PAGE
473

<CN>5</CN>
<CT>Using Formal Agent Specification Languages for the Analysis, Verification, and Simulation of i* Models</CT>
<CA>Alexei Lapouchnian and Yves Lespérance</CA>
<H1>5.1 Introduction</H1>
i* (Yu, 1995) is an informal diagram-based language for early-phase requirements engineering that supports the modeling of social and intentional dependencies between agents and how process design choices affect the agents’ goals, both functional and nonfunctional. It has become clear that social and organizational issues play an important role in many domains and applications. However, i* is not a formal language and is in some ways imprecise, and thus provides limited support for describing and analyzing complex processes. Although it is possible to informally analyze small systems, formal analysis is needed for most real-world systems.

To alleviate this situation, we first propose an approach that integrates i* with a formal multiagent system specification language, ConGolog (De Giacomo, Lespérance, & Levesque, 2000; see also Lespérance, Kelley, Mylopoulos, & Yu, 1999), in the context of agent-oriented requirements engineering. ConGolog is an expressive formal language for process specification and agent programming. It supports the formal specification of complex multiagent systems, but lacks features for modeling the rationale behind design choices that are available in i*. In this chapter, we show how i* and ConGolog can be used in combination. The i* framework will be used to model alternatives for the desired system, to analyze and decompose the functions of the different actors, and to model the dependency relationships between the actors and the rationale behind process design decisions. The ConGolog framework will be used to formally specify the system behavior described informally in the i* model. The ConGolog model will provide more detailed information about the actors, tasks, processes, and goals in the system, and the relationships between them. Complete ConGolog models are executable, and this feature will be used to validate the specifications by simulation. To bridge the gap between i* and ConGolog models, an intermediate notation involving the use of process specification annotations in i* SR diagrams will be introduced (Wang, 2001; Wang & Lespérance, 2001). We will describe how such annotated Strategic Rationale (ASR) diagrams can be systematically mapped into ConGolog formal specifications that capture their informal meaning, as well as support validation through simulation and verification. The annotations are not used to capture design-level information, but to obtain a more complete and precise model of the domain.

Its support for modeling intentional notions such as goals makes the i* notation especially suited for developing multiagent systems, for example, as in the Tropos agent-oriented development framework (Bresciani, Giorgini, Giunchiglia, Mylopoulos, & Perini, 2004). Agents are active, social, and adaptable software system entities situated in some environment and capable of autonomous execution of actions in order to achieve their set objectives (Wooldridge, 1997). Furthermore, most problems are too complex to be solved by just one agent—one must create a multiagent system (MAS) with several agents working together to achieve their objectives and ultimately deliver the desired application. This means that in agent-oriented software engineering, complex software design problems are decomposed into multiple subproblems delegated to autonomous, interacting agents, each agent with its own objectives. Agents in MASs frequently represent individuals, companies, and so on. This means that there is an “underpinning organizational context” (Jennings, 1999, p. 3) in an MAS. Like humans, agents need to coordinate their activities, cooperate, and request help from others, often through negotiation. In contrast to object-oriented or component-based systems, interactions in multiagent systems occur through high-level agent communication languages, so interactions are mostly viewed not at the syntactic level but "at the knowledge level" (Jennings, 1999, p. 2), in terms of goal delegation, for example. Therefore, modeling and analyzing agents’ mental states helps in the specification and analysis of multiagent systems.

In requirements engineering (RE), goal-oriented approaches such as KAOS (Dardenne, van Lamsweerde, & Fickas, 1993) have become prominent. In goal-oriented requirements engineering (GORE), high-level stakeholder objectives are identified as goals and later refined into fine-grained requirements assignable to agents/components in the system-to-be or in its environment. Their reliance on goals makes goal-oriented requirements engineering methods and agent-oriented software engineering a great match. Moreover, agent-oriented analysis is central to requirements engineering because the assignment of responsibilities for goals and constraints among components in the software-to-be and agents in the environment is the main outcome of the RE process (van Lamsweerde, 2000). Therefore, it is natural to use a goal-oriented requirements engineering approach when developing an MAS. With GORE, it is easy to make the transition from the requirements to the high-level MAS specifications. For example, strategic relationships among agents will become high-level patterns of interagent communication.

Thus, it would be desirable to devise an agent-oriented requirements engineering approach with a formal component that supports rigorous formal analysis, including reasoning about agents’ goals (and knowledge). This would allow for rigorous formal analysis of the requirements expressed as the objectives of the agents in an MAS.

Ordinary ConGolog does not support the specification of the intentional features of i* models, that is, the mental states of the agents in the system/organization modeled; these must be operationalized before they can be mapped into ConGolog. But an extension of ConGolog called Cognitive Agents Specification Language (CASL) (Shapiro & Lespérance, 2001) supports formal modeling of agent mental states and incomplete agent knowledge. Mapping i* models into CASL gives the modeler the flexibility and intuitiveness of the i* notation as well as the powerful formal analysis capabilities of CASL. Thus we will extend the i*–ConGolog approach to combine i* with CASL and thereby accommodate formal models of agents’ mental states. Our intermediate notation will be generalized to support the intentional/mental state modeling features of CASL (Lapouchnian, 2004; Lapouchnian & Lespérance, 2006), in what we will call intentional annotated Strategic Rationale (iASR) diagrams. With our i*–CASL-based approach, a CASL model can be used both as a requirements analysis tool and as a formal high-level specification for a multiagent system that satisfies the requirements. This model can be analyzed formally using the CASLve (Shapiro, Lespérance, & Levesque, 2002) verification tool or other tools, and the results can be fed back into the requirements model.

One of the main features of this approach is that goals (and knowledge) are assigned to particular agents and so become subjective attributes of the agents, as opposed to objective system properties as in many other approaches, including Tropos (Bresciani et al., 2004) and KAOS (Dardenne et al., 1993). This allows for the modeling of conflicting goals, agent negotiation, information exchange, complex agent interaction protocols, and more.

The rest of the chapter is organized as follows. Section 5.2 briefly introduces our use of i* and presents a case study that we will refer to throughout the chapter, and gives an overview of the ConGolog framework. Section 5.3 presents our approach to mapping i* diagrams into ConGolog formal specifications and discusses the use of simulation to validate the models. Section 5.4 discusses our second approach, in which i* models are mapped into CASL to preserve the intentional features of the models in the formal specifications. We also discuss verification in this section. We conclude, in section 5.5, by summarizing our results, comparing our approach with related work, and discussing possible extensions.

<H1>5.2 Background</H1>
<H2>5.2.1 The i* Framework and a Case Study</H2>
As presented in chapter 2, i* is an agent-oriented modeling framework that can be used for requirements engineering, business process reengineering, and so on. It centers on the notions of intentional actor and intentional dependency. In this chapter, we use i* as a graphical requirements-modeling notation. We will add various new notational elements to SR diagrams to produce ASR (see subsection 5.3.1) and iASR (seesub section 5.4.3.1) diagrams. Note also that we do not use softgoals or resource dependencies in ASR and iASR diagrams, for reasons explained in subsection 5.3.2. Also, we put some restrictions on the types of nodes that can be parents
 or children of goal nodes in iASR diagrams, as discussed in subsection 5.4.3.1.

To illustrate the approach that we propose, we will use a variant of the meeting scheduling problem, which has become a popular exemplar in RE (Bissener, 1997; van Lamsweerde, Darimont, & Massonet, 1995). In the context of the i* modeling framework a meeting scheduling process was first analyzed by Yu (1997). We introduce a number of modifications to the meeting scheduling process to make our models easier to understand. For instance, we take the length of meetings to be the whole day. We also assume that in the environment of the system-to-be there is a legacy software system called the Meeting Room Booking System (MRBS) that handles the booking of meeting rooms. Complete case studies are presented in Lapouchnian (2004) and Lapouchnian and Lespérance (2006).

<< Insert Figure 5.1 here >>

Figure 5.1 is a Strategic Dependency diagram showing the computerized Meeting Scheduler (MS) agent in its environment. Here, the role Meeting Initiator (MI) depends on the MS for scheduling meetings and for being informed about the meeting details. The MS, in turn, depends on the Meeting Participant (MP) role for attending meetings and for providing his/her available dates. The MS uses the MRBS to book rooms for meetings. The Disruptor actor represents outside actors that cause changes in participants’ schedules, thus modeling the environment dynamics.

Figure 5.2 is a simple Strategic Rationale diagram showing some details of the process that the MI can use for scheduling meetings. One alternative is to rely on the MS agent.

<< Insert Figure 5.2 here >>

<H2>5.2.2 The Formal Foundations: The Situation Calculus and ConGolog</H2>
ConGolog (De Giacomo et al., 2000) is a framework for process modeling and agent programming. It is based on the situation calculus (McCarthy & Hayes, 1969), a language of predicate logic for representing dynamically changing worlds. The ConGolog framework can be used to model complex processes involving loops, concurrency, multiple agents, and so on. Because it is logic-based, the framework can accommodate incompletely specified models, either in the sense that the initial state of the system is not completely specified, or that the processes involved are nondeterministic and may evolve in any number of ways.

A ConGolog specification includes two components. First, in order to be able to reason about the processes executing in a certain domain, that domain must be formally specified:what predicates describe the domain, what primitive actions are available to agents, what the preconditions and effects of these actions are, what is known about the initial state of the system. The other part of a ConGolog specification is the model of the process of interest, that is, the behavior of the agents in the domain.

In ConGolog and in the situation calculus, a dynamic domain is modeled in terms of the following entities:

<BL>

· Primitive actions: All changes to the world are taken to be the result of named primitive actions that are performed by some agent in the system; primitive actions are represented by terms such as acceptAgreementReq(participant,MS,reqID,date), which states that the participant agent accepts the request reqID from the MS agent to attend a meeting on date.
· Situations: These correspond to possible world histories viewed as sequences of actions. The actual initial situation (where no actions have been executed) is represented by the constant S0. There is a distinguished binary function symbol do, and a term do(a,s) denotes the situation that results from action a being performed in situation s. The sequence of actions in a history, and the order in which they occur, are obtained from a situation term by reading off its action instances from right to left. For example, do(a3,do(a2,do(a1,S0))) represents the history where first a1, then a2, and then a3 are performed starting in the initial situation S0. Thus, situations are organized tree structures rooted in some initial situation; the situations are nodes in the tree and the edges correspond to primitive actions.
· Fluents: These are properties, relations, or functions whose value may change from situation to situation and which are of interest to the modeler; they are represented by predicate or function symbols that take a situation term as their last argument. For example, agreementReqRcvd(participant,MS,reqID, date,s). That is, participant has received a request reqID from MS to agree to hold a meeting on date in situation s. One may also use nonfluent predicates and functions to represent static aspects of the domain.</BL>
The dynamics of a domain are specified using four kinds of axioms:

<BL>

· Action precondition axioms: These axioms state the conditions under which an action can be performed; they use the predicate Poss(a,s), which means that action a is possible in situation s. For example, in the meeting scheduling domain, we have the following precondition axiom:

<DIS>Poss(acceptAgreementReq(participant,MS,reqID,date),s) ≡
agreementReqRcvd(participant,MS,reqID,date,s) (
dateFree(participant,date,s)</DIS>
This says that in situation s, participant may perform the action of accepting a request reqID from MS to hold a meeting on date if and only if he has received a request to that effect and the date is free for him.

· Successor state axioms: These axioms specify how the fluents are affected by the actions in the domain. For example, in the meeting scheduling domain, we have the following successor-state axiom:
<DIS>agreementReqRcvd(participant,MS,reqID,date,do(a,s)) ≡
a = requestAgreement(MS,participant,date) (
requestCounter(s) = reqID (
agreementReqRcvd(participant,MS,reqID,date,s)</DIS>
This says that participant has received a request reqID from MS to agree to hold a meeting on date in situation do(a,s) if and only if the action a is such a request and the value of the request counter is reqID, or if he or she has already received such a request in situations.

Successor-state axioms can be generated automatically from a specification of the effects of primitive actions if we assume that they specify all of the ways that the value of the fluent may change. Successor-state axioms were introduced by Reiter (1991) and provide a solution to the frame problem. Lespérance et al. (1999) describe a convenient high-level notation for specifying the effects (and preconditions) of actions and a tool that compiles such specifications into successor-state axioms.
· Initial situation axioms: These axioms specify the initial state of the modeled system. For example, in the meeting scheduling domain, we might have the following initial situation axiom: participantTimeSchedule(Yves,S0) = [10,12]. This represents the fact that agent Yves is busy on the tenth and twelfth in the initial situation.
· Other axioms: These include unique name axioms for actions, axioms specifying the agent of each type of action, and domain- independent foundational axioms as described in Reiter (2001).</BL>
The process of a system is specified procedurally in the ConGolog framework. We define a main procedure that specifies the whole system’s behavior. Every agent has an associated ConGolog procedure to represent its behavior in the system. The behavior of agents is specified using a rich high-level programming language with recursive procedures as well as while-loops, conditionals, nondeterminism, concurrency, and interrupts (De Giacomo et al., 2000). The following lists the available constructs:

<notation>
	A
	primitive action

	Φ?
	wait for condition

	δ1;δ2
	sequence

	δ1|δ2
	nondeterministic branch

	δ*
	nondeterministic iteration

	πv.δ
	nondeterministic choice of argument

	if φ then δ1 else δ2 endIf
	conditional

	while φ do δ endWhile
	while loop

	δ1||δ2
	concurrency with equal priority

	δ1»δ2
	concurrency with δ1 at higher priority

	δ||
	concurrent iteration

	guard φ do δ endGuard
	guard

	<v: φ → δ until α>
	interrupt

	β(p)
	procedure call

</notation>
Note the presence of several nondeterministic constructs. For instance, δ1|δ2 nondeterministically chooses between executing δ1 or δ2. πv.δ nondeterministically picks a binding for the variable v and performs the program δ for that binding. δ* performs the program δ zero or more times. A test/wait action φ? blocks until the condition φ becomes true. <v: φ → δ until α> represents an interrupt. When the trigger condition φ becomes true for some value of v, the interrupt triggers and the body, δ, is executed. Afterward, the interrupt may trigger again, provided that its cancellation condition α does not hold. The guard construct blocks the execution of a program δ until the condition φ becomes true and ensures that it holds when δ starts executing.

A formal semantics based on transition systems (structural operational semantics) has been specified for ConGolog (De Giacomo et al., 2000). It defines a special predicate Do(program,s,s′) that holds if there is a successful execution of program that ends in situation s′ after starting in s. Communication between agents can be represented by actions that the sender agent performs, and which affect certain fluents that the recipient agent has access to.

A process simulation and validation tool for ConGolog has been implemented (De Giacomo et al., 2000). It uses an interpreter for ConGolog implemented in Prolog. This implementation requires that the precondition axioms, successor-state axioms, and axioms about the initial situation be expressed as Prolog clauses, and relies on Prolog’s closed world assumption and negation as failure. Thus, with this tool, simulation can be performed only for completely specified initial states.

A verification tool has also been developed (Shapiro, 2004;
 Shapiro et al., 2002). We discuss verification in section 5.4.3.3. De Giacomo et al. (2000) describe applications of ConGolog in areas such as robot programming and personal assistants. Lespérance et al. (1999) discuss the use of ConGolog (without combining it with i*) for process modeling and requirements engineering.

<H1>5.3 Using ConGolog for the Analysis, Simulation,

and Verification of i* Models</H1>
Although the informal i* notation can be used successfully for modeling and analyzing relatively small systems, formal analysis is very helpful with larger systems. Thus, formal analysis of i* models is one of the goals of the approaches presented here. Another aim is to allow for a smooth transition from requirements specifications to high-level design for agent-based systems. Although the i* SR diagram notation allows many aspects of processes to be represented, it is somewhat imprecise and the models produced are often incomplete. For instance, it is not specified whether the subtask in a task decomposition link has to be performed once or several times. In a ConGolog model, on the other hand, the process must be completely and precisely specified (although nondeterministic processes are allowed). We need to bridge the gap between incomplete, imprecise SR diagrams and complete, precisely specified ConGolog models. To do so, we will introduce a set of annotations that allow the missing information to be specified; the resulting diagrams are called annotated SR (ASR) diagrams. We want to have a tight mapping between ASR diagrams and the associated ConGolog models, one that specifies which parts of the diagram and model are related. This allows us to identify which parts of a ConGolog model need to be changed when the corresponding ASR diagram is modified and vice versa. The i*–ConGolog approach that we describe in this section is largely based on Wang (2001) and on Wang and Lespérance (2001).

<H2>5.3.1 Annotated SR Diagrams</H2>
The main tool that we use for disambiguating SR diagrams is annotations. Annotations allow analysts to model the domain more precisely and to capture data/control dependencies among goals and other details. Annotations, introduced in Wang (2001) and Wang and Lespérance (2001), and extended in Lapouchnian (2004) and Lapouchnian and Lespérance (2006), are textual constraints on ASR diagrams and can be of three types: composition, link, and applicability conditions. Composition annotations (specified by σ in figure 5.3) are applied to task and means-ends decompositions, and specify how the subtasks/subgoals are to be combined to execute the supertask and to achieve the goal, respectively. Four types of composition are allowed: sequence (;), which is the default for task decompositions; concurrency (||); prioritized concurrency (»); and alternative (|), which is the default for means-ends decompositions. These annotations are applied to subtasks and subgoals from left to right. For example, in the figure if the » annotation is applied, n1 has the highest priority, and nk has the lowest. The choice of composition annotations is based on the ways that actions and procedures can be composed together in ConGolog.

<< Insert Figure 5.3 here >>

Link annotations (γi in figure 5.3) are applied to subtasks and subgoals (ni), and specify under which conditions subtasks can be executed or subgoals can be achieved. There are six types of link annotations (corresponding to ConGolog operators): while loop, for loop (introduced in Shapiro [2004]),
 the if condition, the pick, the interrupt, and the guard (introduced in Lapouchnian [2004] and Lapouchnian and Lespérance [2006]). The difference between the if annotation and the guard is that the guard blocks execution until its condition becomes true, whereas the task with the if link annotation is skipped if the condition is not true. The pick annotation (π(VariableList,Condition)) nondeterministically picks values for variables in the subtask that satisfy the condition. The interrupt (whenever(varList, Condition, CancelCondition)) fires and executes the subtask whenever there is a binding for the variables that satisfies the condition until the cancellation condition becomes true. Guards (guard(Condition)) block the subtask’s execution until the condition becomes true. The absence of a link annotation on a particular decomposition link indicates the absence of any conditions on the subgoal/subtask.

If alternative means of achieving a certain goal exist, the designer is able to specify under which circumstances it makes sense to attempt to execute each alternative. We call these applicability conditions and introduce a new annotation ac(condition) to be used with means-ends links to specify these conditions. The presence of an applicability condition (AC) annotation specifies that only when the condition is true may the agent select the associated alternative in attempting to achieve the parent goal. For example, the analyst may specify that phoning participants to notify them of the meeting details is applicable only to important participants, and the e-mail option is applicable for everybody
 else (see figure 5.8). The absence of an applicability condition means that the alternative can always be selected.

<H2>5.3.2 Increasing Precision with ASR Models</H2>
The starting point for developing an ASR diagram for an actor is the SR diagram for that actor (for example, see figure 5.2) that can be transformed into an ASR diagram, every element of which can easily be mapped into ConGolog. The steps for producing ASR diagrams from SR diagrams include the addition of model annotations, the removal of softgoals, the deidealization of goals (van Lamsweerde et al., 1995), and the addition of details of agent interaction to the model. In order to facilitate the mapping of ASR diagrams into ConGolog, specifications consisting of parameterized procedures, parameters for annotations, goals, and tasks that capture the details of events, as well as what data or resources are needed for goal achievement or task execution, can be specified in ASR diagrams (see figure 5.8). However, for brevity we sometimes omit the parameters in ASR diagrams.

<H3>5.3.2.1 Softgoals</H3>
 Softgoals represent nonfunctional requirements (Chung, Nixon, Yu, & Mylopoulos, 2000)
, and are imprecise and difficult to handle in a formal specifications language such as ConGolog. Therefore, in the approach described in this chapter, we use softgoals to choose the best process alternatives and then remove them before ASR diagrams are produced. Alternatively, softgoals can be operationalized or metricized, thus becoming hard goals. The removal of softgoals in ASR diagrams is a significant deviation from the standard i* framework.

<H3>5.3.2.2 Deidealization of Goals</H3>
 Goals in ASR diagrams that cannot always be achieved are replaced by weaker goals that can. This involves identifying various possible failure conditions and guarding against them. We discuss this in more detail in subsction 5.4.3.2.

<H3>5.3.2.3 Providing Agent Interaction Details</H3>
 i* usually abstracts from modeling any details of agent interactions. In ASR diagrams, we specify the interactions through which intentional dependencies are realized by the actors involved. Interactions are specified as processes involving various “communication” primitive actions that change the state of the system. The effects of these actions are modeled using ordinary fluents. This makes simulation straightforward, but does not capture the fact that these actions operate mainly on the mental states of the communicating agents. Modeling mental states will be addressed in section 5.4. Agent interaction details include tasks such as requests for services or information from agents in the system, and tasks that supply the information or communicate about the success or failure in providing these services. Arbitrarily complex interaction protocols can be specified. We assume that the communication links are reliable.

<< Insert Figure 5.4 here >>

In ASR diagrams, all resource dependencies are modeled more precisely than in the standard i* framework, using either goal or task dependencies according to the level of freedom that the dependee has in supplying the resource. This is another departure from the standard i* framework. Figure 5.4b illustrates how a resource dependency DateRange in the SR diagram in figure 5.4a is refined to specify the details of agent communication. Here, the MS requests the MI to provide the acceptable meeting date range. This resource dependency in figure 5.4a is turned into a task dependency in figure 5.4b, presumably since the MS typically wants the date range sent in a specific way rather than letting the MI provide it as it sees fit. Note that there is no generic request action. Modeling each interaction requires introducing new “communication” primitive actions (e.g., requestEnterDateRange) with associated fluents that are used to represent their effects (e.g., DateRangeRequested). Note the use of the interrupt annotation to check for date range requests and of the guard annotation for blocking until the data are received.

We now demonstrate the generation of an ASR diagram from an SR diagram with a small example. Figure 5.5 shows a small fragment of an SR diagram for the Meeting Scheduler agent. This model displays a very high-level view of the achievement of the goal MeetingScheduled. Here, the MS must get the suggested meeting dates from the MI, get the available dates from the participants, find agreeable dates (potential dates for the meeting), and try to arrange the meeting on one of those days. This model is the starting point for the refinement process that results in the ASR model in figure 5.6.

<< Insert Figure 5.5 here >>

<< Insert Figure 5.6 here >>

Several annotations have been added to the model, as can be seen in figure 5.6. The absence of a composition annotation for the TryToScheduleMeeting task indicates that it is sequentially decomposed. There is an interrupt that lets the MS agent monitor for incoming requests (whenever(RequestedScheduledMeeting)), as well as guards that let the MS agent monitor for replies to its queries about the meeting date range (Guard(DateRangeEntered)) and available dates for participants (Guard(AllAvailDatesReceived)). The for annotation indicates that the querying for the available dates is iterated over all the participants. Note that the goal MeetingScheduled in figure 5.5 is deidealized in figure 5.6 into TryToScheduleMeeting. (Deidealizing MeetingScheduled is discussed in section 5.4.3.2.)

<H2>5.3.3 Mapping ASR Diagrams into ConGolog</H2>
Once all the necessary details have been introduced into an ASR diagram, it can be mapped into a corresponding formal ConGolog model, thus making the model amenable to formal analysis.

The modeler must define a mapping m that maps every element (except for intentional dependencies) of an ASR diagram into ConGolog. This mapping associates ASR diagram elements with ConGolog procedures, primitive actions, and formulas so that a ConGolog program can be generated from an ASR diagram. Specifically, agents are mapped into constants that serve as their names and ConGolog procedures that specify their behavior. Roles and positions are mapped into procedures with an agent parameter so that they can be instantiated by individual agents. When an agent plays several roles or occupies several positions, it executes the procedures that correspond to these roles and positions concurrently. Leaf-level task nodes are mapped into ConGolog procedures or primitive actions. Composition and link annotations are mapped into the corresponding ConGolog operators, and conditions present in the annotations map into ConGolog formulas.

<H3>5.3.3.1 Mapping Task Nodes</H3>
 A nonleaf task node along with its decomposition is automatically mapped into a ConGolog procedure that reflects the structure of the decomposition, including annotations.

Consider the shaded part of figure 5.6, where the task TryToScheduleMeeting is decomposed into a number of subtasks and subgoals. This task is mapped into the following ConGolog procedure (it contains parts still to be mapped into ConGolog; they are the parameters of the mapping m). Here, the parameter mid stands for “meeting ID,” a unique meeting identifier:
<DIS>procTryToScheduleMeeting(mid,mi)

 requestEnterDateRange(MS,mi,mid);

 guard m(DateRangeEntered) do
 m(AvailableDatesKnown).achieve;

 endGuard;

 guard m(AllAvailDatesReceived) do
 mergeAvailDates(MS,mid);

 endGuard;

 TryToGetAgreementOnDate(MS,mid);

endProc</DIS>
Notice that the mapping of tasks into ConGolog procedures is compositional. We have defined a set of mapping rules that formally specify this part of the mapping process.

Leaf-level tasks can be mapped into ConGolog procedures or primitive actions. Although mapping them into ConGolog procedures may reduce model size and increase the level of abstraction (since this means that part of the task decomposition is hidden inside the procedures instead of being explicitly represented in the model), restricting the mapping of these tasks to primitive actions with the same name allows the entire ConGolog process specification to be automatically constructed from ASR diagrams.

<H3>5.3.3.2 Mapping Goal Nodes</H3>
 In the i*–ConGolog approach, goal nodes are mapped into a ConGolog formula that represents the desired state of affairs associated with the goal and a procedure that encodes means for achieving the goal. The achievement procedure is generated from the decomposition of the goal into means for achieving it, which is modeled in the ASR diagram through means–ends links. This is similar to the mapping of task decompositions as seen in the aforementioned, and can likewise be performed automatically. The achievement procedure for a goal G can be referenced as m(G).achieve (e.g., see the code fragment earlier in this section). Figure 5.7 shows a generic goal decomposition together with the generated achievement procedure. Note that the applicability conditions (φi) map into guard operators to prevent the execution of unwanted alternatives. At the end of the achievement procedure, there is typically a test that makes sure the goal is achieved: (m(G).formula)?.

<< Insert Figure 5.7 here >>

The default composition annotation for means-ends decompositions (represented by σ in figure 5.7) is alternative (|). This indicates that the means for achieving the goal is selected nondeterministically. As shown in figure 5.7, each goal achievement alternative is wrapped in a guard operator, with the guard condition being the result of mapping the corresponding applicability condition annotation. Based on the semantics of the guard operator, the test of the applicability condition and the first transition of the associated alternative are performed as a single atomic step. This guarantees that the first step of the selected alternative is executable (i.e., we never commit to an alternative that cannot begin to be executed). Other composition annotations can also be used with means-ends decompositions. For example, the concurrency annotation specifies that the means for achieving the goal G are to be executed concurrently, and the sequence annotation specifies that the means for achieving the goal G are to be executed in sequence from left to right. Note that neither ConGolog nor CASL provides built-in language constructs for sophisticated handling of alternative selection, execution monitoring, retries, or exception handling. This is a good area for future research.

Because in this approach softgoals are removed from ASR diagrams, applicability conditions can be used to capture in a formal way the fitness of the alternatives with respect to softgoals. (This fitness is normally encoded by the softgoal contribution links in SR diagrams.) For example, one can specify that phoning participants to notify them of the meeting details is applicable only in cases with few participants, whereas the e-mail option is applicable for any number of participants (see figure 5.8). This may be due to the softgoal Minimize Effort that was removed from the model before the ASR diagram was produced.

In addition to applicability conditions, other link annotations can be used with means-ends decompositions to specify extra control information. These are represented by αi in figure 5.7 and are exemplified by the for loop annotations in figure 5.8. Note that these annotations are applied after applicability conditions.

<< Insert Figure 5.8 here >>

<H3>5.3.3.3 Specifying Domain Dynamics</H3>
 To obtain a complete ConGolog specification, one needs to provide the declarative part of the specification, namely, an action precondition axiom for every primitive action, a successor-state axiom for every fluent, and initial-state axioms, as described in subsection 5.2.2.

<H2>5.3.4 Simulation</H2>
ConGolog models can be executed to run process simulation experiments. To do this, the modeler must first specify an instance of the overall system. We do this by defining a main procedure. Here is how this looks in the ConGolog simulation tool notation (#= is the concurrent execution operator):
 <DIS>proc(main,[

 initiator_behavior(mi,ms)#=

 meetingscheduler_behavior(ms,mi)#=

 participant_behavior(yves,ms)#=

 participant_behavior(alexei,ms)#=

]).</DIS>
Here, there are the Meeting Initiator agent (mi), the Meeting Scheduler (ms), and two participants (yves and Alexei). The modeler must also provide a complete specification of the initial state of the system. The possible meeting dates are represented as integers in order to simplify the explanation. Initially the schedule for the participant alexei is [11,12,14], that is, alexei is busy on the 11th, 12th, and 14th of some month. The schedule for the participant yves is [10,12], that is, yves is busy on the 10th and 12th. The Meeting Initiator mi wants to schedule a meeting with alexei and yves on the 12th or 14th. Then the modeler can execute the main procedure to obtain a simulation trace. The simulation obtained from this instance of the system is as follows:
<DIS>// start interrupts in initial situation

startInterrupts

// mi requests ms to schedule a meeting with alexei and yves

requestScheduleMeeting(mi,ms,[alexei,yves])

// ms requests mi to enter the possible date range for meeting with id = 1

requestEnterDateRange(ms,mi,1)

// mi enters 12, 14 as possible meeting dates

enterDateRange(mi,ms,1,[12,14])

// ms requests available dates from all participants

obtainAvailDatesFromParticipant(ms,yves,1)

obtainAvailDatesFromParticipant(ms,alexei,1)

// yves sends his available dates

sendAvailDates(yves,ms,1,[…])

// alexei sends his available dates

sendAvailDates(alexei,ms,1,[…])

mergeAvailableDates(ms,1)

// ms finds the list of common available dates empty

setAllMergedlist(ms,1,[])

// ms notifies both participants and the initiator that it failed to schedule

// meeting 1

notifyFail(ms,mi,1,[alexei,yves])

notifyFail(ms,alexei,1,[alexei,yves])

notifyFail(ms,yves,1,[alexei,yves])</DIS>
Generally, this validation step of the process involves finding gaps or errors in the specification by simulating the processes. The ConGolog code can be instrumented with tests (using the ? operator) to verify that desired properties hold, for instance, during or at the end of the execution of the program. Alternative specifications can be also compared. A graphical user interface tool for conducting such simulation experiments is available (see Lespérance et al., 1999). As mentioned, the simulation tool requires a complete specification of the initial state. This limitation comes from the fact that the tool uses Prolog and its closed world assumption to reason about how the state changes. The tool (like ConGolog itself) does not provide support for modeling agent mental states and how they are affected by communication and other actions. As we saw in the examples, it is possible to model limited aspects using ordinary actions and fluent predicates, but this does not capture the full logic of mental states and communication. Work is under way to relax these limitations and develop techniques for efficient reasoning about limited types of incomplete knowledge and knowledge-producing actions in ConGolog (Sardiña & Vassos, 2005). ConGolog models can also be verified using the CASLve tool discussed in subsection 5.4.3.3.

<H1>5.4 Modeling Mental States in Requirements Engineering</H1>
<H2>5.4.1 Motivation</H2>
Suppose that we are employing an approach like Tropos (Bresciani et al., 2004; Fuxman, Liu, Mylopoulos, Pistore, Roveri, & Traverso, 2004), a requirements-driven, agent-oriented software development methodology that uses the i* modeling notation, to model a simple goal delegation involving two agents. Figure 5.9 shows a goal dependency in which the Meeting Scheduler depends on the Meeting Participant for attending a meeting. We would like to be able to analyze this interaction and predict how it will affect the goals and the knowledge of these agents. Using the i*–CASL approach presented in this section, one can create a formal model based on the diagram in figure 5.9, analyze it, and conclude that, for example, before the goal delegation, the MS has the goal AtMeeting(MP) and knows about this fact. After the delegation (and provided that the MP did not have a conflicting goal), the MS knows that the MP has acquired the goal, that the MP knows that it has the goal, and that the MP knows that the MS has the same goal, and so on. For the Meeting Participant agent in figure 5.9, we cannot say what its mental state was before the goal delegation. But, after the request from the MS, we know that it has the goal AtMeeting(MP) and knows about it, and so on. The MP also knows how it acquired the goal, and thus will be able to trace its intention to achieve AtMeeting(MP) to MS’s request.

<< Insert Figure 5.9 here >>

Note that the change in the mental state of the requestee agent is the core of goal delegation. One of the main features of the i*–CASL approach is that goals (and knowledge) are assigned to particular agents, thus becoming their subjective attributes as opposed to being objective system properties, as occurs in many other approaches (e.g., Bissener, 1997; Dardenne et al., 1993). This allows for the modeling of conflicting goals, agent negotiation, information exchange, complex agent interaction protocols, and so on. In CASL, the full logic of these mental states and how they change is formalized. The i*–CASL approach thus allows for creating rich, expressive specifications with precise modeling of agents’ mental states. However, the more complex CASL models currently require the use of a theorem-prover-based verification tool such as CASLve, and cannot be used with the ConGolog simulation tool.

<H2>5.4.2 The Cognitive Agents Specification Language</H2>
The Cognitive Agents Specification Language (CASL) (Shapiro, 2004;
 Shapiro & Lespérance, 2001) is a formal specification language that extends ConGolog to incorporate models of mental states expressed in the situation calculus (Scherl & Levesque, 2003). CASL uses modal operators to formally represent agents’ knowledge and goals; communication actions are provided to update these mental states, and ConGolog is then employed to specify the behavior of agents. This combination produces a very expressive language that supports high-level reasoning about the agents’ mental states and their dynamics. The logical foundations of CASL allow it to be used to specify and analyze a wide variety of MASs as shown in Shapiro (2004) and Shapiro and Lespérance (2001).
 For instance, it can model nondeterministic behaviors and systems with incompletely specified initial states. Similar to ConGolog (see subsection 5.2.2), CASL specifications consist of two parts: the model of the domain and its dynamics (the declarative part), and the specification of the agents’ behavior (the procedural part).

CASL supports the formal modeling of agents’ goals and knowledge. The formal representation for both is based on a possible worlds semantics incorporated into the situation calculus, where situations are viewed as possible worlds (Moore, 1985; Scherl & Levesque, 2003). CASL uses accessibility relations K and W to model what an agent knows and what it wants, respectively. K(agt,s′,s) holds if the situation s′ is compatible with what the agent agt knows in situation s. In this case, the situation s′ is called K-accessible. When an agent does not know the truth-value of some formula φ, it considers possible (formally, K-accessible) some situations where φ is true and some where it is false. An agent knows some formula φ in situation s if φ is true in all its K-accessible situations in s: Know(agt,φ,s)=(s′(K(agt,s′,s)(φ[s′]). Constraints on the K relation ensure that agents have positive and negative introspection (i.e., agents know whether they know/don’t know something) and guarantee that what is known is true. Built-in communication actions such as inform are used for exchanging information among agents. The precondition for the inform action ensures that no false information is transmitted. The changes to agents’ knowledge due to communication and other actions are specified by the successor-state axiom for the K relation. The specification ensures that agents are aware of the execution of all actions. Enhanced accounts of knowledge change and communication in the situation calculus have also been proposed to handle, for instance, encrypted messages (Shapiro & Lespérance, 2001) or belief revision (Shapiro, Pagnucco, Lespérance, & Levesque, 2000).

The accessibility relation W(agt,s′,s) holds if in situation s an agent considers that everything it wants to be true actually holds in s′, which is called W-accessible. We use the formula Goal(agt,ψ,s) to indicate that in situation s the agent agt has the goal that ψ holds. The definition of Goal says that ψ must be true in all W-accessible situations that have a K-accessible situation in their past. This ensures that although agents may want something they know is impossible to achieve, the goals of agents must be consistent with what they currently know. There are constraints on the W and K relations that ensure that agent s’ goals are consistent and that agents introspect their goals. In our approach, we mostly use achievement goals that specify the desired states of the world. We use the formula Goal(agt,Eventually(ψ),s) to state that agt has the goal that ψ is eventually true. The built-in communication actions request and cancelRequest are used by agents to request services from other agents and to cancel such requests, respectively. Requests are used to establish intentional dependencies among actors and lead to changes in goals of the requested agent. The dynamics of the W relation are specified, as usual, by a successor-state axiom that guarantees that no inconsistent goals are adopted. For more details about the CASL formalism, see Shapiro (2004)
and Shapiro and Lespérance (2001).

<H2>5.4.3 The i*–CASL Notation and Process</H2>
<H3>5.4.3.1 Increasing Precision with Intentional Annotated Strategic Rationale Models</H3>
Our aim in this section is to tightly associate i* models with formal specifications in CASL. As was the case with the i*–ConGolog approach presented in section 5.3, we use an intermediate notation, intentional annotated SR (iASR) diagrams, to bridge the gap between SR diagrams and CASL specifications. Our goal is to make iASR diagrams precise graphical representations for CASL specifications with special attention to handling agent goals.

When developing an iASR diagram, one starts with an SR diagram (e.g., see figure 5.2). The steps for producing iASR diagrams from SR diagrams are mostly similar to the steps presented in subsections 5.3.2 and 5.3.3, and include the addition of annotations, removal of softgoals, deidealization of goals, synchronization of an agent’s mental state with its behavior by using interrupts and guards, specification of parameters for annotations, goals, and tasks, and the addition of details about agent interactions to the model.
<H4>5.4.3.1.1 Annotations</H4> The i*–CASL approach uses the annotations presented in subsection 5.3.1.

<H4>5.4.3.1.2 Softgoals</H4> Just like ConGolog, CASL is a formal specification language and thus cannot handle imprecise softgoals. Softgoals are removed or operationalized prior to producing iASR diagrams. As mentioned in subsection 5.3.3.2, applicability conditions can be used to mimic the role of softgoals in the selection of goal achievement alternatives.

<H4>5.4.3.1.3 Agent goals in iASR models</H4> A CASL agent has procedural and declarative components. iASR diagrams model only agent processes, and therefore can be used only to represent the procedural component of CASL agents. The presence of a goal node in a process modeled using an iASR diagram indicates that the agent knows the goal is in its mental state, and is prepared to deliberate about whether and how to achieve it. For the agent to modify its behavior in response to the changes to its mental state, it must synchronize its procedural and declarative components (see figure 5.10A). Agent mental states are specified declaratively, and usually change as a result of communication acts that realize goal delegation and information exchange. Thus, the procedural component of the agent must monitor for these changes. The way to do this is to use interrupts or guards with their conditions being the presence of certain goals or knowledge in the mental state of the agent (figure 5.10B). Note that this requires that parent nodes of goals be task nodes, which is a nonstandard constraint on SR diagrams. Procedurally, the goal node is interpreted as invoking the means to achieve it.

<< Insert Figure 5.10 here >>

In CASL, as described in Shapiro and Lespérance (2001), only communication actions affect the mental state of the agents. We, on the other hand, would like to let agents change their mental state on their own by executing the action commit(agent,φ), where φ is a formula that the agent (or the modeler) wants to hold. Thus, in iASR diagrams all agent goals must be acquired either from intentional dependencies or by using the commit action (see figure 5.11). This implies that in iASR diagrams, means to achieve goals must be modeled as tasks (another nonstandard restriction on SR diagrams).

<< Insert Figure 5.11 here >>

By introducing goals into the models of agent processes, the modeler captures the fact that multiple alternatives exist in these processes. Moreover, the presence of goal nodes suggests that the designer envisions new possibilities for achieving these goals. Making the agent self-acquire the goals through the commit action is a way to make sure that the agent's mental state reflects the aforementioned intentions of its designer.
 In this way, the agent would be able to reason about various alternatives available to it or come up with new ways to achieve its goals at run-time.
 Self-acquired goals add flexibility to formal system models by preserving variability in the way goals can be achieved and by avoiding early operationalization of goals. Self-acquired goals can be used to “load” goal refinements and AND/OR goal decompositions, which are abundant in RE and AI, into the mental state of the agent if reasoning about these refinements is required. This contrasts with the i*–ConGolog approach of section 5.3, where agent goals had to be operationalized before being formally analyzed.

Another way of increasing precision in iASR models, as already described in subsection 5.3.2, is the addition of parameters. For example, in figure 5.12B, all of the nodes in the model have the parameter mid (meeting ID).

<H4>5.4.3.1.4 Modeling agent interactions</H4> As in section 5.3, the i*–CASL approach requires the details of agent interactions to be specified in iASR models. However, in contrast to the approach taken there, here we are taking an intentional stance toward modeling agents and their interactions. This is more abstract and the agents are assumed to be rational. So, to some extent, we can predict and explain their behavior. We are modeling agent interactions with built-in generic communication actions (e.g., request, inform) that modify the mental states of the communicating agents. Agents’ mental states are updated following communication actions in a way that captures their rationality, and in
 particular, maintains consistency. In iASR models, these generic communication actions are used to request services, provide information, and so on. Also, the conditions in annotations and communication actions (as well as the commit action) may refer to the agents’ mental states, knowledge, and goals. Because of the importance of agent interactions in MASs, in order to formally verify multiagent system specifications in CASL, all high-level aspects of agent interaction must be provided in the corresponding iASR models.

Let us see how this approach works on a simple example. Figures 5.12A and 5.12B illustrate how an intentional goal dependency RoomBooked (cf. figure 5.1) can be modeled in SR and iASR models, respectively. Here, the goal dependency is established by the MS’s execution of the request communication action with the goal as its argument directed toward the MRBS agent. This will cause the MRBS to acquire the goal RoomBooked (provided that it’s consistent with its existing goals). The corresponding interrupt in the iASR model for the MRBS monitors its mental state for the acquisition of the goal and triggers the behavior for achieving it (i.e., booking a room, which is not shown) when this occurs. Another instance in which the agent’s behavior depends on its mental state is the following: Once the MS’s knowledge state is updated and it knows whether (represented formally in the figure using K(Whether) the room has been
 booked (note the guard condition), the behavior for notifying participants will be triggered. Because achieved goals remain in the mental state of an agent, all interrupts dealing with the acquisition of goals through dependencies must be triggered only for new instances of these goals. We usually leave these details out in iASR models. For instance, we have left out the part of the interrupt condition that makes sure that only unachieved instances of the goal RoomBooked trigger the interrupt in figure 5.12B. We present an example of the fully specified interrupt in the next section.

<< Insert figure 5.12 here >>

Figure 5.13 shows a fragment of the iASR model for the MS agent, which was obtained from the SR diagram in figure 5.5. Here, the main task and goal parameters are added to the model. Similarly, the detailed requests made by the scheduler to the initiator and the participants are presented. Requests for performing tasks are represented in the model as request(agt1,agt2, DoAL(agt2,task)), where the DoAL (Do At Least) construct means that agt2 must perform task, possibly interleaved with other concurrent activities (see subsection 5.4.3.2 for details).

<< Insert figure 5.13 here >>

Opportunities exist to automatically fill in the details of agent interactions such as agent requests. In the i*–CASL approach, the use of standard communicative actions simplifies the task of automatically deriving the formal specification for every interagent communication from the corresponding i* dependencies.

<H3>5.4.3.2 From iASR Models to CASL Specifications </H3>
 Once all the necessary details have been introduced into an iASR diagram, it can be mapped into the corresponding formal CASL specification, thus making the iASR model amenable to formal analysis.

As was the case in the i*–ConGolog approach, the modeler defines a mapping m that maps every element (except for intentional dependencies) of an iASR model into CASL. This mapping associates iASR model elements with CASL procedures, primitive actions, and formulas, so that a CASL program can be generated from an iASR model. Specifically, agents are mapped into CASL procedures that specify their behavior. Roles and positions are mapped into procedures with an agent parameter so that they can be instantiated by individual agents. Leaf-level task nodes are mapped into CASL procedures or primitive actions. Composition and link annotations are mapped into the corresponding CASL operators. Conditions present in the annotations map into CASL formulas that can refer to agents’ mental states.
<H4>5.4.3.2.1 Mapping task nodes</H4> As in the i*–ConGolog approach of section 5.3, task decompositions are mapped into CASL procedures that reflect the structure of the decompositions and all the annotations (see subsection 5.3).

<H4>5.4.3.2.2 Mapping goal nodes</H4> In this approach, an iASR goal node is mapped into two things: a CASL formula, which is the formal definition for the goal, and an achievement procedure, which encodes how the goal can be achieved and is based on the means-ends decomposition for the goal in the iASR diagram (see figure 5.7). For example, a formal definition for MeetingScheduled(mid,s) could be (date[AgreeableDate(mid,date,s) (AllAccepted(mid,date,s) (RoomBooked(mid,date,s)]. This says that there must be a date agreeable for everybody on which a room was booked and all participants agreed to meet.

However, initial formal goal definitions are often too ideal and the goal cannot always be achieved. Such goals must be deidealized (van Lamsweerde et al., 1995). In order to weaken the goal appropriately, one needs to know under what circumstances the goal cannot be achieved. Modeling an achievement process for a goal using iASR diagrams allows us to understand how that goal can fail, and thus iASR models can be used to come up with a correct formal definition for the goal. For example, since it is not always possible to schedule a meeting, the following is one possibility for deidealizing the goal MeetingScheduled:
<DIS>MeetingScheduledIfPossible(mid,s) =

// 1. The meeting has been successfully scheduled

SuccessfullyScheduled(mid,s) (
// 2. No agreeable (suitable for everybody) dates

(d[IsDate(d) ((AgreeableDate(mid,d,s)] (
// 3. For every agreeable date at least one participant declined

(d[AgreeableDate(mid,d,s) (SomeoneDeclined(mid,d,s)] (
// 4. No rooms available

(d[SuggestedDate(mid,d,s) (AllAccepted(mid,d,s) (
 RoomBookingFailed(mid,date,s)]</DIS>
CASL’s support for reasoning about agents’ goals presented us with an interesting possibility. In the case study, we decided not to explicitly maintain schedules for meeting participants. Instead, we relied on the presence of goals AtMeeting(participant,mid,date,s) in their mental states as indications of the participants’ intention to attend certain meetings on certain dates (the absence of meeting attendance goals indicates an available time slot). Then, we made the participants know that they can attend only one meeting per time slot (a day, in our case) with the following initial-state axiom (this can be shown to persist in all situations):
<DIS>(agt[Know(agt,(p,mid1,mid2,date[

AtMeeting(p,mid1,date,now) (

AtMeeting(p,mid2,date,now) (mid1=mid2],S0)]</DIS>
This knowledge can be shown to persist in all situations, as the successor- state axiom for AtMeeting ensures that one cannot arrive at a meeting while remaining at another. Thus, the consistency of participants’ schedules is easily maintained because meeting requests conflicting with already adopted AtMeeting goals are automatically rejected. The MS knows that a certain meeting is successfully scheduled (with the exception of the booking of a room) if all of the participants have acquired the corresponding AtMeeting goal. This is modeled by the AllAccepted formula:

<DIS>AllAccepted(mid,date,s) =
 (participant[Ptcp(mid,participant,s) (
 Goal(participant,Eventually(AtMeeting(

 participant,mid,date,now),now,then),s)]</DIS>
As described in section 5.3, the achievement procedures for goals are automatically constructed based on the modeled means for achieving them and the associated annotations including the applicability conditions. By default, the alternative composition annotation is used, which means that some applicable alternative will be nondeterministically selected. Other composition annotations can be used to have the subtasks and subgoals performed sequentially or concurrently.

<H4>5.4.3.2.3 Modeling dependencies.</H4> Intentional dependencies are not mapped into CASL per se; they are established by the associated agent interactions. iASR tasks requesting help from agents will generally be mapped into actions of the type request(FromAgt,ToAgt,Eventually(φ)) for an achievement goal φ. We add a special abbreviation DoAL(δ,s,s′) (Do At Least) to be used when establishing task dependencies. It stands for Do(δ||(πa.a)*,s,s′), which means that the program δ must be executed, but other actions may also occur. Thus, to ask an agent to execute a certain known procedure, the depender must request it with request(FromAgt,ToAgt,DoAL(SomeProcedure)). Intuitively, this means that while requesting a procedure to be executed by ToAgt, we give that agent the freedom to execute other tasks as well.

In order for an intentional dependency to be established, we also need a commitment from a dependee agent to act on the request from the depender. Thus, the dependee must monitor its mental state for the newly acquired goals. For example, here is an interrupt that is used by the Meeting Participant to check for a request for the list of its available dates:
<DIS><mid: Goal(mp,DoAL(InformAvailableDates(

 mid,MS),now,then) (

 Know(mp,((s,s′ (s (s′ (now (
 DoAL(InformAvailDates(mid,MS),s,s′))) (
 InformAvailDates(mid,MS)

until SystemTerminated></DIS>
Here, if the MP has the goal to execute the procedure InformAvailDates and knows that it has not yet executed it, the agent sends the available dates. The cancellation condition SystemTerminated indicates that the MP always monitors for this goal. Requesting agents use similar interrupts or guards to monitor for the reception of requested information or confirmations. Likewise, when agents monitor for newly acquired goals, they use the interrupts that are triggered whenever there are unachieved goals of certain types in their mental states. When modeling agent interaction protocols in this approach, for every incoming message type an agent will have an interrupt monitoring for it. The body of this interrupt specifies the appropriate response to the message. Since the interrupts fire when changes in the mental state are detected, the agents can execute the protocols flexibly. For example, an agent could simply commit to the goal of buying some urgently required product from a particular vendor, and thus skip the lengthy price negotiation part of a protocol. Also, cancellation conditions in interrupts allow the agents to monitor for certain requests/informs only in particular contexts (e.g., while some interaction protocol is being enacted). A CASL specification for a simple interaction protocol is described in Lapouchnian (2004).

In the examples seen so far, the agents have always been helpful to and trusting of other agents. This may not always be desirable. To address this, Lapouchnian (2004) defines the relationships trusts(agent1,agent2), where agent1 trusts the information sent by agent2, and serves(agent1,agent2), where agent1 is helpful to agent2, thus providing a simple model of trust and helpfulness among agents. The successor-state axioms for K and W relationships are appropriately modified to account for trusts and serves, and therefore make the agents acquire knowledge only from trusted agents and adopt goals only from served agents. Fine-grained modeling of trust and helpfulness among agents in our approach is a topic for future work.
<H3>5.4.3.3 Analysis and Verification</H3>
 Once an iASR model is mapped into the corresponding CASL specification, it is ready to be formally analyzed. One tool that can be used is CASLve (Shapiro 2004;
Shapiro et al., 2002), a verification environment for CASL based on the PVS theorem proving and verification system (Owre, Rajan, Rushby, Shankar, & Srivas, 1996). CASLve provides a library of theories for representing CASL specifications in PVS and lemmas that facilitate various types of verification proofs. Shapiro (2004)
 describes how a proof was obtained showing that there is a terminating execution for a meeting-scheduling system p, that is, that Do (p,Se,Sf). A particular execution trace Sf was identified. The meeting-scheduling system specified by Shapiro used for this was simpler than the one discussed in this chapter, but involved all of the main features, such as coordination between the meeting scheduler agent and the meeting participant agents, communication between these agents that affects their knowledge and goals, and agent behaviors that are triggered by changes in these mental states. The presence of these triggers in the process means that the proof must show many properties about the mental states of the agents during the execution. In another example, Shapiro (2004)
 discusses in detail how a proof of a safety property was obtained. This involved showing that for a particular specification of a mail-order business process δ, no order is ever shipped before payment for it has been processed. This is expressed formally as
<DIS>(oh[OrderShipped(oh,S0) (
 PaymentProcessed(oh,S0)] (Do(δ,S0,s) (s′(s (
(oh[OrderShipped(oh,s′) (PaymentProcessed(oh,s′)]</DIS>
That is, if initially all orders that have been shipped have been paid for, then this property continues to hold in all situations s′ that can be reached during an execution of the process. Shapiro (2004)
 also presents another example involving a multiagent system in which agents negotiate to resolve feature interaction problems in telecommunication networks. A formal specification in CASL is obtained for the system, and it is then shown how one can prove the consistency of this specification. This involves defining a satisfying interpretation for the specification in PVS. Finally, note that in addition to physical executability of agent programs, one can also check for the epistemic feasibility (Lespérance, 2001)
 of agent plans, that is, whether agents have enough knowledge to successfully execute their processes.

One drawback of CASLve and other theorem-proving-based tools is that the analyst must provide a lot of advice to the tool in order to generate a proof. So verifying even small systems is very time-consuming and requires a lot of expertise. Other approaches that do not have these drawbacks could be used as well, such as simulation or model checking. However, tools based on these techniques work with much less expressive languages than CASL. Therefore, CASL specifications must be simplified before these methods can be used on them. For example, most simulation tools cannot handle mental state specifications; these have to be operationalized before simulation is performed. As discussed in section 5.3 and in Wang and Lespérance (2001), the ConGolog interpreter can be used to directly execute such simplified specifications. Model-checking methods (e.g., Fuxman et al., 2004) are restricted to finite state specifications, and work on applying these methods to theories involving mental states, such as van Otterloo, van der Hoek, and Wooldrige (2004), has only recently begun.

If, during verification, expected properties of the system are not entailed by the CASL model, it means that the model is incorrect and needs to be fixed. The source of an error found during verification can usually be traced to a portion of the CASL code and to a part of its iASR model, since our systematic mapping supports traceability.

<H1>5.5 Discussion and Future Work</H1>
In this chapter, we have presented an approach to requirements engineering that involves the combined use of i* and two
some multiagent system specification formalisms, ConGolog and its extension CASL. This allows the requirements engineer to exploit complementary features of the frameworks. The i* framework can be used to model social dependencies between agents and perform an analysis of opportunities and vulnerabilities; business goals and the rationale behind process designs can also be modeled, and trade-offs can be analyzed. These models are then gradually made more precise. ConGolog or CASL can then be used to model complex processes formally. Models can be validated and alternative processes can be compared. The CASLve verification tool can be used with both ConGolog and CASL. A simulation tool is also available for ConGolog, but not for CASL. CASL supports the explicit modeling of agent mental states, knowledge and goals, and reasoning about their properties and dynamics as a result of agent communication and interaction. In ConGolog, mental-state attributes can be represented only using ordinary predicates, and any aspect of the logic of mental states that is required must be specified explicitly by the modeler. In our approach, both informal graphical and formal textual notations are used; this supports a specification process that progresses from informal to formal and helps in communicating with the clients.

Our approach integrates i* with the formal specification languages ConGolog and CASL by developing an intermediate notation. This notation extends i* SR diagrams with a rich set of process specification annotations. Using (intentional) annotated SR diagrams, the modeler can provide a precise specification of the processes of interest, and the resulting diagrams can then be mapped directly into a ConGolog or CASL model. We provide a systematic compositional scheme for the mapping of (intentional) annotated SR diagrams into ConGolog/CASL models, and we can then ensure that the models are consistent. This scheme ensures traceability between i* and ConGolog/CASL models.

There have been a few other proposals for using i* with formal specification languages for requirements engineering. The Trust-Confidence-Distrust (TCD) approach, which combined i* and ConGolog to model and analyze trust in social networks, was proposed by Gans, Jarke, Kethers, and Lakemeyer (2003); see also chapter 4 in this volume.of this book. In that work, the i* SR diagram notation is also extended and combined with ConGolog to support the modeling and analysis of trust in agent networks. Their extended SR notation is somewhat different from ours. For instance, they represent task preconditions explicitly and interpret them as trigger conditions, rather than using interrupt annotations. In the TCD approach, sequencing of intentional elements in SR models is specified with precedence links, rather than with the composition annotations used in our approaches. Although both methods have their benefits and drawbacks, we feel that ordering subgoals and subtasks visually facilitates understanding and human analysis of SR models. Additionally, the TCD approach is designed with a specific type of application, interorganizational social networks, in mind and supports only a subset of the ConGolog functionality while automating some of the i*–ConGolog transformation steps.

Yu, du Bois, Dubois, and Mylopoulos (1997) and Bissener (1997) explored the combined use of i* and ALBERT-II. ALBERT-II (Agent-Oriented Language for Building and Eliciting Real-Time Requirements) (Du Bois, 1995) is a formal framework for specifying distributed real-time systems. It is based on temporal logic with some extensions to model knowledge. Agents’ states and behavior are specified through constraints expressed in the logic-based notation. The aspects of agents’ states or actions that are known or visible to other agents are also specified formally through “cooperation constraints.”
 Typical patterns of constraints are identified to support the analyst in requirements elaboration. The approach proposed in these papers is very different from ours; there is no attempt to develop an intermediate notation to enable a direct mapping from i* to the ALBERT-II formal framework. ALBERT-II also does not support the attribution of goals (as subjective properties) to specific agents; goals must be operationalized.

Another related approach is the Tropos framework, which is also agent-oriented and rooted in RE concepts. Formal Tropos (Fuxman et al., 2004) attempts to provide formal semantics for i* models that supports formal verification of i* models through model checking. It uses a temporal logic language for specification. It provides no support for representing and reasoning about mental states. Formal Tropos specifications do not require detailed models of agent processes and can be used to analyze high-level Strategic Dependency models. Our approaches, on the other hand, use procedural notations and thus apply more naturally to highly detailed SR models. Moreover, our formal specifications are detailed enough to be directly executable (in the case of i*–ConGolog), or they can be used as comprehensive formal specifications for multiagent systems (i*–CASL). The higher level of detail on our approaches allows for more fine-grained analysis of agent processes. Formal Tropos also proposes a number of i* extensions. Among them is the prior-to link that is used to describe the temporal relationship among intentional elements.

In terms of modeling agent mental states, in contrast to the i*–CASL approach, Formal Tropos and the i*–ConGolog approaches require that the goals of agents be removed by abstracting them out of formal specifications. This is due to the fact that the formal components of these approaches (the model-checker input language for Formal Tropos and the restricted situation calculus theories for i*–ConGolog) do not support reasoning about agent goals. Reasoning about agent knowledge is not supported either. However, most interactions among agents involve knowledge exchange and goal delegation, since multiagent systems are developed as social structures. Thus, complementing informal modeling techniques such as i* with formal analysis of agent goals and knowledge is very important in the design of multiagent systems. In our i*–CASL framework, goals are supported; they are modeled formally and automatically updated following requests. This allows agents to reason about their objectives. Information exchanges among agents are also formalized as changes in their knowledge state. In the i*–CASL approach, goals are not systemwide properties, but belong to concrete agents. The same applies to knowledge. This subjective point of view provides support for new types of formal analysis on CASL specifications. Thus, this method is more agent-oriented and allows for precise modeling of stakeholder goals. Modeling of conflicting stakeholder goals, a common task in requirements engineering, and of agent negotiations is also possible. All of the above can be useful for the later stages of agent-oriented software engineering because most MAS design frameworks model agent communication as changing agents’ mental states. Moreover, many agent implementation languages/tools are based on a Belief-Desire-Intention model of agents (see Bordini, Dastani, Dix, & El Fallah Seghrouchni, 2005).

In future work, we would like to develop tool support for representing ASR and iASR diagrams and mapping them into ConGolog or CASL, and for supporting the co-evolution of the two representations. These features should be integrated with existing tools for verification and simulation. Although the procedural component of a CASL specification accurately reflects the corresponding iASR model, the model only hints at what has to be in the declarative component of the specification (i.e., the axioms for actions, the definitions of annotation conditions, etc.). We expect that our RE tool kit will be able to significantly simplify the specification of the declarative component of ConGolog and CASL models. We also plan to further explore how agent interaction protocols can be represented using iASR models and how other types of agent goals (e.g., maintenance and “cease” goals), as well as softgoals, can be handled in our approach. We also plan to investigate how privacy, security, and trust can be modeled and analyzed with appropriate modifications to CASL.

There are also a number of limitations in CASL’s formalization of communication and mental-state change that should be addressed in future work. In CASL, the preconditions of the inform action require that the information being sent by an agent be known to it. This prevents agents from transmitting false information as well as information of which they are uncertain. The removal of this restriction would allow the modeling of systems in which agents are not always truthful. This can be useful when dealing with security and privacy requirements. However, dealing with false and uncertain information may require belief revision, which complicates the model somewhat (see Shapiro et al. [2000] for a treatment of belief revision in the situation calculus). Similarly, the preconditions for the request action require that when requesting services from other agents, the sender does not itself have goals that conflict with the request. By relaxing this constraint one could try to support the modeling of malicious agents.

Other modifications to CASL to accommodate various characteristics of application domains are possible. For example, in Lapouchnian (2004) we proposed a simple approach to model agent helpfulness and trust. In the original CASL, agents acquire all requested goals that do not conflict with their existing goals, no matter where the request comes from. Similarly, agents accept new information without regard for who the sender of that information is. This may not be acceptable for all domains, so one may need the ability to specify whom an agent trusts and to whom the information
 is helpful.

We also note that CASL assumes that all agents are aware of all actions being executed in the system. Often, it would be useful to lift this restriction, but dealing with the resulting lack of knowledge about agents’ mental states can be challenging.

Finally, there is also ongoing work on supporting limited forms of incomplete knowledge and information acquisition actions in a logic- programming-based ConGolog implementation (Sardiña & Vassos, 2005). This may eventually lead to an executable version of CASL in which simulation can be performed on models of agents with mental states.
<NOTE>

<REF>
References
Bissener, M. (1997). A proposal for a requirements engineering method dealing with organizational, non-functional and functional requirements. Doctoral dissertation, University of Namur, Belgium.

Bordini, R.H., Dastani, M., Dix, J., & El Fallah Seghrouchni, A. (eds.). (2005). Multi-agent Programming: Languages, Platforms and Applications. Berlin: Springer.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004). Tropos: An agent-oriented software development methodology. Journal of Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.
Chung, L., Nixon, B.A., Yu, E., & Mylopoulos, J. (2000).
 Non-functional Requirements in Software Engineering. Dordrecht, Netherlands: Kluwer Academic.

Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science of Computer Programming, 20(1–2), 3–50.

De Giacomo, G., Lespérance, Y., & Levesque, H.J. (2000). ConGolog, a concurrent programming language based on the situation calculus. Artificial Intelligence, 121(1–2), 109–169.

Du Bois, P. (1995). The Albert II language: On the design and the use of a formal specification language for requirements analysis. Doctoral dissertation, University of Namur, Belgium.

Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., & Traverso, P. (2004). Specifying and analyzing early requirements in Tropos. Requirements Engineering Journal, 9(2), 132–150.

Gans, G., Jarke, M., Kethers, S., & Lakemeyer, G. (2003). Continuous requirements management for organisation networks: A (Dis)trust-based approach. Requirements Engineering Journal, 8(1), 4–22.

Jennings, N.R. (1999). Agent-oriented software engineering. In F.J. Garijo and M. Boman (eds.), Multi-agent System Engineering: 9th European Workshop on Modelling Autonomous Agents in a Multi-agent World [MAAMAW’99] (pp. 1–7). Lecture Notes in Artificial Intelligence 1647. Berlin: Springer.

Lapouchnian, A. (2004). Modeling mental states in requirements engineering: An agent-oriented framework based on i* and CASL. M.Sc. thesis, York University, Toronto.

Lapouchnian, A., & Lespérance, Y. (2006). Modeling mental states in agent-oriented requirements engineering. In E. Dubois and K. Pohl (eds.), Proceedings of the 18th Conference on Advanced Information Systems Engineering [CAiSE’06] (pp. 480–494). Lecture Notes in Computer Science 4001. Berlin: Springer.

Lespérance, Y. (2001).
 On the epistemic feasibility of plans in multiagent systems specifications. In J.-J.Ch. Meyer and M. Tambe (eds.), Proceedings of the 8th International Workshop on Agent Theories, Architectures, and Languages
[ATAL-2001] (pp. 69–85). Lecture Notes in Artificial Intelligence 2333. Berlin: Springer.

Lespérance, Y., Kelley, T.G., Mylopoulos, J., & Yu, E.S.K. (1999). Modeling dynamic domains with ConGolog. In M. Jarke and A. Oberweis (eds.), Proceedings of the 11th Conference on Advanced Information Systems Engineering [CAiSE’99] (pp. 365–380). Lecture Notes in Computer Science 1626. Berlin: Springer.
McCarthy, J., & Hayes, P.J. (1969). Some philosophical problems from the standpoint of artificial intelligence. Machine Intelligence, 4, 463–502.

Moore, R.C. (1985). A formal theory of knowledge and action. In J.R. Hobbs and R.C. Moore (eds.), Formal Theories of the Commonsense World (pp. 319–358). Norwood, NJ: Ablex.

Owre, S., Rajan, S.P., Rushby, J. M., Shankar, N., & Srivas, M. (1996). PVS: Combining specification, proof checking, and model checking. In R. Alur and T.A. Henzinger (eds.), Proceedings of the 8th International Conference on Computer-Aided Verification [CAV’96] (pp. 411–414). Lecture Notes in Artificial Intelligence 1102 . Berlin: Springer.

Reiter, R. (1991). The frame problem in the situation calculus: A simple solution (sometimes) and a completeness result for goal regression. In V. Lifschitz (ed.), Artificial Intelligence and Mathematical Theory of Computation: Papers in Honor of John McCarthy (pp. 359–380). San Diego, CA: Academic Press.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. Cambridge, MA: MIT Press.

Sardiña, S., & Vassos, S. (2005). The Wumpus world in IndiGolog: A preliminary report. In L. Morgenstern and M. Pagnucco (eds.), Working Notes of the 6th Workshop on Nonmonotonic Reasoning, Action, and Change
 [NRAC’05] (pp. 90–95). Berlin: Springer.
Scherl, R.B., & Levesque, H.J. (2003). Knowledge, action, and the frame problem. Artificial Intelligence, 144(1–2), 1–39.

Shapiro, S. (2004).
 Specifying and verifying multiagent systems using CASL. Doctoral dissertation, University of Toronto.

Shapiro, S., & Lespérance, Y. (2001). Modeling multiagent systems with the Cognitive Agents Specification Language: A feature interaction resolution application. In C. Castelfranchi and Y. Lespérance (eds.), Proceedings of the 7th International Workshop on Agent Theories, Architectures, and Languages [ATAL-2000] (pp. 244–259). Lecture Notes in Artificial Intelligence 1986. Berlin: Springer.

Shapiro, S., Lespérance, Y., & Levesque, H. (2002). The Cognitive Agents Specification Language and verification environment for multiagent systems. In C. Castelfranchi and W.L. Johnson (eds.), Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems [AAMAS’02] (pp. 19–26). New York: ACM Press.

Shapiro, S., Pagnucco, M., Lespérance, Y., & Levesque, H.J. (2000). Iterated belief change in the situation calculus. In A.G. Cohn, F. Giunchiglia, and B. Selman (eds.), Proceedings of the 7th International Conference on Principles of Knowledge Representation and Reasoning [KR2000] (pp. 527–538). San Francisco: Morgan Kaufmann.

Van Lamsweerde, A. (2000). Requirements engineering in the year 00: A research perspective. In Proceedings of the 22nd International Conference on Software Engineering [ICSE’00] (pp. 5–19). Los Alamitos, CA: IEEE Computer Society Press.

Van Lamsweerde, A., Darimont, R., & Massonet, P. (1995). Goal-directed elaboration of requirements for a meeting scheduler: Problems and lessons learnt. In Proceedings of the 2nd IEEE International Symposium on Requirements Engineering [RE’95] (pp. 194–203). Los Alamitos, CA: IEEE Computer Society Press.

Van Otterloo, S., van der Hoek, W., & Wooldrige, M. (2004). Model checking a knowledge exchange scenario. Applied Artificial Intelligence, 18(9–10), 937–952.

Wang, X. (2001). Agent-oriented requirements engineering using the ConGolog and i* frameworks. M.Sc. thesis, York University, Toronto.

Wang, X., & Lespérance, Y. (2001). Agent-oriented requirements engineering using ConGolog and i*. In G. Wagner, K. Karlapalem, Y. Lespérance, and E. Yu (eds.), Agent-Oriented Information Systems 2001, Proceedings of the 3rd International Bi-Conference Workshop on Agent- Oriented Information Systems [AOIS-2001] (pp. 59–78). Berlin: iCue.

Wooldridge, M. (1997). Agent-based software engineering. IEE Proceedings—Software Engineering, 144(1), 26–37.

Yu, E. (1995). Modeling strategic relationships for process reengineering. Doctoral dissertation, University of Toronto.

Yu, E. (1997). Towards modeling and reasoning support for early-phase requirements engineering. In Proceedings of the 3rd IEEE International Symposium on Requirements Engineering [RE’97] (pp. 226–235). Los Alamitos, CA: IEEE Computer Society Press.

Yu, E., du Bois, P., Dubois, E., & Mylopoulos, J. (1997). From organization models to system requirements: A “cooperating agents” approach. In M.P. Papazoglou and G. Schlageter (eds.), Cooperative Information Systems: Trends and Directions (pp. 293–312). San Diego, CA: Academic Press.

<figure captions>

Figure 5.1 Meeting Scheduler in its environment. For a key to i* diagrams in this chapter, see figure A.1.

Figure 5.2 SR diagram for the Meeting Initiator.

Figure 5.3 Composition and link annotations.

Figure 5.4 Adding agent interaction details to ASR diagrams.

Figure 5.5 A fragment of the SR diagram for the MS agent.

Figure 5.6 A fragment of the ASR diagram for the MS agent.

Figure 5.7 Generating a goal achievement procedure.

Figure 5.8 Goal achievement procedure example.

Figure 5.9 A motivating example.

Figure 5.10 Synchronizing declarative and procedural components of CASL specifications.

Figure 5.11 The iASR diagram pattern for handling self-acquired goals.

Figure 5.12 Adding iASR-level agent interaction details.

Figure 5.13 A fragment of the iASR diagram for the MS agent.

�Author: Is “parents” correct?

�Author: Is “or if…situation s” correct as edited?

�Author: Should the year be 2005?

�Author: Should the year be 2005?

�Author: Is “everybody else” correct?

�Author: Should the year be 1999?

�Author: Should the year be 2005?

�Author: Should the year of Shapiro be 2005?

�Author: Should the year of Shapiro be 2005?

�Author: To what does “it” refer?

�Author: To what does “its” refer?

�Author: Are the changes to “it” and “its” correct?

�Author: Is the addition of “and” ok?

�Author: Is the opening parenthesis placed correctly?

�Author: Should the year of Shapiro be 2005? See also 5 lines below.

�Author: Should the year be 2005?

�Author: Should the year be 2005?

�Author: Should the year be 2005?

�Author: Should the year be 2002?

�Author: Is the change to “two” correct? Only two are mentioned.

�Author: Is the sentence correct as edited?

�Is the change from “it” “the information” correct? If not, please clarify the text.

�Author: Should the year be 1999?

�Author: Should the journal title be simply Requirements Engineering? See also Gans et al.

�Author: Should the year be 2002?

�Author: Should the book title begin “Revised Papers from the Eighth…”?

�Author: Should the book title begin “Proceedings of the…”?

�Author: Should the year be 2005?

�Author: Should the city and publisher be Los Alamitos, CA: IEEE Computer Society Press?

�Author: Should the city and publisher be New York: ACM Press?

�. The guard construct was not in de Giacomo et al. (2000); it was introduced by Lapouchnian (2004). Also note that the notation used in this chapter for several ConGolog constructs differs from the notation used in chapter 4 (table 4.1); however, aside from the guard construct, the same constructs are used in the two chapters.— Ed.

�. The guard construct was not in (de Giacomo et al., 2000); it was introduced in (Lapouchnian, 2004). Also note that the notation used in this chapter for several ConGolog constructs differs from the notation used in Chapter 4 (Table 4.1); however, aside from the guard construct the same constructs are used in the two chapters.— Ed.

