1 World, Camera, Image, and Pixel Coordinates.

In class we showed that the perspective projection of a scene point \vec{X}_c is:

$$\vec{x} = \frac{f}{X_{c,3}} \vec{X}_c. \tag{1}$$

Here $\vec{X}_c = (X_{c,1}, X_{c,2}, X_{c,3})^T$ are camera-centered coordinates, with the camera's nodal point at the origin, the optical axis is on the $X_{c,3}$ -axis, the image plane is perpendicular to the optical axis, and the optical axis pierces the image plane at the point $\vec{x} = (0, 0, f)^T$. Also, notice the image point $\vec{x} = (x_1, x_2, f)^T$ is a 3-vector in this camera centered frame.

Typically image coordinates are written in terms of pixels. A particular pixel can be denoted by (q_1, q_2) with q_1 the column and q_2 the row in the sampled image. Here we take $(q_1, q_2) = (1, 1)$ to be the top left corner of the image. It is again convenient to express these pixel coordinates in terms of the 3-vector $\vec{q} = (q_1, q_2, 1)^T$. The transformation from the camera centered image coordinates, \vec{x} , to pixel coordinates, \vec{q} , can then be expressed as

$$\vec{q} = M_{in}\vec{x} \tag{2}$$

where M_{in} is the 3 \times 3 matrix

$$M_{in} = \begin{pmatrix} 1/s_1 & 0 & o_1/f \\ 0 & 1/s_2 & o_2/f \\ 0 & 0 & 1/f \end{pmatrix}.$$
 (3)

Here (o_1, o_2) are the pixel coordinates for the point the optical axis pierces the image plane (i.e. the 'center' of the image), and s_1 , s_2 specify the pixel spacing in the x and y directions. The constants o_i , s_i , for i = 1, 2, and f are called the intrinsic camera parameters.

Let $\vec{X}_w = (X_{w,1}, X_{w,2}, X_{w,3})^T$ denote a world-based coordinate frame. In general, the coordinate transformation from \vec{X}_w to the camera centered coordinates, \vec{X}_c , takes the form

$$\vec{X}_c = M_{ex} \begin{pmatrix} \vec{X}_w \\ 1 \end{pmatrix},\tag{4}$$

where M_{ex} is the 3 \times 4 matrix

$$M_{ex} = \left(\begin{array}{cc} R & | & -R\vec{d} \end{array} \right). \tag{5}$$

Here R is the 3 × 3 rotation matrix specifying the relative rotation between the camera and world coordinate frames, and $\vec{d} = (d_1, d_2, d_3)^T$ specifies the location of the camera's nodal point in world coordinates. The 3D position and orientation of the camera, as specified by R and \vec{d} , are called the extrinsic camera parameters. Combining the mappings M_{int} and M_{ext} we find from the above analysis that a world point \vec{X}_w is imaged to pixel $\vec{q} = (q_1, q_2, 1)^T$ when

$$\beta \vec{q} = M_{int} M_{ext} \begin{pmatrix} \vec{X}_w \\ 1 \end{pmatrix}, \quad \beta = \frac{X_{c,3}}{f}.$$
 (6)

Here β must be positive in order for the scene point at \vec{X}_w to be in front of the camera's nodal point.