PAGE
723

<CN>9</CN>
<CT>Detecting Conflicts between Functional and Security Requirements with Secure Tropos
:</CT> <CS>John Rusnak and the Allied Irish Bank</CS>
<CA>Fabio Massacci and Nicola Zannone</CA>
<H1>9.1 Introduction</H1>
Recent years have seen a growing effort to integrate security into the system development process (Basin, Doser, & Lodderstedt, 2006; Doan, Demurjian, Ting, & Ketterl, 2004; McDermott & Fox, 1999; Schumacher, 2003; Sindre & Opdahl 2005; van Lamsweerde, Brohez, de Landtsheer, & Janssens, 2003). The basic idea underlying many of these proposals has been to integrate security concerns into the information system through the authentication and access control mechanisms supported by the information system itself. However, this approach introduces a gap between security measures and the requirements of the organization as a whole in which the information system is embedded. In other words, security mechanisms and policies are fitted into a preexisting functional design that may not be able to accommodate them due to potential conflicts with functional requirements. For instance, several proposals (Clark & Wilson, 1987; Schaad & Moffett, 2002; Simon & Zurko, 1997) defined separation of duty constraints to specify that critical tasks cannot be performed by single actors and were designed
to enforce conflict-of- interest policies. However, they assume prior knowledge of incompatible roles and conflicts, and do not analyze organizational requirements to understand why such constraints should be introduced and the effects of their introduction. As a consequence, some crucial constraints may be omitted and others may conflict with the functionalities of the existing IT system.

On the contrary, requirements engineering methodologies should model and analyze organizations and their operational procedures, and not just IT systems, and then derive security policies and mechanisms from the requirements analysis process. Indeed, a major source of security weaknesses and, consequently of system vulnerabilities, is the conflicts between functional and security requirements that overlap the organization and the IT system. In this case, attackers might exploit such vulnerabilities by bypassing security mechanisms rather than breaking them (Anderson, 1994). Thus, the system designer will not spot the attack, nor will it be detected by the manager in charge of operational procedures. Therefore, the detection of conflicts in the requirements specification of the whole sociotechnical system is a crucial issue in avoiding system vulnerabilities.

Internal attacks are even more harmful than external attacks because they are performed by trusted users that can easily bypass access control mechanisms precisely because they are trusted. Thus, trust plays a key role in the development of secure IT systems (Giorgini, Massacci, Mylopoulos, & Zannone, 2006). Trust is related to belief in honesty, trustfulness, competence, and reliability (Blomqvist & Ståhle, 2000; Castelfranchi & Falcone, 1998; McKnight & Chervany, 1996), and it is fundamental to building collaboration between humans and organizations (Axelrod, 1984). Yet, very few security engineering methodologies take trust aspects into account. This modeling absence affects decisions about security measures imposed on the system. In particular, such measures might be excessive in some cases and inadequate in others. For instance, system designers may not introduce security measures because they implicitly assume trust relationships among users that are not in the domain of analysis. Alternatively, system designers may introduce expensive mechanisms for protecting a trusted system that has not been perceived as a trusted system by the designers themselves. To solve this problem, designers should model the organizational settings in terms of social relationships among the actors involved in the system.

In previous work (Giorgini, Massacci, Mylopoulos, & Zannone, 2005a; Giorgini, Massacci, & Zannone, 2005) jointly with Paolo Giorgini and John Mylopoulos, we proposed Secure Tropos, a requirements engineering methodology tailored to model both the organizational environment of a system and the system itself with respect to functional and security requirements. This framework is founded on the notions of ownership, provisioning, trust, and delegation. These notions are used to define entitlements, capabilities, and responsibilities of stakeholders and system actors, and to define their transfer between actors. Together with a graphical modeling framework, the authors also propose a formal framework based on Datalog (Leone et al., 2005)
 that allows system designers to automatically analyze system requirements.

Although the application of Secure Tropos to different case studies (e.g., Massacci, Prest, & Zannone, 2005) has demonstrated its ability to identify conflicts among functional and security requirements at the organizational level, we notice that conflicts might be concealed within the requirements specified at different levels (Giorgini, Massacci, Mylopoulos, & Zannone, 2005b). Essentially, modeling and analyzing only the structure of the organization might be not sufficient to ensure that the system is secure. Actually, retrospectively untrustworthy agents can play trusted roles in the organization in order to gain personal advantage from their position in the organization. This shows that comparing the structure of the organization with the concrete instance of the organization (i.e., the agents that play certain roles in the organization and relations among them) is needed to bring conflicts to light.

<H2>9.1.1 Contributions of This Chapter</H2>
This chapter presents an application of the Secure Tropos methodology to a real case study concerning the fraud committed against the Allied Irish Bank by John Rusnak. The aim of the chapter is twofold. First, the chapter intends to show that the Secure Tropos concepts and primitives are sufficient to capture high-level functional and security requirements. In particular, the focus is on modeling the Allied Irish Bank’s policies (that should hold for every employee), the role of Rusnak in First Maryland Bancorp’s organizations, and his personal relations with the other employees in the bank, based on official documents (Promontory Financial Group et al., 2003; United States Department of Justice, 2002).The second focus of this chapter is on the capabilities of Secure Tropos to detect vulnerabilities that may affect the structure of an organization and its information system. In particular, it is shown how vulnerabilities exploited by Rusnak can be identified by comparing the structure of the organization with the concrete instance of the organization. In this chapter, we want also to emphasize the importance of detecting vulnerabilities during the early phases of the system development process. For instance, Johnson (2005) applied violation and vulnerability analysis to the same case study to understand the root causes of security incidents. However, this analysis was developed to assist security incident investigations, so it can be used only after the incident has taken place.

The remainder of the chapter is structured as follows. In section 9.2 we briefly present the case study. Then we introduce Secure Tropos key functionalities (section 9.3) and show how to model the Allied Irish Bank’s organizational structure (section 9.4) and how it was modified after John Rusnak’s hiring (section 9.5). Next, we discuss the process for identifying potential conflicts in organizations (section 9.6). We check for conflicts in the requirements (section 9.7) and discuss recommended structure after the fraud (section 9.8). Finally, we discuss related work (section 9.9), and conclude the chapter with some directions for future work (section 9.10).

<H1>9.2 Case Study: John Rusnak and Allied Irish Bank</H1>
This section presents a scenario used as a running example throughout the chapter. It is based on a real case involving the loss of approximately $700 million in currency transactions by Allied Irish Bank and its subsidiary First Maryland Bancorp (Promontory Financial Group et al., 2003; United States Department of Justice, 2002).

In 1983, Allied Irish Bank (AIB), the Republic of Ireland’s biggest banking and financial services organization, acquired a stake in First Maryland Bancorp (Allfirst). In 1989, AIB acquired Allfirst through a merger.

In the beginning, Allfirst currency trading was run only with limited risks and a limited budget. In 1993, Allfirst recruited John Rusnak as currency trader. One reason for his recruitment was AIB and Allfirst’s desire to exploit a form of arbitrage in which Rusnak was expert. This arbitrage played on the different exchange rates between currency options
 and currency forwards.
 Rusnak’s strategy was based on complicated deals in the foreign exchange and options markets. Unfortunately, his strategy did not work, and he lost a substantial amount of money. To cover the losses, Rusnak started to play with Allfirst’s books and IT systems.

By exploiting weaknesses affecting Allfirst’s internal procedures and IT system, Rusnak used a number of methods not only to hide losses but also to show he was making money. Essentially, he created fake trades and entered them into Allfirst’s books. His scheme was to simultaneously enter pairs of bogus trades into the trading system. One trade represented the sale of a currency option to an Asian bank. The other trade represented the purchase of an offsetting option from the same counterpart. Rusnak convinced and cajoled back office employees (where the trades are verified, as opposed to the front office, where the trades are made) that such trades did not need to be confirmed because no cash had actually changed hands and because they should be confirmed in the middle of the night. However, there was a significant difference between the two trades: the first option expired the day it was made, whereas the latter expired a month later. This scheme hid the fact that Rusnak was operating over his trading limit, which allowed him to make more trades. Moreover, these bogus options also disguised that he was taking high risks and actually losing money.

The losses were uncovered during a management review of the treasury division of Allfirst in 2001. An initial investigation at the back office revealed two trades supposedly made by Rusnak that had not been confirmed. The supervisor of Allfirst’s back office required an explanation from its employees. They reported what Rusnak had said about the matter, but the explanation was deemed unsatisfactory by the supervisor, so he investigated further trades and found twelve unconfirmed deal tickets referring to recent trades with Asian banks. All unconfirmed trades were given back to Rusnak. Moreover, when the Asian banks were called, they knew nothing about such trades. The supervisor called Rusnak, reporting the troubles during the confirmation of these trades. Rusnak assured the supervisor that he got confirmation of his trades. He copied the letterheads of Asian banks, typed bogus confirmations of his trades, signed them, and gave them to the back office.

The back office supervisor did not like the look of the documents given by Rusnak and wanted additional confirmations by the involved Asian banks. It was Friday, and the Asian markets were closed until Sunday night. Rusnak said that he would give the number of a broker who could confirm his trades to Allfirst on Sunday. Allfirst alerted the FBI after Rusnak failed to come to work on the next Monday.

Investigators considered this fraud a very complex crime for its sophisticated cover-up. Rusnak could have been sentenced to as much as thirty years in prison and fined $1 million. He received a seven-and- a- half-year sentence as part of a plea bargain, and is obliged to pay $1,000 a month for five years upon release (USA Today, 2003).

<H2>9.2.1 Secure Tropos</H2>
The Tropos methodology (Bresciani, Giorgini, Giunchiglia, Mylopoulos, & Perini, 2004) is an agent-oriented software engineering methodology based on the i* modeling framework (Yu, 1995; reprinted as chapter 2 of this book), tailored to describe both the system-to-be and its environment. Unfortunately, i*/Tropos lacks the ability to capture both the functional and the security features of the organizational setting at the same time (Giorgini et al., 2005a). This inablity has spurred us to enhance the methodology. The result is the Secure Tropos methodology (Giorgini et al., 2005a, 2005), which extends i*/Tropos with concepts suitable for modeling and analyzing security requirements together with functional requirements. However, we have focused on a modular addition so that dropping all newly proposed features makes one return to the i*/Tropos original methodology (Giorgini et al., 2006).

Secure Tropos uses the concepts of actor, goal, task, resource, and social relations for defining entitlements, capabilities, and responsibilities of actors. An actor is an active entity that performs actions to achieve goals. Actors can be decomposed into subunits for modeling the internal structure of the actor itself while preserving the intentional abstraction of the actor. Complex social actors can be modeled through three types of subunits: agents, roles, and positions. An agent is an actor with concrete and physical manifestations, normally an individual person or a concrete piece of running software. A role is an abstract characterization of the behavior of a social actor with respect to a specific domain. A position represents a set of roles played by an agent. An agent is said to occupy a position, and a position covers a role. A goal represents actors’ strategic interests. A task specifies a particular course of actions that should be executed in order to satisfy a goal. A resource represents a physical or an informational entity. For the sake of simplicity, the notion of service is used to refer to a goal, task, or resource. Figure 9.1 is a graphical representation of the above concepts.

[Figure 9.1 here]

Secure Tropos introduces social relations: namely, objectives, ownership, and provisioning for defining desires, entitlements, and capabilities of actors. Objectives of an actor are a classic feature of a goal-oriented methodology, and we will not discuss them further. The basic idea of ownership is that the owner of a service has full authority concerning access and disposition of his service. In contrast, provisioning marks the actors who have the capabilities to deliver a service.

Moreover, Secure Tropos refines the notion of dependency offered by i*/Tropos by introducing the notions of (dis)trust and delegation (Giorgini et al., 2005b). These new social relations are used to model the transfer of entitlements and responsibilities between actors. In particular, delegation marks a formal passage of authority or responsibilities from one actor (the delegator) to another (the delegatee) in the domain of analysis. The i* framework and Tropos methodology have been designed with cooperative systems in mind, so that a dependency between two actors means that the dependee takes the responsibility to achieve the depender’s goal and he is also authorized to achieve it (Giorgini et al., 2006). The application of Secure Tropos to comprehensive case studies (e.g., Massacci et al., 2005) has revealed that distinguishing between relations involving permission and relations involving execution is essential to verify the consistency among functional and security requirements. To this end, we distinguish the notions of delegation of permission and delegation of execution. Delegation of permission is used when in the domain of analysis there is a formal passage of authority, that is, the delegator authorizes the delegatee to access a resource, execute a task, or achieve a goal. In contrast, a delegation of execution is used to model a delegation of responsibilities, that is, to model situations where the delegator wants the delegatee to deliver a service because he does not have the capability to deliver it by himself.

<H3>9.2.1.1 Example 1</H3>
 Allfirst's treasury office, which needs foreign exchange rates, delegates the execution of the task of providing them to Reuters, a global information company. It alsoOn the other hand, Allfirst's treasury office, which
 is the owner of the currency trading activities, and delegates permission to enter trades to the front office and to settle trades to the back office.

System designers might need to model systems in which some actors must delegate services to other actors they do not trust. Thus, it is convenient to separate the concept of trust from the concept of delegation. Essentially, trust is a relation between two actors representing the expectation of one actor (the truster) about the capabilities and behavior of the other actor (the trustee) (Castelfranchi & Falcone, 1998). Also in this case it is convenient to distinguish two notions of trust: trust of permission and trust of execution. The meaning of trust of permission is that an actor trusts that another actor will not misuse the permission on the service. The meaning of trust of execution is that an actor trusts that another actor has the direct or indirect capability to deliver the service.

Many domains also demand the possibility to make explicit negative authorizations to help the designer in shaping the perimeter
of positive authorizations. For instance, in distributed systems, an actor possessing the right to use a service can delegate the authorization on that service to the wrong actor. In this setting, it is not always possible to deny an actor access to a particular service. Thus, we propose an explicit distrust relationship as an approach for handling this type of scenario. Obviously, there are various reasons for distrusting agents, such as unreliability and abuse, but analysis of these reasons goes well beyond the scope of this chapter. As is done for trust, the notion of distrust of permission is separated from the notion of distrust of execution. The occurrence of distrust of permission in the model means that an actor believes that another actor may misuse a service, and the presence of distrust of execution means that an actor believes that another actor may have not the capability to deliver a service.

Different modeling activities contribute to the acquisition of a first requirements model and to its refinement into subsequent models:
<BL>

· Actor modeling, which consists of identifying and analyzing both the actors in the environment and the system’s actors. Furthermore, this activity identifies actors that own services and actors that have the capability to provide services along with the identification of their objectives.

· Trust modeling, which consists of identifying the trust and distrust (both of execution and of permission) relations among actors involved in the system.

· Delegation (of execution) modeling, which consists of identifying actors that delegate the execution of services to other actors.

· Delegation (of permission) modeling, which consists of identifying actors that delegate the permission on services to other actors.

· Goal refinement, which consists of refining requirements. This activity is conducted from the perspective of single actors through AND/OR decomposition.</BL>

These modeling activities correspond to different kinds of diagrams: actor diagram, trust model, functional requirements model, and trust management implementation. In particular, the actor diagram represents the actors involved in the system along with their desires, entitlements, and capabilities; the trust model, functional requirements model; and trust management implementation represent enrichment of the actor
 diagram by representing the trust network, delegation of execution network, and delegation of permission network, respectively. Such diagrams are then refined in the goal refinement activity. A graphical representation of goal refinement is given through goal diagrams. In these diagrams, AND/OR decomposition relations connect goals to their subgoals with links that have a bar above the subgoals. (See figure 3.4 for an example.) Notice that this bar is part of the decomposition link itself.

<H1>9.4 Applying Secure Tropos to the Case Study</H1>
This section presents an application of the modeling phases to the running example. First, the actors of the environment and the system’s actors are identified together with their goals. Then, the structure of the organization of AIB and Allfirst is analyzed by modeling the social relations among actors.

<H2>9.4.1 Modeling Actors</H2>
The first activity in the requirements analysis process is actor modeling. Some of the stakeholders belonging to the running example are listed below (see figure 9.2).

[Figure 9.2 here]

<BL>
· Allied Irish Bank (AIB) is the Republic of Ireland’s biggest banking and financial services organization. After merging with Allfirst, AIB allowed Allfirst a large amount of local autonomy. Allfirst continued to have its own management team and board of directors. However, AIB wanted to control Allfirst operations, and so it appointed one of its senior managers as Allfirst treasurer.

· First Maryland Bancorp (Allfirst) is an AIB subsidiary. For simplicity, we take into account only the Allfirst treasury department. This department is managed by the Allfirst treasurer. Allfirst’s treasury operations are divided into three areas, and each of them is managed by a specialized office:

<SL>
· Front office, which is responsible for treasury funds management. This office is managed by the treasury funds manager and includes the foreign exchange trading office, where currency traders work.

· Middle office, which is responsible for liability and risk management. This office includes the risk control group, which is responsible for risk control and analysis.

· Back office, which is responsible for treasury operations. </SL

Last, but not least, a component of Allfirst is the DEVON System, Allfirst’s information system. It was designed to provide trade entry and processing functionalities.

<BL>
· Foreign trading office represents the treasuries of banks
 with which Allfirst makes deals.

· Reuters is a global information company providing information tailored for professionals in the financial services, media, and corporate markets. </BL>
Figure 9.2 shows the output of the actor modeling phase. In particular, it illustrates the structure of the organization of AIB and Allfirst and the responsibilities of each actor.

<H2>9.4.2 Modeling Trust and Delegation</H2>
The requirements modeling process proceeds by introducing the social relations among actors involved in the system.

Figure 9.3 shows relations among the front office, the middle office, and the other actors of the system. In the remaining figures in the chapter, ownership relations are represented as edges between an actor and a service labeled by O. Labels Te and Tp indicate trust of execution and trust of permission relations, respectively. Label Dp is used to model the actual transfer of rights, and De to model delegation of execution. Finally, distrust of execution and distrust of permission relations are represented through edges labeled Se and Sp, respectively.

[Figure 9.3 here]

<BL>
· The front office was responsible for treasury funds management. This task was decomposed into four main operations: treasury funding, interest rate risk management, investment portfolio management, and global trading (Promontory Financial Group et al., 2003, p. 6).

· The currency trader was appointed by the treasury fund manager to perform currency trading operations, a particular kind of global trading operations (Promontory Financial Group et al., 2003, p. 6).

· The currency trader negotiated currency options and currency forwards with the foreign trading office (getting agreement for transactions in the figure). Once the trader reached an agreement with his counterpart, he entered information about transactions (list of tentative transactions) into the DEVON System (United States Department of Justice, 2002, p. 4).

· The middle office was responsible for asset and liability management, financial analysis, and risk control (Promontory Financial Group et al., 2003, p. 6).

· The risk control group was appointed by the middle office manager to perform risk control, and in particular for value at risk calculation,
 trading loss verification, and counterpart credit verification (Promontory Financial Group et al., 2003, p. 6).

· Employees in treasury offices (e.g., traders) needed foreign exchange rates to perform their duties and required this information from their own office (Promontory Financial Group et al., 2003, pp. 16–18).
· Treasury offices requested foreign exchange rates from Reuters (Promontory Financial Group et al., 2003, p. 16).
· However, Allfirst did not want to pay an additional fee (nearly $10,000 for each office). Thus, it decided to download foreign exchange rates from Reuters onto the front office’s server and then to copy them into the machines of other offices (Promontory Financial Group et al., 2003, p. 16).

· Each employee of treasury offices then accessed the information system of the office in which he was employed in order to get foreign exchange rates.

· Notice that Allfirst’s fund management policies required that treasury officers
 perform their duties using prices obtained from sources independent of currency traders (Promontory Financial Group et al., 2003, p. 16). These policies imply a distrust relation between treasury offices and currency traders for providing foreign exchange rates.

· The risk control group accessed the DEVON system in order to get information about transactions made by traders for performing its duties, and in particular for computing value at risk (United States Department of Justice, 2002, p. 5). </BL>
We now analyze the relations between the back office and the other actors. (See figure 9.4.)

[Figure 9.4 here]
<BL>
· The back office was responsible for ensuring effective controls on trading and ensuring profitable trading. These operations were decomposed into subgoals and, in particular, ensuring effective controls on trading was decomposed into confirming foreign exchanges and setting foreign exchanges, and ensuring profitable trading was decomposed into setting interest rate derivatives trade and accounting for interest rate derivatives trade (Promontory Financial Group et al., 2003, p. 6).

· To carry out its duties, the back office needed some information. In particular, it required the list of tentative transactions for confirming foreign exchanges and setting foreign exchanges. Thus, the back office accessed the DEVON system in order to get information about transactions made by traders in order to confirm them (United States Department of Justice, 2002, p. 4).

· The back office contacted the foreign trading office in order to confirm transactions (United States Department of Justice, 2002, pp. 4–5).

· Allfirst treasury policies required that all trades must be confirmed by the back office (Promontory Financial Group et al. 2003, p. 15). In other words, the company (and thus the back office) distrusted a currency trader to confirm his own transactions.</BL>

<H1>9.5 Capturing the Position of Rusnak with Secure Tropos</H1>
This section presents the changes in Allfirst’s organization after Rusnak’s hiring. Figure 9.5 presents the obligations that Rusnak took charge of when he was employed.

[Figure 9.5 here]

Rusnak was employed as a currency trader by Allfirst (Promontory Financial Group et al., 2003, p. 7).

<BL>
· Rusnak was obligated to comply with internal bank regulations and procedures in performing his duties (United States Department of Justice, 2002, p. 1).

· Rusnak was required by Allfirst to perform his duties in a way that should gain reasonable profit for the bank without incurring unfounded risk (avoid unfounded risk) (United States Department of Justice, 2002, p. 2).

· Rusnak was obligated to maintain accurate information about his trading activities in the bank information system (maintain trade information in DEVON system) (United States Department of Justice, 2002, pp. 2, 5). </BL>
Figure 9.6 presents Allfirst’s organizational structure while Rusnak worked there.

[Figure 9.6 here]
<BL>
· Rusnak convinced employees in the back office to accept his own confirmations and not to confirm some of his transactions by arguing that his counterparts were Asian banks, and employees must get up in the middle of the night in order to perform their duties, and by claiming that certain transactions did not require confirmation (Promontory Financial Group et al., 2003, p. 11, 15; United States Department of Justice, 2002, p. 7). We summarize these statements with a trust relation between back office employees and Rusnak for confirming tentative exchanges.

<SL>
· Allfirst did not want to pay for a dedicated Reuters feed to the back office. Rusnak argued that he needed to continually monitor foreign exchange rates for checking his value at risk. Thus, an Allfirst analyst designed an architecture in which the Reuters feed was directly downloaded onto Rusnak’s machine. Then, treasury offices got data from Rusnak’s machine (Promontory Financial Group et al., 2003, p. 16). This scenario implies a trust relation between treasury offices and Rusnak for providing foreign exchanges rates. </SL>
<H1>9.6 Modeling and Detecting Conflicts</H1>
A critical phase of the system development process is the analysis of requirements in order to detect the presence of conflicts (van Lamsweerde et al., 1998). More often than not,
 attackers exploit vulnerabilities arising from conflicting requirements rather than breaking security mechanisms themselves. We will show that this is the case here.

A number of researchers have classified conflicts among system requirements and have proposed solutions to mitigate them (Lupu & Sloman, 1999; Moffett & Sloman, 1994; Nyanchama & Osborn, 1999; Simon & Zurko, 1997; van Lamsweerde et al., 1998). Among them, Moffett and Sloman (1994) and Lupu and Sloman (1999) have recognized two main classes of conflicts: modality conflicts and conflicts of goals. Modality conflicts are defined as conflicts that can be identified without knowledge of the domain under analysis, and include conflicts among authorizations, among obligations, and among authorizations and obligations. Conflicts of goals are defined as specific domain conflicts, and include conflicts of duties and conflicts of interest.

According to such a classification, Secure Tropos supports requirements engineers in detecting modality conflicts (Giorgini et al., 2005a, 2005). Essentially, this framework includes a set of properties in the form of security patterns in which the failure of such properties corresponds to the presence of conflicting requirements and, consequently, the presence of vulnerabilities in the system. Avoiding or mitigating such vulnerabilities may require either modifying the structure of the organization or introducing security mechanisms during the architectural design phase.

However, this analysis is not sufficient for detecting all possible conflicts. In fact, we have also recognized the importance of comparing the structure of the organization with the concrete instance of the organization. This is crucial for capturing security requirements in a domain where a trusted role can be played by an untrusted agent and vice versa. Thus, Secure Tropos has been designed in order to support two different levels of analysis (Giorgini et al., 2005b): social and individual. Social-level analysis addresses the modeling of the structure of an organization by analyzing roles and positions of the organization. On the other hand, at the individual level the focus is on single agents that are defined with their entitlements, objectives, and responsibilities together with the roles they play. This approach is based on the role-based access control model (Sandhu, Coyne, Feinstein, & Youman, 1996) and takes advantage
 from specifying entitlements, objectives, and responsibilities into two steps: assignment of entitlements, objectives, and responsibilities to roles, and assignment of agents to roles. For instance, when new resources are entered into the system, the administrator needs only to decide which roles are entitled to access those resources. Then, all agents that play those roles inherit their properties. This means that actors’ entitlements, objectives, and responsibilities propagate from the social level to the individual level. In order to cope with these issues, we refined the requirements analysis by defining the following verification process:
<NL>

1. Design models at both the social level and the individual level, independently.
2. Verify consistency of models at the social level.

3. Map models at the social level into models at the individual level.

4. Verify consistency of models at the individual level.</NL>

Here we have a challenge. Although it is recognized in software engineering that visual modeling makes understanding requirements easier, graphical models cannot be used for accurate requirements verification. How do we know that the actual, concrete instance of Allfirst's organization does not present loopholes that Rusnak could use?

This concern has motivated the definition of a formal framework supporting the Secure Tropos methodology based on Datalog (Leone et al., 2005).
 Essentially, the primitive Secure Tropos concepts and relationships are modeled through Datalog predicates (Giorgini et al., 2005a, 2005). Unfortunately, the intuitive description of the system is usually incomplete and cannot be used to perform a correct analysis. Therefore, Secure Tropos distinguishes two main types of predicates: intentional and extensional. Intuitively, extensional predicates correspond to edges and nodes of the graphical model defined by the system designer, and intentional predicates are specified by a security expert and derived by the reasoning system. Once the designer has drawn up the model (i.e., the extensional predicates), the comprehensive description of the system (i.e., the intentional predicates) is derived by using axioms.
 Essentially, axioms are used to make explicit the information that is necessary for an accurate requirements verification. For instance, they map the social level into the individual level, complete the trust network, identify actors entitled to access a resource, execute a task, or achieve a goal, and actors confident that their objectives will be achieved.

The last phase of the requirements analysis process is requirements verification. Secure Tropos supports this phase through the use of formal properties. Essentially, formal properties corresponding to specific security patterns are checked in order to verify the consistency of system requirements. If all properties are not simultaneously satisfied, the system is not secure. Secure Tropos assists requirements engineers in the verification of availability, authorization, and privacy requirements (Giorgini et al.. 2005a, 2005) and in the detection of trust conflicts (Giorgini et al., 2005b). In particular, trust-conflict detection properties identify situations in which both a trust and a distrust relation exists between two actors for the same service, even when such relations are specified at different levels of analysis.

All requirements analysis phases underlying the Secure Tropos methodology are supported by a CASE tool called ST-Tool.
 This tool has two components: the ST-Tool kernel and one or more external solvers. The main component of the ST-Tool kernel is the graphical user interface (figure 9.7), through which all its components are managed. This component allows designers to edit Secure Tropos models as graphs in which nodes are actors and services, and arcs are relationships. Further, it aims to manage graphical objects. For instance, it supports the goal refinement phase by associating a goal diagram with each actor. The second main component of the ST-Tool kernel provides support for automatic transformations from Secure Tropos graphical models into Datalog and Answer Set Programming specifications (Leone et al., 2005)
 for formal analysis. Moreover, the tool provides requirements engineers with a Datalog front-end that interacts with external solvers to provide an automatic requirements verification.

[Figure 9.7 here]
<H1>9.7 Tool-Supported Conflict Analysis</H1>
The fraud designed by Rusnak exploited weaknesses affecting Allfirst’s organizational structure and its information system. According to U.S. attorney Thomas M. DiBiagio, Rusnak was motivated by more than one intent
 (United States Department of Justice, 2002, p. 7):
<BL>

· To confirm his position in Allfirst by gaining profit for Allfirst

· Not to lose his employment because of huge losses

· To increase his salary with bonuses due to purported profits.</BL>

Johnson (2005) applied violation and vulnerability analysis to represent and model the output of the investigation into the causes underlying Rusnak’s fraud. In particular, Johnson recognized the failures in audit and control mechanisms, individual violations, and the missed opportunities to detect Rusnak’s fraud. However, this kind of analysis has been developed to assist security incident investigations, so it can be applied only once security violations have taken place.

In contrast, our requirements analysis framework is independent of the actual occurrence of security violations. We propose to analyze Allfirst’s organizational structure and the position of Rusnak within it to detect security vulnerabilities during the system development process. Such vulnerabilities may later be exploited by a malicious actor. Notice that the comparison of requirements specified at the individual and social levels does not mean that the analysis can be applied only afterward. For instance, employees in the back office should notify their manager about the failure to confirm Rusnak’s trades independently from the discovery of bogus trades. Moreover, this failure does not prove misdoings by Rusnak. Therefore, our approach could allow system administrators to prevent attacks on the system by detecting its vulnerabilities.

The remainder of this section provides an overview of the requirements verification process through Secure Tropos. In particular, we show how the Secure Tropos methodology can detect the vulnerabilities exploited by Rusnak.

<H2>9.7.1 Foreign Exchange Rates</H2>
One vulnerability was based on the lack of protection of the integrity of foreign exchange rates. Conceptually, the policy on foreign exchange rates defined by Allfirst was correct: “foreign currency rates are obtained independent of trading desk” (Promontory Financial Group et al., 2003, p. 16). However, Allfirst did not want to pay an additional fee to Reuters for a dedicated connection for each of its offices. Furthermore, Rusnak argued that he needed such information in real time in order to continually monitor the value at risk of his trades. Thus, Allfirst decided to develop an architecture in which rates were downloaded onto Rusnak’s machine, and then the treasury offices got the information from there.

Although Allfirst’s analysts noticed that “this is a failed procedure” and “technically, the trader/s could manipulate the rates” (Promontory Financial Group et al., 2003, p. 16), they did not alert middle office and back office managers about their worries. Furthermore, this procedure downgraded the “control market risk” rating from “good” to “weak.” However, the “quality of risk management” rating (which includes the previous rating) was downgraded only to “acceptable” (Promontory Financial Group et al., 2003, p. 17), so no measure was adopted to rectify this situation.

As Allfirst’s analysts guessed, the rates spreadsheet was corrupt (Promontory Financial Group et al., 2003, p. 17). Essentially, Rusnak manipulated the prices associated with the yen and the dollar in order to bypass the loss limit imposed on him by Allfirst.

By looking at the models at the social level and at the individual level, it is possible identify the inconsistency between Allfirst’s policies and the concrete instance of the organization. In particular, we can see the presence of a distrust relation between treasury offices and currency traders for providing foreign exchange rates at the social level (figures 9.3 and 9.4), and the presence of a trust relation between treasury offices and Rusnak for providing foreign exchange rates at the individual level (figure 9.6).

Even if this conflict is visible, it could easily be disregarded by the system designer due to its nature (i.e., it arises from the comparison of different levels of analysis) and the size of the requirements model. The formal framework and the supporting tool aid the system designer in automatically detecting such conflicts. As presented in section 9.6, the Secure Tropos requirements verification process includes the mapping of the model at the social level into the model at the individual level, and thus the distrust relation involving currency traders is inherited by Rusnak. This allows the reasoning system to easily detect the inconsistency.

<H2>9.7.2 Confirmation</H2>
The failure to confirm bogus options was one of the fundamental vulnerabilities exploited by Rusnak. Allfirst defined a policy stating that every trade made by currency traders must be confirmed by the back office. However, this policy was not implemented properly. Rusnak persuaded some back office employees not to confirm all his transactions due to both the absence of cash transfer and the time zone difference with his supposed Asian counterparts.

Bogus options were used by Rusnak to distort the value at risk calculation. In particular, they mitigated the risk associated with his real trades. Furthermore, Rusnak needed to find a huge amount of cash to cover the losses of his real trading. Thus, he sold “deep-in-the-money” options
 to different counterparts (Promontory Financial Group et al., 2003, p. 11; United States Department of Justice, 2002, p. 9). Rusnak then inserted fake options into the trading system showing that the original option had been repurchased in order to cover his mounting losses.

Once again, this vulnerability arises from a conflict between Allfirst’s policies and the concrete instance of the organization. In particular, the back office distrusts currency traders for confirming transactions (figure 9.4) while the back office employees trust Rusnak for the same goal (figure 9.6). Such a conflict can be automatically detected by the ST-Tool. By mapping the social level into the individual level, the distrust relation involving currency traders is inherited by Rusnak. Thus, the tool reveals that Rusnak is at the same time trusted and distrusted for confirming transactions by the back office employees.

<H2>9.7.3 Middle Office vs. Back Office</H2>
The lack of interaction between the middle office and the back office was part of the set of vulnerabilities exploited by Rusnak. The middle office computed the value at risk on tentative trades instead of considering trades confirmed by the back office. Thus, Rusnak was able to tamper with value at risk by introducing bogus options into the list of tentative transactions.

The analysis does not reveal this vulnerability because it is conceptually embedded in the system requirements. However, we have not modeled the code of practice for the financial market (Association Cambiste Internationale, 2005) and the trust/distrust relations that are proper to this model. Therefore, it might be that this loophole could have been captured by modeling the proper path of delegation of execution and trust and the corresponding mismatch of Allfirst’s organizational structure.

However, the lack of relations between the back office and middle office is evident from the models in figures 9.3 and 9.4. Figure 9.6 clearly shows that Rusnak controlled the information that the two offices used to perform their duties.

<H1>9.8 Updated Model</H1>
The resolution and mitigation of vulnerabilities is a necessary condition for successful development of secure software systems (van Lamsweerde et al., 1998). In this section, we use Secure Tropos to illustrate and validate the solutions adopted by AIB.

After the fraud was discovered, AIB appointed Promontory Financial Group to conduct an independent review of its internal control and risk management system. Promontory Financial Group, together with the law firm of Wachtell, Lipton, Rosen and Katz, analyzed AIB and Allfirst’s organization and identified numerous deficiencies in the control structures at Allfirst. The vulnerabilities that we have shown in section 9.7 and other vulnerabilities, together with some suggestions for coping with them, were explained in the Ludwig Report
 (Promontory Financial Group et al., 2003).

Promontory Financial Group’s suggestions focus mainly on the actions that AIB and Allfirst should take on policies and procedures. In particular, reviewers revealed that treasury staff was not expert enough to fulfill its duties. Thus, AIB suggested retraining current staff or replacing them with skilled personnel. This confirms the importance of analyzing the concrete instance of an organization together with its structure. Additional support for this thesis comes from recent studies (e.g., Ponemon, 2004) that reveal that information security administrators’ biggest worry is employee negligence and abuse.

AIB singled out a suggestion concerning Allfirst’s organizational structure: the distribution of foreign exchange rates. Following the Ludwig Report, Allfirst decided to pay for a dedicated Reuters feed to the middle and back offices in order to decrease fraud risk. Figure 9.8 presents the new configuration for distributing foreign exchange rates to treasury offices. We argue that this is not the only solution that can guarantee the integrity of foreign exchange rates. For instance, Allfirst could require from Reuters a message authentication code together with the data. Then, treasury offices would have to check the integrity of data before using them. This solution could allow Allfirst to avoid a dedicated connection between Reuters and each treasury office, and consequently save money.

[Figure 9.8 here]
<H1>9.9 Related Work</H1>
Several research efforts have addressed the issue of integrating security into the system development process. They focus on very different aspects, from design of access control mechanisms to modeling the behavior a system should avoid, and from the definition of principles for conflict analysis and classification to the definition of security patterns.

Access control plays a key role in the development of secure IT systems. Proposals for specifying and enforcing access control policies can be placed into three main classes: discretionary access control (DAC) (Downs, Rub, Kung, & Jordan, 1985), mandatory access control (MAC) (Bell & LaPadula, 1976), and role-based access control (RBAC) (Sandhu et al., 1996). However, these proposals focus on the specification of the access control policies and related constraints (e.g., separation of duty constraints) supported by the IT system itself, and do not support designers in the system development process. To reduce the gap between security models and system design, several research efforts have attempted to integrate access control models into software engineering by using or enhancing UML constructs (Basin et al., 2005;
 Doan et al., 2004; Ray, Li, France, & Kim, 2004; Shin & Ahn, 2000). Accordingly, these proposals mainly focus on conflicts of duties (i.e., violations of separation of duty constraints). In particular, they define specific domain constraints that will be checked statically or dynamically. Doan et al. (2004) propose to incorporate the MAC model into UML diagrams. Shin and Ahn (2000) reduce the gap between security models and system development by proposing conceptual models for RBAC in UML. Constraints are represented as classes in class diagrams and verified by RBACController in collaboration diagrams. Basin et al. (2005)
 propose SecureUML, a modeling language designed to integrate RBAC policies into a model-driven software development process. To model conflicts of duties, they introduce conflict-of-duty classes and then statically assign objects to subjects and subjects to conflict-of-duties classes through subject-role and user-group assignment. Ray et al. (2004) integrate the RBAC model into UML as patterns using diagram templates, and express RBAC constraints through the Object Constraint language. Yet, these proposals focus only on the system-to-be and the access control mechanisms supported by the system itself, and do not analyze the organizational setting in which the system-to-be will operate. This makes it difficult to understand why policies and constraints should be introduced in the design and the effects of their introduction. Moreover, they require a prior knowledge of possible conflicts, whereas our work focuses on detecting conflicts from the requirements analysis process.

Other approaches have been proposed to explicitly model behaviors that the system should avoid (McDermott & Fox, 1999; Sindre & Opdahl, 2005; van Lamsweerde et al., 2003). McDermott and Fox (1999) define abuse cases as interactions between a system and one or more actors, in which the results of such interactions are harmful to the system, or to one of the stakeholders of the system. Sindre and Opdahl (2005) define misuse cases, the inverse of UML use cases, which describe functions that the system should not allow. This approach is also adopted by van Lamsweerde et al. (2003), who extend the KAOS methodology (Dardenne, van Lamsweerde, & Fickas, 1993) by introducing the notion of anti-goals as the objectives of attackers.

Regarding conflict analysis, some guidelines providing support for detecting and mitigating conflicts among requirements and policies are emerging (Lupu & Sloman 1999; Bandara, Lupu, & Russo, 2003; van Lamsweerde et al., 1998). Lupu and Sloman (1999) propose to use policies that overlap
 techniques to detect conflicts among policies. Bandara et al. (2003) define a formal framework based on event calculus in order to support this approach. Essentially, they represent conflicts by constraints on events, and then simulate the system behavior through sequences of events and detect policy inconsistencies by identifying the situations in which conflicts occur. We differ from this approach because we aim at understanding why a system should comply with such constraints. Van Lamsweerde et al. (1998) propose formal techniques for detecting conflicting formulations of goals and requirements among different stakeholder viewpoints. In particular, they suggest various techniques for systematically resolving conflicts by introducing new goals or transforming the specification of goals toward models that are not affected by conflicts. Our approach extends this work along two directions: first, we consider both entitlements and objectives rather than only objectives; second, we also detect conflicts due to conflicting social relations among actors.

Security engineering with patterns has recently become a hot topic of research (Cheng, Konrad, Campbell, & Wassermann, 2003; Priebe, Fernández, Mehlau, & Pernul, 2004; Schumacher, 2003; Schumacher, Fernández, Hybertson, Buschmann, & Sommerlad, 2005;
 The Open Group, 2004). Security patterns have been proposed in order to assist in identifying and formulating security measures that are relevant to system development. They provide ad hoc solutions in a systematic and structured manner. Essentially, security patterns are security best practices presented in a template format. This format aids designers in identifying and understanding security concerns, and in implementing appropriate security measures even if they
 are not security experts (Schumacher, 2003). Currently, many efforts are addressed to the definition of a template for security patterns that is tailored to integrate security and systems engineering (Cheng et al., 2003; Schumacher, 2003; The Open Group, 2004). In particular, many solutions propose to use UML to represent structural and behavioral aspects of design.

<H1>9.10 Conclusion</H1>
Recent years have seen a major interest in software engineering methodologies that can capture security concerns. We have proposed Secure Tropos, a methodology tailored to deal with trust and security requirements from the very early stage of design. We have shown over a complex case study the effectiveness of Secure Tropos in order to detect modality conflicts among high-level functional and security requirements. The next step is to provide automatic mechanisms for detecting conflicts between goals, such as conflicts of duties and conflicts of interest.

A more ambitious objective now is to move toward architectural design. After a preliminary analysis, we have recognized the potential of security patterns approaches (Schumacher, 2003; Schumacher et al., 2005)
 for dealing with this issue. Thus, we are currently defining a security pattern repository based on Secure Tropos and general schemes for representing structural and behavioral aspects of design into UML-based frameworks for security (Basin et al., 2005;
 McDermott & Fox, 1999; Sindre & Opdahl, 2005).

<H1>Acknowledgments</H1>
This work was partly supported by the projects FIRB RBNE05BFRK TOCAI.IT, 016004 IST-FP6-FET-IP-SENSORIA, 27587 IST-FP6-IP-SERENITY, and 2003-S116-00018 PAT-MOSTRO.

<NOTES>

<REF>
References
Anderson, R.J. (1994). Why cryptosystems fail. Communications of the ACM, 37(11), 32–40.

Association Cambiste Internationale. (2005). The model code: The international code of conduct and practice for the financial markets. Retrieved November 7, 2007, from Aciforex Web site: http://www.aciforex.com/.
 Axelrod, R. (1984). The Evolution of Cooperation. New York: Basic Books.

Bandara, A.K., Lupu, E.C., & Russo, A. (2003). Using event calculus to formalise policy specification and analysis. In Proceedings of the 4th International Workshop on Policies for Distributed Systems and Networks (pp. 26–39). Los Alamitos, CA: IEEE Computer Society Press.

Basin, D., Doser, J., & Lodderstedt, T. (2006). Model driven security: From UML models to access control infrastructures. ACM Transactions on Software Engineering and Methodology, 15(1), 39–91.

Bell, D.E., & LaPadula, L.J. (1976). Secure Computer System: Unified Exposition and MULTICS Interpretation. Technical report MTR-2997, rev. 1. Bedford, MA: The MITRE Corporation.

Blomqvist, K., & Ståhle, P. (2000). Building organizational trust. In Proceedings of the 16th Annual IMP Conference. http://www.impgroup.org/paper_view.php?viewPaper=37.
Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004). TROPOS: An agent-oriented software development methodology. Journal of Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.

Castelfranchi, C., & Falcone, R. (1998). Principles of trust for MAS: Cognitive anatomy, social importance and quantification. In Y. Demazeau (ed.), Proceedings of the 3rd International Conference on Multi-Agent Systems (pp. 72–79). Los Alamitos, CA: IEEE Computer Society Press.

Cheng, B.H., Konrad, S., Campbell, L.A., & Wassermann, R. (2003). Using Security Patterns to Model and Analyze Security Requirements. Technical Report MSU-CSE-03-18. Department of Computer Science, Michigan State University.

Clark, D.D., & Wilson, D.R. (1987). A comparison of commercial and military computer security policies. In Proceedings of the 1987 IEEE Symposium on Security and Privacy (pp. 184–195).
 Los Alamitos, CA: IEEE Computer Society Press.

Dardenne, A., van Lamsweerde, A., & Fickas, S. (1993). Goal-directed requirements acquisition. Science of Computer Programming, 20, 3–50.

Doan, T., Demurjian, S., Ting, T.C., & Ketterl, A. (2004). MAC and UML for secure software design. In Proceedings of the 2004 ACM Workshop on Formal Methods in Security Engineering (pp. 75–85). New York: ACM Press.

Downs, D., Rub, J., Kung, K., & Jordan, C. (1985). Issues in discretionary access control. In Proceedings of the 1985 IEEE Symposium on Security and Privacy (pp. 208–218).
 Los Alamitos, CA: IEEE Computer Society Press.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N.
(2005a). Modeling security requirements through ownership, permission and delegation. In Proceedings of the 13th IEEE International Requirements Engineering Conference (pp. 167–176). Los Alamitos, CA: IEEE Computer Society Press.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2005b). Modelling social and individual trust in requirements engineering methodologies. In P. Hermann, V. Issarny, and S. Shiy (eds.), Proceedings of the 3rd International Conference on Trust Management (pp. 161–176). Lecture Notes in Computer Science 3477. Berlin: Springer.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2006). Requirements engineering for trust management: Model, methodology, and reasoning. International Journal of Information Security, 5(4), 257–274.

Giorgini, P., Massacci, F., & Zannone, N. (2005). Security and trust requirements engineering. In Foundations of Security Analysis and Design III [FOSAD 2004/2005 Tutorial Lectures] (pp. 237–272). Lecture Notes in Computer Science 3655. Berlin: Springer.

Johnson, C.W. (2005). V2: Using Violation and Vulnerability Analysis to Understand the Root Causes of Complex Security Incidents. Technical Report. Department of Computer Science, University of Glasgow. http://www.dcs.gla.ac.uk/~johnson/papers/V2.PDF.
Jorion, P. (2000). Value at Risk: The New Benchmark for Managing Financial Risk. New York: McGraw-Hill.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2005).
 The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic, 7(3), 499–562.

Lupu, E.C., & Sloman, M. (1999). Conflicts in policy-based distributed systems management. IEEE Transactions on Software Engineering, 25(6), 852–869.

Massacci, F., Prest, M., & Zannone, N. (2005). Using a security requirements engineering methodology in practice: The compliance with the Italian Data Protection Legislation. Computer Standards & Interfaces, 27(5), 445–455.

McDermott, J., & Fox, C. (1999). Using abuse case models for security requirements analysis. In Proceedings of the 15th Annual IEEE Computer Security Applications Conference (pp. 55–66). Los Alamitos, CA: IEEE Computer Society Press.

McKnight, D.H., & Chervany, N.L. (1996). The Meanings of Trust. Technical Report 96-04. Minneapolis, MN: MIS Research Center.

Moffett, J.D., & Sloman, M.S. (1994). Policy conflict analysis in distributed system management. Journal of Organizational Computing, 4(1), 1–22.

Nyanchama, M., & Osborn, S. (1999). The role graph model and conflict of interest. ACM Transactions on Information and System Security, 2(1), 3–33.

The Open Group (2004). Security design patterns: Technical guides. Retrieved November 2, 2007, from The Open Group Web site: http://www.opengroup.org/publications/catalog/g031.htm.

Ponemon, L. (2004). What keeps information security professionals up at night? Retrieved November 2, 2007, from http://searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci945775,00.html.
Priebe, T., Fernández, E.B., Mehlau, J.I., & Pernul, G. (2004). A pattern system for access control. In C. Farkis and P. Samarati (eds.), Proceedings of the 18th Annual Confratierence
 on Data and Applications Security: Research Directions in Data and Applications Security (pp. 235–249). Norwell, MA: Kluwer.

Promontory Financial Group & Wachtell, Lipton, Rosen & Katz (2003). Report to the Board and Directors of Allied Irish Banks, P.L.C., Allfirst Financial Inc. and Allfirst Bank Concerning Currency Trading Losses. Retrieved November 6, 2007, from Ireland.com, the Irish Times Web site: http://www.ireland.com/newspaper/special/2002/aib/ludwig.pdf.
Ray, I., Li, N., France R., & Kim, D.-K. (2004). Using UML to visualize role-based access control constraints. In Proceedings of the 9th ACM Symposium on Access Control Models and Technologies (pp. 115–124). New York: ACM Press.

Sandhu, R.S., Coyne, E.J., Feinstein, H.L., & Youman, C.E. (1996). Role-based access control models. IEEE Computer, 29(2), 38–47.

Schaad, A., & Moffett, J.D. (2002). A lightweight approach to specification and analysis of role-based access control extensions. In Proceedings of the 7th ACM Symposium on Access Control Models and Technologies (pp. 13–22). New York: ACM Press.

Schumacher, M. (2003). Security Engineering with Patterns: Origins, Theoretical Models, and New Applications. Lecture Notes in Computer Science 2754. Berlin: Springer.

Schumacher, M., Fernández, E.B., Hybertson, D., Buschmann, F., & Sommerlad, P. (2005).
 Security Patterns: Integrating Security and Systems Engineering. New York: John Wiley.

Shin, M.E., & Ahn, G.-J. (2000). UML-based representation of role-based access control. In Proceedings of the 9th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
 (pp. 195–200). Los Alamitos, CA: IEEE Computer Society Press.

Simon, R.T., & Zurko, M.E. (1997). Separation of duty in role-based environments. In Proceedings of the 10th IEEE Computer Society Security Foundations Workshop (pp. 183–194). Los Alamitos, CA: IEEE Computer Society Press.

Sindre, G., & Opdahl, A.L. (2005). Eliciting security requirements with misuse cases. Requirements Engineering Journal, 10(1), 34–44.

United States Department of Justice. (2002). United States of America v. John M. Rusnak. SMS/SD/USAO #2002R02005. Retrieved November 2, 2007, from the United States Department of Justice Web site: http://www.usdoj.gov/dag/cftf/chargingdocs/allfirst.pdf.
USA Today (2003, January 17). Currency trader gets 7 1/2 years in
prison. Retrieved October 16, 2007, from USA Today Web site:
http://www.usatoday.com/money/industries/banking/2003-01-17-allfirst-sentencing_x.htm.
Van Lamsweerde, A., Brohez, S., de Landtsheer, R., & Janssens, D. (2003). From system goals to intruder anti-goals: Attack generation and resolution for security requirements engineering. In Proceedings of the 2nd International Workshop on Requirements for High Assurance Systems (pp. 49–56). www.sei.cmu.edu/community/rhas-workshop/2003/.
Van Lamsweerde, A., Darimont, R., & Letier, E. (1998). Managing conflicts in goal-driven requirements engineering. IEEE Transactions on Software Engineering, 24(11), 908–926.

Yu, E. S.-K. (1995). Modelling strategic relationships for process reengineering. Ph.D. thesis, University of Toronto.

<figure captions>

Figure 9.1 Graphical representation of Secure Tropos concepts.

Figure 9.2 Organization of AIB and Allfirst.

Figure 9.3 Organizational structure of front and middle offices.

Figure 9.4 Back office’s organizational structure.

Figure 9.5 Rusnak’s recruitment obligations.

Figure 9.6 Allfirst’s organization while Rusnak worked there.

Figure 9.7 ST-Tool.

Figure 9.8 New configuration for distribution of foreign exchange rates.

�Author: Is the addition of “were designed” correct

�Author: Should the year be 2006?

�Author: Is the deletion ok?

�Author: Would it be correct to change “perimeter” to “limits”?

�Author: Is “enrichment of the actor diagram” correct?

�Author: Should “analysis” also be in Arial Narrow?

�Author: Do you wish these 3 lines to be part of the preceding list?

�Author: Is “treasuries of banks” correct?

�Author: Is “offices” correct?

�Author: Is “while Rusnak worked there” correct?

�Author: Is “more often than not” what you meant?

�Author: Please clarify “takes advantage from.” Perhaps “gains an advantage by”?

�Author: Should the year be 2006?

�Author: Should the year be 2006?

�Author: Is the change to “more than one intent” ok?

�Author: Should the year be 2006? See the References.

�Author: Should the year be 2006? See the References.

�Author: Is “that overlap” correct?

�Author: Should the year be 2006?

�Author: To whom does “they” refer? Please specify.

�Author: Should the year of Schumacher et al. be 2006?

�Author: Should the year be 2006? See the References.

�Author: Should the concluding page be 194?

�Author: Should the concluding page be 221?

�Author: Should the year be 2006?

�Author: Should Confraterience be Conference?

�Author: Should the pages be 25-28? Should the city be Boston?

�Author: Should the year be 2006?

�Author: Is the addition of a book subtitle ok?

�. Though they have the same name, the Secure Tropos presented in this chapter is distinct from the Secure Tropos presented in chapter 10. —Ed.

�. Though they have the same name, the Secure Tropos presented in this chapter is distinct from the Secure Tropos presented in Chapter 10. —Ed.

�. An option is an agreement that gives the buyer the right, but not the obligation, to buy or sell a currency at a specified price on or before a specific future date. If it is exercised, the seller of the option must deliver the currency at the specified price.

�. A forward is a contract that obligates the contract holder to buy or sell the currency at a specified price, in a specified quantity, and on a specified future date. These contracts cannot be transferred.

�. A forward is a contract that obligates the contract holders to buy or sell the currency at a specified price, at a specified quantity, and on a specified future date. These contracts cannot be transferred.

�. See Jorion (2000) for more details on value at risk.

�. See (Jorion, 2000) for more details on value at risk.

�. See Giorgini et al. (2005a) and Giorgini, Massacci, & Zannone (2005) for a complete list of axioms.

�. See (Giorgini et al., 2005a; Giorgini, Massacci, & Zannone, 2005) for a complete list of axioms.

�. http://sesa.dit.unitn.it/sttool/.

�. http://sesa.dit.unitn.it/sttool/

�. A deep-in-the-money option is an option with a price that is significantly below the market price and has a large premium.

�. The Promontory Financial Group’s report was called the Ludwig Report for Eugene Ludwig, the former currency controller who wrote the report.

