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Abstract We will discuss various connectionist schemes for natural 
language understanding (NLU). In principle, massively parallel processing 
schemes, such as connectionist networks, are well-suited for modelling 
highly integrated forms of processing. The connectionist approach to- 
wards natural language processing is motivated by the belief that a NLU 
system should process knowledge from many different sources, e.g. se- 
mantic, syntactic, and pragmatic, in just this sort of integrated manner. 
The successful use of spreading activation for various disambiguation 
tasks in natural language processing models lead to the first connectionist 
NLU systems. In addition to describing in detail a connectionist dis- 
ambiguation system, we will also discuss proposed connectionist ap- 
proaches towards parsing and case role assignment. This paper is intended 
to introduce the reader to some of the basic ideas behind the connectionist 
approach to NLU. We will also suggest some directions for future research. 

I n t r o d u c t i o n  

There has been much discussion on the extent to which different forms of pro- 
cessing should be done in a parallel, integrated manner in natural language under- 
standing (NLU) systems. Most conventional NLU systems follow a model where 
syntactic processing functions as the front end to the system; thereby ensuring that 
syntactic and semantic processing are strictly separated. However, this separation 
is frequently counterproductive and a more integrated form of processing is 
needed, especially for disambiguation tasks (Hirst, 1983). 

One way of achieving a more integrated form of processing is by adding a marker 
passing component  1 which runs in parallel with the syntactic and semantic com- 
ponents (Charniak, 1983). The connectionist approach towards NLU takes this 
paradigm of integration a step further in allowing many sources of knowledge, such 
as syntax, semantics and pragmatics, to be handled in a highly integrated manner. 
We will describe the basic idea behind this approach as illustrated by an example of 
a connectionist network for word-sense disambiguation, and then proceed to de- 
scribe some of the connectionist work on other aspects of NLU, such as parsing and 
case role assignment. Finally, we will conclude with a short discussion on open 
research issues. 
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Connectionist  word-sense  d i s a m b i g u a t i o n  systems 

Before we discuss a connectionist disambiguation system, we will give a short de- 
scription of connectionist  models in general. 

A typical connectionist  model or network (e.g. Feldman & Ballard, 1982) consists 
of a large number  of s imple computing units. Each unit has a number  of inputs and 
one output, which is in turn connected to zero or more other units. Each connection 
has a weight associated with it, and each unit is assigned a numerical  value called 
its activation level (which is often restricted to be one of a fixed set of values). 
Without loss of generality, we can assume that the output of a unit is equal to its 
activation level. A unit updates its activation level with each time step; its new 
activation level is a function of its previous activation and the sum of the weighted 
outputs from other units connected to it. All units update their activation level in 
parallel. When a connection has a positive weight, it is called an excitatory con- 
nection, otherwise it is called an inhibitory connection. If the output of unit A is 
linked to unit B by an excitatory link, an increase in the activation level of unit A 
will tend to increase the activation level of unit B. If the units are linked by an in- 
hibitory link, an increase in activation level of unit A will tend to decrease that of 
unit B. 

An important  aspect of any natural language processing system is its ability to 
disambiguate. Consider, for example,  lexical ambiguity; Gentner (1982) found that 
the 20 most frequent nouns have an average of 7.3 senses each, and the 20 most 
frequent verbs have an average of 12.4 senses each. Yet, people perform word-sense 
disambiguation quite effortlessly. 

The first connectionist  models for NLU dealt with word-sense disambiguation. 
These models were motivated by two factors: firstly the belief that the dis- 
ambiguation requires integrated, parallel processing of knowledge from various 
sources, and secondly the fact that spreading activation in connectionist  networks 
can be used to model semantic priming. Semantic priming occurs when activation 
of concept structures in the brain reduces the reaction time for subsequent judge- 
ments involving associated concepts (Collings & Loftus, 1975). Psycholinguistic 
research shows that semantic priming speeds up word-sense disambiguation. 2 

Cottrell and Small (1983) use a representation scheme similar to that of Schank 
(1975) in his work on conceptual  dependency theory. They distinguish three 
levels 3 in their model: a lexical level, a word-sense level, and a case logic level. At 
the lexical level, the input to the system, incoming words, activates the associated 
word units. This provides input to the word-sense level, where units representing 
the different senses of the words at the lexical level become activated. Finally, at 
the case logic level, units expressing the possible relationships between the pre- 
dicates and objects at the second level are activated. An example network will 
clarify their approach. Consider the following input sentence. 

A man threw up a ball. 

Figure l(a) shows the state of the network after receiving 'a man threw' as input. 
The number  of plus signs represents the level of activation; a unit is said to be 
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Fig. 1 The states of a network by Cottrell & Small (1983) for different inputs. Links denote 
excitatory connections, except for those ending in ( o- -o  ) which denote inhibitacy connections. 
(Figure adapted from Small et al., 1982.) 

ac t ive  if it has  one  or more  p lus  signs. 4 Note that  the l inks  are symmet r i c ,  so acti-  
va t ion  can  f low in e i ther  d i rec t ion  b e t w e e n  l inked  uni ts .  

The  first  ph rase  in the  input ,  'a  man', act iva tes  the  uni t s  A and  MAN. These  un i t s  

ac t iva te  the  un i t  SOMEMAN.  The  ar t ic le  ' a '  wi l l  a lso exci te  o ther  uni ts ,  for ex- 
ample ,  S O M E W O M A N  (not s h o w n  in Fig. 1), but  an i nh ib i t o ry  l ink  b e t w e e n  

S O M E M A N  and  S O M E W O M A N  preven ts  them from be ing  s i m u l t a n e o u s l y  ac t ive  
(because  no pe r son  can be both).  



26 B. Selman 

The unit THREW excites PROPEL and VOMIT, but the VOMIT unit needs ad- 
ditional input to become active. Thus only PROPEL is activated. Although not ex- 
plicitly shown in Fig. 1, the weight on the link between THREW and VOMIT is 
smaller than that between THREW and PROPEL; this represents the fact that 'a man 
threw' is more commonly associated with throwing an object than vomiting. More- 
over, the inhibitory link between PROPEL and VOMIT will prevent them from both 
being active. Finally, the units SOMEMAN and PROPEL will activate PAGT, indi- 
cating that the unit SOMEMAN represents the agent of propel. 

The pattern of activity will change drastically when the word 'up' is presented as 
the next input; Fig. l(b) shows this new pattern. The units THREW and UP together 
activate VOMIT. Now, the unit VOMIT will become more active than PROPEL, and 
their inhibitory link will cause the activation of PROPEL to decrease. The system 
will now settle into a new stable state, representing the fact that the phrase 'threw 
up' usually refers to vomiting. 

Finally, the system will receive the input 'a ball', which reinforces the unit POBJ 
and inhibits the analogous VOBJ. The system will now settle into the stable pattern 
shown in Fig. 1(c). This pattern represents the preferred interpretation of the com- 
plete sentence. 

The networks by Cottrell & Small (1983) do not explicitly represent the syntactic 
structure of the sentence, as can be seen in Fig. 1. However, in word-sense dis- 
ambiguation tasks syntax often plays an important role, for example, in resolving 
noun-verb ambiguities. Waltz & Pollack (1985) propose a connectionist parser that 
incorporates an explicit representation of syntactic structure. Since the basic idea 
behind their approach is quite similar to that of Cottrell and Small, we will only 
give a high-level description of their disambiguation networks. 

Waltz & Pollack distinguish four levels in their networks: an input level, a syn- 
tactic level, a lexical level, and a contextual level. A network is custom built for 
each input sentence. The sentence is run through a conventional chart-parser to 
construct the syntactic layer of the network representing all possible parses of the 
input. (Aside from handling lexical ambiguities, Waltz and Pollack's system also 
resolves same syntactic ambiguities.) The lexical layer is a representation of all 
possible senses of the words. The contextual layer represents the context in which 
the sentence should be interpreted. 

In order to construct the context layer, Waltz & Pollack (1985) propose a con- 
nectionist scheme for contextual priming. The network contains a set of units re- 
presenting concepts and a set of units representing microfeatures (Hinton, 1981) of 
these concepts. Each concept is connected to a representative set of microfeatures; 
for example WEEKEND will be connected to DAY and WEEK, but also to RES- 
TAURANT, BAR, and so forth. Each concept will have at least one microfeature in 
common with another concept, and most Concepts share many microfeatures with 
other concepts. Therefore, in general, all units will be indirectly connected to one 
another. 

In such a scheme the activation of a specific concept spreads throughout the net- 
work thereby activating related concepts. The level of activation of a particular unit 
represents the strength of its relation to the priming concept. Thus, the current con- 
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text is given by the total pattern of activity in the network at that moment .  When 
new sentences are introduced this pattern of activity may change, representing a 

change in context. 

Other aspec t s  of natural  l a n g u a g e  unders tand ing  

The connectionist  networks discussed in the previous section, although quite 
successful at disambiguation tasks, can each handle only a small number  of input 
sentences. To build larger networks, we require a more principled way of designing 
connectionist  networks for NLU. For example,  we need a systematic method for 
setting the weights on the connections. 

In an effort to obtain general, provably correct networks, research thus far had to 
be l imited to specific subtasks of natural language processing, such as parsing and 
case role assignment.  Eventually, networks for the various tasks must  be integrated 
in order to obtain a general connectionist  natural-language-processing system. 

Parsing 

Fanty (1985) and Selman & Hirst (1985; Selman, 1985) have proposed general con- 
nectionist parsing networks. These networks have several features in common: both 
deal with context-free parsing, result in provably correct networks, and only deal 
with sentences up to some max imum length. 5 The schemes differ in their underly- 
ing architecture: Fanty 's  parser employs a deterministic weight update  rule (Feld- 
man & Ballard, 1982), while Selman and Hirst use a stochastic update scheme 
similar to that of the Boltzmann machine (Fahlman, et al., 1983) and apply simu- 
lated annealing (Kirkpatrick, et al., 1983). To illustrate the general idea behind con- 
nectionist parsing, we will consider in some detail the scheme proposed by Selman 
& Hirst (1985). 

Selman and Hirst (1985) propose a connectionist  network in which the grammar 
rules are captured using a localist representation. That is, each syntactic category is 
represented by a single computing unit, called a main unit. Each context-free 
grammar rule is represented by a group of main units called a connectionist pri- 
mitive. Figure 2 shows two examples of such primitives. The output of each unit is 
either +1 (unit is active) or - 1  (unit is inactive). The activation of all units of a 
connectionist  primitive in a particular state of the parsing network corresponds to 
the use of the associated grammar rule in the parse. 

The primitives are linked together by binder units. 6 The units are linked such 
that all possible parse trees for all sentences up to a fixed length can be represented 
in the network. Since parse trees can have common substructures, such sub- 

S---> VP 

Rule Primitive 

S---> NP VP ( ~  

Rule Primitive Shorthand notation 

Fig. 2 Two examples of connectionist primitives and their associated grammar rules. In this case 
all links denote excitatory connections. (From Selman & Hirst. 1985). 
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structures are shared in the network, greatly reducing the total number  of units 
needed. Finally, the set of main units representing the terminal symbols of the 
grammar forms the input layer of the network. An incoming sentence will activate a 
subset of those units. 

Fig. 3 Various connectionist primitives linked together: excitatory link ( - - ) ,  inhibitory link 
( o--o ), main unit (C) ), binder unit ((2)). (From Setman & Hirst, 1985.) 

Figure 3 shows an example of part of a parsing network. The following rules are 
represented: 

VP --~ VP PP (a) 
V P  --~ v e r b  (b) 
V P  --~ v e r b  N P  (c) 

These grammar rules allow the verb phrase in the input sentence, represented by 
unit No. 0, to be parsed in three possible ways. The binder units (No. 1, No. 2, No. 3 
and No. 4) are linked by inhibitory and excitatory connections, such that when the 
network reaches a stable state, the  active binders (those with output +1) tell us 
which one of the three grammar rules was used in the parse. So, if binder No. 1 
stays active, rule (a) is used in the parse; if No. 2 and No. 3 stay active, rule (b) is 
used; and if No. 2 and No. 4 stay active rule (c) is used. 

All units in the network employ the same stochastic updat ing rule, similar to the 
one used in the Boltzmann machine. After a sentence is presented to the network, 
thereby activating various units in the input layer, the network follows a pre- 
determined annealing schedule and gradually settles into a state in which the 
active units represent a correct parse of the input, provided the input is a sentence 
of the language generated by the grammar. During annealing the value of the ' temp- 
erature'  parameter  is gradually decreased. This influences the probabili ty that the 
output  of a unit is changed. The simulation is started off at a high temperature: 
units will change state with a probability of 0.5. As the temperature is lowered the 
network becomes more 'rigid'; finally, at a temperature of 0 the update function 
becomes deterministic. Simulated annealing has been proposed as a good search 
technique for finding min ima of multivariable functions such as the energy func- 
tion discussed below. 7 

So far, we have not discussed how the weights are set. As noted above, for a 
general connectionist  approach to an NLU task we do not want to choose weights 
by trial and error. One of the main advantages of the Boltzmann machine archi- 
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tecture is that its computat ion can be characterized as a search for a global mini- 
m u m  in the energy function of the network. 8 The energy function maps each 
possible state of the network into a real number,  called the energy of the state; a 
different weight setting will lead to a different energy function. So, to obtain a pars- 
ing network, the weights must  be set such that states corresponding to correct 
parses have min i m um  energy. This can be achieved based on the local environ- 
ment  of each unit  (a slightly modified update rule that facilitates the design of a 
provably correct network is introduced in Selman, 1985). 

In Selman and Hirst 's system, parsing is treated as a constraint satisfaction prob- 
lem in which the constraints are given by the grammar rules. The search for a 
m i n i m u m  energy state corresponds to a search for a parse tree which is the best 
possible match given the constraints and the input. When presented with an un- 
grammatical  sentence, the network will settle into a min imum energy state which 
corresponds to the best possible partial parse of the sentence. When presented with 
a syntactically ambiguous sentence, the network will settle into a state representing 
one of the possible parses. This is consistent with the human  tendency to settle for 
one possible consistent interpretation when faced with ambiguous input. 

Case role assignment 

McClelland & Kawamoto (1986) propose a connectionist  system for case role as- 
s ignment that takes into account both word order and semantic constraints. Given a 
sentence the network will establish 'who did what to whom' .  The structure of their 
model  is too complicated to be described in detail here. Their system learns from 
previous experience and generalizes to unseen sentences. 

They employ a distributed representation in which each word is represented by a 
set of semantic microfeatures, each corresponding to a single unit in the network. 
Similarly, various roles, such as Agent and Patient, are each represented by a group 
of units. This representation facilitates the learning of semantic associations be- 
tween words and allows for generalization during learning. 

Interestingly, the weights on the connections in the network are not preset. 
Instead, the network is presented with a set of examples,  each consisting of a sen- 
tence (of a rather retricted syntactic form) and its case role assignment. After each 
example  the weights are adjusted according to the perceptron learning procedure 
(Rosenblatt, 1962). Following this training period, when presented with a sentence 
the network will settle into a state representing the correct case role assignment. 
Moreover, the network correctly handles some sentence which it has never seen 
before, i.e. the learning mechanism generalizes from the examples.  Thus, we have 
another principled way of setting the weights of the network, in this case by learn- 
ing from examples.  

C o n c l u s i o n s  

We have discussed various connectionist  systems for NLU. Disambiguation net- 
works process syntactic and semantic knowledge in a highly integrated manner.  



30 B. Se lman  

However,  these ne tworks  on ly  hand le  a few i npu t  sentences  each. A m u c h  better  

u n d e r s t a n d i n g  of the design of such ne tworks  is needed  in order to develop more 

general,  larger scale systems. 

The work on pars ing and  case role ass ignment  is a step in  the d i rec t ion of more 

general  networks.  Al though,  these approaches  are quite in teres t ing  in  the them- 

selves, they wil l  need  to be integrated into a complete,  connec t ion i s t  na tura l  langu- 

age process ing system. 

Waltz & Pollack (1985) and  McCle l land  & Kawamoto (1986) have quite  success- 

ful ly used d is t r ibuted  representa t ions  in  their  schemes.  However,  more research is 

needed  in  the area of the d is t r ibuted  represen ta t ion  of complex,  ar t iculate struc- 

tures where  the m e a n i n g  of the whole  is de te rmined  by the me a n i ng  of its parts, 

and  where  each part itself has a complex  structure (Hinton,  1988). 

Final ly ,  we shou ld  also m e n t i o n  in  passing that various connec t ion i s t  NLU sys- 

tems, e.g. Cottrell (1985), conform quite well  wi th  psychol inguis t ic  constraints .  

These models  show that the connec t ion i s t  approach also offers promise  wi th  res- 

pect to psychological  models  for l inguist ics.  

Notes 

1 A marker passing mechanism sends markers along links in a network-based knowledge represen- 
tation scheme (Fahlman, 1979). 

2 Marker passing, the discrete form of spreading activation, has been used to implement semantic 
priming in conventional NLU systems (Hirst, 1983). 

3 In connectionist models it is common to group units into one or more levels. 

4 The level of activation is a continuous value, so, for example, one plus sign refers to a value 
between k and 2k, where k is a positive number. 

~ The sentence length restriction is in some sense an unavoidable aspect of the connectiunist 
approach (Charniak & Santos, 1987); see Pollack (1987) for a proposed means of dynamically 
changing the network. 

~ Fanty (1985) uses units with a similar function in his parser. 
7 For a quite different approach towards parsing using simulated annealing see Sampson (1986). 

~ Feldman (1985) evaluates various connectionist models based on energy minimization. 
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