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Abstract

In the publish/subscribe paradigm, information
providers disseminate publications to all consumers who
have expressed interest by registering subscriptions. This
paradigm has found wide-spread applications, ranging
from selective information dissemination to network man-
agement. However, all existing publish/subscribe systems
cannot capture uncertainty inherent to the information in
either subscriptions or publications. In many situations,
exact knowledge of either specific subscriptions or publi-
cations is not available. Moreover, especially in selective
information dissemination applications, it is often more
appropriate for a user to formulate her search requests
or information offers in less precise terms, rather than
defining a sharp limit. To address these problems, this
paper proposes a new publish/subscribe model based on
possibility theory and fuzzy set theory to process uncertain-
ties for both subscriptions and publications. Furthermore,
an approximate publish/subscribe matching problem is
defined and algorithms for solving it are developed and
evaluated.

1 Introduction

A new data processing paradigm – publish/subscribe – is
becoming increasingly popular for information dissemina-
tion applications. Publish/subscribe systems anonymously
interconnect information providers with information con-
sumers in a distributed environment. Information providers
publish information in the form of publications (or events)
and information consumers subscribe their interests in the
form of subscriptions. The publish/subscribe system per-
forms the matching task and ensures the timely delivery
of published events to all interested subscribers. Exam-
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ple applications range from selective information dissem-
ination [13], online shopping, online auctioning [13] to
location-based services [4] and sensor networks [17], to just
name a few.

Publish/subscribe has been well studied and many
systems have been developed supporting this paradigm.
Existing research prototypes, include, among others,
Gryphon [2], LeSubscribe [7], and ToPSS [1, 12, 14]; in-
dustrial strength systems include various implementations
of JMS, the CORBA Notification Service, and TIBCO’s
Tib/Rendezvoud product.

All existing publish/subscribe systems are based on a
crisp data model, which means that neither subscribers nor
publishers can express uncertain, imprecise, or vague infor-
mation which is often naturally inherent to the application
domain. In this traditional crisp model, subscriptions, are
evaluated to be either true, or false, for a given publication.
Here, we refer to publications and subscriptions from this
model ascrisp.

However, in many situations exact knowledge to either
specify subscriptions or publications is not available. In
these cases, the uncertainty about the true state of the world
has to be cast into a crisp value that defines absolute lim-
its. That means, the uncertain state is “approximated” with
a definite crisp value. Moreover, for a user of an application
based on the publish/subscribe paradigm it may be much
simpler to describe the state of the world with uncertain, im-
precise, and vague concepts, rather than to guess or assess
an absolute, but possibly incorrect, value. Often, it may not
even be possible to determine an absolute value, since the
property described is of a gradual nature. We next illustrate
this dilemma with a number of concrete application scenar-
ios and use cases.

Selective information dissemination:In an online auc-
tion or online shopping context, information consumers
may want to submit subscriptions about music CDs with
a constraint on price expressed as “cheap”, a constraint on
style expressed as “seventies”, and a constraint on melody
expressed as “happy”. Similarly, subscriptions referring to



characteristics or moods, may refer to the “blueness” and
“lightness” of objects, or ask for a “bearish” or a ”bullish”
mood. Also, a “fast-paced” auction may trigger an alert set
by a user. On the other hand, information providers may not
have exact information for all items published. In an online
real-estate market, for instance, an agent may not know the
exact age of an apartment, so she simply describes it as an
“old” object, “close” to downtown, with a “sunny” appear-
ance, but can not describe it with definite values.

All these constraints designate situations that cannot be
crisply evaluated – that is based on sharp boundaries and
true and false assessments. A given object may satisfy each
constraint to a certain degree, since boundaries are impre-
cisely defined and not absolutely set. This results in further
possibilities to trade-off a deficiency of match of one con-
straint against a closer match of another constraint. More-
over, it is clear that these constraints are highly context sen-
sitive and depend on the users’ subjective perception, which
needs to be captured by a publish/subscribe model support-
ing the modeling of uncertainty.

Further examples can be drawn from the areas of
location-based servicesandsensor networks, where mea-
surement precision is traded-off against accuracy and cost.
Location positioning of mobile users is only possible with a
certain degree of accuracy and sensors only return measure-
ments distributed within an error-interval around the true
value. Both application areas lend themselves well to data
processing based on the publish/subscribe paradigm [4, 17].

For these reasons, we think, it is of great advantage to
extend the publish/subscribe paradigm and develop an ap-
proximate matching scheme that allows the expression and
processing of uncertainty for both subscriptions and publi-
cations. We refer to subscriptions and publications in this
extended model asapproximate, which has not been previ-
ously investigated.

All existing publish/subscribe systems are based on a
crisp data model that cannot capture notions of uncertainty
in either publications or subscriptions. The only excep-
tion is the A-ToPSS [12] that has introduced a subscription
language model that can express notions, such as “cheap”,
“large”, and “close to” as predicate constraints in subscrip-
tions. In this paper we describe the theoretical basis of A-
ToPSS, develop a model that embraces different combina-
tions of crisp and approximate subscriptions and publica-
tions, and present a detailed experimental evaluation. The
contributions of this paper are:

1. The definition of a highly flexible publish/subscribe
system model supporting the expression of uncertainties in
the subscription language model and the publication data
model. This model supports all combinations of approxi-
mate and crisp subscriptions and publications and is fully
implemented. The model allows for fine-grained adjust-
ment to express different users’ subjective perception of the

concepts and allows to tune the matching relations. A sub-
scription can be of any arbitrary Boolean function; most
publish/subscribe systems developed to date allow for con-
junctive subscriptions only.

2. The expression of uncertainty in subscriptions
and publications raises questions regarding the matching
of crisp/approximate subscriptions with crisp/approximate
publications. This paper articulates the approximate pub-
lish/subscribe matching problem and develops algorithms
for solving it.

3. A thorough experimental evaluation of the proposed
approximate matching algorithms is presented that com-
pares traditional, crisp publish/subscribe with approximate
publish/subscribe. The comparison is based on matching
performance, memory used, the number of matches, match-
ing precision and recall.

4. A brief experimental analysis of a reduced encoding
of data structures in the approximate matching algorithms.
Approximate publish/subscribe trades off uncertainty of in-
put against computational precision. The reduced repre-
sentation admissible for approximate matching exploits this
trade off to save storage.

The paper is organized as following. In Section 2, we
will briefly introduce the necessary background material
our approach is based on, namely possibility theory and
fuzzy set theory. The various publish/ subscribe models
supporting uncertainty are developed in Section 3. Sec-
tion 4 describes our algorithms and data structures. Sec-
tion 5 presents the experimental evaluation, Section 6 sum-
marizes related work and Section 7 concludes the paper.

2 Background

A key question in our work is how to express and process
uncertainty in publish/subscribe systems. A simple method
to express uncertainty about an imprecisely known value is
to define it as an interval. For example, the interval [50,
150] would be reasonable to represent the age of a piece of
“post-modern” painting in an online auction. This can be
expressed with two simple predicates as(age ≥ 50) and
(age ≤ 150). This method imposes a sharp boundary to
differentiate members belonging to the set of post-modern
paintings from non-members. A painting, created 49 years
ago, may satisfy the subscriber, but it is taken as non-match
since it is not in the interval [50,150]. To overcome this
limitation, fuzzy set theory [10] and possibility theory [6]
have been developed. The publish/subscribe model we are
introducing is based on these theories to model uncertainty
in publications and subscriptions. In this section we give a
brief overview of the key concepts used in our work, a more
detailed discussion can be found in [10, 6].



2.1 Fuzzy set theory

Sharp boundaries that differentiate between objects be-
longing to a set versus objects not belonging to a set can be
eliminated by introducing degrees of membership. This is
the approach taken by fuzzy set theory.
Definition: A fuzzy setM̃ on a universal setU is a set that
specifies for each elementx of U a degree of membership
to the fuzzy setM̃ . It is defined by a membership function

µM̃ : U → [0, 1]

The membership function is a generalization of the char-
acteristic function in classic set theory. It allows to express
gradual set membership. For example, we can define a
possible membership function for the fuzzy set of “post-
modern paintings” as shown in Figure 1, where the domain
ranges over the possible ages in the given application con-
text. We use membership functions to represent predicates
in subscriptions that are constrained by uncertain and vague
concepts, such as “price is cheap” “age is old”, and “loca-
tion is close to”.

µ

1

0.67

200 age

post-mordern
(x)

45 10030

Figure 1. The membership function repre-
senting “post-modern paintings”.

There are many possible function representations to ex-
press gradual set membership. Here, we use a parametric
representation as suggested by many authors [6, 10]. The
membership function of a fuzzy set̃M can be described as

µM (u) =





L(u) ∀u ∈ [m− α, m]
1 ∀u ∈ [m,m]
R(u) ∀u ∈ [m,m + β]

whereL (and alsoR), defined on<+ → [0, 1], is monoton-
ically increasing (and monotonically decreasing) and is an
upper semi-continuous (u.s.c) function. [m, m] is thecore
of fuzzy setM̃ , denoted byµ̇M . m andm are referred to
as thelower and upper model valuesof M̃ , respectively.
The supportof a fuzzy setM̃ , denoted byS(µM ), is the
domain of values whereµM (u) > 0. If M̃ is of bounded
support, thenS(µM )=[m − α, m + β]. α andβ are called
the left-hand spreadand theright-hand spread.

This representation can be used to model a wide range
of different gradual set membership relations (e.g. bell-
shaped, trapezoidal, triangular, etc.). There are many other

advantages of this representation. First, it eliminates the
sharp boundaries inherent to a crisp or interval-based repre-
sentation. Second, it is a very general representation and it
is straight forward to implement. Third, this formalization
is very expressive. Finally, it is easily extended to repre-
sent crisp sets defined through crisp constraints. In this case
the membership function degenerates to the characteristic
function as follows:

µp≥v(x) =
{

1 if x ∈ [v,∞)
0 if x 6∈ [v,∞)

Operations involving two or more fuzzy sets are gener-
ally defined by a mappingT that aggregates the member-
ship functions as follows:

µop(A1,...,An)(x) = T (µA1(x), ..., µAn
(x))

Intersection, union, and other set operations are defined in
this manner. The operatorT , referred to as a triangular
norm (T-norm), is used to model set intersection. Set union
is defined by an S-norm. Different S-norms and T-norms
are used in the literature to represent set union and set inter-
section. A popular choice is to use maximum as union and
minimum as intersection.

2.2 Possibility Theory

Possibility theory formally defines measures which re-
flect users’ subjective uncertainty of a given state of the
world [6]. For a statement ”x is A”, these measures, based
on possibility distributions,πA(x), express the confidence
of the truth of this statement.

Possibility distribution gives each element in the uni-
verse of discourse a value, which can also be interpreted
as the membership function of a fuzzy set. For example, the
antique shop has an art piece, where the age is described as
post-modern, then we have:

πage−of−art−piece(x) = µpost−modern(x).

We can see that both fuzzy set and possibility theories
can be represented by functions. However, they express dif-
ferent uncertainties. Fuzzy set is suitable to represent vague
description of an object and possibility measures define the
subjective confidence of the state in the world. Therefore,
it is more appropriate to use membership functions of fuzzy
set for subscription models and possibility distributions for
publication data models.

As for the matching between subscriptions and publica-
tions, we use two measures, referred to aspossibility mea-
sure(Π) and necessity measure(N ) to express the plausibil-
ity and necessity of occurrence of a matchM . If it is com-
pletely possible to be true then possibility isΠ(M) = 1,



if it is impossible then the possibility isΠ(M) = 0; in-
termediate numbers between [0,1] are also admissible. A
necessity measure is introduced to complement the infor-
mation available about the state described by the attribute.
It is associated with the degree with which the occurrence
of M is certain. If a matchM is sure to happen without any
doubt, then necessityN(M) = 1.

The relationship between possibility and necessity satis-
fies1:

N(M) = 1−Π(M)

∀M, Π(M) ≥ N(M).

3 Publish/Subscribe System Model

Our objective is to model uncertainty information in
subscriptions and publications, and to define an approx-
imate matching semantic for different cases of matching
crisp/approximate subscriptions and publications.

3.1 Language and Data Model

Subscription language model: A subscription defines
users’ interests through a boolean function over a number of
crisp and approximate predicates. Each predicate expresses
a constraint over a domain of values and is defined through
an attribute, an operator, and a value triple. In the predicate,
“x is Ã”, x is the attribute name, ’is’ is the operator, and
Ã is a fuzzy set. The fuzzy set represent a fuzzy constraint
over all possible values the attribute can take on. The truth
value (i.e., the degree of match) of each predicate, “x is
Ã,” is uniquely defined byµA(x). Crisp predicates can be
defined in the same manner. In the crisp case, however,
the membership function degenerates to the characteristic
function over the set of values defined by the predicate (i.e.,
it yields 1 for all set members and 0 otherwise.)

The relation over predicates in one subscription can be
conjunction or disjunction. We useR to represent this rela-
tion which connects individual predicates together. A sub-
scription,s, is formalized as follows:

s(x1, · · · , xm) = R(µA1(x1), · · · , µAm(xm)).

Here, the subscription,s, consists ofm predicates of the
form, “xi is Ãi”. They are connected to each other by rela-
tion R. Concretely speaking,s may be of conjunctive form:

s(x1, · · · , xm) = x1 is Ã1 ∧ · · · ∧ xm is Ãm

1A possibility distribution is similar to a probability distribution. How-
ever, the difference is that there is no restriction that the sum of all possi-
bilities on the whole universe must be equal to 1. Another difference is that
probability distributions must be defined on disjoint subsets, but possibility
distribution can be defined on distinct (as long as not equal) subsets. Thus,
possibility is a more general notion than probability. [6]

or disjunctive form, or any other form.R employs standard
fuzzy set operators (cf. Section 2) to define the subscription
relation.

As a concrete example, let us define a subscription for a
student who is looking for an apartment with constraints on
price, size, andage. The subscription that specifies these
constraints looks as follows:

s : size is medium AND
price is no more than$450 AND
age is not veryold

The second predicate constrain the attribute price. It is de-
fined in a crisp manner. It can be represented by:

µ≤450(x) =
{

1 if x ≤ 450;
0 if x > 450;

The first and third predicates constitute approximate predi-
cates. We use the following membership functions to repre-
sent the concept of “medium” and “old”, respectively.

µmedium(x) =





0 if x ≤ 40;
x−40

10 if 40 < x < 50;
1 if 50 ≤ x ≤ 70;

1− x−70
10 if 70 < x < 80;

0 if x ≥ 80;

µold(x) =





0 if x ≤ 40;
x−40

40 if 40 < x < 80;
1 if x ≥ 80;

Formally the subscription is represented by:

s(x1, x2, x3) = min(µmedium(x1), µ≤$450(x2), 1−µ2
old(x3))

2,

wheremin is used to model a conjunct. To demonstrate
some features of fuzzy set theory, we use the negation of
the membership function to define the qualifier “not” and
the qualifier “very” through the squaring (i.e., damping) the
fuzzy set’s membership function.

Publication data model: Publications describe real
world artifacts or describe states of interest through a set of
attribute value pairs. In our model we account for the fact
that for certain attributes precisely defined values may not
be available or cannot be defined. In these cases we use a
possibility distribution, as defined in Section 2, to represent
the attributes’ approximate values. These latter attributes
are also referred to as approximate attributes, whereas at-
tributes with exactly defined values are referred to as crisp
attributes. However, our model integrates both kinds of at-
tributes and does not distinguish between them. In the at-
tribute value pair, “(A, π(x))”, A is the attribute andπ is the

2The semantics of the third predicate depends on people’s understand-
ing. Here the third predicates refers to the age which includes both young
and old, but not very old.



“value” – crisp or approximate. The possibility distribution
π expresses that it is possible that the attributeA has the
valuex and quantifies this with a possibility degreeπ(x).
The possibility distribution is defined by a fuzzy set that
yields the possibility degree for the valuex, as defined by
the underlying fuzzy set’s membership function. Crisp at-
tributes, “(A, x0)”, are formalized analogously;π degener-
ates to a function that yields 1 for inputx0 and 0 otherwise.
For short, we describe the attribute value pair, “(A, π(x))”,
simply asπA(x). A publication is thus defined as a vector
of attribute value pairs:

p = (πA1(x), πA2(x), · · · , πAn(x))

For example, an apartment that is advertised for rent can be
represented as:

p = ((size, 60m2), (rent, cheap)),

the first attribute is crisp; it defines a value for attribute size.
The second attribute is approximate; it is qualified as cheap,
which is a fuzzy set that defines the degree of possibility for
each value of the domain of discourse (i.e., all admissible
rent values) as being “cheap”. More formally, this publi-
cation can be represented by a vector of attribute values as
follows:

p = ((size, π60), (rent, πcheap))

where

π60(x) =
{

1 if x = 60;
0 if x > 60 or x < 60

πcheap(x) =





1 if x ≤ 1200;
1− x−1200

300 if 1200 ≤ x ≤ 1500;
0 if x > 1500

3.2 Approximate Matching

In the crisp publish/subscribe model a subscription, ei-
ther matches a publication, or does not match it. However,
in the approximate model, either the subscription, the pub-
lication, or both may refer to concepts of uncertainty and an
evaluation to either true or false no longer captures the true
state, which, given the uncertainty involved, is somewhere
between true and false. In the approximate model each sub-
scription is therefore assigned a degree of match for each
publication processed by the system. Individual subscrip-
tion can match a given publication more or less, depending
on this degree of match.

With this matching semantic a much larger number of
subscriptions will match than before, as all matches with
degrees greater than 0 are perspective matching candidates.
Users’ perception of what constitutes a “good” match ver-
sus a “bad” match will certainly differ. Furthermore, a large

number of slightly matching subscriptions may not be a
useful idea, since the publish/subscribe system will have
to process a large amount of notifications and users may
be overwhelmed with notifications about publications that
only marginally meet their actual interests. For these rea-
sons, the approximate matching model introduces a number
of parameters to control the tolerance of a match on a very
fine-granular basis. These parameters offer great flexibility
and control over the matching process, and allow to fine-
tune the approximate publish/subscribe model on a single-
user basis (i.e., predicate and subscription basis.) While this
may seem as an overwhelming amount of parameters to set,
it offers great flexibility. All parameters are initialized with
default values that do not affect the matching process, such
that, in the default case, all possible matches are signaled.

These parameters are the predicate thresholdsθΠ andθN

and the subscription thresholdsωΠ andωN . We provide fur-
ther motivation for these thresholds below. With these pa-
rameters a publication matches a subscription, if its degrees
of match are evaluated to values larger than these thresh-
olds.

The general form of subscriptions and publications is as
follows:

sωΠ,ωN (x1, · · · , xm) = R(µ
θΠA1

,θNA1
A1

(x1), · · · , µθΠAm
,θNAm

A1
(xm))

p = (πA1 (x1), πA2 (x2), · · · , πAn (xn))

The approximate matching problemcan now be stated as
follows. Given a set of subscriptionsS and a publicationp
identify all s ∈ S such thats andp match with a degree of
match greater than the thresholds defined ons.

We define a match between a subscription and a publica-
tion as ameasureof thepossibilityandnecessitywith which
the publication satisfies the constraints expressed by a sub-
scription. We use the pair(ΠAi , NAi) to denote the eval-
uation of this measure. Technically speaking, the problem
comes down to measuring the match between the predicate,
µAi

(xi), and the value,πAi
(xi) for all i and for allxi and

aggregating the resulting values in the subscription relation
R. This measure is taken by computing the intersection be-
tweenµAi andπAi . Next, we define this measurement pro-
cess more formally.
Definition: : The possibilityandnecessityof a match be-
tweenµ andπ is computed as

Π = sup
x

min(µ(x), π(x))

N = inf
x

max(µ(x), 1− π(x)),

respectively.2
inf is the “infimum” andsup is the supremum. For finite

domains both can be replaced by the “minimum” and the
“maximum” operator, respectively. However, for infinite
domains the more generalinf/sup operators are required,
which is the reason for using them in the above equations.



Definition: : Formally, a publicationp matchesa subscrip-
tion s if and only if the following conditions are satisfied:

∀i Πi ≥ θπAi
, Ni ≥ θNAi

R(µ
θΠA1
A1

(x1), · · · , µ
θΠAm
A1

(xm)) ≥ ωΠ

R(µ
θNA1
A1

(x1), · · · , µ
θNAm
A1

(xm)) ≥ ωN . 2

From the possibility and necessity computation equations,
the following properties can be easily deduced.
Properties:

∀x, Π(x) ≥ N(x). (1)

Π = 0 ⇔ S(µ) ∩ S(π) = ∅ (2)

Π = 1 ⇔ ∃x ∈ µ̇ ∩ π̇. (3)

N = 0 ⇔ ∃x ∈ S(µ) ∩ π̇ (4)

N = 1 ⇔ S(π) ⊆ µ̇ (5)

These properties are exploited in the algorithm to optimize
its performance (cf. Section 4). The properties relate char-
acteristics about the support and the core of the possibility
distribution and fuzzy set to infer the degree of match with
less computation. These properties are graphically illus-
trated in Figure 2(1–4). Figure 2(1) & (4) illustrate property
(4) and (5). Figure 2(3) illustrates property (3). Figure 2(2)
illustrates the most general case, where0 ≤ Π ≤ 1 and
0 ≤ N ≤ 1.

The possibility measure,Π, represents the degree of
match and, its dual measure,N , represents the degree of no-
match (cf. discussion Section 2). From Property 1 above it
follows that the possibility,Π, is always greater or equal to
the necessity,N . The subjective interpretation of this is that
an optimistic subscriber would count on the leaner possibil-
ity measure, while, a pessimistic subscriber would count on
the stricter necessity measure.

Finally, note that for crisp attributes, “(A, x0)”, the pos-
sibility distribution functionπ yields 1 forx0 and 0, other-
wise. So the intersection ofπ andµ can only occur at the
pointx0, which is the valueµ(x0).

3.3 Discussion of Alternative Matching Semantic

Intuitively speaking, the ratio of the area of overlap be-
tweenπ andµ over the whole area ofπ may seem like an
alternative measure to evaluate the degree of match between
predicates and values. An interpretation of this ratio could
be the assessment of how the domain ofπ can satisfyµ.
However, this method is not sufficient, as there exist situa-
tions in which subscriptions match only to a small degree,
but the degree of match computed by this method is 1. Con-
sider the example in Figure 3. The domain of the fuzzy
set defining the approximate attribute in publication,π, is
totally contained insideµ and it is completely covered by
µ. It seems that all the values of the domain of discourse

π(x)

(x)µ

1

(1)  N=1

(x)π(x)

N

(2)  0<N<1 0<Π <1

1

Πµ
π(x)π(x)1- (x)µ

(x)µπ(x)1- )(

Π=1(3) 

Π=1
1

µ (x) π(x)

(4)    Ν=0

1

1- (x)π

µ (x)(x)π

Figure 2. Cases of possibility and necessity
measure

price

π

60

µ µ1−

0.5

0.1

1

N

0.3

Figure 3. Degree of match defined as ratio of
overlap

would satisfy the predicate defined byµ over this domain,
thus yielding a degree of match of 1. However, consider
the price $60, its membership inπ is 0.1, its membership
in µ is 0.5. It is still possible that the price, the publisher
observes is $60, though this possibility is rated as only 0.1.
The subscription matches this price with a degree of match
of 0.5 (as resulting from the application of the membership
function at the point 60), but not with degree 1. Therefore,
it is not appropriate to define the matching degree as 1 in
this situation. On the other hand, possibility and necessity
measures solve this problem. It is possible that the value
provided by the publication satisfies the subscription, the
possibility degreeis 1. But it is not necessarily the case; so
according to the formula above, thenecessity degreeis only
0.3.

4 Data Structures and Algorithms

The matching algorithm proceeds in two stages. First
predicates are matched and, second, matching subscriptions
are identified. This is a similar break-down as applied in
many crisp matching algorithms.

4.1 Data Structure

Predicate evaluation is based on two data structures: a
hash table to index predicates according to their names and



a predicate vector to store the degree of match for each pred-
icate. Subscription evaluation is based on the list linked to
each predicate to record the subscriptions that contain it (or
using an association bit matrix) and a subscription vector to
keep track of the degree of match of each subscription. The
overall data structure is depicted in Figure 4.
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Figure 4. Data structures

In Figure 4,ai is the attribute name. Each predicate is
represented by a pair(pid, µ). pid is the predicate ID and
µ is the membership function to describe user’s constraint
on the attributeai. µ is represented by a list of parameters
(m,m,α, β, Lm, Rm). Lm and Rm are the indexes into
a function family indicating which functions are used for
left-hand spread and right-hand spread functions. The ex-
act choice of these parameters depends on the real applica-
tion. We use one predicate vector to store both thresholds
(θΠ, θN ) and the matching degrees (Π, N). A flag is used
to indicate whether the numbers are thresholds or matching
degrees. By default, the thresholdsθΠ andθN are stored
there.

Each publication is a set of pairs(attr, π) for different
attributes.π is a function showing the possibility distribu-
tion of the uncertain value. Similar toµ, π is represented as
(n, n, γ, δ, Ln, Rn).

4.2 Matching Algorithms

Predicate evaluation: A publication is a set of pairs of
(attr, π). The attribute-name,attr, is used as the hash key
to locate the corresponding predicate-table. The predicate
evaluation computes the possibility and necessity of match
for the given input attribute, respectively. Figure 5 depicts
the predicate matching algorithm.

The possibility of predicateVp[p].Π=supmin(µi, πi) is
computed according to the cases discussed in Section 3.2.
Figure 6 depicts the detail of the possibility computation
process. Necessity computation is similar.

Subscription evaluation: Subscriptions may be con-
juncts of predicates, disjuncts of predicates, or normal

Input:
e = {(a1, π1), (a2, π2), · · · , (an, πn)}
Global Variables:
I: set of indices;
Vp : predicate vector storing (Π, N ) for each predicate;
SatPreds: set of satisfied predicates;
Body:
1. Vp = 0, SatPreds = ∅
2. for each attributeai in e

locate the corresponding indexi in I
for each predicate p(ai, µi, θΠi

, θNi
) reached byi

Vp[p].Π=supmin(µi, πi)
Vp[p].N=inf max(µi, πi)

if Vp[p].Π > 0
then SatPreds = SatPreds ∪ {p}

3. returnSatPreds

Figure 5. Predicate matching algorithm

Proceduresupmin(µi, πi)
begin

if m + β ≤ n− γ or n + δ ≤ m− α then Π = 0;
else ifm ≤ n

if m ≥ n then Π = 1

elsefind c such thatRm( c−m
β

) = Ln(
n−c

γ
)

Π = Rm( c−m
β

)

else
if m ≤ n then Π = 1

elsefind c such thatRm( c−n
δ

) = Ln(
m−c

α
)

Π = Rm( c−n
δ

)
end

Figure 6. Possibility Computation

forms. We use the intersection and union operations de-
fined in Section 2 to model these operations. The algorithm
we present for subscription evaluation works for either con-
junctive or disjunctive subscriptions. To also process nor-
mal forms a further stage based on the truth values of sub-
scription terms is required, which we don’t present here (it
is analogous to the subscription evaluation stage.) We also
limit our presentation of the subscription evaluation algo-
rithm to the use of the minimum T-norm (other norms could
simply be plugged in.) The algorithm in Figure 7 calculates
the degree of match, as expressed by a possibility measure
and a necessity measure for each subscription. At the end
of evaluation, we will compare the possibility and necessity
of each subscription with the user’s thresholdsωΠ andωN ,
and only return the user the subscriptions whose degrees
are larger. This is just further comparison, not shown in the
algorithm.

4.3 Optimizations

Improved predicate matching: The previous algorithm
evaluates all predicates related to one attribute that is refer-
enced by a given publication (i.e., iterated over each of its
attributes). More specifically, at least one comparison be-



Input:
SatPreds: output of the predicate matching stage
Global Variables:
Vp: predicate vector;
Vs: subscription vector;
List: array of lists that store predicate subscription associations;
SatS: set of matching subscriptions for evente
Body:
1. Vs = 0, SatS = ∅, Count = 0
2. for eachp ∈ Vp whereVp[p].Π ≥ p.θΠ andVp[p].N ≥ p.θN

for eachs in List[p]
if Count[s] = 0 then

Vs[s].Π = Vp[p].Π
Vs[s].N = Vp[p].N

elseVs[s].Π = min(Vs[s].Π, V p[p].Π)
Vs[s].N = min(Vs[s].N, Vp[p].N)

Count[s] + +
3. for eachs

if Count[s] = preds per sub[s]
then SatS = SatS ∪ {s}

4. returnSatS

Figure 7. Subscription evaluation

tween the two functionsµ andπ was required for each pred-
icate to determine whether a match occurred. To minimize
the number of comparisons, we improve our algorithm by
sorting the predicates of the same attribute so that the predi-
cate matching algorithm can stop earlier rather than evaluate
all predicates.

For each attribute, the order of predicates depends on 4
parameters of theirµ functions. In the representation of
functionµ, letm1 = m−α, m2 = m, m3 = m, m4 = m+
β. These are four critical points because they differentiate
the boundaries whereπ has value 0 and whereπ has value 1
(refer to Figure 9). Obviously, we havem1 ≤ m2 ≤ m3 ≤
m4. Similarly, for functionπ, let n1 = n − γ, n2 = n,
n3 = n, n4 = n + δ, and we haven1 ≤ n2 ≤ n3 ≤ n4.

The predicate will not match the publication if its right-
hand spread is to the left of the attribute functionπ (e.g.,
in Figure 8,m14 ≤ n1). A match is established once the
predicate “touches” the publication, i.e.,µ andπ intersect
(e.g.,µ2 andµ3 in Figure 8). If the predicate’s left-hand
spread is to the right ofπ (e.g.,µ4 in Figure 8,m41 ≥ n4),
it will no longer match.

n4m14 m24 m31n1 m41

1 2 3 4

No match, ignore

match, evaluate

πµ µ µ µ

Figure 8. Examples of match and no-match
between µ and π

Based on this observation, predicates with the same at-
tribute name, are organized in the order of theirµ functions
from smallest to largest starting fromm1 to m4. For exam-

ple, there are two predicates,pi andpj , that are under the
same attribute index. We first comparemi1 andmj1 . The
predicate with the smallerm1 is placed ahead of the other.
If mi1 = mj1 then we comparemi2 with mj2 and take the
one with a lower value and place it ahead of the other. If the
second points are equal then the same comparison is done
for the third and forth points. If all the parameters are the
same, then the predicate who enters the system earlier is
placed ahead of the other.

m1 m2 m3 m4

1p p2 p4p3

Figure 9. Examples of ordered predicates p1 <
p2 < p3 < p4

For each attributeai of a publication, we pass the predi-
cates whose membership functions are to the left of theπi,
and only evaluate predicates that intersect with the attribute.
Predicate matching stops as soon as the above rules estab-
lish further none-matches.

In the possibility computation, the improved algorithm
first comparesn1 (the first point ofπ) with them4 (the last
point of functionµ) of the predicates through the ordered
predicate list until it reaches the predicate whoseµ4 is larger
thenn1. Before that, all predicates are to the left of theπ (as
the left case in Figure 8), hence impossible to match. After
m4 > n1 then we checkm1. If m1 > n4, then we can stop
because from now on all predicates afterwards are to the
right of π, thus impossible to match either (as the right case
in Figure 8). We just need to evaluate the predicates whose
m4 < n1 and m1 > n4. Figure 10 shows the detailed
possibility computation.

procedure Improved-Possibility-Computationsupmin(µ, π)
begin

1. j = 1
2. while m1j < n4 do
begin

while m4j ≤ n1 do j++
if m3j ≤ n2 then find c such that

Rm( c−m
β

) = Ln(
n−c

γ
)

Π = Rm( c−m
β

)

else ifm2j ≤ n3 thenΠ = 1
elsefind c such that

Rm( c−n
δ

) = Ln(
m−c

α
)

Π = Rm( c−n
δ

)
j++,

end
end

Figure 10. Improved Possibility Computation

In the necessity evaluation, the algorithm first compares
n3 (the third point of functionπ) with m4 (the last point



of function µ) through the ordered predicate list until it
reaches the predicate whoseµ4 is larger thann3. Before
that, the complements of predicate functionsµ are always
intersected with the core of theπ, so the necessity must be
0. After m4 > n3 we compute the necessity of each pred-
icate untilm1 ≤ n2 because from now on all necessities
afterwards must be 0. The procedure is similar to possibil-
ity computation, we don’t elaborate here.

Precision-space trade off:The approximate matching
scheme trades off the processing of uncertain and vague in-
formation against precision. This suggest that a degree of
match that is computed for a subscription must not be highly
accurate, i.e., accurate to the n-th digit after the comma, as
it is based on uncertainty anyway. We use this as motiva-
tion to experiment with different encodings for the degrees
of match in our algorithm. The objective is to save space,
while not sacrificing computational accuracy in our approx-
imate matching model. We use three encodings: (1)Float,
(2)one-byte, representing ten values, and (3) one-byte repre-
senting 256 possible values for the degree of match (4)4 bits
representation. This is a straight forward encoding, with
more refined schemes deferred to future work. The effects
of different encodings will be evaluated in the experiments
section.

5 Experiments

In this section, we evaluate the performance of the al-
gorithms with respect to time and memory. The objective
is to confirm the efficiency of the algorithms and compare
the crisp publish/subscribe model with approximate model.
We also examine the trade off between matching precision
against the space used for storage.

To render the approximate and crisp cases comparable,
we generated crisp subscriptions and publications based on
approximate ones. For subscriptions, we define three inter-
val types of crisp predicates derived from the approximate
ones: optimistic, pessimisticand middle. There are three
ways to determine the lower bound and upper bound of the
interval. If m1,m2,m3,m4 are the four parameters for the
representation of the approximate predicate then those three
interval types are defined in Figure 11.

1m 4mm32m

pessimistic

middle
optimistic

approximate

n1 n2 3n 4n

approximate

point

interval

Figure 11. Definition of different subscription
and publication types

Publications are generated similarly (cf. Figure 11). We
have two choices when generating crisp publications on the
basis of approximate publications:point andinterval. They
refer to the types of the value for each attribute in the pub-
lication. Point type is defined to be consistent with the pub-
lication language data model in crisp publish/subscribe sys-
tem so that they are comparable.Interval type serves to
compare the difference between an interval representation
and a fuzzy set representation for an uncertain constraint.
Since we define three choices to generate interval subscrip-
tions, we can compare the effects of different lower bound
and upper bound of the interval in the subscriptions. There-
fore, we only generate one interval type for publications.

5.1 Performance Evaluation

To evaluate the performance, we classify the implemen-
tations into 3 pairs according to different emphasis: 1. algo-
rithms: regular matching vs. improved matching algorithm;
2. matching result representation:float-wise(4 bytes) vs.
bit-wise(8 bits or 4 bits); 3. the data structure for the asso-
ciation between predicates and subscriptions: matrix-based
vs. list-based. We consider the following metrics: subscrip-
tion loading time, matching time and memory used. The
matching time measurement starts just before the publica-
tion has been submitted to the system and ends right after
the system responds.

Figure 12 compares the matching time across all imple-
mentations. The matching time depends on the number of
predicates associated with the same attribute and the num-
ber of subscriptions that include those matched predicates,
hence matching time increases with increasing the number
of subscriptions. In Figure 12, we compare the float-wise,
bit-wise and improved matching implementations. The ad-
vantage of the improved predicate matching algorithm is not
distinguished since the subscription evaluation step takes
much more time than predicate matching. The bit-wise
implementation runs slower than the float-wise because it
needs more computation to set the bit values. To show the
benefits of the improved predicate matching algorithm, we
ran the predicate matching process only and it showed that
the improved algorithm runs faster.

In our experiment, the workload is generated randomly,
thus the number of subscriptions that contain the same pred-
icate is very small compared to the total number of subscrip-
tions. Therefore, both the matching time and memory using
the list-based approach is much less than the matrix-based
approach considering the size of the list for each predicate is
much smaller. The results are shown in the last two graphs
of Figure 12. In the case where each predicate is contained
in most subscriptions, the matrix-based version should be
much better because access to the table is faster.

The loading time figure compares the loading time



Figure 12. Matching performance(matching
processing time, memory resident size and
subscription loading time)

among different algorithms. Contrary to the matching time,
the improved algorithm needs more time than the other
three. This is because predicates need to be inserted into
a sorted list based on the 4 points of the function. This is
a tradeoff between the loading time and matching time. In
a real application, most subscriptions stay in the system for
a long time and the matching time is more important to the
user. With the high publication submission rate, it is bet-
ter to process the matching quickly and respond as soon as
possible.

The memory comparison figure shows memory utiliza-
tion for the float-wise and bit-wise algorithms. The differ-
ence shows up only in the storage of matched result of pred-
icates and subscriptions, so we only consider the space used
here. We can see that bit-wise one uses less than the float
version due to the space saved by using several bits instead
of 4 bytes.

The decrease in space using bits instead of float results
in a loss of precision in the matched results. A performance
measureprecisionis defined as:

precision =
]Correct Subscriptions Returned

]Subscriptions Returned

In publish/subscribe systems, correctness means that the
matched subscriptions the system returns are exactly what
the users want. For example, a user wants to be notified
when her subscription matches with a degree larger than
0.8. In the 10 value bit-wise implementation (0,1 and eight
equal parts in between), those matched degrees between
0.75 and 0.8 are represented by the same bit pattern as those
between 0.8 and 0.875. If users are only satisfied with the
latter ones, there is an error since the system will return all
subscriptions whose degrees are between 0.75 and 0.875.
Compared to the float-wise implementation which always

Figure 13. The trade off between precision
and space

return the correct data, the bit-wise version will also return
some subscriptions that are not satisfied because of the pre-
cision loss. In our context, the precision is computed by

precision =
]Subscriptions float-wise Returned

]Subscriptions bit-wise Returned

Figure 13 shows the precision of 8-bit-wise and 4-bit-wise
implementations. We can see that the precision of the 8 bits
version is stable around 98% and the 4 bits is stable around
96%. Considering the acceptance of users’ error range in
the real world, the decrease of the bits don’t introduce much
error.

5.2 Crisp vs. Approximate Matching

In this set of experiments we compare the crisp and ap-
proximate publish/subscribe matching model with respect
to the number of matches identified under different condi-
tions. Table 1 shows the different numbers of matches based

Subscription Type α = 0 α = 0.5 α = 1
appro 4628 184 7
pessi 4628 804 281

middle 4438 184 39
optim 3763 47 7

Publication Type α = 0 α = 0.5 α = 1
appro 4628 184 7

interval 3720 474 170
point 2960 1932 868

Table 1. Comparison of number of matches
for various types of subscriptions with
approximate publications and number of
matches for various types of publications
with approximate subscriptions.

on the evaluation of a fixed number of approximate publi-
cations over different kinds of subscriptions and different



thresholds. We useα as the thresholds to assess a mini-
mal possibility and necessity beyond which a subscription
is not counted as a match (i.e.,ωΠ = ωN = α). We can
see that for one type of subscription, the number decreases
with increasingα, which indicates the threshold effect ofα.
With the sameα, the pessimistic case results in the largest
number of matches and the optimistic case results in the
fewest matches. The approximate case and the middle case
do not exhibit much difference. This is due to the wider re-
striction of subscription, the greater the probability of being
matched.

Table 1 then shows the numbers of matched subscrip-
tions for different type of publication when the subscription
type is fixed. Whenα = 0, the approximate publication
returns the most subscriptions and the point type returns the
least. This is the same as for subscriptions. However, with
the increase ofα, the approximate publication matches a
very small number of subscriptions, whereas point-valued
publication matches the most. This is becauseα is used as
the threshold for both possibilities and necessities. Think of
the intuitive meaning of possibility and necessity we defined
in the model section. For the approximate publication, the
function restricting the attribute has a wider domain, thus it
is more likely that the publication intersects with the com-
plementary region of subscriptions, therefore the necessities
is very likely to be 0, which makes it more difficult to reach
theα threshold. For the point-valued publication, it is easy
for such a value to be located in the core of the subscription
function, thus more subscriptions are matched with highα
for point-valued type than others.

5.3 Effect of Choice of Aggregation Functions

To compute the overall degree of match for each sub-
scription, different operations can be chosen to aggregate
the degrees of match of predicates (e.g., min, weighted aver-
age etc.). For example, when students are looking for hous-
ing close to campus, they will consider, both the price and
the distance. One student may worry more about the price,
another student may be more indifferent and be satisfied
with a balanced average, while a third student maybe more
location-sensitive. In the proposed approximate matching
scheme one aggregation function evaluates the degree of
match of all subscriptions in the system, which maybe influ-
enced by different thresholds. However, it is also important
to understand the effect different aggregation functions have
on matching effectiveness. This effectiveness is evaluated
throughprecisionandrecall metrics. Three popular aggre-
gation operations:min, maxandaverageare compared. The
definition of precision is given before, recall is defined as:

recall =
]Correct Subscriptions Returned

]Correct Subscriptions
.

The F-measure is a common metric for the evaluation of
information systems. It relates precision and recall. It is
computed as follows:

F −measure =
2 ∗ Precision ∗Recall

Precision + Recall

Figure 14. F-measure on aggregations

The relationship of the set of matching subscriptions us-
ing different aggregation operations is shown in Figure 14.
The experiment runs by distributing user’s aggregation ex-
pectation uniformly over 4 choices: min, max, average and
weighted average (assign a weight to each predicate.) The
correct data set should contain subscriptions whose overall
degree, computed according to user’s expectation, are larger
than the threshold(ωΠ, ωN ). The data set returned contain
subscriptions whose overall degree, computed by only one
uniform function (either min, max or weighted average), is
larger than the thresholds. Among the set we returned, there
maybe some subscriptions whose overall degree is less than
the threshold if computed according to the user’s expecta-
tion, which is a positive error. Similarly, outside the data
set we got, there maybe some subscriptions that are not re-
turned to the user, but the overall degree is larger than the
threshold, which is the negative error. Figure 14 shows the
comparison of the F-measures on these operations. It can be
observed that all operations have high F-measures (around
95%), while the result of the average aggregation performs
best.

6 Related Work

Much work has been devoted to developing pub-
lish/subscribe systems and event notification services such
as ELVIN [16], Gryphon [2], LeSubscribe [7], READY,
Salamander, SIENA [5] and ToPSS. Common to all these
systems is the crisp matching semantic – either a match is
established or no match is established; a gradual match, as
defined in our work, expressed as a confidence, a degree
of match, or a probability does not exist in any previously
studied models.

A number of techniques, including, probability theory,
fuzzy set theory, and a general similarity metric-based ap-
proach have been applied to model uncertainty and impreci-
sion in queries and data. We discuss a number of represen-
tative examples. Fuhr introduced a probabilistic relational



algebra in [9] to represent imprecise attribute values and in-
tegrate vague queries in database system. Another popular
approach is based on a vector space model as in [20], where
the similarity between a document and a profiled is com-
puted by means of an Euclidean distance measure.

The idea of using fuzzy sets in a multimedia retrieval
model appears in [8]. Fagin uses fuzzy sets to assign a
grade of membership to each attribute of every object in
a database and develops a list merging algorithm based on
this rating of objects for multimedia databases. Nowadays,
applications of fuzzy logic are found in many fields, in-
cluding databases [15, 18], expert systems [11]. Wolski
et al. [19] propose a fuzzy database trigger where fuzzy
membership functions are used to model event-condition-
action rules and integrate approximate reasoning into a crisp
database rule evaluation mechanism. A similar idea is put
forward in [3]. [18] introduce a retrieval language based on
fuzzy logic and address the problem of retrieving using rel-
evance feedback, a method to automatically adapt the rep-
resentation of the underlying fuzzy set.

7 Conclusion

In this paper we propose an approximate pub-
lish/subscribe model to express uncertainties in both sub-
scriptions and publications when exact information is not
available. There are several key properties of this approx-
imate publish/subscribe model: 1) The language model is
flexible and powerful in that it allows subscriptions and pub-
lications to be either crisp or approximate. 2) The possibil-
ity and necessity measures are expressive, these two match-
ing degrees could be used for different optimistic and pes-
simistic users. 3) We have demonstrated that the algorithms
we proposed can be used to process approximate matching
for millions of subscriptions. 4) In our implementation, we
usemin as the conjunction operation to evaluate the overall
matched degree of all the predicates within one subscrip-
tion, the algorithm also works for other aggregation func-
tions such asproductsince we use a two-step algorithm to
apply the aggregation function after the predicate matching
phase to pick out the matched subscriptions. 5) The algo-
rithms are designed with respect to conjunctions of predi-
cates, but it can be easily extended to disjunctions as long
as we substitute themin operator with other boolean com-
bination functions likemax.

References

[1] G. Ashayer, H. K. Y. Leung, and H.-A. Jacobsen. Predicate
matching and subscription matching in publish/subscribe
systems. InWorkshop on DEBS, 22nd International Confer-
ence on Distributed Computing Systems, Vienna, Austria,
July 2002. IEEE Computer Society.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Storm, and D. Sturman. An efficient multicast proto-
cal for content-based publish-subscribe systems. InInterna-
tional Conference on Distributed Computing Systems, 1999.

[3] T. Bouaziz and A. Wolski. Applying Fuzzy Events to
Approximate Reasoning in Active Databases. InProc.
Sixth IEEE International Conference on Fuzzy Systems,
Barcelona, Catalonia, Spain, July 1997.

[4] I. Burcea and H.-A. Jacobsen. L-ToPSS: - push-oriented
location-based services. In4th VLDB Workshop on
(TES’03), Berlin, Germany, 2003.

[5] A. Carzaniga, D. Rosenblum, and A. Wolf. Design of a scal-
able event notification service: Interface and architecture. In
Technical Report CU-CS-863-98, Department of Computer
Science, University of Colorado, August 1998.

[6] D. Dubois and H. Prade.Possibility Theory: An Approach
to Computerized Processing of Uncertainty. Plenum Press,
New York, 1988.

[7] F. Fabret, H. Jacobsen, F. Llirbat, J. Pereira, K. Ross, and
D. Shasha. Filtering algorithm and implementation for very
fast publish/subscribe systems. InACM SIGMOD confer-
ence, Santa Barbara, California, USA, May 2001.

[8] R. Fagin. Fuzzy queries in multimedia database systems. In
Proc. ACM SIGMOND/SIGACT conf. on Princ. of Database
Syst. (PODS), Seattle, WA, USA, 1998.

[9] N. Fuhr and T. Rolleke. A probabilistic relational algebra for
integration of information retrieval and database systems.
ACM Transactions on Information Systems, 15(1), 1997.

[10] G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty, and
Information. Prentice Hall International Editions, 1992.

[11] K. Leung, M. Wong, and W. Lam. A fuzzy expert database
system. Data and Knowledge Engineering, 4:287–304,
1989.

[12] H. Liu and H.-A. Jacobsen. A-TOPSS – a publish/subscribe
system supporting approximate matching. InVLDB, Hong
Kong, China, 2002.

[13] J. Pereira, F. Fabret, H.-A. Jacobesen, F. Llirbat, and
D. Shasha. WebFilter: A high-throughput XML-based pub-
lish and subscribe system. InVLDB conference, 2002.

[14] M. Petrovic, I. Burcea, and H.-A. Jacobsen. S-topss: Se-
mantic toronto publish/subscribe system. InVLDB, 2003.

[15] F. Petry. Fuzzy databases: Principles and applications, with
contribution by patrick bose.International Series in Intelli-
gent Technologies, page 240, 1996.

[16] B. Segall and D. Arnold. Elvin has left the building: A pub-
lish/subscribe notification service with quenching. InPro-
ceedings of AUUG97, Brisbane, Australia, September 1997.

[17] S. Tilak, N. Abu-Ghazaleh, and W. Heinzelman. A taxon-
omy of wireless microsensor network models, 2002.

[18] O. Wolfson, A. Lelescu, and B. Xu. Approximate retrieval
from multimedia databases using relevance feedback.

[19] A. Wolski and T. Bouaziz. Fuzzy Triggers: Incorporating
Imprecise Reasoning into Active Databases. InProceedings
of ICDE, pages 108–115. IEEE Computer Society Press,
1998.

[20] T. Yan and H. Molina. Index structures for information filter-
ing under the vector space model. InProceedings of ICDE,
November 1993.


