1 World, Camera, Image, and Pixel Coordinates.

In class we showed that the perspective projection of a scene point \vec{X}_{c} is:

$$
\begin{equation*}
\vec{x}=\frac{f}{X_{c, 3}} \vec{X}_{c} . \tag{1}
\end{equation*}
$$

Here $\vec{X}_{c}=\left(X_{c, 1}, X_{c, 2}, X_{c, 3}\right)^{T}$ are camera-centered coordinates, with the camera's nodal point at the origin, the optical axis is on the $X_{c, 3}-$ axis, the image plane is perpendicular to the optical axis, and the optical axis pierces the image plane at the point $\vec{x}=(0,0, f)^{T}$. Also, notice the image point $\vec{x}=\left(x_{1}, x_{2}, f\right)^{T}$ is a 3-vector in this camera centered frame.

Typically image coordinates are written in terms of pixels. A particular pixel can be denoted by $\left(q_{1}, q_{2}\right)$ with q_{1} the column and q_{2} the row in the sampled image. Here we take $\left(q_{1}, q_{2}\right)=(1,1)$ to be the top left corner of the image. It is again convenient to express these pixel coordinates in terms of the 3 -vector $\vec{q}=\left(q_{1}, q_{2}, 1\right)^{T}$. The transformation from the camera centered image coordinates, \vec{x}, to pixel coordinates, \vec{q}, can then be expressed as

$$
\begin{equation*}
\vec{q}=M_{i n} \vec{x} \tag{2}
\end{equation*}
$$

where $M_{i n}$ is the 3×3 matrix

$$
M_{i n}=\left(\begin{array}{lll}
1 / s_{1} & 0 & o_{1} / f \tag{3}\\
0 & 1 / s_{2} & o_{2} / f \\
0 & 0 & 1 / f
\end{array}\right)
$$

Here $\left(o_{1}, o_{2}\right)$ are the pixel coordinates for the point the optical axis pierces the image plane (i.e. the 'center' of the image), and s_{1}, s_{2} specify the pixel spacing in the x and y directions. The constants o_{i}, s_{i}, for $i=1,2$, and f are called the intrinsic camera parameters.

Let $\vec{X}_{w}=\left(X_{w, 1}, X_{w, 2}, X_{w, 3}\right)^{T}$ denote a world-based coordinate frame. In general, the coordinate transformation from \vec{X}_{w} to the camera centered coordinates, \vec{X}_{c}, takes the form

$$
\begin{equation*}
\vec{X}_{c}=M_{e x}\binom{\vec{X}_{w}}{1} \tag{4}
\end{equation*}
$$

where $M_{e x}$ is the 3×4 matrix

$$
M_{e x}=\left(\begin{array}{l|l}
R & \mid-R \vec{d} \tag{5}
\end{array}\right)
$$

Here R is the 3×3 rotation matrix specifying the relative rotation between the camera and world coordinate frames, and $\vec{d}=\left(d_{1}, d_{2}, d_{3}\right)^{T}$ specifies the location of the camera's nodal point in world cooridnates. The 3D position and orientation of the camera, as specified by R and \vec{d}, are called the extrinsic camera parameters.

Combining the mappings $M_{i n t}$ and $M_{e x t}$ we find from the above analysis that a world point \vec{X}_{w} is imaged to pixel $\vec{q}=\left(q_{1}, q_{2}, 1\right)^{T}$ when

$$
\begin{equation*}
\beta \vec{q}=M_{i n t} M_{e x t}\binom{\vec{X}_{w}}{1}, \quad \beta=\frac{X_{c, 3}}{f} . \tag{6}
\end{equation*}
$$

Here β must be positive in order for the scene point at \vec{X}_{w} to be in front of the camera's nodal point.

