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<CT>Ontology-Based Transformation Framework from Tropos to AORML</CT>
<CA>Renata S. S. Guizzardi and Giancarlo Guizzardi</CA>
<H1>16.1  Introduction</H1>
Software agents have gained a lot of attention in the past few years, attracting a number of research initiatives and gaining visibility in software development practice. The popularity of software agents results mainly from the recognition that they represent a suitable abstraction both for conceptual modeling and for system development. However, having the right abstraction is not enough to guarantee the development of adequate solutions. For that, a consistent software engineering methodology is needed. This need has led to the proposal of several agent-oriented methodologies.

Software analysts and designers can profit from these methodologies, each having its own strengths and drawbacks, and exhibiting characteristics that make them more or less appropriate for specific domains and/or system types. Moreover, the concepts and processes underlying each of them can be targeted at different activities of the software development cycle. Nowadays, with the increase in the complexity of domains and systems modeled using an agent-oriented approach, there are cases where a single methodology/modeling language is not sufficient to cover all activities and perspectives of the modeling process. In such cases, benefits may be achieved by using concepts and processes of two or more such approaches in different development activities, thereby amplifying their gains while minimizing their limitations.

In this chapter, we apply this idea by considering two modeling languages: the Tropos language on requirements analysis and the Agent-Object-Relationship Modeling Language (AORML) on system design. Moreover, we propose a methodology to transform a requirements model into a design model, by providing a systematic method for mapping one notation into the other. On the one hand, Tropos’s modeling primitives have been designed to support requirements analysis and, hence, do not provide concepts specific to system design. On the other hand, AORML supports information, interaction, and behavior modeling, which are crucial for system design. However, this language is not specifically tailored for requirements analysis. Thus, the benefits of using both approaches become apparent, because one lacks what the other has to offer.

The transformation methodology is supported by a foundational ontology, which enables the evaluation, comparison, and identification of correspondences between different agent-oriented modeling languages. This ontology is based on a number of theories from philosophy and cognitive science, and can serve as a well-founded basis for (1) making explicit the ontological commitments of each modeling language; (2) defining (ontological) real-world semantics for their underlying concepts; (3) providing guidelines for the correct use of these concepts; (4) relating concepts defined in different languages via their ontological semantics.

The remainder of this chapter is organized as follows. Section 16.2 motivates our choice for transforming Tropos models into AORML ones and discusses the strategy adopted for performing this transformation. Section 16.3 describes the foundational ontology used in this work. Section 16.4 applies this ontology as a reference model to guide the evaluation of the two languages, making the adjustments necessary to facilitate the smooth transformation of models. Section 16.5 presents the mapping between Tropos and AORML. And, finally, section 16.6 concludes the chapter.

<H1>16.2  On the Integration of the Tropos Language and AORML</H1>
Given the current state of research on the agent-oriented software engineering paradigm, we aim at granting analysts and designers the freedom to select the appropriate tools from a vast “library” of methods and languages, depending on the specific case at hand. It is our belief that no single method or language possesses all the desired modeling features. Instead, these features can often be attained by integrating different approaches. This view is compliant with the efforts of the method engineering community, which prescribes the reuse of fragments of different methods according to a given situation (Harmsen, Brinkkemper, & Oei, 1994). Works on agent-oriented software engineering having analogous views include Henderson-Sellers (2005), Juan, Sterling, and  Winikoff (2004), and Sabas, Delisle, and Badri (2002).
The characteristics of the targeted domain should be carefully considered before choosing methods and languages to be applied. The integration of Tropos and AORML was proposed specifically for the knowledge management domain (R.S.S. Guizzardi, 2006), giving rise to a methodology named Agent-Oriented Recipe for Knowledge Management System Development (ARKnowD). A detailed description of ARKnowD’s activities and life cycle, as well as a discussion of its applicability to knowledge management, can be found in chapter 6 of this book. In the present chapter, however, we refrain from discussing details of methods and techniques, concentrating solely on modeling language issues and, in particular, on the suitability of the concepts underlying current agent-oriented modeling languages. More precisely, our focus here is to present a common conceptual framework that can be used to evaluate, compare, and identify correspondences between the two modeling languages that are used in the ARKnowD methodology: Tropos and AORML.

The differences between Tropos and AORML suggest that these two approaches can serve complementary rather than competing roles. Tropos may benefit from the following strengths of AORML: (1) the fact that “mentalistic” concepts of agents, such as beliefs and commitments, are explicitly considered in system design supports the designer’s reasoning about and modeling the behavior of agents, both internally and in interaction with other agents of the system; (2) although norms and contracts are not directly supported by AORML, it provides deontic modeling constructs such as commitments and claims, which form the basis for the establishment of such norms and contracts; (3) it captures the behavior of agents with the help of rules. Besides these strengths, because AORML is an extension of UML that preserves its principles and concepts, it is an accessible language, and it allows the use of UML constructs whenever an extension is not provided, thus offering a comprehensive set of design tools. In a complementary manner, the explicit use of Tropos’s goals and plans provides a rich conceptual framework for modeling the intentional dimension of the organization. This includes a preliminary view of how users interact without, however, adding unnecessary protocol details in the early stages of requirements analysis. The concepts of goal and plan are missing in AORML.

Our approach for integrating Tropos and AORML is inspired by the Object Management Group's framework for  Model-Driven Architecture (MDA), developed to enable flexible design of distributed software systems (Miller & Mukerji, 2003). Although MDA focuses specifically on the object-oriented paradigm, it shares some of our concerns, which makes it appropriate for agent orientation. In particular, as in our work, this initiative recognizes that each system development activity has its particular focus and needs that constrain the applied constructs and strategies for the development of models for each of them.

Instead of modeling activity, MDA talks of viewpoint, which is defined as a “technique for abstraction using a selected set of architectural concepts and structuring rules, in order to focus on particular concerns within that system” (Miller & Mukerji, 2003, p. 2–3). Using MDA terminology, the application of Tropos is mainly concerned with a computation-independent viewpoint, focusing on the domain of the system. At this point, the system’s requirements are hidden or undetermined. Tropos helps to make such requirements explicit and clear, presenting an initial model of the domain entities along with a high-level view of their interactions and behaviors. In contrast, AORML focuses on the platform-independent viewpoint, modeling the general functionality of the system but not including the details that are specific to a given platform. At this point, the information, interaction, and behavior aspects of the system become concrete. In other words, AORML details the structure of systems’ entities and relations, fully models the processes that involve such entities, and presents a comprehensive description of their internal behavior.

When a system is developed, system requirements should be traceable to system functionalities, and vice versa. For maintaining consistency between models, enabling a smooth transition from one viewpoint to another, MDA proposes the use of transformation processes, that is, processes that convert from one model to another model of the same system. In this work, we apply the metamodel transformation technique described in the MDA reference guide (Miller & Mukerji, 2003), which requires a mapping from the modeling constructs of the source to the destination language. However, before consistent transformation rules are developed, the semantics of the modeling concepts of each language should be well understood. Furthermore, the notations should be carefully evaluated to check for inconsistencies in their use individually or in integration with one another. In this respect, our work proposes an ontological approach. 

An ontology is a theory that characterizes the kinds of entities that exist in a conceptualization of a certain domain of discourse. Moreover, it establishes a vocabulary and semantics for the terms referring to the entities constituting this conceptualization. Thus, for example, an ontology describing the domain of agents can be applied to create a common conceptual framework comprehending the concepts underlying both the Tropos language and AORML. This same ontology may be used as a reference model that should be fully covered by the set modeling constructs of these two notations, thus providing a consistent evaluation framework for the resulting language (i.e., the language underlying ARKnowD).

<H1>16.3  The UFO Ontology</H1>
We base our agent ontology on the UFO (Unified Foundation Ontology) defined by Giancarlo Guizzardi and Wagner (2005). According to these authors, a foundation ontology “defines a range of top-level domain-independent ontological categories, which form a general foundation for more elaborated domain-specific ontologies” (p. 346).

The UFO ontology is divided into three incrementally layered compliance sets: (1) UFO-A defines the core of UFO, excluding terms related to perdurants (i.e., occurrences, events) and terms related to the spheres of intentional and social things; (2) UFO-B defines, as an increment to UFO-A, terms related to perdurants; and (3) UFO-C defines, as an increment to UFO-B, terms related to the spheres of intentional and social things. Subsections 16.3.1 and 16.3.2  briefly describe a subset of UFO-A and UFO-B, focusing only on the concepts that are directly relevant for the understanding of ontological distinctions proposed in this chapter. In subsection 16.3.3, we present UFO-C in detail, extending it to create our ontology.

The ontologies are described here in natural language, and are illustrated with the aid of UML class diagrams. UML is not intended here for formalization purposes, but rather for facilitating the visualization of concepts. For an in-depth discussion and formal characterization of UFO-A, one should refer to Giancarlo Guizzardi (2005). The formalization of UFO-B and UFO-C is planned as future work, once the semantics of the concepts comprising these ontologies is fully comprehended.

<H2>16.3.1 UFO-A: Endurants and Perdurants</H2>
Figure 16.1 shows an excerpt from UFO-A. UFO-A distinguishes between two kinds of individuals: endurants and perdurants. This distinction can be intuitively understood in terms of the distinction between “objects” and “processes,” respectively. An endurant does not have temporal parts, and persists in time while keeping its identity. Examples of endurants include a house, a person, a hole, the (objectified) color of an apple, and an amount of sand. A perdurant, conversely, is composed of temporal parts. A storm, a heart attack, and a business process are examples of perdurants.

[Figure 16.1 here]

Endurants are further specialized into substance individual and moment individual. The former refers to an endurant that possesses direct spatiotemporal properties and can exist by itself (i.e., substance individuals are not existentially dependent on other endurants, except possibly for some of their parts and constituents. A building, a person, and a dog are examples of substance individuals. A moment individual, however, is an endurant that cannot exist by itself; that is, it existentially depends on other individuals (e.g., the age of a person, a belief of an agent). Making an analogy with the object-oriented software engineering domain, we can understand the difference between substance and moment by comparing them, respectively, to object and (objectified) property.

A moment individual can be either an intrinsic moment or a relator (or relational) moment. An intrinsic moment is a moment individual that is existentially dependent on one individual (e.g., the color of an apple depends on the existence of the apple itself). In contrast, a relator is a moment individual that is existentially dependent on more than one individual (e.g., a marriage, the enrollment of a student in an educational institution). A relator is an individual capable of connecting or mediating entities. For example, we can say that John is married to Mary because there is an individual marriage relator that existentially depends on both John and Mary, thus mediating the two. Likewise, we can say that Lisa works for Xerox because there is an employment relator mediating Lisa and Xerox.

Endurants bear moments or, inversely, moments inhere in endurants. The relation of inherence is a special type of existential dependence relation between moments and their bearers. Formally, besides existential dependency, inherence implies the so-called nonmigration principle (G. Guizzardi, 2005); that is, if a moment x inheres in an individual y, then there is no individual z distinct from y such that x inheres in z. In other words, inherence is a functional existential dependence relation. Figure 16.1 particularly emphasizes that an intrinsic moments inheres in one endurant. An externally dependent moment is a special kind of intrinsic moment that, although inhering in a specific endurant, also existentially depends on another endurant. The employee identifier is an example of an externally dependent moment, because although it is inherent in the employee, it is also dependent on the organization in which this employee works. A relator R mediating the individuals A and B inheres in the individual composed of A and B (the so-called mereological sum of A and B) and, due to the aforementioned nonmigration principle, this individual cannot change. In other words, R inheres in (and thus is existentially dependent on) exactly that specific collection of individuals formed by A and B.

A substance individual is further specialized into amount of matter and physical object. A physical object satisfies a condition of unity for which certain parts can change without affecting its identity (e.g., a house, a person, the moon). Conversely, an amount of matter is a substance individual that does not satisfy a condition of unity, typically referred to by means of mass nouns in natural language (e.g., a lump of clay, a pile of bricks, an amount of sand).

We emphasize that all specializations in figure 16.1 are disjoint, meaning that if an individual is an instance of one specialization class, it cannot be an instance of another specialization class with the same parent. All specialization relations described in this section have this nature. Hence, we refrain from providing such details in the subsequent figures in order to simplify the models. The above information, presented for the individual level, may also be replicated for the type level. Figure 16.2 shows that an entity may be either an individual or a type, the former instantiating the latter. So, for example, the substance individuals John, Mary, and Lisa instantiate the substance type Person.

[Figure 16.2 here]
Figure 16.2 shows that for the category of substance types, UFO-A makes a further distinction based on the formal metaproperties of rigidity and anti-rigidity. In simple terms, a type T is said to be rigid if every instance x of T is necessarily (in the modal sense) an instance of T. In other words, x cannot cease to instantiate T without ceasing to exist. Conversely, a type T is anti-rigid if every instance x of T is possibly (in the modal sense) not an instance of T, that is, if x can cease to instantiate T without ceasing to exist (G. Guizzardi, 2005). A stereotypical example highlighting this distinction is provided by the types Person and Employee, both instantiated by the individual Lisa in a given circumstance. Although Lisa can cease to be an employee of Xerox (and there were periods of time during which Lisa was not an employee), she cannot cease to be a person. A substance type that is rigid is named a Kind. In contrast, a substance anti-rigid type is named a Role.
 
Besides highlighting this important difference within the category of substance types, figure 16.2 also presents other entities. A relation is a type whose instances are tuples of connected elements. For instance, taking Lisa’s example presented above, the “works at” relation connects Lisa to Xerox. We consider here two types of relations: formal relations and material relations. A formal relation holds directly between two or more entities, without any further intervening individual. Examples of a formal relation include Lisa “is older than” Mike and John “is taller than” Mary. As pointed out by Giancarlo Guizzardi (2005), the relata of these relations are in fact moments and not substance individuals. To say that Lisa “is older than” Mike is to say that Lisa’s age is greater than Mike’s age. Moreover, this relation between Lisa and Mike exists without the need for any real connection between the two. To put it differently, these relations between substance individuals are reducible to purely formal relations between intrinsic moments of the involved relata. Instantiation, inherence, and existential dependency are all types of formal relations.

Conversely, material relations are founded on the existence of a relator. Thus, Lisa “works at” Xerox because there is an employment relator connecting the two. This employment can be composed, for example, of all commitments and claims associated with the role Lisa plays at that organization. Later in this section we provide a more extensive discussion on commitments and claims. Likewise, John “is kissing” Mary because there is an individual kiss connecting the two. In summary, in contrast to formal relations, material relations are not reducible to relations between intrinsic moments of the involved relata.

<H2>16.3.2 UFO-B: An Ontology of Perdurants</H2>
Figure 16.3 presents UFO-B, in which the concept of perdurant from UFO-A is further specialized into state and event. A state is a perdurant whose temporal parts belong to the same state type as the whole. An event, on the other hand, is a perdurant that is related to exactly two states (its pre-state and its post-state). Pre-state and post-state are shown in the relations between event and state in figure 16 3.

[Figure 16.3 here]

An event is specialized into atomic and complex events. The former is an event that is not further decomposed, for instance, an explosion or the receipt of a message. The latter is an event that is composed of other events by means of event composition operators. Examples of complex events include a parallel occurrence of two explosions, a storm, a heart attack, and a work meeting. "Process" can be understood as a synonym of "complex event," that is, an event composed of two or more events, as shown in figure 16.3.

<H2>16.3.3 Extending UFO-C</H2>
Our extended version of UFO-C is depicted in figures 16.4 through 16.7. Figure 16.4 shows that the UFO-A concept of physical object is specialized here into physical agent and nonagentive object. A physical agent is a physical object that creates action events, perceives events (possibly created by other physical agents), and we can ascribe mental states to it. Examples of physical agents include a man, a cat, and a robot. A nonagentive object is a physical object that is not a physical agent (e.g., a book or a tree). A nonagentive object can be a resource, meaning that it is used by a physical agent for specific purposes, and typically is owned or controlled by this or some other physical agent (relations uses and controls coming from the physical agent).

[Figure 16.4 here]
A distinction is made between human agent, artificial agent, and institutional agent (all three subkinds of physical agent), to differentiate humans agents, computational agents, and agents representing organizations or organization subunits (such as departments and divisions). Institutional agents are composed of several internal agents, which may be of any kind of physical agent (human, artificial, or institutional).

Most agent-oriented approaches focus only on agents, disregarding the presence of objects in the modeled scenario. We consider this a limitation, and thus acknowledge the existence of these two distinct entities. In fact, the real world is composed of both active and passive entities, captured respectively by the concepts of agent and object (in UFO-C, physical agent and nonagentive object).
Action event and nonaction event are two types of event (concept from UFO-B). The former refers to an event that is created through the action of a physical agent, such as”writing a book” or”reviewing a paper.” The latter is an event that is not created through an action of a physical agent (e.g., “a deadline is achieved” or”it becomes dark”), although it may be perceived in that way by him/her.
 This differentiation is essential in agent-oriented approaches because modeling the environment populated by agents is paramount. Therefore, nonaction events are typically events generated by the environment itself and are perceived by the agents living in it. 

A plan execution can be defined as an intended
 execution of one or more actions, being in this way a special kind of action event. In other words, a plan execution may be composed of one or more ordered action events that target a particular outcome of interest to the agent. These action events may be triggered by both action and nonaction events perceived by the agent. A plan execution is said to instantiate a plan (or plan type).

Analogously to a UFO-B atomic event, an atomic action event is an action event that is not further decomposed, such as “picking a book on a shelf” and “sending a message.” Actually, “sending a message” can also be seen as a subtype of an atomic action event referred to as a communicative action event. Physical agents both send and receive communicative action events. Communication is one of the most important aspects of agent-oriented systems because it triggers one agent to adopt goals or to execute action events on behalf of another agent. Unlike objects, which simply execute actions when requested, an agent reasons over another agent’s request before agreeing on a particular course of action (Wooldridge, 1992).
 Communication may also be required to inform an agent about changes in one’s course of action or in the environment itself, thus altering the agent’s beliefs.

In figure 16.5, the intrinsic moment concept of UFO-A is specialized into a mental moment, which denotes an intrinsic moment that is existentially dependent on a particular agent, being an inseparable part of its mental state. Examples of mental moments include a belief, a desire, and an intention. We can then say that a mental moment inheres in a physical agent (relation “inheres in”). 

[Figure 16.5 here]
Belief regards information the agent has about the environment and about other agents. Both desire and intention refer to an agent’s goal. A desire expresses the will of an agent toward a particular state of affairs in reality, that is, goals are considered here to be desired states of affairs. More than a desire, an intention represents an internal commitment of the agent to act toward that will. Thus, saying that an agent has an intention toward a certain state of affairs indicates that (1) this state of affairs is desired by the agent (i.e., it is a goal of that agent); (2) such agent has a plan to accomplish it. In other words, an intention is always associated with a plan type. 

Social moment is a specialization of the UFO-A concept of externally dependent moment, including the concepts of commitment and claim. When two physical agents agree to accomplish goals jointly, a commitment/claim pair is generated between them. These deontic concepts are highly important to regulate the social relations between members of an organization. Agents may have several commitments and claims toward one another. For example, on one hand, a consultant might commit to his colleague to pass on some valuable information about a past case that he was involved with that is similar to a present task of his colleague. On the other hand, the colleague can claim this knowledge transfer from the consultant. A pair commitment/claim composes a social relator, which is a particular type of UFO-A relator. Figure 16.5 also shows that commitment and claim may refer to a goal (“refers to” relation between social moment and  goal). In other words, when a physical agent A commits to a physical agent B, this can imply that A adopts a goal of B. In this case, the social relator created between A and B states that B has the right to claim the accomplishment of this specific goal by
 A. Castelfranchi (1995) made an important contribution to the understanding of commitments. He cites Searle, who claims that “a commitment is a rights-producing act” (p. XXX),
 highlighting that it is much more complex for an agent to disengage from commitments toward other agents (social commitments, in Castelfranchi’s term) than to dismiss his own intentions (which Castelfranchi calls internal commitments).

Figure 16.6 emphasizes the difference between physical agent type and physical agent individual. Furthermore, it also depicts the difference between rigid and anti-rigid agent types, here physical agent kind and physical agent role, respectively. Whereas person is an example of a physical agent kind, physical agent roles are specifically suited to model organizational roles (e.g., secretary, manager) as well as other roles performed by agents in specific situations that can be played independently of the position someone has in an organization (e.g., coffee maker or book reader). As previously clarified in UFO-A, a person cannot cease to be a person (i.e., it is a rigid concept, a kind), whereas a secretary can be promoted to manager, or can assume another organizational position (thus being anti-rigid, a role). 

[Figure 16.6 here]
Still aiming at clarifying the concept of physical agent role, figure 16.6 shows that a physical agent role is characterized by social moment types, which describe the set of general commitments and general claims that a physical agent playing a particular role has. This is again based on the work of Castelfranchi (1995), who defines a general commitment as a commitment an agent makes toward a set of goals of the same type. For example, when agreeing to perform the organizational role of a secretary, one is automatically committing oneself to writing letters and making appointments on behalf of one’s boss. Conversely, this person also has some claims a priori, such as receiving a certain salary and having a suitable working place. Bottazzi and Ferrario (2005) remind us that an agent’s autonomy within an organization is restricted by the set of general commitments and claims he/she has as a result of playing a specific role.
Figure 16.7 concludes our UFO-C extension, depicting the important distinction between the concepts of dependency and delegation. The first difference regards the fact that whereas a dependency constitutes a formal relation, a delegation constitutes a material relation, following the definitions of UFO-A. Let us examine this difference in further detail. The figure shows that a dependency connects two physical agents (a depender and a dependee) and a dependum, which can be either a goal or a resource. An agent A (the depender) depends on an agent B (the dependee) regarding a goal G if G is a goal of agent A, but agent A cannot accomplish G and agent B can accomplish G. Here, the fact that an agent cannot accomplish a goal may mean that this agent does not have the capability to achieve it. Or it may denote that this agent’s pursuit of this goal may interfere with his/her other intentions, such that he/she decides not to pursue this goal after all. This may well be a reason why agent A decides to delegate such goal accomplishment to agent B. A delegation is thus associated with a dependency, but it is more than that. As a material relation, it is founded on something more than its connected elements. In this case, the connected elements are two physical agents (delegator and delegatee) and a goal (delegatum), and the foundation of this material relation is the social relator (i.e., a commitment/claim pair) established between the two physical agents involved in this delegation. In other words, when agent A delegates a goal G to agent B, besides the fact that A depends on B regarding G, B commits himself to accomplish G on behalf of A. Goal and plan delegation refer to what Castelfranchi and Falcone (1998) define as open and close
 delegation,
 respectively, meaning that open delegation leaves the decision regarding the strategy toward goal accomplishment to the depender. Close delegation prescribes a specific strategy (i.e., a plan) the depender should adopt for achieving the delegated goal.

[Figure 16.7 here]
To illustrate the difference between dependency and delegation, consider the following case. Suppose John is a program committee member of a certain conference and that he receives from Paul (the conference program chair) an article X to review. Suppose that John cannot review this article by himself, because there are some aspects of the article that are outside his field of competence. Now, suppose that George is a colleague of John who is knowledgeable in exactly those aspects that John needs to review article X. In this case, we could say that John depends on George to review article X. Notice, however, that this relation between John and George can be reduced to relations between the goals and capabilities of these individual agents. Moreover, this relation does not require that the related agents are aware of this dependence. This is certainly not the case with the relation between Paul and John. As the program committee chair, Paul depends on John to review article X. However, in this case not only are they both aware of this dependence, but there is the explicit commitment by John to Paul to review article X. In other words, the delegation by Paul to John to review article X cannot be reduced to relations between their intrinsic moments, but also requires the existence of a certain relator (a commitment/claim pair) that founds this relation. 

Not explicit in the diagram is the concept of socially can achieve, or socially can execute. When we say above that a certain agent can achieve a goal, this means that such agent is able to do it himself or can delegate to another agent who can accomplish it on his behalf. In the example above, if John can review part of article X by himself and can delegate the remaining part to George, we could say that John can socially achieve the goal of reviewing article X.

Similarly to delegation, resource acquisition is also a material relation associated with the same concepts of dependency and social relator. We created this as a different concept because when agent A needs access to a resource R controlled by agent B, it is awkward to say that agent A delegates resource R to agent B. Moreover, this relation is differentiated as follows: to say an agent A acquires a resource R from agent B is equivalent to saying that agent A needs to use resource R, agent A does not control resource R, agent B controls resource R, and agent B commits himself to give agent A access to resource R. In an alternative formulation we can say that if agent A acquires resource R from agent B, then (1) there is a resource dependence from A to B w.r.t. R; (2) A and B are mutually aware of this dependency; (3) B socially commits to give A access to R.

<H1>16.4  Evaluating ARKnowD Notation</H1>
When conceiving a novel modeling language, one obviously should be concerned with its quality. Two aspects that influence the quality of a modeling language are (1) how well the language is able to represent phenomena in its domain of discourse (also referred to as domain appropriateness); (2) how clearly the language is able to communicate such phenomena to the eventual readers of its models (also referred to as comprehensibility appropriateness) (G. Guizzardi, 2005). ARKnowD’s language comprehends the notation of both Tropos and AORML. It is thus important to verify the quality of these languages individually, but especially the consistency in their integration to generate ARKnowD’s language.

<H2>16.4.1 Evaluation Method</H2>
Giancarlo Guizzardi (2005) provides a framework for evaluating domain appropriateness and comprehensibility appropriateness of modeling languages. This framework is based on the construction of a domain ontology to describe the conceptual domain of discourse. This ontology is then used as a reference model for the modeling language, that is, for verifying how well this modeling language is able to represent the concepts and relations represented in the ontology. 

Given the ontology elaborated and described in the previous section, we intend to apply this method to evaluate ARKnowD’s language. The evaluation criterion is based on a number of properties that should hold for the mapping between a representation (or system of representations) and the portion of reality it is supposed to represent. These properties are lucidity, soundness, laconicity, and completeness if we operate at the level of individual models, that is, analyzing the mapping between individual models and what they are supposed to represent. In a complementary way, we consider the properties of construct overload, construct excess, construct redundancy, and (language) completeness when operating at the level of a system of representation, that is, when considering the mapping between a language and a conceptualization of a given domain. These eight properties are  briefly described in the sequel.
 For an in-depth presentation of this method, one should refer to Giancarlo Guizzardi (2005). 

A model is considered lucid according to a conceptualization if each of its constructs represents at most one entity of that conceptualization. Although not exactly the same, non-lucidity is closely linked to construct overload, that is, having a single language construct representing two or more ontological constructs. As stated in Guizzardi (2005, p. 31), “Construct overload is considered an undesirable property of a modeling language since it causes ambiguity and, hence, undermines clarity. When a construct overload exists, users have to bring additional knowledge not contained in the specification to understand the phenomena which are being represented.”

Soundness refers to the property of a model of representing solely the entities of the domain conceptualization. Having a construct in a modeling language that does not map to any ontological construct is known as construct excess. The presence of this extra construct should be avoided because it undermines the understanding of the specification. In other words, the clarity of a specification is improved if the reader is able to link the language constructs to the entities of the domain of discourse. 

A model is said to be laconic if it possesses only one construct to represent each phenomenon in the domain or discourse (i.e., each entity in the domain ontology). Conversely, the same conceptual entity may be represented by two or more constructs in a specification, consequently adding confusion to the meaning of the model. A reader may ask, for example, if the two constructs are actually the same or if there is any semantic distinction between them. Non-laconicity is then related to construct redundancy at the language level, which besides making the understanding of specifications more difficult, adds unnecessary complexity to the modeling language.

A model is said to be complete if every concept in the represented domain conceptualization is covered by at least one element of that model. This is directly linked to expressivity or completeness at the language level. Language incompleteness entails lack of expressivity, that is, there can be phenomena in the considered domain that cannot be represented by the language. Alternatively, users of the language can choose to overload an existing construct in order to represent concepts that originally could not be represented, thereby undermining clarity. Thus, unless some existing construct is overloaded, an incomplete modeling language is bound to produce incomplete models.

<H2>16.4.2 Evaluation</H2>
Taking the ontology presented in section 16.3 and based on the method briefly described above, we found a few problems in the current Tropos and AORML notations. Consequently, we here suggest a few adjustments in order to proceed with their use in ARKnowD. It is important to point out that these languages are considered in integration with one another, so, for example, if one
 language comprehends a set of ontological concepts, the lack of these same concepts in the other language is not considered incompleteness. 

<H3>16.4.2.1 Evaluating the Tropos Language</H3>
In Tropos, there is one case of construct redundancy, one case of construct excess (and, hence, unsoundness), two cases of incompleteness, and one case of construct overload. 

<H4>16.4.2.1.1 Construct redundancy and unsoundness.</H4> First, let us address the cases of construct redundancy and unsoundness together. In Tropos, besides the concept of agent and role, corresponding to our ontological concepts of physical agent kind and physical agent role, there are two other concepts: actor and position. Figure 16.8 depicts these concepts and their corresponding notations.

[Figure 16.8 here]
The concept of position is considered solely with the purpose of aggregating different roles. Let us analyze this concept a bit further. As stated in subsection 16.3.3, a physical agent role is characterized by the set of social moment types, that is, general commitments and claims a physical agent playing such a role agrees to. As a role aggregation, a position is characterized by the union of the social moment types characterizing its aggregating roles. Regarding the metaproperty of rigidity, a position, like a role, is an anti-rigid type. Therefore a position, as much as a role, can be seen as an anti-rigid type characterized by a set of social moment types. Hence, we conclude that there is no real distinction between the ontological concepts of role and position, and thus the use of two different language primitives instead of one is not justified. To put it differently, the presence in Tropos of both role and position to represent the same ontological concept constitutes a case of construct redundancy.

Still referring to figure 16.8, we note that actor is a general concept that can refer to an agent, to a role, or to a position. However, we find no reason to consider such a concept. Some claim that in i* (Yu, 1995), agent is defined as an instance of the actor type. However, that is not clear in this picture, which is also present in the i* original proposal.
 Moreover, such a definition would only add confusion to the modeling language, because there is no reason whatsoever to name an instance differently from its type. 

Other researchers who apply i* for requirements analysis combined with object-oriented design claim that the concept of agent is important because not all system actors from the analysis activity become agent-oriented systems. Thus the concept of agent could be used to differentiate object-oriented and agent-oriented systems (i.e., representing the latter). However, we find this a misconception because the term actor already implies that such an entity is “one who acts,” and thus it is an active entity and cannot represent an object. In our view, there is no inconsistency in applying agents to analyze a domain and then designing the system using object-oriented methodologies or other methodologies. In this case, agents are applied as modeling metaphors only during analysis, and thus their behavior is modeled as active entities, even if later the chosen implementation technology will lead them to be designed as passive entities. Consequently, such an explanation does not justify the use of the two concepts actor and agent. 

We conclude that the concept of actor leads to unsoundness, causing much of the i* and Tropos literature not to make use of all four available concepts of actor, agent, position, and role. Many times, authors limit themselves to one or two of these concepts or, even worse, apply them inconsistently (for instance, whereas in one work, agent is considered an instance of an actor, in another work, agent is applied to differentiate between agent-oriented systems and object-oriented systems). Hence, our proposed solution considers only the concepts of agent and role. Dismissing the position and actor concepts, the analyst should identify, from the start, if a domain participant is an agent or a role (rigid and anti-rigid concepts, respectively). For representing an agent, ARknowD adopts Tropos’s actor notation (empty circle) as being the simplest form, while maintaining the current Tropos notation for roles.

<H4>16.4.2.1.2 Incompleteness and construct overload</H4> Going forward with the evaluation of the Tropos language, we address the incompleteness and non-lucidity issues by considering the case illustrated in figure 16.9.

[Figure 16.9 here]
Figure 16.9 depicts the following situation: the department manager of an organization relies on the department secretary to make an appointment for a meeting with all the employees of the department. For that, the secretary, in her turn, depends on a specific calendar system named eDates. The secretary is always checking for free new versions of the eDates system on the developer’s Web site, aiming at profiting from new functionality and enhancements in this system. Department Manager, Department Secretary, eDates System, and eDate System Developer are examples of Tropos agents, which correspond to the UFO-C concept of physical agent.

In part (A), however, it is not possible to differentiate between physical agent type and physical agent individual. For instance, it is not clear if we talk about a specific secretary and a specific system, or general ones. Representing both ontological concepts using only one language construct is understood as construct overload. This may get in the way of a clear understanding of the modeled setting. We therefore provide in (B) a way to differentiate these two entities. Inspired by UML, we chose to underline the name of physical agent individuals to point out the difference between them and physical agent types, thus imitating the way UML differentiates between instances and classes. Our choice provides a suitable connection between Tropos and AORML, which already adopts this UML strategy. Following this strategy, part (B) depicts eDates System as an individual and all other agents as types. The choice of making the others agents is done to maintain a level of generality for the model; for instance, this model would typically hold even if the secretary were changed. The new secretary would continue to be responsible for setting up meetings on behalf of her boss, and using the same system to do so.

A case of incompleteness that can be noted in figure 16.9(A) refers to the lack of language expressivity of the Tropos language to model the concept of dependency. What Tropos usually terms dependency is actually a case of delegation according to our ontology. As seen in subsection 16.3.3, the latter concept is stronger than the former, because, besides dependency, delegation also involves commitment from the dependee in relation to the depender. In part (a) of figure 16.9, the delegation depicted between the secretary and the eDates system developer is actually only a dependency. The secretary does not know the developer, who in his turn has no way to commit specifically to her on releasing new versions. In other words, if the developer decides to stop providing free releases and to start charging for new versions of the system, the secretary does not have a claim on him and will have to accept this fact. To correct this expressivity problem, we created a new symbol to distinguish dependency from delegation. This is an arrow similar to the one used before; however, the arrowhead is empty to denote the lack of commitment. This new symbol is illustrated in figure 16.9b. It  is not our intention to determine whether both dependency and delegation are to be applied in all modeled cases. It may be that in some specific cases, only dependencies (or only delegations) make sense. However, with this proposal, we make sure that the language is expressive enough to capture both concepts, because in some situations (such as the one just illustrated), both dependency and delegation are present.

The other case of incompleteness actually refers to the concept of resource acquisition, differentiated from resource dependency by the commitment of the acquisitee to deliver a given resource to the acquisitor.  Figure 16.10 depicts the modeling constructs used for the three kinds of dependencies, as well as for resource acquisition, goal delegation, and plan delegation. The resource acquisition notation maintains uniformity with the ones used for goal delegation and plan delegation, showing that, analogously to these relations, a resource acquisition is a resource dependency added by a commitment (in this case, the commitment of the acquisitee to provide the acquisitor with access to the acquisitum).

[Figure 16.10 here]
<H3>16.4.2.2 Evaluating AORML</H3>
In AORML, we found one case of construct overload. This regards the notation used simultaneously to model a nonagentive object and a belief. To correct this problem, we use stereotypes, a UML construct commonly used to extend the language by differentiating old and new entities. This construct is already applied in AORML, for example, to distinguish among human, institutional, and artificial agents. Figure 16.11 shows our proposed solution, depicting a typical situation involving a library institutional agent and a borrower human agent. The library uses an information system to organize its book collection. The borrower borrows books, having his own internal beliefs related to these books. The figure differentiates the actual books from the agent’s internal beliefs by stereotyping the belief class.

[Figure 16.11 here]
<H1>16.5  ARKnowD Transformations: Mapping Tropos into AORML</H1>
As previously explained, it is necessary to provide a transformation method to convert the notation of the models of the different viewpoints. In ARKnowD, this is done by mapping Tropos concepts to AORML concepts, now made semantically explicit by the UFO-C ontology. Table 16.1 depicts this mapping, previously presented in Renata Guizzardi (2006).

[Table 16.1 here]

In Tropos, an agent models an entity that has strategic goals and intentionality within the system or the organizational setting. This concept directly maps to one of the three types of agents in AORML—human, artificial, or institutional agent—depending on its nature. 

Tropos’s plans may indicate paths for AORML’s interaction modeling. In other words, for each plan in a Tropos model, there can be an AOR Interaction Sequence Diagram modeling the interactions of the agents participating in this plan (i.e., agents having the plan or being connected to it by a delegation link). 

Capabilities in Tropos may be seen as a set of plans and, therefore, can be mapped to the set of interaction modeling paths (i.e., set of AOR Interaction Sequence Diagrams) representing the agent’s plans.

Analogously, resources that represent physical or information entities in Tropos become objects according to AORML conceptualization. 

Additionally, in Tropos a goal, plan, or resource dependency between two agents indicates that one agent depends on the other in order to achieve some goal, execute some plan, or obtain some resource. Because such a dependency link indicates a kind of relation between the two agents (depender and dependee), an association link may be depicted between these agents in an AOR Agent Diagram, typically used for information modeling. Here, we consider the differences among dependency, delegation, and resource acquisition pointed out in section 16.3. As mentioned in that section, besides involving dependency between agents, delegation implies that the delegatee has actually agreed to accomplish a goal or perform a task on behalf of the delegator. Thus, a commitment is established from the delegatee regarding the delegator (or a claim emerges from the delegator toward the delegatee). Therefore, goal and plan delegations lead to the establishment of AORML commitments/claims between agents, usually depicted in interaction modeling, using one or more types of AOR interaction diagrams. Resource acquisition is treated analogously to goal delegation and plan delegation because,  as discussed in section 16.3, these concepts have a similar nature. In other words, also in the case of resource acquisition, an association link in the AOR Agent Diagram and a commitment/claim link are assumed to exist between the two agents (the acquisitor and the acquisitee).

Note that one of the most important entities in Tropos, the concept of goal, is not mapped into AORML. This relates to the fact that ARKnowD applies goal modeling exclusively for requirements elicitation and analysis and for architectural design. In detailed design, all goals have already been dealt with. Goals may have been fulfilled or abandoned. But most commonly, goal analysis leads to the delegation of unsolved goals to new or old agents, who are either part of the organization or a new information system. And finally, concrete plans are assigned to goals with the purpose of accomplishing them. Consequently, when the detailed design activity starts, plans should be modeled rather than goals. As observed in table 16.1, plan modeling may be done through the use of AOR Interaction Sequence Diagrams, which detail the protocol of communication between agents to realize a specific sequence of actions.

<H1>16.6  Conclusion</H1>
This chapter has described an ontology-based strategy to identify correspondences between two distinct agent-oriented modeling languages, Tropos and AORML, enabling them to be used in two distinct development activities of the ARKnowD methodology. For making such correspondences, we proposed an MDA-inspired transformation method, which requires a mapping between the metamodels of the two notations. To guarantee the consistency of this mapping, we used an ontological approach aimed at making explicit the semantics of the applied agent-oriented concepts. The ontology developed also served as a reference model for the evaluation of the adopted notations, allowing us to improve the clarity and consistency of the resulting modeling language.

The development of a philosophically well-founded upper-level ontology is an important step toward the definition of real-world semantics for conceptual modeling and agent-oriented concepts. The partition of the Unified Foundational Ontology employed here reflects a certain stratification of our world. However, it also reflects different degrees of scientific consensus: there is more consensus about the ontology of endurants (UFO-A) than about the ontology of perdurants (UFO-B), and there is more consensus about the ontology of perdurants than about the ontology of intentional and social things (UFO-C). In particular, the extension of UFO-C proposed in this chapter should be regarded as work in progress, and as a preliminary attempt to characterize concepts constituting the reality of organizations and social relations.
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Figure 16.11 Distinguishing beliefs from nonagentive objects in AORML.
Table 16.1 Mapping Tropos into AORML

	Tropos Concept
	AORML Construct

	Agent 
	agent

	Plan
	AOR interaction sequence diagram

	Capability
	set of AOR interaction sequence diagram

	Resource
	object

	Dependency
	AOR agent diagram association relation

	Delegation
	AOR agent diagram association relation/AOR commitment

	Resource acquisition


	AOR agent diagram association relation/AOR commitment
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