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<CN>19</CN>
<CT>Goal Modeling and Reasoning in Tropos</CT>
<CA>Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani</CA>
<H1>19.1 Introduction</H1>
One of the distinguishing elements of i* is its use of goals to ascribe intentions to actors. The modeling and reasoning framework adopted for goals is derived from the softgoals of the NFR framework (Chung, 1993; Mylopoulos, Chung, & Nixon, 1992). This chapter revisits this framework and proposes a revision that is well-founded, both semantically and algorithmically. The revision constitutes one of the three formal reasoning techniques supported by the Tropos methodology for developing agent-oriented software systems (Bresciani, Giorgini, Giunchiglia, Mylopoulos, & Perini, 2004; Castro, Kolp, & Mylopoulos, 2002). Specifically, goals are used in Tropos to model and analyze functional and nonfunctional requirements for the system-to-be, and also to represent dependencies among stakeholders and components of the system-to-be. 

The concept of goal has been used in different areas of computer science since the early days of the discipline. In artificial intelligence, problem-solving and planning systems have used the notion of goal to describe desirable states of the world (Nilsson, 1971). For example, a planning system might be given the goal "on(A,B) and on(B,C)," which describes states where blocks A, B, C form a stack. The planning system can then analyze the goal (e.g., by decomposing it into two subgoals) and find suitable actions that will satisfy it. For this setting, goal analysis consists of decomposing goals into subgoals through an AND or OR decomposition. If goal G is AND decomposed (respectively, OR decomposed) into subgoals G1, G2 … Gn, then all (at least one) of the subgoals must be satisfied for the goal G to be satisfied. Given a goal model consisting of goals and AND/OR relationships among them, and a set of initial labels for some nodes of the graph (S for “satisfied," D for “denied") there is a simple label propagation algorithm that will generate labels for other nodes of the graph. The propagation is carried out from subgoals toward root goals. This algorithm can be used to determine if the root goals of a goal model are satisfied, given an assignment of labels for some of the leaf goals. 

Unfortunately, this simple framework for modeling and analyzing goals won't work for domains in which goals are used to represent the intentions behind design decisions (Dardenne, van Lamsweerde, & Fickas, 1993; Mylopoulos et al., 1992). In such domains, goals can't always be formally defined, and the relationships among them can't be captured by semantically well-defined relations such as AND/OR. For example, goals such as “Highly reliable system" admit no formal definition that prescribes their meaning for all stakeholders, though one may want to define necessary conditions for such a goal to be satisfied. Moreover, such a goal may be related to other goals, such as “Thoroughly debugged system" and “Thoroughly tested system," in the sense that the latter obviously contribute to the satisfaction of the former, but this contribution is partial and qualitative. In other words, if the latter goals are satisfied, they certainly contribute toward the satisfaction of the former goal, but they don't guarantee it. The framework also not work in situations in which there are contradictory contributions to a goal. For instance, we may want to allow for multiple decompositions of a goal G into sets of subgoals, in which some decompositions suggest satisfaction of G while others suggest denial. The use of goals in goal-oriented requirements engineering is thoroughly surveyed and discussed in Rolland (2005)
 and van Lamsweerde (2000).  
This chapter gives an overview of our own work on goal modeling and analysis, already presented in earlier papers (Giorgini, Mylopoulos, & Sebastiani, 2005; Giorgini, Nicchiarelli,  Mylopoulos,  & Sebastiani, 2002, 2003;
 Sebastiani, Giorgini,  & Mylopoulos  2004). Specifically, we introduce and discuss a formal model for goals that—among other things —can cope with qualitative relationships and inconsistencies among goals. We then present an axiomatization of the model and propose sound and complete algorithms for forward and backward reasoning. In particular, given a goal model and labels for some of its goal elements, forward reasoning focuses on how to propagate these labels forward, toward root goals. Backward reasoning, on the other hand, focuses on finding a label assignment for leaf nodes of a goal graph that satisfies/denies all root goals. Assuming that the satisfaction/denial of any leaf goal requires some unit cost, we also address the problem of finding a minimum-cost label assignment to leaf goals for satisfying/denying all root goals. Both problems are solved by reducing them to problems of satisfiability (SAT) and minimum-cost satisfiability (minimum-cost SAT) for Boolean formulas. The algorithms have been implemented and are available through a tool named the GR tool. 

To give an intuitive idea of the approach, consider the simple goal model represented in figure 19.1. The figure shows a single root goal, protect users, that might be associated with a public transit system. This goal is AND/OR decomposed several times. The figure also includes some positive qualitative contributions, for example, protect drivers health contributes positively (+ label) to the goal ensure drivers capabilities. Forward reasoning considers input labels for some of the lower-level goals of the goal model—for instance, provide rules, check capabilities, check attitudes, and check health—and infers labels for goals higher up through propagations from the AND/OR subgoals to a parent goal, as well as propagations in the forward direction for qualitative relationships. Conversely, backward reasoning is given to labels for some root goals, such as protect users and protect drivers health, and looks for an assignment of labels to leaves that can generate the desired assignment for top goals. 

[Figure 19.1 here]

At present, forward and backward reasoning support only the requirements analysis phase of the Tropos methodology. In particular, goal reasoning is applied during the early requirements phase to analyze stakeholders’ goals and possible interactions and conflicts among the activities of each individual actor. During the late requirements phase, forward and backward reasoning is applied to evaluate alternative requirements during the phase of requirements selection. Moreover, the reasoning supports the analyst in finding and solving possible conflicts among requirements. A more detailed description of the use of our approach in the Tropos methodology can be found in Giorgini et al. (2005).
The rest of the chapter is structured as follows. Section 19.2 defines goal graphs and proposes an axiomatization for goal relationships. Sections 19.3 and 19.4 formulate, respectively, the problems of forward and backward reasoning for goal graphs and propose algorithms for solving them. Section 19.5 demonstrates the use of goal analysis with a case study from the literature, and section 19.6 describes a goal analysis tool that has been implemented to support formal reasoning with goal models. Section 19.7 concludes the chapter.

<H1>19.2 Goal Models</H1>
In this section we present the formal model for goals adopted in Tropos. The model supports the representation of qualitative relationships and inconsistencies among goals. The following subsections introduce the notion of a goal graph and propose an axiomatization for goal relationships.

<H2>19.2.1 Goal Graphs</H2> 

We consider sets of goal nodes G, and of relations (G1,...Gn) 
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 G over them, including the (n+1)-ary relations and and or and the binary relations +S, -S, +D, -D, ++S, --S, ++D, --D, +, -, ++, --. We briefly recall the intuitive meaning of these relations:

<BL>
· (G1, ...,Gi, ...Gn) 
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 G means that G is satisfied [respectively, denied] if all G1,...,Gn are satisfied [respectively, if at least one Gi is denied]
· (G1, ...,Gi, ...Gn) 
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 G means that G is denied [respectively, satisfied] if all G1,...,Gn are denied [respectively, if at least one Gi is satisfied]
· G2 
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 G1 [respectively, G2 
[image: image5.wmf]  

®

+

+

S

 G1] means that if G2 is satisfied, then there is some [respectively, full] evidence that G1 is satisfied; but if G2 is denied, then nothing is said about the denial of G1
· G2 
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G1] means that if G2 is satisfied, then there is some [respectively, full] evidence that G1 is denied; but if G2 is denied, then nothing is said about the satisfaction of G1
· G2 
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G1 [respectively, G2 
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G1] means that if G2 is denied, then there is some [respectively, full] evidence that G1 is satisfied; but if G2 is satisfied, then nothing is said about the denial of G1
· G2 
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 G1 [respectively, G2
[image: image11.wmf]  

®

+

+

D

G1] means that if G2 is denied, then there is some [respectively, full] evidence that G1 is denied; but if G2 is satisfied, then nothing is said about the satisfaction of G1
.</BL>
The names +S, -S, +D, -D, ++S, --S, ++D, --D have the following intuitive meanings: The S [respectively, D] symbol denotes the fact that the satisfiability [respectively, deniability] value of the source goal is propagated; the + [respectively, -] symbol denotes the fact that the propagation is positive [respectively, negative], in the sense that satisfiability propagates to satisfiability [respectively, deniability] and deniability propagates to deniability [respectively, satisfiability].

The meanings of or, +D, -D, ++D, --D are dual with respect to and, +S, -S, ++S, --S, respectively. (By “dual” we mean that we invert satisfiability with deniability.) The relations +, -, ++,-- are defined such that each G2
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 G1 is a shorthand for the combination of the two corresponding relationships G2
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G1 and G2
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 G1. (We call the first kind of relations symmetric and the latter two asymmetric.) For instance, G2
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If (G1,...Gn) 
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 G is a goal relation, we call G1,...Gn the source goals and G the target goal of r, and we say that r is an incoming relation for G and an outgoing
 relation for G1,...Gn. Notice that all relations are directional, from the sources to the target goals. We call the and and or relations Boolean relations; the + and - relations and their asymmetric versions are partial contribution relations; and the ++ and -- relations and their asymmetric versions are full contribution relations. In addition, we call any goal with an incoming Boolean relation and no outgoing
 ones a root goal; and we call any goal with no incoming Boolean relations a leaf goal.

We define a path from G1 to Gk  as a sequence of goals (:= G1,G2…,Gk such that, for every i ( {1, ...,k-1}, Gi and Gi+1  are, respectively, a source goal and the target goal of some relation ri . We define a loop as a path from a goal to itself. We define a diamond as a pair of paths ((1, (2( both from G1 to Gk if (1 and (2 contain no common goal except G1  and Gk. Finally, we define a goal graph as a pair (G,R( in which G is a set of goal nodes and R is a set of goal relations, subject to the following restrictions:
	each goal has at most one incoming Boolean relation;
	(1)

	every loop contains at least one non-Boolean relation arc.
	(2)


In practice, a goal graph can be seen as a forest of AND/OR trees whose nodes are connected by contribution relationships. Root goals are roots of these trees, and leaf goals are either leaves or nodes that are not part of any tree. 

The presence of contribution relations makes the tasks of formal reasoning on goal graphs less straightforward than in the case of simple AND/OR graphs. The following factors contribute to complicate the picture.<UNL>
· Asymmetric value propagation. Satisfiability and deniability values may be propagated asymmetrically. For instance, the relation G2
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 G1 suggests that the achievement of the goal G2 is a necessary but not sufficient condition for achieving goal G1. In fact, if G2 is denied, then there is full evidence that G1 is denied, but if G2 is satisfied, then nothing can be said about the satisfaction of G1. 
· Partial evidence. The contribution relations described above may propagate only partial evidence about the satisfiability/deniability of target goals. This means that a formal semantics for goal graphs must provide partial satisfiability/deniability values for the goals, as well as rules for propagating both full and partial satisfiability/deniability values through the relationships.
· Conflicts. Different goals can provide contradictory contributions to the same goals. For instance, if the graph contains G1
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G and G2
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G, and both G1 and G2 are satisfied, then the first relation induces some evidence that G is satisfied, and the second induces some evidence that G is denied. We call these situations “conflicts.” To this extent, it is important to keep track of both satisfiability and deniability values for all goals.
· Diamonds. The value of one goal alone can provide contradictory contributions to another goal due to the presence of diamonds. For instance, if the graph contains (G1, G5) 
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 G2, G2
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 G4, G1
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 G3, and G3
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 G4, and both G1 and G5 are satisfied, then the satisfiability of G1 propagates to G4 through the diamond (G1G2G4,G1G3G4(, providing both some evidence that G4 is satisfied (path G1G2G4) and some evidence that G4 is denied (path G1G3G4).
· Loops. The satisfiability/deniability of one goal can provide a contribution contradicting itself due to the presence of loops. This is the typical situation in models containing negative feedback loops. For instance, if the graph contains G1
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 G2  and G2
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 G1, and if G1 is satisfiable, then the fact that G1 is satisfied propagates through G2, providing some evidence that G1 is denied.</UNL>
<H2>19.2.2 Axiomatization of Goal Relationships</H2>
Let G1, G2, ... denote goals. We introduce four distinct predicates over goals, FS(G), FD(G) and PS(G), PD(G), meaning, respectively, that there is (at least) full evidence that goal G is satisfied and that G is denied, and that there is at least partial evidence that G is satisfied and that G is denied. We also use the proposition T to represent the (trivially true) statement that there is at least null evidence that the goal G is satisfied (or denied). Notice that the predicates state that there is at least a given level of evidence, because in a goal graph there may be multiple sources of evidence for the satisfaction/denial of a goal. We introduce a total order FS(G) ≥ PS(G) ≥ T and FD(G) ≥ PD(G) ≥ T, with the intended meaning that x ≥ y if and only if x ( y. We call FS, PS, FD, and PD the possible values for a goal.

We want to allow the deduction of positive ground assertions of type FS(G), FD(G), PS(G), and PD(G) over the goal constants of a goal graph. We refer to externally provided assertions as initial conditions. To formalize the propagation of satisfiability and deniability evidence through a goal graph (G,R(, we introduce the axioms in table 19.1. For instance, (3) states that full satisfiability and deniability imply partial satisfiability and deniability, respectively; for an and relation, (4) states that full satisfiability of a target node requires full satisfiability of all source nodes, and partial satisfiability of a target node requires partial satisfiability of all source nodes; for a +S relation, (8) states that only partial satisfiability (but not full satisfiability) propagates through a +S relation. Accordingly, an and relation propagates the minimum satisfiability value (and the maximum deniability one), and a +S relation propagates at most a partial satisfiability value. To this extent, a +S relation can be seen as an and relation with an unknown partially satisfiable goal. Similar considerations hold for the other relations.

[Table 19.1 here]

Notice that combining (3) with (4), and (3) with (8), we have, respectively, <DE>
	(G2,G3)
[image: image28.wmf]  

®

and

 G1: (FS(G2)(PS(G3)) ( PS(G1)
	(16)

	
	

	G2
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 G1: FS(G2) ( PS(G1)
	(17)


Accordingly, henceforth we implicitly assume that axiom (3) is always implicitly applied whenever possible. Thus, for onstance, we say that PS(G1) is deduced from FS(G2) and PS(G3) by applying (4)—meaning “applying (3) and then (4)”—or that PS(G1) is deduced from FS(G2) and FS(G3) by applying (4)—meaning “applying (4) and then (3).”
Let A:
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 be a generic relationship axiom for the relation r. We call the values vi prerequisite values, and v the consequence value of axiom A, and we say that the values vi are the prerequisites for v through r and that v is the consequence of the values vi  through r. We say that an atomic proposition of the form FS(G), FD(G), PS(G), and PD(G) holds if it is either an initial condition or it can be deduced via modus ponens from the initial conditions and the ground axioms of table 19.1. We assume conventionally that T always holds. Notice that all the formulas in the framework described so far are propositional Horn clauses, so that deciding if a ground assertion holds not only is decidable, but also it can be decided in polynomial time.

A weak conflict holds if (PS(G) ( PD(G)), a medium conflict holds if either (FS(G) ( PD(G)) or (PS(G) ( FD(G)), and a strong conflict holds if (FS(G) ( FD(G)), for some goal G.

<H1>19.3 Forward Reasoning</H1> 

Based on the framework introduced in section 19.2 (Giorgini et al., 2002, 2003), we present algorithms for propagating, through a goal graph (G,R(, labels representing evidence for the satisfiability and deniability of goals. To each node G ( G we associate two variables Sat(G) and Den(G), ranging within {F, P, N} (full, partial, none), such that F > P >N, representing the current evidence of satisfiability and deniability of goal G. For example, Sat(Gi) ≥ P states that there is at least partial evidence that Gi is satisfiable. Starting from assigning an initial set of input values for Sat(Gi), Den(Gi) to (a subset of) the goals in G, we propagate the values through the goal relations in R according to the propagation rules of table 19.2. The schema of the algorithm is described in figure 19.2. Initial, Current, and Old are arrays of |G| pairs (Sat(Gi),Den(Gi)(, one for each Gi ( G, representing respectively the initial, current, and previous labeling states of the graph. We call the pair (Sat(Gi),Den(Gi)( a label for Gi. Notationally, if W is an array of labels (Sat(Gi),Den(Gi)(, by W[i].sat and W[i].den we denote the first and second field of the ith label of W.

[Table 19.2 here]
[Figure 19.2 here]
The array Current is first initialized to the initial values Initial given as input by the user. At each step, for every goal Gi, (Sat(Gi),Den(Gi)( is updated by propagating the values of the previous step. This is done until a fixpoint
 is reached, in the sense that no further updating is possible (Current == Old).

The updating of (Sat(Gi),Den(Gi)( works as follows. For each relation Rj incoming in Gi, the satisfiability and deniability values satij and denij derived from the old values of the source goals are computed by applying the rules of table 19.2. The result is compared with the old value, and the maximum is returned as new value for Gi.

In Giorgini et al. (2002, 2003), we have shown that the algorithm is sound and complete with respect to the axiomatization.

<H1>19.4 Backward Reasoning</H1> 

In this section, we focus on the backward search of the possible input values leading to some desired final value, under desired constraints. The user sets the desired final values of the target goals, and the system looks for possible initial assignments to the input goals that would cause the desired final values of the target goals by forward propagation. The user may also add some desired constraints, and decide to avoid strong/medium/weak conflicts. As we said in the introduction, the problems related to backward reasoning are solved by reducing them into those of satisfiability and minimum weight satisfiability of Boolean formulas. To make the presentation self-contained, before going into the details of backward reasoning, we recall briefly some basic notions about Boolean satisfiability and minimum-weight Boolean satisfiability.

<H2>19.4.1 SAT and Minimum-Cost SAT</H2>
Propositional satisfiability (SAT) is the problem of determining whether a Boolean formula ( admits at least one satisfying truth assignment ( to its variables Ai. In a broad sense, a SAT solver is any procedure that is able to decide such a problem. SAT is an NP-complete problem (Cook, 1971), so we can reasonably assume that there does not exist any polynomial algorithm that solves it. 

Recent years have witnessed an impressive advance in the efficiency of SAT techniques, which has brought large, previously intractable problems into the reach of state-of-the-art solvers (see Zhang & Malik, 2002 for an overview).

The most popular SAT algorithm is DPLL (Davis, Logemann, & Loveland, 1962) in its many variants, and Chaff (Liberatore, 2000) is probably the most efficient DPLL implementation available. In its basic version, DPLL tries to find a satisfying assignment recursively by assigning, at each step, a value to a proposition. The input formula must be previously reduced to conjunctive normal form (CNF).
 At each step, if there exists a unit clause, DPLL assigns it to true; otherwise, it chooses a literal l and it tries to find an assignment with l set to true; if it doesn't succeeds, it tries with l set to false. In this way, DPLL performs the deterministic choices first while postponing as long as possible the branching step, which is the main source of exponential blowup. There are several techniques to improve the efficiency of DPLL, such as back-jumping, learning, and random restart (see Zhang  & Malik, 2002 for an overview). 

A noteworthy variant of SAT is minimum-weight propositional satisfiability (hereafter MW-SAT) (Liberatore, 2000). The Boolean variables Ai occurring in ( are given a positive integer weight wi, and MW-SAT is the problem of determining a truth assignment ( that satisfies (, which minimizes the value, <DE>
	
[image: image31.wmf]  

  

W

(

m

)

:

=

w

i

|

A

i

 

is

 

assigned

 

T 

b

y 

m

{

}

i

å


	(18)


or stating there is none. In the general case MW-SAT is a 
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 (Liberatore, 2000). That is, it is much harder than simple SAT. The state-of-the-art solver for MW-SAT is Minweight (Liberatore, 2000), based on a variant of the DPLL procedure.

<H2>19.4.2 Input and Target Goals</H2>
The notions of “input goal" and “target goal" deserve some more comments. Goal graphs may contain cycles so that, in principle, it is not obvious a priori which goals are target/output goals and which are input ones. Although in our experience the Boolean relations tend to have a dominant role, so that target goals are typically roots and input goals are typically leaves, the choice is typically left to the user.

Nevertheless, the choice is not completely free, because we impose the condition that every path incoming in a target goal must originate in an input node. That is: <DE>
	for every target goal G there exists a direct acyclic subgraph

(DAG) rooted in G whose leaves Gi …Gik are input nodes,
	(19)


<?DE> so that the value of G derives by forward propagation from those of Gi…Gik. An easy-to-verify sufficient condition for (19) is that
 <DE>
	all leaf goals are input goals

	(20)


<H4>Example 19.1</H4> Consider the simple goal graph of figure 19.3, and suppose that G0 is the target goal and G2 and G3 are the input goals. (Notice that G0 and G1 form a loop without input goals.) If we assign a final value FS(G0), then by backward search we can have FS(G1) and then FS(G0) again. Thus, FS(G0) could be derived by forward propagation from itself without any input value, which is a nonsense. If instead G1 is an input goal, then by backward search we obtain FS(G1) or FS(G2) and FS(G3), which are suitable initial assignments to the input goals. Notice that 

<DE> (G2;G3)
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form a DAG rooted in G0 whose leaves are input nodes.

[Figure 19.3 here]

<H2>19.4.3 Basic Formalization</H2>
We want to reduce the problem of backward search for input values to that of satisfiability (SAT) of a Boolean formula (. The Boolean variables of ( are all the values FS(G), PS(G), FD(G), and PD(G) for every goal G ( G, and ( is written in the form <DE>
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</DE>The conjuncts (graph, (outval, (backward and optional components (constraints, and (conflict  are explained below.

<H3>19.4.3.1 Encoding the Goal Graph: (graph </H3>
<DE>
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</DE> Invar_Ax(G) being the conjunction of the invariant axioms (3) from table 19.1 for the goal G and Rel_Ax(r) being the conjunction of the relation axioms (4)–(15) from table 19.1 and their duals corresponding to the relation r. These axioms encode the forward propagation of values through the relation arcs in the goal graph.

<H3>19.4.3.2 Representing Desired Final Output Values: (outval </H3>
 The second component (outval is a representation of the output values the user wants to be assigned to the target goal. (outval is written in the form <DE>
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</DE> Target(G) being the set of target goals in G and vs(G) ( {T; PS(G); FS(G)}, vd(G) ( {T; PD(G); FD(G)} being the maximum satisfiability and deniability values assigned by the user to the target goal G. (outval is a conjunction of unit clauses, which forces the desired output values vs(G) and vd(G) to be assigned to T.

<H3>19.4.3.3 Encoding Backward Reasoning: (backward </H3>
 The third component (backward encodes the backward search. (backward is written in the form <DE>
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</DE> Input(G) being the set of input goals in G, Incoming(G) being the set of relations incoming in G, v(G) ( {PS(G); FS(G); PD(G); FD(G)}, and Prereqs(v(G); r) being a formula that is true if and only if the prerequisites of v(G) through r hold. The list of possible backward propagation axioms Backward_Ax(v(G)) is reported in table 19.3 (26)–(29). 

Suppose G is not an input goal. If v(G) holds, then this value must derive from the prerequisite values of some of the incoming relations of G. Prereqs(v(G); r) are exactly the conditions that must be verified to apply the corresponding relation axioms (4)–(15) and their duals in table 19.1.

[Table 19.3 here]
<H2>19.4.4 Adding User's Constraints and Desiderata</H2>
 The first optional component (constraints allows the user to express constraints and desiderata on goal values. (constraints is generically written in the form <DE>
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</DE> litij ( {PS(G); FS(G); PD(G); FD(G); (PS(G); (FS(G); (PD(G); (FD(G)}, G(G. A positive unit clause value is used to impose a minimum value on a goal. (E.g., “PS(G1)" means “G1 is at least partially satisfiable," but it might be totally satisfiable.) A negative unit clause value is used to prevent a value on a goal. (E.g., “FD(G1)" means “G1 cannot be fully deniable," but it might be partially deniable.) A disjunction of positive values is used to state an alternative desideratum. (E.g., “FS(G1) ( FS(G2)" means “at least one between G1 and G2 must be fully satisfiable.") A disjunction of negative values is used to state a mutual exclusion constraint. (E.g., “FD(G1) ( FD(G2)” means “G1 and G2 cannot be both fully deniable,” but they can be partially deniable.)

<H3>19.4.4.1 Preventing Conflicts</H3>
 The second optional component (conflict allows the user for looking for solutions that do not involve conflicts. Depending on whether one wants to avoid (1) only the strong conflicts, (2) the strong and medium conflicts, or (3) all conflicts, (conflict is encoded respectively as follows. <DE>
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</DE> Equation (31) states that G cannot be both fully satisfiable and fully deniable; (32) states that G cannot be fully satisfiable and (fully or) partially deniable, and vice versa; (33) states that G cannot be (fully or) partially satisfiable and (fully or) partially deniable. Notice that, by axioms (1)–(2), (33) implies (32) and that (32) implies (29).

<H2>19.4.4 Solving Simple and Minimum-Cost Goal Satisfiability</H2>
Consider a goal graph (G,R(  with input goals Gi1…Gik and target goals Gf1…Gfn, and a set of desired final values vs(Gf1), vd(Gf1), ... vs(Gfn), vd(Gfn) for the target goals (plus possibly a set of user constraints and desiderata), and let ( be the formula encoding the problem, as in (18).

The correctness and completeness  of the whole approach has been proved in Sebastiani et al. (2004). According to the proof, (1) if ( is unsatisfiable, then no value exists for the input goals from which the desired final values derive by forward propagation (verifying the desiderata and constraints); (2) if an assignment ( satisfying ( exists, then the maximum values vs(Gi1), vd(Gi1), ... vs(Gin), vd(Gik) that ( assigns to T are such that the desired final values derive from them by forward propagation (verifying the desiderata and constraints). This allows us to reduce the problem of backward search to that of propositional satisfiability.

<H3>19.4.4.1 Goalsolve</H3>
We have implemented an algorithm, called Goalsolve, for the backward search of the possible input values leading to some desired final value, under desired constraints. The schema of Goalsolve is reported in figure 19.4 (black arrows).

Goalsolve takes as input a representation the goal graph, a list of desired final values, and, optionally, a list of user desiderata and constraint and a list of goals that have to be considered as input. (The default choice is that indicated in condition (20), that is, all leaf goals are considered input goals.) The user may also activate some flags for switching on the various levels of “avoiding conflicts."
The first component of Goalsolve is an encoder that generates the Boolean CNF formula (  as described in the previous section, plus a correspondence table Table between goal values and their correspondending Boolean variable. ( is given as input to the SAT solver Chaff (Moskewicz, Madigan, Zhang, & Malik, 2001), which returns either UNSAT if ( is unsatisfiable, or SAT plus a satisfying assignment ( if ( is satisfiable. Then a decoder uses Table to decode back the resulting assignment into the set of goal values.

[Figure 19.4 here]
<H3>19.4.4.2 Goalminsolve</H3>
In general, the satisfaction/deniability values of (input) goals may have different costs. Thus we have implemented a variant of Goalsolve, called Goalminsolve, for the search for the goal values of minimum cost. The schema of Goalminsolve is reported in figure 19.4 (gray arrows). Unlike Goalsolve, Goalminsolve also takes as input a list of integer weights W(val(G)) for the goal values. (The default choice is W(FS(G)) = (FD(G)) = 2 and W(PS(G)) = (PD(G)) = 1 if G is an input goal, and W(FS(G)) = (FD(G)) = W(PS(G)) = (PD(G)) = 0 otherwise.) The encoder here also encodes the input weight list into a list of weights for the corresponding Boolean variables of (. Both ( and the list of weights are given as input to the minimum-weight SAT solver Minweight (Liberatore, 2000), which returns either UNSAT if ( is unsatisfiable, or SAT plus a minimum-weight satisfying assignment ( if ( is satisfiable. The decoder then works as in Goalsolve.

Notice that, in general, there may be many satisfying assignments—up to exponentially many—corresponding to solutions for the problem. In a typical session with Goalsolve or Goalminsolve, the user may want to work first with the “avoiding conflicts" flags, starting from the most restrictive (33) and moving down to the least restrictive (31), until the problem admits solution. (E.g., it is often the case that no solution avoiding all conflicts exists, but if one allows weak or medium conflicts, a solution exists.) Then, once the level of conflict avoidance is fixed, the user may want to work on refining the solution obtained, by iteratively adding positive and negative values—such as FD(G1), FS(G2)—in the list of desiderata and constraints, until a satisfactory solution is found.

<H1>19.5 Using Goal Analysis</H1>
We briefly describe in this section how goal analysis and reasoning mechanisms are used within the Tropos methodology. In particular, we focus on the Tropos requirements phases, and we illustrate how forward and backward reasoning are used in the Medi@ case study.

Let’s consider the actor diagram presented in figure 19.5. The figure shows part of the goal analysis for the Medi@ system (the system-to-be) related to the goal manage internet shop, as presented in Castro et al. (2002). The goal is first refined into the goals manage internet orders, manage item searching, produce statistics, and adaptation. To achieve manage internet orders the goal shopping cart is used, which is decomposed into subgoals select items, add item, check out, and get identification details. These are the main process activities required to design an operational online shopping cart (Conallen, 2000). 
The get identification details goal is achieved either through the subgoal classic communication handled, dealing with phone and fax orders, or internet managed, managing secure or standard form orderings. To allow for the ordering of new items not listed in the catalogue, select items is further refined into two alternative subgoals, one dedicated to select catalogued items, and the other to pre-order unavailable products. To provide sufficient support (++) to the adaptability softgoal, adaptation is refined into four subgoals dealing with catalogue updates, system evolution, interface updates, and system monitoring. The goal manage item searching might be fulfilled through either the goal DB querying or the goal catalogue consulting with respect to customers’ navigating desiderata, that is, searching with particular items in mind by using search functions or simply browsing the catalogued products.

[Figure 19.5 here]
Figure 19.5 also reports the analysis for the softgoals security and usability. The security softgoal receives positive contributions from the satisfaction of the softgoals privacy, availability, and integrity, whereas usability receives positive contributions from adaptability and easy to use. Notice that standard form order gives a negative contribution to privacy. Of course the analysis should include other nonfunctional requirements, but for the sake of simplicity we focus only on security and usability.

<H2>19.5.1 Using Forward Reasoning</H2>
Forward reasoning is adopted in Tropos in order to evaluate the impact of the adoption of different alternatives with respect to the softgoals of the system-to-be. Table 19.4 reports the results of forward reasoning in four different situations for the goal model presented in figure 19.5. The table shows only the results for the goals involved in OR decompositions, the top goal manage internet shop, and all the softgoals of the model. For all the other (leaf) goals we assume they have full evidence for satisfaction in the initial assignment of values. For each experiment, the table reports the initial (Init) and final (Fin) values assumed by each goal.

In the first experiment (Exp 1) we adopt the goal DB querying as the choice to achieve manage item searching, the goal pick available item to achieve select items, and the goal classic communication handled to achieve get identification details. The result is that the top goal manage internet shop is fully satisfied (Sat(...)=F) and all the softgoals are at least partially satisfied (Sat(...)=P), except the softgoal easy to use, which is partially denied (Den(...)=P). Notice also that this initial assignment produces a conflict for the integrity softgoal (Sat(...)=P and Den(...)=P). In the second experiment (Exp 2) we adopt the goal standard form order instead of the goal classic communication handled. This mainly produces the result of moving the conflict from the softgoal integrity to the softgoal privacy. In the third experiment (Exp 3) we decide to manage item searching using the catalogue consulting goal. The effect of this new assignment is that the softgoal easy to use is now partially satisfied, but we have conflicts for the softgoals integrity and privacy. Finally, in the fourth experiment (Exp 4) we adopt secure form order instead of the standard form order goal. This has the effect that now we do not have conflicts and all the softgoals are at least partially satisfied.

[Table 19.4 here]
Table 19.4 reports results limited to the simple model of figure 19.5. Also, in the model we have used only symmetric relationships and we have not distinguished between relations +S and +D or -S and -D. In real-life case studies, the goal models to be analyzed are usually more complex. For instance, in Sebastiani et al. (2004) we  have presented a goal model with more than a hundred goals for the Trentino Public Transportation System, in which nonsymmetric relationships have been used.

The analysis presented above concerns only a goal model and does not consider the effects of a particular assignment to the goals of other goal models. This kind of analysis is called intra actor analysis because it does not involve goal models of other actors. In contrast, the inter actor analysis extends the boundary of the analysis to the goal models of the other actors. So, for instance, we could analyze the effects of an assignment of table 19.4 to the softgoals, such as happy customers and improve quality of services, that are part of the goal models of other actors. 

<H2>19.5.2 Using Backward Reasoning</H2>
Backward reasoning is used to discover solutions or minimal solutions for the fulfillment of root goals. Table 19.5 presents the results of backward reasoning in four different situations with the goal model of the Medi@ shop presented in figure 19.5. The cost of each alternative goal is reported in the first column beside its label (e.g., the cost of the DB querying is 3). In the first experiment we try to find an assignment at the minimal cost that allows us to obtain the full satisfaction of the top goal manage internet shop and all the softgoals. Unfortunately, no solution exists, and this is due to the fact that almost all the softgoals receive only (+) and no (++) contributions. In the second experiment we require the full satisfaction of the top goal manage internet shop and partial satisfaction of all the softgoals. The solution at the minimum cost results from the full satisfaction of catalogue consulting, pick available item, and secure form order. In the third experiment, we relax the constraint of avoiding conflicts and now obtain that the solution includes the full satisfaction of the goal standard form order instead of the goal secure form order. Of course, now in the final values of the target goals we have conflicts, and in particular a conflict for the goal privacy (Sat(...)=P and Den(...)=P) and the goal integrity (Sat(...)=P and Den(...)=P). In the final experiment we required only the full satisfaction for the goal manage internet shop and the softgoal privacy. The solution with no conflicts is reported in the table.

[Table 19.5 here]

Also for backward reasoning, the analysis can be extended to the goal models outside the boundary of the single actor. In this case the desired values can be assigned to (soft)goals of different goal models and the final solution will include goals of one or more goal models.

<H1>19.6 The Goal Reasoning Tool</H1>
Forward and backward reasoning are both supported in Tropos by the Goal Reasoning Tool (GR-Tool). This is a CASE (computer-aided software engineering) tool developed for modeling and verifying requirements models by supporting goal analysis. Specifically, the GR-Tool offers a graphical environment, a goal reasoning interface, and a translation tool. 
The graphical environment is a visual framework for creating and manipulating goal diagrams. The user can choose to draw Tropos diagrams (actor and goal diagrams), or a stand-`alone goal diagram that is not associated with any actor. In both cases the user is requested to specify details about each single goal, such as whether the goal is an input or root goal, as well as values for the variables SAT and DEN. Figure 19.6 shows an example of a Tropos diagram within the graphical environment. In the left-hand side of the interface the user can specify goal details. 

[Figure 19.6 here]

The goal reasoning interface is a front end to external tools for forward and backward reasoning. The user can decide to execute four different types of analysis: qualitative forward analysis, qualitative backward analysis, quantitative forward analysis, and quantitative backward analysis. It is possible to move from one type of analysis to another without the need to re-input details on the analysis (input/target goals, desired/input values). Qualitative values are transformed into quantitative and vice versa (FS->S=1.0; PS->0.5; N->0; etc.). Figure 19.7 shows the panel in which users input some parameters of the quantitative backward analysis. 

[Figure 19.7 here]

Goal analyses can be conducted for different types of diagrams:
<BL> 

· Single actor diagrams, in which the analysis is done on a single actor’s goal diagram
· Multiple actor diagrams, in which the analysis is done on a diagram generated by joining the goal diagrams of several actors
· Selection diagrams, in which the analysis is done on a diagram created by joining pieces of goal diagrams.</BL> 

For each type of analysis we can use different scenarios to compare results obtained with different input values (e.g., varying the desired final values for the target goals, avoiding conflicts, allowing weak conflicts, etc.). Results can be shown graphically (directly on the diagram) or in tabular form (showing the values for each goal).  

The translation tool allows the user to export and import Tropos diagrams in the Formal Tropos specification language (Fuxman,  Pistore,  Mylopoulos,  & Traverso,  2001), in XML or in Datalog. This is very useful for the integration of GR-Tool functionalities with functionalities of other Tropos tools, such as ST-Tool and T-Tool. Figure 19.8 shows an example of specification in Formal Tropos. 
[Figure 19.8 here]

The GR-Tool consists of a GR-Tool kernel and external solvers. GR-Tool (version 2.0) is a cross-platform Swing-based Java application. It requires a Java Virtual Machine, version 1.4.1 or above. The package also includes the solvers required for qualitative and quantitative
  backward/forward reasoning. Solvers have been compiled and tested under Windows XP, Linux, and MacOS X operating systems. Quantitative backward reasoning uses Lingo as solver. Lingo is a commercial optimization modeling tool produced and distributed by Lindo Systems. In the GR-Tool we use Lingo version 8.0. 

<H1>19.7 Conclusions</H1>
In this chapter, we have presented a formal framework for modeling and reasoning with goal models. The framework presents a formalization of Tropos goal models and a set of axioms that describe the possible relations among goals. On the base of this formalization, we have introduced two different forms of qualitative reasoning on goal models: forward and backward reasoning. Given a goal model and an initial assignment of evidence for the satisfaction of some goals, forward reasoning focuses on how to propagate this evidence (labels) forward, toward root goals. Backward reasoning, on the other hand, focuses on finding a label assignment for leaf nodes of a goal graph that satisfies/denies all root goals. We also have presented an example of how to use our framework and the tool we have developed to support the whole approach. As future work, we are interested in two directions. First, we would like to better integrate goal analysis into the Tropos methodology, identifying through real case studies when and how the two forms of reasoning can be applied during the development of a software system. Second, we are interested in investigating the possibility of extending the framework with different forms of analysis, such as risk analysis.
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Figure 19.1 A simple goal graph. See figure A.2 for a key to Tropos diagrams.

Figure 19.2 Schema for the label propagation algorithm.

Figure 19.3 The goal graph of example 19.1.

Figure 19.4 Schema of Goalsolve (black arrows) and Goalminsolve (gray arrows).

Figure 19.5 Actor diagram for the Medi@ Shop, focusing on the goal internet shop managed.

Figure 19.6 A snapshot of the GR-Tool.

Figure 19.7  Quantitative backward analysis options.

Figure 19.8 Formal Tropos specification.
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Table 19.2  Propagation rules in the qualitative framework
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Table 19.3  Axioms for backward propagation

	Goal
	        Backward Propagation Axioms
	

	  G (non-input):
	FS(G) ( 
	[image: image84.wmf]  

Ù

i

Ú

j

l

ij


	∧i FS(Gi)
	∨
	If (G1(,Gi , (, Gn)
[image: image64.wmf]  

®

and

 G
	(26)

	
	
	
	∨i FS(Gi)
	∨
	If (G1(,Gi , (, Gn)
[image: image65.wmf]  

®

or

 G
	

	
	
	
	FS(Gi)
	∨
	For every relation Ri: Gi
[image: image66.wmf]  

®

+

+

S

 G
	

	
	
	
	FD(Gi)
	
	For every relation Ri: Gi
[image: image67.wmf]  

®

-

-

D

 G
	

	
	PS(G) (
	[image: image85.wmf]  

Ú

ji

l

ji


	∧i PS(Gi)
	∨
	If (G1(,Gi , (, Gn)
[image: image68.wmf]  

®

and

 G
	(27)



	
	
	
	∨i FS(Gi)
	∨
	If (G1(,Gi , (, Gn) 
[image: image69.wmf]  

®

or

 G
	

	
	
	
	PS(Gi)
	∨
	For every relation Ri: Gi
[image: image70.wmf]  

®

+

+

S

 G
	

	
	
	
	PD(Gi)
	∨
	For every relation Ri: Gi
[image: image71.wmf]  

®

-

-

D

 G
	

	
	
	
	PS(Gi)
	∨
	For every relation Ri: Gi 
[image: image72.wmf]  

®

+

S

 G
	

	
	
	
	PD(Gi)
	
	For every relation Ri: Gi 
[image: image73.wmf]  

®

-

D

 G
	

	
	FS(G) (
	[image: image86.wmf]  

Ù

i

Ú

j

l

ij


	∨i FD(Gi)
	∨
	If (G1(,Gi , (, Gn)
[image: image74.wmf]  

®

and

 G
	(28)

	
	
	
	∧i FD(Gi)
	∨
	If (G1(,Gi , (, Gn) 
[image: image75.wmf]  

®

or

 G
	

	
	
	
	FD(Gi)
	∨
	For every relation Ri: Gi
[image: image76.wmf]  

®

+

+

D

 G
	

	
	
	
	FS(Gi)
	
	For every relation Ri: Gi
[image: image77.wmf]  

®

-

-

S

 G
	

	
	PD(G) (
	[image: image87.wmf]  

Ú

ji

l

ji


	∨i PD(Gi)
	∨
	If (G1(,Gi , (, Gn)
[image: image78.wmf]  

®

and

 G
	(29)

	
	
	
	∧i PD(Gi)
	∨
	If (G1(,Gi , (, Gn) 
[image: image79.wmf]  

®

or

 G
	

	
	
	
	PD(Gi)
	∨
	For every relation Ri: Gi
[image: image80.wmf]  

®

+

+

D

 G
	

	
	
	
	PS(Gi)
	∨
	For every relation Ri: Gi
[image: image81.wmf]  

®

-

-

S

 G
	

	
	
	
	PD(Gi)
	∨
	For every relation Ri: Gi 
[image: image82.wmf]  

®

+

D

 G
	

	
	
	
	PS(Gi)
	
	For every relation Ri: Gi 
[image: image83.wmf]  

®

-

S

 G
	


Table 19.4  Evaluating alternatives in the goal model of figure 19.5

	
	Exp 1
	Exp 2
	 Exp 3
	 Exp 4

	Goals
	Init
	Fin
	Init
	Fin
	Init
	Fin
	Init
	Fin

	
	S
	D
	S
	D
	S
	D
	S
	D
	S
	D
	S
	D
	S
	D
	S
	D

	DB Querying
	F
	
	F
	
	F
	
	F
	
	
	
	
	
	
	
	
	

	Catalogue Consulting
	
	
	
	
	
	
	
	
	F
	
	F
	
	F
	
	F
	

	Pick Available Item
	F
	
	F
	
	F
	
	F
	
	F
	
	F
	
	F
	
	F
	

	Pre-order 

Nonavailable Item
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Classic Communication Handled
	F
	
	F
	
	
	
	
	
	
	
	
	
	
	
	
	

	Standard Form Order
	
	
	
	
	F
	
	F
	
	F
	
	F
	
	
	
	
	

	Secure Form Order
	
	
	
	
	
	
	
	
	
	
	
	
	F
	
	F
	

	Manage Internet Shop
	
	
	F
	
	
	
	F
	
	
	
	F
	
	
	
	F
	

	Privacy
	
	
	P
	
	
	
	P
	P
	
	
	P
	P
	
	
	P
	

	Availability
	
	
	P
	
	
	
	P
	
	
	
	P
	
	
	
	P
	

	Integrity
	
	
	P
	P
	
	
	P
	
	
	
	P
	P
	
	
	P
	

	Usability
	
	
	P
	
	
	
	P
	
	
	
	P
	
	
	
	P
	

	Adaptability
	
	
	F
	
	
	
	F
	
	
	
	F
	
	
	
	F
	

	Easy to Use
	
	
	
	P
	
	
	
	P
	
	
	P
	
	
	
	P
	

	Security
	
	
	P
	
	
	
	P
	
	
	
	P
	
	
	
	P
	


Table 19.5  Backward reasoning with the goal model of figure 19.5

	
	Exp 1
	Exp 2
	 Exp 3
	 Exp 4

	Goals
	Init
	Fin
	Init
	Fin
	Init
	Fin
	Init
	Fin

	
	S
	D
	S
	D
	S
	D
	S
	D
	S
	D
	S
	D
	S
	D
	S
	D

	DB Querying (3)
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	F
	

	Catalogue Consulting (6)
	
	
	
	
	
	
	F
	
	
	
	F
	
	
	
	
	

	Pick Available Item (2)
	
	
	
	
	
	
	F
	
	
	
	F
	
	
	
	F
	

	Pre-order 

Nonavailable Item (7)
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Classic Communication Handled (4)
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Standard Form Order (6)
	
	
	
	
	
	
	
	
	
	
	F
	
	
	
	
	

	Secure Form Order (8)
	
	
	
	
	
	
	F
	
	
	
	
	
	
	
	F
	

	Manage Internet Shop
	F
	
	
	
	F
	
	F
	
	F
	
	F
	
	F
	
	F
	

	Privacy
	F
	
	
	
	P
	
	P
	
	P
	
	P
	P
	P
	
	P
	

	Availability
	F
	
	
	
	P
	
	P
	
	P
	
	P
	
	
	
	P
	

	Integrity
	F
	
	
	
	P
	
	P
	
	P
	
	P
	P
	
	
	P
	

	Usability
	F
	
	
	
	P
	
	P
	
	P
	
	P
	
	
	
	P
	

	Adaptability
	F
	
	
	
	P
	
	F
	
	P
	
	F
	
	
	
	F
	

	Easy to Use
	F
	
	
	
	P
	
	P
	
	P
	
	P
	
	
	
	
	P

	Security
	F
	
	
	
	P
	
	P
	
	P
	
	P
	
	
	
	P
	


�Author: Should the year be 2004?


�Author: In either or both 2002 and 2003 should Mylopoulos precede Nicchiarelli?


�Author: Is G1 correct?


�Author: Is “outgoing,” rather than “outcoming,” correct?


�Author: Is “outgoing,” rather than “outcoming,” correct?


�Author: Would “fixed point” correct?


�No query


�The first edition was in 1999, and the second in 2002.  Which are you citing?


�Author: The firsr edition is in 1999, and the second in 2002. Which year do you wish to cite?


�Author: In either this item or the one of 2003 (or both) should Mylopoulos precede Nicchiarelli?


�Author: Should the year be 2004?


�Author: Should the publisher be Springer? If not, should the city be Boston?


�Author: IS this paper in vol. 1? Should the pages be 20-35?





�. A Boolean formula is in CNF if and only if it is in the form � EMBED Equation.3  ���  where lij are literals. A disjunction � EMBED Equation.3  ��� is called a clause. A one-literal clause is called unit clause.


�. A Boolean formula is in CNF if and only if it is in the form � EMBED Equation.3  ���  where lij are literals. A disjunction � EMBED Equation.3  ��� is called a clause. A one-literal clause is called unit clause.


�. Broadly speaking, � EMBED Equation.3  ��� is the class of problems requiring a polynomial amountamounts of calls to a procedure solving an NP problem.


�. Recall that by the very definition of goal graphs, every loop contains at least one leaf goal.


�. This is a revised version of a case study originally presented in Castro et al. (2002).


�. This is a revised version of a case study originally presented in (Castro et al., 2002).


�. This chapterpaper does not present quantitative reasoning mechanisms for goal models; these have been extensively discussed in (Giorgini et al. (., 2005, 2002) and; Giorgini, Nicchiarelli,  Mylopoulos,  and& Sebastiani (, 2003).
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