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Sampling and Filtering Tutorial: Sept 27, '04

Sampling and Filtering Images | representing a
continuous signal with a discrete set of values taken at
a particular interval.

References:

� linSysTutorial.m

� samplingTutorial.m

� imageTutorial.m

� ~jepson/pub/matlab/iseToolbox/tutorials/

� Your lecture notes!

� http://www.cis.rit.edu/people/faculty/montag/
vandplite/pages/chap 9/ch9p1.html

� http://www.uwlax.edu/faculty/will/svd/
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Questions

samplingTutorial.m is roughly organized to answer
the following sequence of questions and more!

� What does an impulse train, and a sampled signal
look like?

� What the Fourier transform of a sampled signal
looks like?

� What is aliasing?

� How can we diminish the e�ect of aliasing?

� How can we reconstruct a signal from its sampled
version?

Questions 2
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Questions

imageTutorial.m is roughly organized to answer the
following sequence of questions and more!

� What does the DFT of 2-D signal look like?

� What does the DFT of an image looks like?

� What is the frequency response of typical �lters?

� Why is aliasing such a big problem in images?

Questions 3



(c) 2004 F.J. Estrada & A. D. Jepson & D. Fleet

Impulse Trains

Sampling a continuous signal s(t) is equivalent to
multiplying the signal with an impulse train (also known
as the comb function) combT (x) =

P
1

n=�1 Æ(x�nT ).
Here T is the sampling period and determines the
spacing between samples in the sampled signal s(n) =
s(t) � combT (x).
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Figure 1: An impulse train and its DFT

The �gure above shows an impulse train and its DFT
(which is just another impulse train!). The important
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thing to remember is that the spacing of the impulses in
the time (or space) domain and the frequency domain
is inversely related.

Impulse Train 5
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Sampling a Signal

Sampling involves multiplication in the time or space
domain, this corresponds to convolution in the
frequency domain. Hence, the FT of a sampled signal
can be obtained by convolving the FT of the original
signal with the FT of the impulse train.
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Figure 2: Original signal, impulse train, sampled signal, and

their DFTs

You can see that we get replicas of the Fourier spectrum
of the original signal, the spacing of these replicas
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corresponds to the spacing between impulses in the
DFT of the original impulse train.

Sampling a Signal 7
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Aliasing

Aliasing occurs when the replicas of the Fourier
spectrum of the original signal overlap, this means
that the sampled signal is 'masquerading' as a di�erent
signal.
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Figure 3: Same Gaussian sampled at di�erent intervals, and

corresponding DFTs

As the space between samples increases, the spacing
between the replicas of the spectrum of the original
signal decreases until the replicas overlap, when the
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replicas overlap we get aliasing, frequency information
necessary for reconstructing the original signal is lost.

Aliasing 9
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Sampling considerations

Sampling pattern in the human eye depends on the
arrangement of rods and cones in the retina.

Figure 4: a) Distribution of rods/cones across the retina (from

Osterberg, 1935), b) Cone mosaic in the fovea (from Lall and

Cone, 1996)

How does the sampling pattern a�ect the perception
of images? what about the sampling pattern in digital
cameras?

Sampling considerations 10
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Singular Value Decomposition

To understand SVD, �rst recall that any n�m matrix
A de�nes a linear transformation from <m to <n. In
other words, the operation

~b = A~x

takes a vector ~x in <m and maps it to a vector ~b
in <n. To understand the mapping performed by A,
we should consider what happens to vector x when
left-multiplied (hit) by A.

First, notice that any vector ~b produced by the matrix
can be expressed as a linear combination of the columns
of A as shown in the following example:
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In general, Ax = x1A�;1 + :::xmA�;m so we see that
~b = A~x must be in the span of the columns of A.
There can be at most m linearly independent columns
in A, so when m < n this restricts ~b to a subspace of
<n. Let the column space of A be colspace(A) =
span(A�;1; : : : ; A�;m).

Secondly, notice that each element bi; 1 � i � n is
the projection of vector ~x onto the ith row of A.
We de�ne the row space of A as rowspace(A) =
colspace(At) = span(AT

�;1; :::A
T
�;n). A basic theorem

in Linear Algebra states that for any n � m matrix,
rank(A) = dim(rowspace(A)) = dim(colspace(A)).

Since ~x is �rst projected onto the row space of A, any ~x
that is perpendicular to this space will yield A~x = ~0. In
this case, we say that ~x is a member of the (right) null
space of A, the (right null space of A � f~xjA~x = ~0g,

Singular Value Decomposition 12
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and it is the orthogonal complement of the row space
of the matrix. Similarly, the orthogonal complement of
the column space of A is known as the left null space
of A.

Now, given any (n �m) matrix A, we can express A
as a product of three matrices

A = U�V T

where U is an (n � n) matrix that contains an
orthonormal basis for the column space of A, � is
an (n�m) diagonal matrix that contains the singular
values of A, the number of non-zero diagonal elements
in � is equal to the rank of A, and V is an (m�m)
matrix that contains an orthonormal basis for the row
space of A.

The columns of U whose corresponding singular value
is non-zero constitute the orthogonal basis for the
column space of A, the remaining columns span the
left null space of the matrix. Similarly, the columns of
V whose corresponding singular value is non-zero form
an orthonormal basis for the row space of the matrix,

Singular Value Decomposition 13
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while the remaining columns span the right null space
of A.

Every matrix has an SVD of the form shown above,
this means that any matrix, rectangular or not, is the
product of three matrices two of which are orthonormal
coordinate transformations, and the third is a rescaling
of each axis separately (e.g. a square matrix S is given
by a rotation V T followed by a rescaling of each axis,
followed by a rotation/reection U). That is all that a
matrix can do to ~x!

Singular Value Decomposition 14
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More about SVD

� The singular values of A are the positive square
roots of the eigenvalues of ATA.

� The singular vectors are sorted by convention in
decreasing order of magnitude of the associated
singular value.

� Ak = Uk�kV
T
k is the closest rank k approximation

of A. Ak minimizes the sum of the squares of the
elements of A � Ak. Here Uk is a matrix formed
with the �rst k columns of U , �k is a diagonal
matrix that contains the �rst k singular values, and
Vk contains the �rst k columns of V .

� SVD is commonly used to determine the principal

components of a data distribution as shown in the
following �gure

More about SVD 15
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Figure 5: a) 2-D Gaussian distribution, b) Scaled and rotated

distribution, c) Principal components from SVD

� Another use is to approximate the inverse matrix
for matrices that are either non-square, or not full
rank. The pseudo inverse of a non-invertible matrix
M is given by

pinvM = VWUT

where W is a diagonal matrix, and Wi;i = 1=�i for
�i > � and 0 otherwise.

More about SVD 16


