
1

Notes on Fourier Analysis

David J. Fleet and Allan D. Jepson
January 11, 2005

Fourier analysis plays a critical role in applied mathematics. In computer vision it plays a

central role in the design and analysis of early operators. In the study of biological visual systems

Fourier analysis is central to understanding of visual stimuli, to measuring input/output properties

of neurons, and to the development of computational models.

In essence, the Fourier transform of an image is a decomposition of a signal into a weighted sum

of sinusoidal signals. That is, the Fourier transform speci�es, for each frequency, how much of a

sinusoidal signal at that frequency exists in the signal. In discrete terms, it is simply an orthogonal

matrix transform, i.e., a change of basis.

In vision, many of the image operations we employ are linear and shift-invariant. Sinusoidal

signals, or Fourier basis functions, are eigen-functions of this class of operators which makes them

a convenient basis set for design and analysis of linear �lters. Fourier representations are also

convenient for specifying various �lter design constraints related to the scale and orientation of

image information that we wish to enhance or attenuate. Moreover, Fourier theory provides a very

nice starting point for the study of other image transforms such as the discrete cosine transform

(DCT) that is used in JPEG compression, or wavelet transforms which have become popular in

many contexts for the analysis and synthesis of signals at multiple scales.

In what follows we will �rst introduce the basic concepts of the Fourier transform with discrete

signals. We'll come back to the �lters and eigenfunctions later.

1 Discrete Fourier Transform (DFT)

Let I[n] be a discrete signal of length N . For convenience, let I[n] be a periodic signal with a period

length of N , or equivalently, we can consider I[n] to be cyclic, so that shifts are circular shifts.

The central idea in Fourier analysis is to change the basis in which we represent the signal from a

sequence of shifted delta functions (impulses) to a set of global sinusoidal signals, i.e., s[n] = sin(!n)

where ! is the frequency of the sinusoid. Before introducing Fourier analysis, it is useful to review

two important properties of discrete signals:

� First, the frequency ! is only unique between 0 and 2�. This is easy to see by noting that,

because n is an integer, sin((! + 2�)n) = sin(!n).

� Second, if we only consider periodic signals of length N , then we need only consider sinusoids

which are periodic on the same domain. These have the form sin(!kn) or cos(!kn) for

!k = 2�k=N with k an integer.

� Unique sinusoids exist only for N distinct frequencies !k = 2�k=N , say for the integers k

between 0 and N � 1.

Finally, when working with sinusoidal signals, it's often very convenient to express then using

complex exponentials. Remember Euler's formula:

ei!n = cos(!n) + i sin(!n)

c Fleet and Jepson, 2005 2

0 5 10 15 20 25 30

0

1

−0.5

0

0.5

−0.5

0

0.5

−0.5

0

0.5

0 5 10 15 20 25 30
−0.5

0

0.5

Figure 1: Here is a simple example of a Fourier decomposition. A Gaussian signal is shown on the

left, and the �rst 4 terms of its Fourier decomposition are shown on the right.

where i2 = �1. Conservely, with this one can write

cos(!n) =
1

2

h
ei!n + e�i!n

i
; sin(!n) =

1

2i

h
ei!n � e�i!n

i
:

1.1 Fourier Decomposition

The Fourier transform allows to write an arbitrary discrete signal I[n] as a weighted sum of phase-

shifted sinusoidal signals. Assuming that our signal I[n] is really just N samples from a periodic

signal (with periodN), then we should only use periodic sinusoids in the sum that we use to express

it. Therefore, the sum has the form

I[n] =
N�1X
k=0

�k sin(!kn+ �k)

=
N�1X
k=0

�k sin(�k) cos(!kn) + �k cos(�k) sin(!kn)

=
N�1X
k=0

ak cos(!kn) +
N�1X
k=0

bk sin(!kn) (1)

Note that the sinusoidal signal sin(!kn) is all zeros when k = 0, because when k = 0, then !0 = 0

and therefore sin(!0n) = 0 for all n. Therefore, normally one has the second summation only

include terms for k � 1, but we'll keep all N terms for now.

1.2 Fourier Transform

So, now the question is: how do we get these coeÆcients ak and bk? Before answering this, let's

rewrite equation (1) in a matrix form. Towards this end, imagine that our input signal I[n] is

written as an N -dimensional vector I = (I[0]; :::; I(N � 1))T . In addition, let a = (a0; :::; aN�1)T

and b = (b0; :::; bN�1)T be N -vectors for the coeÆcients. Similarly, let's write the elementary

sinusoidal signals as vectors, i.e. Sk = sin(!kn) and Ck = cos(!kn). That is, the j
th component of

c Fleet and Jepson, 2005 3

1
2

0

n

1 20 k

Figure 2: DFT matrices for the cosine and sine components of F for N = 16. (left) the cosine

matrix C with frequencies !k = 2�k=16 for k from 0 to 15 going from left to right, and n going

from 0 to 15 from top to bottom. The �rst row and columns are all ones. (right) the sine matrix S

with frequencies !k = 2�k=16 for k from 0 to 15 going from left to right. In this case, the �rst row

and column (and the 9th row and column) are �lled with zeros. Note the symmetry of C and S,

both across the main diagonal and also across the 9th anti-diagonal (roughly from the bottom-left

to the top-right).

the vector Ck would be cos(2�N kj), for each j between 0 and N � 1. Finally, collect these sinusoidal

signals into N �N matrices, C = (C0 C1 : : :CN�1) and S = (S0 S1 : : :SN�1). Then, (1) becomes

I =
N�1X
k=0

akCk +
N�1X
k=0

bkSk = Ca+ Sb: (2)

We can rewrite this sum as a matrix equation:

I =
h
C S

i
a

b

!
(3)

To understand this, remember the way matrix multiplication works: The signal I on the left is a

weighted sum of the columns of the N �2N matrix [C S], which is formed by concatenating C and

S. The weights are coeÆcients in the vector on the right.

Remember that the (n+ 1; k + 1) element of C is cos(2�N kn) where k + 1 speci�es the column

index, and n+1 speci�es the row. Similarly the corresponding element of S is sin(2�N kn). Therefore

the columns of C and S are sinusoidal basis vectors. Moreover, from these expressions it is clear

that C and S are symmetric matrices (i.e. CT = C and ST = S). Due to this symmetry, the

rows of C and S are also formed from the same sinusoidal basis vectors, namely Ck and Sk, for

k = 0; : : : ; N � 1.

Let's rewrite equation (3) as

I = Fc (4)

where F = [C S] is the matrix above, the columns of which are the elementary sinusoidal signals,

and the vector c = (aT ;bT)T contains the coe�cients ak and bk as in (3). Note that F has 2N

c Fleet and Jepson, 2005 4

columns, each of which is of length N , so it is a N�2N matrix. That is, the length of the signal I is

only half of the number of coeÆcients c (i.e. N versus 2N). Since there are more coeÆcients than

signal sample values, the representation of I in terms of c is said to be over-complete. Due to

this over-completeness, a basic result of linear algebra ensures us that any solution c of (4) is not

unique. This non-uniqueness won't bother us here since we will pick one solution by convention.

Now, one way to determine suitable coeÆcients ak and bk is to �nd a 2N �N matrix G such

that when we form c = GI it turns out that c satis�es (4). That is, for any I we have c = GI such

that

I = Fc = FGI: (5)

In other words, we need to �nd G such that FG = Id(N) where Id(N) denotes an identity matrix

of size N . Such a matrix G is called a pseudo-inverse of F. If we �nd such a matrix G, then

computing suitable coeÆcients simply amounts to performing the matrix-vector product c = GI.

Our main result is that we can take G = 1
NF

T . In particular, we show below that

1

N
FFT = Id(N): (6)

In general, a linear transformation of a signal I of the form c = FT I is said to be self-inverting if

the signal can be reconstructed simply as I = �Fc for some constant �. The key property here is

simply that, for a self-inverting transformation, a constant times the transpose of the transformation

matrix serves as a pseudo-inverse of the transformation. Our main result can therefore be restated

as, the discrete Fourier transformation matrix F T is self-inverting.

We created F in (4) above so that its columns were the elementary sinusoidal signals Ck and

Sk. Therefore the rows of FT are also these same sinusoidal signals. Furthermore, to �nd the

coeÆcients ak and bk one simply multiplies the matrix FT with the discrete signal I, and divide

the result by N . In e�ect, this amounts to taking the inner product of the signal I with each

elementary sinusoidal signal (i.e. each column of F). In practice, matrix-vector multiplication is

relatively slow for full 2N �N matrices such as FT . Matrix-vector multiplication requires O(N2)

multiplications and additions, where N is the number of samples in the signal. By comparison, the

fast Fourier transform (FFT) algorithm that is widely used requires onlyO(N logN) multiplications

and additions. Note that for images, where the number of pixels can be as large as 106 or higher,

the di�erence between O(N2) and O(N logN) is signi�cant.

The set of coeÆcients, ak; bk, tells us \how much" of each frequency !k exists in our signal, and

at what phase. The coeÆcients are called the Fourier transform of I[n], and are often written as

complex numbers Î[k] = ak � i bk for convenience. Thus, the Fourier transform can be viewed as a

function of frequency, again, specifying how much, and at what phase, of each frequency exists in

our signal I[n]. In the continuous case, the Fourier transform is an explicit function of frequency,

written f̂(!), while here, we write it as a function of the frequency index k, because k is an integer

and !k is not.

With this notation, the usual way a discrete Fourier transform (DFT) is written is as follows:

Î[k] =
X
n

I[n] e�i!kn (7)

I[n] =
1

N

X
k

Î[k] ei!kn (8)

c Fleet and Jepson, 2005 5

To see the relationship between this formulation and the matrix equation above, remember that

ei!kn = cos(!kn) + i sin(!kn). The real part of the right hand sides in (7) and (8) therefore

provide the equations above (except we have chosen to move the normalization term 1=N to the

reconstruction equation, i.e. we use c = FT I and I = (1=N)Fc).

1.3 Proof of the Self-Inverting Property

The complex form of the DFT in (7) and (8) is convenient for proving that the matrix F is self-

inverting. In particular, let U be the N �N complex-valued matrix

U = C+ iS; (9)

where C and S are as above (see Figure 1.2). Then the (n+ 1; k + 1) element of U equals ei
2�
N
nk.

Consider the matrix U�U, where U� denotes the transpose of the complex conjugate of U.

Then from the previous expression for the elements of U, it follows that the (k + 1; j + 1) element

of U�U is
N�1X
n=0

e�i
2�
N
knei

2�
N
nj =

N�1X
n=0

ei
2�
N

(j�k)n = NÆj;k: (10)

In the last term above Æj;k is the Kronecker delta, which is equal to one when j = k and zero

otherwise. This last equality is explained below.

For j = k each of the terms in the sum in the middle term of (10) are e0 = 1, so the sum is N

for this case. Otherwise, suppose j 6= k, with 0 � j; k � N � 1. For such a pair j and k, de�ne the

constant � = 2�
N (j � k). Then the second sum above can be rewritten as

N�1X
n=0

ei
2�
N

(j�k)n =
N�1X
n=0

ei�n = z (11)

for some complex number z. But note that �N = 2�(j�k), which is an integer multiple of 2�, and

therefore ei�N = 1 = e0. Therefore, upon multiplying equation (11) by ei� we �nd

zei� =
N�1X
n=0

ei�(n+1)

= ei�N +
N�1X
n=1

ei�n

= 1 +
N�1X
n=1

ei�n = z:

Thus zei� = z, so either z = 0 or ei� = 1. But since 0 � j; k � N � 1 and j 6= k it follows that

ei� 6= 1. Therefore z = 0, which completes the justi�cation of equation (10).

We have therefore shown that U�U = NId(N). By the de�nition ofU in (9), and the symmetry

of C and S, it follows that U�U = (C � iS)(C + iS) = C2 + S2. Therefore we have shown that

C2 + S2 = N Id(N). Finally, notice that by de�nition F = [C S], so FF T = C2 + S2. As a

consequence, FF T = N Id(N), proving that F is self-inverting.

c Fleet and Jepson, 2005 6

1.4 Discrete Fourier Transform and Unitary Matrices

From the preceeding analysis, we can write the DFT in a third (and �nal) form. This last version

of the DFT provides us with a simple intuitive model for the transform. By including the scale

factor of 1=
p
(N) with U, we can de�ne the discrete Fourier transform of a signal I and its inverse

transform as

Î =
1p
N
U�I; (12)

I =
1p
N
U Î (13)

It follows from the previous section that 1p
N
U is a unitary N �N matrix.

In this way, one can view the Fourier transform simply as an orthonormal change of basis.

In more familiar terms, it involves only rotations and reections of the original coordinates. The

sinusoids in (3), or equivalently the complex exponentials in (13), can be viewed as a complete

spanning set for the N -dimensional vector space of complex-valued signals. The kth coeÆcients ak
and bk can be viewed as the projection of I onto the vectors Ck and Sk in the spanning set. With

real-valued inputs, the representation is overcomplete since there are 2N real-valued coeÆcients (ie.

N complex-valued coeÆcients), but only N real numbers in the signal I. If I were complex-valued

rather than real-valued, then the transform would be a complete representation, with just as many

Fourier coeÆcients as input values. In fact, one can show that for real-valued inputs the Fourier

domain is symmetric, and this accounts for the redundancy.

When we introduced Fourier analysis above, we restricted ourselves to signals that were periodic

on N samples. This allowed us to consider only N frequencies. You may now ask, do we need to

consider more frequencies in order to decompose a signal into a sum of sinusoids? The answer is no.

The DFT is (modulo scaling) an orthogonal transform, and therefore we can completely represent

and reconstruct any signal I with only N frequencies.

1.5 Examples

Let's say that the input is just a sinusoid of the form I[n] = A sin(!3n+�) where A is the amplitude.

Using the orthogonality of the sinusoidal signals (i.e., (10)), the inner product of I[n] with each row

of F T will be zero, except those rows containing C3 and S3. In other words, only the coeÆcients

that correspond to the frequency in the signal, i.e., a3 and b3, are non-zero. Moreover, one can

show that the phase � is given by the arctan of b3=a3. And the magnitude of the signal, A, is equal

to 1
N

q
a23 + b23.

How about the case where the input is simply a delta function? For example let I[n] = 0 for

all n > 0, and I[0] = 1. In this case, when one takes the product c = FT I, one can see that the

resulting coeÆcient vector c is simply equal to the �rst column of FT . This column, as shown

above, contains C0 on top of S0. Furthermore, when the frequency is zero, cos(0) = 1 and sin(0) =

0. Therefore, ak = 1 for all k and bk = 0. This is the well-known result that the Fourier transform

of a delta function at the origin is constant. If we move the delta function to another location, then

its Fourier transform will be a complex exponential.

c Fleet and Jepson, 2005 7

1.6 Fourier Domain

Remember that our vector I is a representation of a signal I[n], which is a function of the spatial

variable n. We normally plot I[n] as a function of spatial position n.

Similarly, it is common to plot the Fourier transform coe�cients Î[k] = ak � i bk as a function

of frequency !k. So with frequency along the x � axis we can plot the magnitude jÎ [k]j which is

called the amplitude spectrum, and we can plot the phase angle arg[Î[k]] (i.e., atan2 for you C

programmers), which is called the phase spectrum. We refer to functions of frequency, as functions

in the frequency domain, where the independent variable is frequency.

When the magnitude (amplitude) of a particular Fourier coe�cient jÎ [k]j is large, we say that

there is a lot of power at frequency !k in the signal. The distribution of power, as a function of

!k, tells us a lot about the properties of the signal.

2 Other Fourier Transforms

2.1 Discrete-Time Fourier Transform

As the length of the signal, N , increases toward in�nity, the number of Fourier coeÆcients that

we need to compute grows similarly. In the limit, although the signal is discrete, our sampling of

frequencies between 0 and 2� becomes dense, so that the Fourier transform becomes a continuous

function of frequency.

Î(!) =
1X

n=�1
I[n] e�i!n

for 0 � ! < 2�. The inverse transform, with which we reconstruct the signal is then given by

I[n] =
1

2�

Z 2�

0
Î(!)ei!nd!

This transform is used for a number of di�erent purposes. If one had a discrete signal of �nite

length, one could in principle pad it with zeros out to in�nity and take its DTFT. If the signal was

an impulse response, then the DTFT would tell you how the �lter behaves when applied to any

frequency of interest. This is often very useful. It is also easy to show that the DFT is simply a

sampled version of DTFT.

Finally, note that one can compute a good approximation to the DTFT without padding the

signal with zeros. Rather, one simply has to add more rows to the DFT matrix at the frequencies

that one is interested in.

2.1.1 Examples

How about some examples with smoothing �lters like h[n] = 1
4 [1; 2; 1]? Well, for convenience,

assume that we take the DTFT by padding h[n] with zeros, and assume that h[n] has it's nonzero

samples centered at the origin. Then,

ĥ(!) =
1X

n=�1
h[n] e�i!n

=
1X

n=�1
h[n] e�i!n

c Fleet and Jepson, 2005 8

=
1

4

�
ei! + 1 + e�i!

�
=

1

2
(1 + cos(!))

2.2 Fourier Transforms of Continuous Periodic Signals

Imagine now that we have a signal I(x) that is de�ned at all spatial positions x on the real-line.

As above with the discrete case, we'll also assume that I(x) is periodic with period T ; that is,

I(x + T) = I(x). This may be because I(x) is actually periodic, or it may be that our signal of

interest is of �nite length T , and I(x) is a periodic version of it. In either case, we expect all of the

relevant elementary sinusoidal components of I(x) to also be periodic with period T . Therefore, we

will express the signal I(x) as a weighted sum of sinusoidal signals with frequencies !k = 2�k=T

where k is an arbitrary integer, as follows

I(x) =
1X

k=�1
�ke

i!kn (14)

Because the signal is not discrete, it can contain sinusoids of arbitrarily high frequencies. Therefore

the sum is in�nite.

The coeÆcients in the sum are given by the inner product between the signal I(x) and basis

functions. The inner product is no longer a vector dot-product as above. It is now de�ned by an

integral for continuous functions, over an interval of length T within which the signal is unique:

�k =
1

T

Z T=2

�T=2
I(x)e�i!kxdx (15)

These coeÆcients �k are the Fourier coeÆcients. They are often referred to as a Fourier series

representation of I(x).

Note that while the periodic signal I(x) is continuous, de�ned everywhere on the real line, the

Fourier transform is still a discrete signal. It is de�ned only at a discrete set of frequencies !k.

2.3 Fourier Transforms of Continuous Signals

Above we have discussed the Fourier transforms of discrete signals of bounded extent and of con-

tinuous signals of bounded extent. The most general case concerns a suÆciently smooth function

with arbitrary extent de�ned on the real-line, for which we cannot assume periodicity. In this case,

for suÆciently smooth signals I(x), the Fourier transform Î(!) is

Î(!) =

Z
I(x)e�i!xdx

I(x) =
1

2�

Z
Î(!)ei!x:

Now, both the input signal I(x) and the Fourier transform Î(!) are continuous functions de�ned

everywhere on x (spatial position) and ! (frequency domain).

c Fleet and Jepson, 2005 9

3 Multi-Dimensional Fourier Transforms

The same basic ideas hold in multple dimensions. In the continuous domain, we have

Î(~!) =

Z
:::

Z
I(x) exp[�i~!Tx]dx

I(x) =
1

(2�)n

Z
:::

Z
Î(~!) exp[i~!Tx]d~!:

where x = (x1; :::; xn) is the n-dimensional spatial position, ~! = (!1; :::; !n) denotes the corre-

sponding frequency variables, and ~!Tx denotes the usual dot product.

Note that if I(x) is separable, then the multi-dimensional Fourier transform is the product of

the 1d Fourier transforms. For example, if I(x; y) = f(x)g(y), then

Î(!x; !y) =

Z Z
I(x; y)e�i(x!x+y!y)dxdy

=

Z
f(x)e�ix!xdx

Z
g(y)e�iy!ydy

= f̂(!) ĝ(!)

4 Properties of the Fourier Transform

In what follows we will list several important properties of the Fourier transform that we will use

occasionally. For notational convenience, we will write the Fourier transform of f(x) as f̂(~!) =

F [f(~x)] where ~x = (x1; :::xn) and ~! = (!1; :::!n). Moreover, note that many of these properties are

most straightforward to de�ne in the continuous case.

� Shifting Property:

F [f(x� x0)] = exp(�i ~!Tx0) f̂(~!) (16)

In particular, note that F [Æ(x � x0)] = exp(�i ~!Tx0).
You can prove this with substitution and change of variables.

� Modulation Property:

F
h
exp(i ~!T0 x) f(x)

i
= f̂(~! � ~!0) (17)

This is really identical to the shifting property, and can be proven in the same way, but with

the Fourier domain and the spatial domain switched.

� Di�erentiation:

F
"
@nf(x)

@xj
n

#
= (i !j)

n f̂(~!) (18)

This is a little tougher to prove, but give it a try. For intuition, note that @ sin(!x)
@x = ! cos(!x).

One can also use this fact, along with the convolution theorem below to show that the Fourier

transform of the impulse response of a perfect n-th order di�erentiator is simply (i!)n.

c Fleet and Jepson, 2005 10

� Parseval's Theorem:

2� <f(x); g(x)> = <f̂(~!); ĝ(~!)> ; (19)

where the inner product < �; �> is de�ned by

<f(x); g(x)> =

Z 1

�1
f(x)� g(x) dx : (20)

Accordingly, k f(x) k2 = <f(x); f(x)> . The proof relies on the fact that orthogonal trans-

formations (rotations) do not change the lengths of vectors, and the Fourier transform is

basically an orthogonal (unitary) transform.

� Convolution Theorem:

F [f � g] = F [f] F [g] (21)

Let's prove the Convolution Theorem in the discrete 1d case:

F [f � g] =
X
n

f � g e�i!n =
X
n

X
m

f [m]g[n�m]e�i!n

=
X
m

f [m]
X
n

g[n�m]e�i!n

=
X
m

f [m]F [g]e�i!m (shift property)

= F [g]F [f] (22)

This theorem is very important in practice. It means that one can apply �lters very eÆciently

in the Fourier domain where convolution becomes multiplication. It is very common for

�ltering to be done in the Fourier domain!

This also helps show us what �lters do. Given that we can decompose any signal into a sum of

sinusoids, we can characterize what a �lter does to any signal by characterizing what it does

to sinusoidal signals. The amplitude spectrum of the �lter's DFT tells us how each frequency

in the signal is attentuated by the �lter, and the �lter's phase spectrum tells us how each

sinusoidal component of the input will be phase shifted in the response. This is clear from

viewing convolution as multiplication in the Fourier domain.

Also helps prove properties. For example, we can prove that

@

@x
(h � g) =

@h

@x
� g = h � @g

@x

� Symmetries:

{ Real-valued signals have even-symmetric Fourier transforms: f̂(!) = f̂�(�!).
{ Even-symmetric signals have real-valued Fourier coeÆcients.

{ Odd-symmetric signals have purely imaginary Fourier coeÆcients.

Remember that the transform is just an orthogonal matrix, and therefore properties that

relate one domain (space or Fourier) to the other will usually have a reciprocal property.

Anyway, these symmetry properties are not tough to prove and we suggest doing it as an

exercise.

c Fleet and Jepson, 2005 11

� Reections: The Fourier transform of I[�n] is

F [I[�n]] = Î[�!]

5 Another Perspective on Fourier Analysis

One of the reasons that sinusoids so important to linear, shift-invariant systems is that, when the

input to such a �lter is a sinusoid, then the output is also a sinusoid of the same frequency. Let's

show that this is true. For now, let's consider discrete sinusoids, I[n], on N samples with frequencies

!k = 2�k=N , and let the �lter's impulse response be h[n]. The convolution equation is given by

R[n] =
N�1X
m=0

ei !k(n�m)h[m]

= ei !k n
N�1X
m=0

e�i !kmh[m]

This shows that the output is equal to the input, multiplied by a complex-valued number that

is equal to the inner product of h[n] and fk[n] = e�i !k n. In vector form we can write the inner

product as Hk = ~fTk
~h. Then, we have R[n] = I[n]Hk. (You might also recognise Hk as the kth

Fourier coeÆcient of the DFT of h.)

Anyway, if we want to know what the �lter does to all sinusoids of interest, then we need to

know Hk for all 0 � k < N . We can also collect these values into a vector: H[k] = ~fTk
~h. In vector

form this becomes a matrix equation,

~H = F~h ; where F =

2
664

~fT0
...

~fTN�1

3
775 (23)

Finally, one can show that F = U� introduced in equation (9) above. Therefore F is a scaled

unitary matrix; and its inverse is given by

F�1 =
1

N
F�T =

1

N

h
~f�0 ; :::; ~f

�
N�1

i

where F�T is often called the conjugate transpose of F. Anyway, if we multiply (23) on both sides

by F�1, we obtain

~h =
1

N
F�T ~H ; or equivalently, h[n] =

1

N

N�1X
k=0

ei !k nH[k] (24)

We've just rederived the discrete Fourier transform and it's inverse; i.e. F is the DFT matrix,

and ~H is the DFT of ~h. Although we started with only periodic sinusoids on N samples, clearly

we don't need to consider any more since the transform we have is invertible. Equation (24) shows

that any signal h[n] with N samples can be expressed as a sum of N complex-valued sinusoidal

signals.

c Fleet and Jepson, 2005 12

Figure 3: Blurring of Al. (top) the original image of Al and a blurred (low-pass) version. The

blurring kernel was simple a separable kernel composed of the outer product of the 5-tap 1d impulse

response 1
16(1; 4; 6; 4; 1). (bottom) From left to right are the log amplitude spectrum of Al, the

amplitude spectrum of the impulse response, and the product of the two amplitude spectra, which

is the amplitude spectrum of the blurred version of Al. These spectra have been shifted so that

the frequency equal to zero appears at the center of the image.

Figure 4: From left to right is the original Al, a high-pass �ltered version of Al, and the amplitude

spectrum of the �lter. This impulse response is de�ned by Æ[n;m] � h[n;m] where h[n;m] is the

separable blurring kernel used in the previous �gure.

c Fleet and Jepson, 2005 13

Figure 5: From left to right is the original Al, a band-pass �ltered version of Al, and the amplitude

spectrum of the �lter. This impulse response is de�ned by the di�erence of two low-pass �lters.

Figure 6: Derivative �lters are common in image processing and computer vision. Here are crude

approximations to a horizontal derivative and a vertical derivative, each of which is separable and

composed of an outer product of a smoothing �lter in one direction (i.e., 1
4 (1; 2; 1)) and a �rst-order

central di�erence (i.e., 1
2 (�1; 0; 1)) in the other direction.

c Fleet and Jepson, 2005 14

6 Design and Analysis of Linear Filters

6.1 Fourier Domain

There are several reasons that �lters are often designed and analyzed in the Fourier domain. In

general, they concern the ease with which one can constrain the tuning of the �lters to scale and

orientation.

6.2 Classes of Filters

Broadly speaking there are three main types of �lters, namely, low-pass �lters, band-pass �lters,

and high-pass �lters, all de�ned with respect to a frequency spectrum centered at the origin. In

the discrete case, frequencies are de�ned between �� and � in this case:

� Low-pass �lters attentuate all frequencies above a cut-o� frequency, thereby leaving signi�cant

power only at low frequencies. With the loss of high-frequency energy, the �lter outputs have

relatively poor spatial resolution, and look somewhat blurred. They are used to remove noise

and to remove what might be considered irrelevant image detail depending on the task at

hand.

� High-pass �lters attentuate power at all frequencies below a certain cut-o� frequency. One

of the most important types of high-pass �lter is the ideal di�erentiation �lter. As explained

above, one can infer from the di�erentiation property of Fourier transforms that the ideal

di�erentiator is a high-pass �lter.

� A band-pass �lter is one that attentuates power at all frequencies below a certain cut-o� fre-

quency, and all frequencies above another cut-o� frequency. This leaves a band of frequencies

that the �lter passes. The outputs of band-pass �lters are generally restricted to a given

range of scales. If the passband region is suÆciently narrow then the output of a band-pass

�lter will be expected to modulate at frequencies close to those at the center of the pass-band

range.

Figures 3 - 6 show the application of �lters that were discussed in the Linear Systems set of

notes, along with their Fourier transforms.

6.3 Least-Squares Filter Design

(Modi�ed from a handout written by D. Heeger, Stanford University.)

There are many ways to design discrete, linear �lters (e.g., see Ch. 7 of Oppenheim and Schafer).

Here, we derive a weighted least-squares design method. It is a very simple method that works well

most of the time.

We want to design a real-valued �lter h[n] with a �nite (hopefully very small) number of taps

(nonzero samples) that has a desired Fourier spectrum, H[k]. For example, assume that h[n] will

have 5 taps, in which case its frequency response can be expressed as

H[k] =
2X

n=�2
h[n] e�i!kn ; (25)

c Fleet and Jepson, 2005 15

for �2 � n � 2, 0 � k � M � 1, and !k = 2�k=M . Here, H[k] is the frequency response of h[n]

assuming that h[n] is the impulse response obtained with an impulse sequence of length M . This

is equivalent to a sampled version of the DTFT with M samples.

Let's say that ~H[k] is the desired frequency response. Our goal is to choose the �lter taps, h[n],

to minimize:
M�1X
k=0

jH[k]� ~H[k]j2:

In vector form, we want to minimize jj ~H � ~~Hjj2.

Even-Symmetric Filters. First, let's consider a 5-tap, even symmetric �lter; i.e.,

h0 = h[0]

h1 = h[1] = h[�1]
h2 = h[2] = h[�2];

where ~h = (h0; h1; h2)
T are the three distinct �lter taps. There are only three distinct taps because

we are enforcing even symmetry. The frequency response of this �lter is obtained by writing out

all the terms in Eq (25):

H[k] = h[�1] exp [i !k] + h[1] exp [�i !k]
+h[�2] exp [i 2!k] + h[2] exp [�i 2!k]
+h[0]:

Using the fact that 2 cos(x) = exp(i x) + exp(�i x),

H[k] = h0 + 2h1 cos[!k] + 2h2 cos[2!k]:

In vector form, we can therefore express ~H as

~H = C~h ; (26)

where the columns of C are cosine basis vectors. The zeroth column corresponds to the signal

C0[k] = 1, the �rst column corresponds to C1[k] = 2 cos[!k], and the second column corresponds

to C2[k] = 2 cos[2!k].

We can now rewrite the problem above as the minimization of

kC~h� ~~Hk2 : (27)

The least-squares (regression) solution is given by the usual formula:

~̂
h = (CTC)�1CT ~~H; (28)

where CT denotes the transpose of C.

c Fleet and Jepson, 2005 16

Odd-Symmetric Filters. We can use the same approach to design an odd symmetric �lter. For

a 5-tap odd symmetric �lter the vector ~h is given by

h0 = 0

h1 = �h[1] = h[�1]
h2 = �h[2] = h[�2]:

The derivation is essentially the same except that you end up with sinusoids instead of cosinusoids

in the columns of C because the frequency response of the �lter is now given by:

H[k] = 2 i h1 sin[!k] + 2 i h2 sin[2!k]:

Weighted Least-Squares. Often, we care more about some frequency components than others.

For example, we might want to enforce that the �lter have zero dc response. Or we might want

to enforce that the frequency response be very small (or zero) for some other set of frequency

components. In these cases, it is helpful to use a weighted least squares method. Use large weights

for frequency components that you care a lot about and use small (or zero) weights for the other

frequency components. Using weighted least squares, we want to choose ~h to minimize:

M�1X
k=0

(w[k])2(H[k]� ~H[k])2;

where w[k] are the weights. This can be written in matrix notation as follows:

kA~h�~bk2;

where b[k] = w[k] ~H [k] is a weighted version of the desired frequency response. The columns of A

are weighted versions of the (co)sine basis vectors (columns of C). In particular, the jth column

of A is given by: Aj [k] = w[k]Cj [k]. The solution (as above) is given by:

~̂
h = (ATA)�1AT~b:

Derivative Filters Many image processing algorithms depend on computing derivatives of a dig-

ital image: edge detectors (Laplacian zero crossings, gradient magnitude), steerable �lters, motion

estimation, depth from stereo, anisotropic di�usion. But derivatives are only de�ned for continuous

functions of continuous variables, not for discretely-sampled and quantized signals. Often, people

use simple di�erences between an adjacent pair of pixels to approximate the derivative. But one

can do much better by designing a set of matched pairs of derivative �lters and lowpass pre�lters.

We conceive of the derivative operation (on a discrete signal) as performing three steps:

1. Reconstruct (interpolate) a continuous function from the discrete signal: p(x) � a[n]. Here

a[n] is a discrete signal, p(x) is an interpolation �lter (e.g., a sinc or some other low pass

�lter), and � means convolution.

2. Take the derivative of the interpolated continuous signal: @
@x(p(x) � a[n]).

3. Sample the continuous derivative: S
h
@
@x(p(x) � a[n])

i
, where S is the sampling operation.

c Fleet and Jepson, 2005 17

Altogether, these three steps are the same as convolving with a discrete �lter:

S
�
@

@x
(p(x) � a[n])

�
=

�
S
�
@

@x
p(x)

��
� a[n];

where d[n] = S
h
@
@xp(x)

i
is a discrete �lter kernel (the sampled derivative of a lowpass pre�lter).

One could use an ideal lowpass (sinc) function for the pre�lter, or a gentler function such as a

Gaussian. But for many practical applications, we would like a relatively small �lter kernel so we

cannot use an ideal lowpass �lter (which would have an in�nite size kernel). On the other hand,

the important thing for many applications is that we end up with a pair of signals, one which is

the derivative of the other. A non-ideal interpolator will introduce some distortions, making it

inappropriate to compare the original signal with its \derivative." This suggests that we should

compute two convolution results: (1) the pre�ltered original computed by convolving with the

discrete pre�lter p[n], and (2) the derivative of the pre�ltered original computed by convolving

with the discrete derivative �lter d[n].

Now we wish to design a discrete pre�lter p[n] = S[p(x)] and a discrete derivative �lter d[n] =

S[@@xd(x)] so that the latter is the derivative of the former. In the frequency domain, we want:

D[k] = i !k P [k] ;

where P [k] is the frequency response of p[n], D[k] is the frequency response of d[n], and 0 � k �
(M � 1). This equation is based on the derivative property of the Fourier transform given above.

Using weighted least-squares, we want to minimize:

M�1X
k=0

(w[k])2(D[k] � i !kP [k])
2:

This can be rewritten as:

kA~d�A0~pk2;
where ~p is a vector containing the pre�lter kernel, ~d is a vector containing the derivative kernel,

A contains weighted versions of the Fourier basis functions as above, and A0 is a similar matrix

containing the Fourier basis functions multiplied by i!k. After consolidating terms, we want to

minimize

kM~uk2;
where

M = (�A0 jA) and ~u =

~p
~d

!
:

The solution ~̂u is given by the eigenvector corresponding to the smallest eigenvalue ofMTM. Then

the �lters are both renormalized (by the same scale factor) so that p[n] has unit dc response (i.e.,

the samples of p[n] sum to one).

An example of a pair of 5-tap �lters are:

p[n] = [0:035698; 0:24887; 0:43086; 0:24887; 0:035698]

d[n] = [0:10766; 0:28267; 0; � 0:28267; � 0:10766]

The frequency responses of these two �lters are compared in Figure 7 .

c Fleet and Jepson, 2005 18

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

−3 −2 −1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 7: Frequency responses of 2-tap, �nite di�erence (left) and 5-tap (right) derivative/pre�lter

pairs. Shown are the magnitude of the Fourier transforms of: a) the derivative kernel (dashed line),

and b) the frequency-domain derivative of the pre�lter (that is, its Fourier magnitude multiplied

by ! = 2�(k=M).

