a weighted network in future iterations of

the WuGS algorithm if we can solve the puzzle of extracting useful information from this

data.

5.1.2 Better data processing

Simply adding more data, whether semantic or otherwise, is not always an option. Ideally

the WuGS algorithm should be more robust for all languages, even if the amount of

available semantic data is limited. It is likely that the main problem lies with the fact

that this model only predicts morphological segmentations for a given word if there is

another word in the same group that it can be compared to; and only words that can be

shown to be semantically related are ever in the same group. This means that if we have

insufficient evidence of semantic relatedness, the model will not be very effective. It may

be useful to look for other evidence that two words should be grouped together beyond

semantic relatedness.

One possibility is to combine this approach with a more permissive segmentation al-

gorithm like morfessor 2.0 that provides multiple possible segmentations per word. By

combining the two approaches we could first collect the top n most likely segmentations

Chapter 5. Discussion 45

from the more permissive model and then use the morphemes predicted by these seg-

mentations as possible group labels as a way of initializing this model (see chapter 3).

In other words, we could use an existing, more permissive, morphological segmentation

algorithm’s predictions to provide the evidence for grouping words instead of or as well

as using semantic data. It is unclear whether or not this hybrid approach would yield

better results than the current models and the exploration of this hybrid model approach

is left to future research.

As well as having to be semantically related, the WuGS algorithm also restricts the

ability to group words together unless they share a common root morpheme. This shared

root is automatically discovered using some string comparison algorithm such as the

longest common substring (LCS) algorithm. The LCS approach is what is used to build

all the models in chapter 4, since it seems to provide the best results after some initial

tests and it was relatively easy to implement. However, this approach may also be too

restrictive and it may prevent two words from joining a group if they share a common

root in a way that cannot be detected by the LCS algorithm due to allomorphy. This

is addressed in the step during training that combines likely groups together — but

this combination step favours words that differ at morpheme boundaries as opposed to

words that differ internally. For example, the algorithm may combine the groups wak

and wake into a common group with the label wak(e). However, the words in this group

(wake, awaken, waking, etc.) are also semantically related to the past tense verb woke,

which due to its irregular form is unlikely to ever be grouped with the others. This

may be overcome by introducing a string comparison algorithm that takes phonological

similarity into account. It may be possible that a string comparison algorithm that

conflates phonological classes may be more successful. In the woke example, it should

be able to recognize that the a and o in wake and woke are vowel sounds and so may be

conflated for the purposes of grouping. The development of a phonologically motivated

string comparison algorithm is of course the subject its own research project. However,

if it were developed, it would be interesting to see if it could be used to improve the

grouping accuracy of this model, especially for irregular words.

We have already seen that simply using a phonological representation of a given word

does not always improve results overall. The initial assumption was that phonological

representations of words would reduce the variability in the way morphemes are repre-

sented and would clarify the boundaries between morphemes. For example, the word

creation can be represented phonologically using the international phonetic alphabet

(IPA) as /kôieSn
"
/ which reduces the suffix (t)ion down to two characters /Sn

"
/. However,

this reduction in complexity in one case is offset by additional complexity elsewhere. For

Chapter 5. Discussion 46

example, the regular English plural suffix can be represented orthographically as es or s

whereas it can be represented phonologically as any of /s/ /z/ /@z/ /Iz/.

The use of phonological data in the experiment in chapter 4 may have been misguided

but that does not mean we should rule out phonological representations entirely. As

previously discussed, phonological data may still be used to reduce complexity in the

representations of words by conflating phonemes that share some relevant set of features.

It may be possible to use both the orthographic and phonological representations of words

to determine some simplified representation which makes segmentation easier. Using a

simplified phonological representation is not a new idea, early work in this area (Harris,

1955) argues for the use of a limited phonological representation over a more complex

phonetic one1. However, this paper shows that a phonological representation may not be

simple enough. The task of determining the best technique of phonological simplification

is left up to future work.

5.2 Language independence

The WuGS algorithm was tested by generating morphological segmentation models for

three languages; English, German and Dutch. The results from each of these languages

showed that the precision scores were fairly consistent but that the recall scores for

English were much higher. This raises the question of whether WuGS is truly language

independent or if it has been inadvertently designed to favour some languages over others.

I am a native English speaker and so there is a possibility that despite my best efforts, I

have inadvertently designed an algorithm that favours English over German and Dutch.

However, other than inherent bias, there may be other reasons why the results are clearly

better for English.

Like the MorphoChain models, we have shown that WuGS models typically under-

segment, which results in a low recall score during most tests. If a model under-segments

then it will inevitably perform better when there are fewer segmentations to make (fewer

morphemes per word). Consider that the English Celex2 corpus that was used for testing

contains 0.25 fewer morphemes per word on average than either of the German or Dutch

corpora (Baayen et al., 1995). This could explain the difference in the recall scores —

an algorithm that is very conservative with regards to making segmentations is going to

make the correct decision more often when there are fewer segmentations to make. This

can be seen in the results from our simple baseline model that never segments anything

1For an explanation on the difference between a phonological and phonetic representation see Pier-
rehumbert (1990).

Chapter 5. Discussion 47

and still gets recall scores that are only 7–10% lower than the other models.

Another possible explanation is that the English data contains many fewer compound

words than either the German or Dutch data2. Both WuGS and the MorphoChain

algorithm work from an assumption that there is a single root morpheme onto which

affixes are added. Compounds are only considered at segmentation time and are therefore

handled as variations on single root words, not as a separate construction entirely. This

assumption that compounds do not need to be treated differently from single root words

may have resulted in a model that is less equipped to handle words with multiple roots.

While it is not necessarily the case that WuGS is biased specifically towards English,

it is likely that it is biased towards languages that have lower segmentation rates and

lower rates of compounding in general. Any future iterations of WuGS should seek

to incorporate the existence of compounds at the training stage instead of just at the

segmentation stage. Combining this with more flexible grouping algorithms (see section

5.1.2) will likely improve the recall scores across all languages, but specifically for those

with higher segmentation rates, making WuGS more consistent for a wider variety of

languages.

5.3 Additional future work

This chapter has already discussed several ways that WuGS can potentially be improved

in terms of the way it processes both semantic and orthographic data. In addition to these

proposed changes, we should also consider improvements that focus on the preprocessing

and online training steps as well as the tests themselves.

Improving alignments

It has already been shown that the quality of the semantic data used as input to the

WuGS algorithm has an effect on its accuracy. One way to improve the quality of this

data is to improve the word-alignment algorithm that generates this semantic data in

the first place. All the evaluations in chapter 4 use the same word alignment algorithm

(Liang et al., 2006). However, this may not necessarily be the best algorithm for this

purpose and alternatives should be explored. Some word alignment algorithms may even

reveal semantic relationships that others do not which would mean that the best practice

may be to use multiple algorithms that complement each other.

2In the Celex2 corpora, 20% of the English words are compounds, whereas 36% of the German words
and 40% of the Dutch words are compounds. Compounds are defined as any word that contains at least
two root morphemes.

Chapter 5. Discussion 48

Another possible way to improve semantic data with word alignment algorithms would

be to explore the hypothesis that word alignments are more accurate if there are fewer

word types to compare. For example, a word alignment model may say that the English

word eat, eats, eating can be translated to French as any of mangent, manger, mangeons,

etc. However, if the target corpus has reduced all these words to the root morpheme

mange, this simplifies the word alignments. In turn this may make it more likely that the

semantic network built from these simplified alignments will show that all of eat, eats,

and eating are semantically related because there is a greater chance that they all can

be translated as a single word.

On the basis of this hypothesis, we could try to iteratively update a model by using

it to reduce the number of word types in the input data of the target language. The first

step would involve creating two morphological segmentation models for both languages

in the input data using the method described in chapter 3. The second step would involve

using the two segmentation models to extract the root of each word for both languages

in the original parallel translated corpora. Now we would have two corpora for each

language, one with the the original text and another where all the words are reduced

to their roots. We could then rerun the word-to-word alignment for each language by

comparing the original corpus for language A with the root corpus for language B (and

the original for B with the roots for A). It is likely that the models created after the

second iteration of model building would be more accurate than the models from the

first iteration. This method to improve the model would be time consuming but is a

method that does not require any additional input data and so might be a useful way to

improve a model for low-resource languages.

User-guided training

The existence of potential vertices and edges in the graph means that a model may

be able to guide its own learning by forming hypotheses and then seeking out data to

confirm or invalidate them. As a very basic example, it is possible to interactively train

a model by iterating over all potential vertices and edges (those edges and vertices with

a ‘potential’ label) and asking a speaker of the language either: “Is X a word?”, where X

is a potential vertex, or “Is the word X related to the word Y”, where there is a potential

edge between vertices X and Y. This interactive training would add a new way to update

the semantic network that would require minimal input from a user and crucially does

not require an expert with specific linguistic knowledge to make decisions.

Updating the model in this way may only have minor effects on its performance since

it can only improve the model by confirming or denying the potential vertices and edges

Chapter 5. Discussion 49

that the model already knows about. Nevertheless, this sort of guided self-improvement

is something that is unique to the models produced by WuGS.

Incorporating homographs into the model

Currently, most morphological segmentation algorithms (including this one) do not at-

tempt to differentiate between homographs (words with a different meaning and the

same spelling). In some cases these can be differentiated by incorporating phonological

information into the model but this only helps in the case where a homograph is also

a heteronym (homograph that has a different pronunciation). A more reliable way to

differentiate may be to use the semantic data instead. Homographs may be detected by

looking for words that are highly associated to two or more distinct clusters of vertices in

the graph. A cluster is a group of vertices that have a lot of connecting edges and distinct

clusters are those that do not have many edges connecting the vertices in the clusters.

In other words, homographs can be considered ‘hubs’ which act as the sole connection

between two clusters.

Although the structure of this model and the fact that semantic information already

exists in the model makes it easy to detect homographs, discovering how to treat these

words for segmentation purposes is another problem entirely. Some homograph pairs

should be segmented in the same way even though the meaning may be different. For

example, both boring (tedious) and boring (making a hole) can be segmented as bor(e)-

ing. On the other hand, evening (end of the day) should not be segmented whereas

evening (making even) should be segmented as even-ing. Differentiating between these

two types of homomorphs is not a trivial task but the key may be in correctly defining

the clusters that a given word belongs to. In the evening case we may see that one cluster

contains words like night, supper, etc. and another containing smooth, iron, but also even,

evens, etc. The existence of words with the same root as evening in one cluster but not

the other may help the model detect that the word should be treated differently in these

two contexts. It may be necessary to put some limits on this procedure, since a word

may appear to be a homograph simply because there is not enough information available

during training to concatenate two clusters that should be one. The implementation of an

algorithm that is aware of the existence of homographs may require significant additional

work but WuGS may be a good starting point given that it already defines a network

that can be used to differentiate words with multiple meanings.

Chapter 5. Discussion 50

5.4 Conclusion

The WuGS algorithm presented in this paper does achieve the goal of reducing over-

segmentation and it does so by incorporating semantic data in a novel way. However,

there are still many ways that WuGS can be improved, especially with regards to im-

proving its recall capabilities. The main weakness of WuGS is that it requires too much

information to decide to make a segmentation. This overly cautious approach results in

under-segmentation in most cases. However, by comparing WuGS to another which also

relies on semantic information, we show that this weakness is actually a feature of algo-

rithms that rely on semantic information in general as opposed to being unique to this

one specifically. Additionally, by comparing the performance of multiple language-models

we know that WuGS under-performs when there are multiple root morphemes present in

a word. Any future work should be better at modeling the relationship between multiple

roots in a given word.

One major advantage of WuGS is that it automatically discovers allomorphs as a

side-effect of the training process. Currently allomorphs that differ only at the right or

left edge of a given morpheme can be discovered. Incorporating detection of allomorphs

with internal variation may require the automatic detection of grapheme or phoneme

classes, which would be an interesting direction to take future research.

WuGS is far from perfect, but experiments show that it can be competitive with other

algorithms currently in use. Also, it shows that parallel translated corpora are a useful

source of semantic input data for use in morphological segmentation algorithms in general

and can be used as an alternative or a supplement to word embeddings. Furthermore, the

network structure allow us to explore novel ways to train models and potentially allows

us to make use of clusters to tackle previously ignored problems such as homographs.

Bibliography

H. R. Baayen, R. Piepenbrock, and L. Gulikers. The CELEX lexical database, 1995.

E. M. Bender. Linguistically näıve != language independent: Why NLP needs linguistic

typology. In Proceedings of the EACL 2009 Workshop on the Interaction Between

Linguistics and Computational Linguistics: Virtuous, Vicious or Vacuous?, ILCL ’09,

pages 26–32, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics.

URL http://dl.acm.org/citation.cfm?id=1642038.1642044.

R. Cotterell, A. Kumar, and H. Schütze. Morphological segmentation inside-out. In Pro-

ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing,

pages 2325–2330, 2016a.

R. Cotterell, T. Vieira, and H. Schütze. A joint model of orthography and morphological

segmentation. In Proceedings of the 2016 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, pages

664–669, 2016b.

M. Creutz and K. Lagus. Inducing the morphological lexicon of a natural language from

unannotated text. 2005.

M. Creutz and K. Lagus. Unsupervised models for morpheme segmentation and mor-

phology learning. ACM Transactions on Speech and Language Processing (TSLP), 4

(1):3, 2007.

M. S. Dryer and M. Haspelmath, editors. WALS Online. Max Planck Institute for

Evolutionary Anthropology, Leipzig, 2013. URL https://wals.info/.

R. Eskander, O. Rambow, and T. Yang. Extending the use of adaptor grammars for unsu-

pervised morphological segmentation of unseen languages. In Proceedings of COLING

2016, the 26th International Conference on Computational Linguistics: Technical Pa-

pers, pages 900–910, 2016.

51

Bibliography 52

J. A. Goldsmith. Segmentation and Morphology, chap-

ter 14, pages 364–393. Wiley-Blackwell, 2010. URL

https://onlinelibrary.wiley.com/doi/abs/10.1002/9781444324044.ch14.

Z. S. Harris. From phoneme to morpheme. Language, 31(2):190–222, 1955. URL

http://www.jstor.org/stable/411036.

Z. S. Harris. From phoneme to morpheme. In Papers in Structural and Transformational

Linguistics, pages 32–67. Springer, 1970.

M. Haspelmath. Understanding morphology. 2002. ISBN 9780340760260.

R. Jorma. Stochastic complexity in statistical inquiry, volume 15. World scientific, 1998.

O. Kohonen, S. Virpioja, and K. Lagus. Semi-supervised learning of concatenative mor-

phology. In Proceedings of the 11th Meeting of the ACL Special Interest Group on

Computational Morphology and Phonology, pages 78–86. Association for Computa-

tional Linguistics, 2010.

M. G. Kossmann. Grammaire du parler berbre de Figuig (Maroc oriental). Peeters, Paris,

1997.

M. Kurimo, S. Virpioja, V. T. Turunen, G. W. Blackwood, and W. Byrne. Overview

and results of morpho challenge 2009. In Workshop of the Cross-Language Evaluation

Forum for European Languages, pages 578–597. 2009.

P. Liang, B. Taskar, and D. Klein. Alignment by agreement. In Proceedings of the

main conference on Human Language Technology Conference of the North American

Chapter of the Association of Computational Linguistics, pages 104–111. Association

for Computational Linguistics, 2006.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representa-

tions in vector space. CoRR, 2013. URL http://arxiv.org/abs/1301.3781.

D. R. Mortensen, S. Dalmia, and P. Littell. Epitran: Precision G2P for many languages.

In Proceedings of the Eleventh International Conference on Language Resources and

Evaluation (LREC 2018), Paris, France, May 2018. European Language Resources

Association (ELRA).

K. Narasimhan, R. Barzilay, and T. Jaakkola. An unsupervised method for uncovering

morphological chains. Transactions of the Association for Computational Linguistics,

3:157–167, 2015. URL http://aclweb.org/anthology/Q15-1012.

Bibliography 53

J. Pierrehumbert. Phonological and phonetic representation. Journal of phonetics, 18

(3):375–394, 1990.

C. Quiles, K. Kūriák̄ı, and F. López-Menchero. A Grammar of Modern Indo-European.

Indo-European Language Association, 2012. ISBN 9781461022138.

T. Ruokolainen, O. Kohonen, S. Virpioja, et al. Painless semi-supervised morphological

segmentation using conditional random fields. In Proceedings of the 14th Conference

of the European Chapter of the Association for Computational Linguistics, volume 2:

Short Papers, pages 84–89, 2014.

T. Ruokolainen, O. Kohonen, K. Sirts, S.-A. Grönroos, M. Kurimo, and S. Virpioja.

A comparative study of minimally supervised morphological segmentation. Computa-

tional Linguistics, 42(1):91–120, 2016.

P. Schone and D. Jurafsky. Knowledge-free induction of morphology using latent semantic

analysis. In Proceedings of the 2nd Workshop on Learning Language in Logic and the

4th Conference on Computational Natural Language Learning, volume 7, pages 67–72.

Association for Computational Linguistics, 2000.

E. O. Selkirk. The syntax of words. Cambridge, Mass MIT Press, 1982.

K. Sirts and S. Goldwater. Minimally-supervised morphological segmentation using adap-

tor grammars. Transactions of the Association of Computational Linguistics, 1:255–

266, 2013.

S. Spiegler and C. Monson. Emma: a novel evaluation metric for morphological analysis.

In Proceedings of the 23rd International Conference on Computational Linguistics,

pages 1029–1037. Association for Computational Linguistics, 2010.

J. Tiedemann. Parallel data, tools and interfaces in opus. In Lrec, volume 2012, pages

2214–2218, 2012.

S. Virpioja, P. Smit, S.-A. Grnroos, and M. Kurimo. Morfessor 2.0: Python im-

plementation and extensions for morfessor baseline. Technical report, 2013. URL

http://urn.fi/URN:ISBN:978-952-60-5501-5.

Appendices

54

Appendix A

Additional Algorithms

Algorithm 7 edge to hash
this function takes an array of edges represented by a

triple (wordA, wordB, translation_probability) and a

minimum probability and returns a hash table where keys

are all wordA values and values are an array of all

translations (wordB) of the key that have a translation

probability above or at the min_prob threshold

FUNCTION edge_to_hash(Edges, min_prob)

hash = Hash() # a new hash table

FOR edge IN Edges

word, translation, prob = edge

IF prob >= min_prob

IF hash.has_key(word)

hash[word] = hash[word] + [translation]

ELSE

hash[word] = [translation]

return hash

55

Appendix A. Additional Algorithms 56

Algorithm 8 get affixes
this function takes a list of words with a common root and splits

each word using the root as a separator. The remaining parts of

each word are considered affixes and are returned in a list

FUNCTION get_affixes(words, root)

all_affixes = []

FOR word IN words

affixes = words.split(root) # split the word using the root as a separator

FOR affix IN affixes

all_affixes.append(affix)

return all_affixes

Algorithm 9 get groups
this function is a reverse look up function that

returns all keys of the hash groups whose value

contains the string word

FUNCTION get_groups(groups, word)

all_groups = []

FOR group IN groups

IF word IN groups[group]

all_groups.append(group)

return all_groups

Algorithm 10 From word translation to semantic network using symmetric relations

FUNCTION create_semantic_network2(edges, min_prob)

hash = edges_to_hash(edges, min_prob) # see helper functions

network = Hash() # a new hash table

FOR word_a IN hash

translations_a = hash[word_a]

FOR word_b IN hash

IF word_a != word_b

translations_b = hash[word_b]

IF translations_a INTERSECTS translations_b

IF NOT network.has_key(word_a)

network[word_a] = []

network[word_a] = network[word_a] + [word_b]

return network

min_prob = 0.2 # for example

SemNetA = create_semantic_network2(EdgesA, min_prob)

SemNetB = create_semantic_network2(EdgesB, min_prob)

Appendix B

Data Tables

Table B.1: Precision, recall, and F-measure reported by EMMA2

Model Language F-measure Precision Recall
morfessor de 0.685 0.601 0.796

en 0.706 0.589 0.882
nl 0.715 0.616 0.853

MorphoChain de 0.515 0.851 0.369
en 0.673 0.955 0.519
nl 0.471 0.892 0.320

WuGS de 0.499 0.945 0.339
en 0.729 0.924 0.602
nl 0.477 0.958 0.318

(See figure 4.1 for a visualization of this data)

57

Appendix B. Data Tables 58

Table B.2: Precision, recall, and F-measure reported by BPR

Model Language F-measure Precision Recall
morfessor en 0.615 0.485 0.839

de 0.695 0.605 0.816
nl 0.746 0.626 0.921

MorphoChain en 0.612 0.945 0.452
de 0.535 0.838 0.393
nl 0.522 0.881 0.371

WuGS en 0.688 0.935 0.545
de 0.512 0.956 0.349
nl 0.531 0.958 0.367

No Segs en - - 0.447
de - - 0.278
nl - - 0.305

(See figure 4.2 for a visualization of this data)

Table B.3: Precision, recall, and F-measure reported by BPR for previously seen and
novel words

Model In training F-measure Precision Recall
morfessor not in training 0.640 0.513 0.863

in training 0.750 0.683 0.843

MorphoChain not in training 0.418 1.000 0.267
in training 0.606 0.578 0.762

WuGS not in training 0.503 0.960 0.345
in training 0.721 0.928 0.593

(See figure 4.3 for a visualization of this data)

Appendix B. Data Tables 59

Table B.4: Precision, recall, and F-measure reported by BPR by morphs per word

Model n Morphs F-measure Precision Recall
morfessor 1 0.425 0.272 1.000

2 0.740 0.680 0.812
3 0.752 0.813 0.701
>3 0.721 0.881 0.611

MorphoChain 1 0.868 0.771 1.000
2 0.169 0.937 0.098
3 0.104 0.958 0.057
>3 0.087 0.971 0.047

WuGS 1 0.949 0.903 1.000
2 0.233 0.968 0.134
3 0.174 0.985 0.098
>3 0.149 0.992 0.082

(See figure 4.4 for a visualization of this data)

Table B.5: Average morpheme count delta from gold-standard for orthographic and
phonological training data

n Morphs Orthographic Phonological
1 0.111 0.097
2 −0.602 −0.669
3 −1.379 −1.531
>3 −2.402 −2.561

(See figure 4.5 for a visualization of this data)

Table B.6: Precision, recall, and F-measure reported by BPR with varying target lan-
guages

Target Language F-measure Precision Recall
Arabic (ar) 0.707 0.914 0.577
German (de) 0.700 0.925 0.563
French (fr) 0.701 0.911 0.570
Russian (ru) 0.694 0.928 0.555
Slovenian (sl) 0.644 0.977 0.480
Turkish (tr) 0.704 0.933 0.565
Chinese (zh) 0.688 0.935 0.545
All 0.776 0.969 0.648

(See figure 4.6 for a visualization of this data)

Appendix B. Data Tables 60

Table B.7: Precision, recall, and F-measure reported by BPR for previously seen and
novel words by language

Model In training Language F-measure Precision Recall
morfessor in training en 0.688 0.579 0.849

de 0.768 0.772 0.764
nl 0.793 0.699 0.916

not in training en 0.536 0.396 0.830
de 0.651 0.533 0.839
nl 0.734 0.609 0.922

MorphoChain in training en 0.689 0.889 0.562
de 0.591 0.464 0.815
nl 0.537 0.381 0.908

not in training en 0.516 0.999 0.348
de 0.348 1.000 0.211
nl 0.390 1.000 0.242

WuGS in training en 0.757 0.914 0.646
de 0.659 0.944 0.506
nl 0.747 0.927 0.625

not in training en 0.610 0.955 0.448
de 0.435 0.961 0.281
nl 0.465 0.965 0.306

Appendix B. Data Tables 61

Table B.8: Precision, recall, and F-measure reported by BPR by morphs per word and
language

Model n Morphs Language F-measure Precision Recall
morfessor en 1 0.444 0.286 1.000

2 0.657 0.611 0.710
3 0.755 0.808 0.709
>3 0.749 0.894 0.644

de 1 0.494 0.328 1.000
2 0.718 0.657 0.791
3 0.707 0.788 0.641
>3 0.660 0.836 0.546

nl 1 0.337 0.203 1.000
2 0.845 0.771 0.936
3 0.795 0.842 0.752
>3 0.754 0.913 0.643

MorphoChain en 1 0.939 0.885 1.000
2 0.018 0.993 0.009
3 0.008 0.998 0.004
>3 0.002 1.000 0.001

de 1 0.813 0.684 1.000
2 0.296 0.886 0.177
3 0.202 0.916 0.114
>3 0.173 0.941 0.095

nl 1 0.852 0.743 1.000
2 0.195 0.931 0.109
3 0.100 0.961 0.053
>3 0.085 0.971 0.045

WuGS en 1 0.948 0.902 1.000
2 0.297 0.958 0.176
3 0.296 0.980 0.174
>3 0.248 0.995 0.142

de 1 0.952 0.909 1.000
2 0.218 0.965 0.123
3 0.099 0.990 0.052
>3 0.091 0.992 0.048

nl 1 0.947 0.899 1.000
2 0.185 0.981 0.102
3 0.128 0.984 0.068
>3 0.109 0.989 0.058

