| mage For mation

Goal: Introduce basic concepts in image formation and camera mod-
els.

M otivation:

Many of the algorithms in computational vision attempt temscene
properties such as surface shape, surface reflectancesamalghting
from image image data.

S

Here we consider the basic components of the “forward” modeht
IS, assuming various scene and camera properties, whdtishewb-
serve in an image?

Readings. Part| (Image Formation and Image Models) of Forsyth and
Ponce.
Matlab Tutorials. colourTutorial.m (in UTVis)
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Thin Lens

Suppose we can neglect the thickness of the lens. And suppese
medium (e.g. air) is the same on both sides of the lens.

~ Nodal Distance(ND)
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A point @ in the world is focussed ap’ given by the intersection of
three rays as shown above:

e A ray from O passing straight through the nodal point N of the
camera (N is also called the center of projection).

e Two rays parallel to the optical axis on one side of the lehks (a
principal plane), and passing through the front or rearlfpoants
(F and F’) on the opposite side of the lens.

Here the point) is not in focus on the image plane, but ratheat

The aperture (eg. pupil) of the lens can be modelled as being an oc-
cluder within the principal plane.
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General Lens Model

Given a general lens, a point @is imaged to®’, where the locations ab and@ are given by the

lens forumla:
o-(1)-£(7) o-()£(2)
Yy Z Yy Yy z Yy

HereF, I’ are focal points, and, f’ are focal lengths.

Lens
y Ty’
[
o |
F z z F ey
Object Space Image Space

In general the ratio of focal lengths equals the ratio of tidides of refraction of the pre- and post-
lens material, that ig'/f' = n/n’ (eg. f # f’ for eyes, butf = f’ for most cameras). The index
of refraction of a material is the ratio of the speed of lightivacuum over the speed of light in the
medium.

As for a thin lens, the formation of the image Of can be interpreted geometrically as
the intersection of three canonical rays, which are detegthby thecardinal points of the lens. The
cardinal points are:

Focal Points F, F’ provide origins for the object and image spaces.
Nodal Points N, N’, are defined using the lens axi§,F’, and focal lengthsf, f’.

Principal Points P, P’ are also defined using the lens axi5 /", and focal lengthsf, f'.

[
. 'HP W L
F N o’
[ ]
<f—> <—f—>
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L ens Formula

An alternative coordinate system which is sometimes usetrite the lens formula is to place the
origins of the coordinates in the object and image spacesgttiihcipal points P and P’, and flip both
the z-axes to be pointing away from the lens. These new zdauates are:

f—z
f—7.

z
2/
Solving forz andz’ and substituting into the previous lens formula, we obtain:

(f' =2 =fr/(f-2),
=" =2)0-2

Fr=3f+if
!

=1L
z z!

The last line above is also known as the lens formula. As we kaen, it is equivalent to the one on
the previous page, only with a change in the definition of th@rdinates.

For cameras with air both in front of and behind the lens, weeHa f'. This simplifies
the lens formula above. Moreover, the nodal and principadtpaoincide in both the object and scene
spaces (i.elN = P andN’ = P’ in the previous figure).

Finally it is worth noting that, in terms of image formatiaihe difference between this
general lens model and the thin lens approximation is onthéndisplacement of the cardinal points
along the optical axis. That is, effectively, the changenmitaging geometry from a thin lens model
to the general lens model is simply the introduction of arohalie displacement in the image space
coordinates. For the purpose of modelling the image for argscene, we can safely ignore this
displacement and use the thin lens model. When we talk ahewenter of projection of a camera in
a world coordinate frame, however, it should be understoede talking about the location of the
nodal point N in the object space (and not N’ in the image spa8iilarly, when we talk about the
nodal distance to the image plane, we mean the distance framthe image plane.
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| mage of a Lambertian Surface

The irradiance on the image plane is

dQ, dAy Lo
o s— N - -L|I(\L
I - LI )

I\, 27, 1) =Th
Here
e 77; IS normal to the image plane;
e 7; € (0, 1] is the transmittance of the lens;
e dA; is the area of each pixel;

e d(), is the solid angle of the aperture from the surface pgint

e dAy is the area of the cross-section, perpendicular to the agwi
direction, of the portion of the surface imaged to the pitefa
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Derivation of the Image of a Lambertian Surface
From our notes on Lambertian reflection, we have that thewra@i (spectral density) of the surface is
R\ 2, V) =r(N)|N-L|I(\L).

This is measured in Watts per unit wavelength, per unit esessional area perpendicular to the
viewer, per unit steradian.

The total power (per unit wavelength) from the patichy, arriving on the aperature, is

P(\) = R(\, &, V)dQ,dAy
A fractionT; of this is transmitted through the lens, and ends up on a pbalead A;. Therefore, the
pixel irradiance spectral density is

I\, Zp, 1) =T, P(\)/dAy,

which is the expression on the previous page.

To simplify this, first compute the solid angle of the lensrapare, with respect to the
surface pointr;. Given the area of the aperaturelid,, we have

|V - AldA,

1 = Al

ds,

Here the numerator is the cross-sectional area of the aperaiewed from the directiof’. The
denominator scales this foreshortened patch back to thepimere to provide the desired measure of
solid angle. Secondly, we need the foreshortened surfazel/dr, which projects to the individual
pixel at Z; having arealA;. These two patches are related by rays passing through tter azf
projectionz,,; they have the same solid angle with respect,toAs a result,

V- AldA,
dA - f - fs 2‘_,7_)
\4 || D || ||1'p—$1||2
The distance in the denominator here can be replaced by
|Z, — &|| = ND/|V - A,

Substituting these expression 2, dAy, and||Z, — ;|| gives the equation for the image irradiance
due to a Lambertian surface on the following page.
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| mage of a Lambertian Surface (cont.)

This expression for the irradiance due to a Lambertian saréampli-
fies to

dA,
[ND|?

I(\, @, i) = T A V' (N[N - LT\, L)

Here,dA, is the area of the aperture.

Note the image irradiance:

e does not depend on the distance to the surface;- )

o falls off like cos(6)* in the corners of the image. Heteis the
angle between the viewing directidh and the camera’s axig.
Therefore, for wide angle images, there is a significantatilin
the image intensity towards the corners.

The fall off of the brightness in the corners of the image ibeckvi-
gnetting. The actual vignetting obtained depends on the internatstr
ture of the lens, and will vary from the abowes(6)* term.
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|mage Irradiance to Absorbed Energy

Spectral Sensitivity. The colour (or monochrome) pixel response is a
function of the energy absorbed by that pixel. For a steachgemnot
changing in time, the absorbed energy at pixetan be approximated
by N

e(#1) = /O Su(NCr AN, F1, 7y )
Herel(\, 27, 7r) is the image irradiance, () is the spectral sensitiv-
ity of the u!" colour sensorA; is the area of the pixel, and; is the
temporal integration time (eg. 1/(shutter speed)).

1,

Sensitivity
o o
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o
~

o
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Colour images are formed (typically) using three speceakgivities,
sayu = R, G, B for the ‘red’, ‘green’ and ‘blue’ channel. The normal-
ized spectral sensitivities in the human retina are platsal/e.
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Absorbed Energy to Pixel Response

Gamma Correction. Finally, the absorbed energy is converted to a
quantized pixel response, sgy, through a nonlinear function called a
gamma correction, for example,

YT,

r,=Bleu .

Here the value of can vary, values between 2 and 3 are common. This
response, is quantized, typically to 8 bits.
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This completes our basic scene and image formation models.

We consider several approximations and simplification$isf tnodel
next.
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The Pinhole Camera

The image formation of both thick and thin lenses can be apmated
with a simple pinhole camera,

X,Y,Z
o( ) (%Y, X
pah
Z o N
y
Image Plane, Z=f
Y

The image position for the 3D poifQk, Y, 7) is given by the projective
transformation

x ; X
v 1=Z71 Y
f 7

By convention, the nodal distan¢& D| is labelled asf (the “focal
length”). Note:

e for mathematical convenience we put the image plane in fobnt
the nodal point (since this avoids the need to flip the imagedo
about the origin);

e image coordinate is taken to the right, ang downwards. This
agrees with the standard raster order.

e the primary approximation here is that all depths are takdietin
focus.
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Orthographic Projection

Alternative projections onto an image plane are given blyagtaphic
projection and scaled orthographic projection.

(X,Y,0)

(X,Y,2)
. Vs

J
Image Plane

Given a 3D point( X, Y, Z), the corresponding image location under

scaled orthographic projection is
x X
Y Y
Heres is a constant scale factor; orthographic projection yuges 1.

Scaled orthographic projection provides a linear appraxiom to per-
spective projection, which is applicable for a small objactfrom the
viewer and close to the optical axis.
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Coordinate Frames

Consider the three coordinate frames:
e a world coordinate framg,,,
e a camera coordinate framgc,
e an image coordinate framg,

The world and camera frames provide standard 3D orthogauatc
nates. The image coordinates are written as a 3-vattorp;, ps, 1)7,
with p; andp, the pixel coordinates of the image point.

Camera Coordinate Frame. The origin of the camera coordinates is
at the nodal point of the camera (saﬁgtin world coords). The-axis

IS taken to be the optical axis of the camera (with points amtfiof the
camera having a positivevalue).

Next we express the transforms from world coordinates toetarno-
ordinates and then to image coordinates.
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External Calibration Matrix

The external calibration parameters specify the transition from
world to camera coordinates.

This has the form of a standard 3D coordinate transformation
X, = M, [X] 1], (1)
with M., a3 x 4 matrix of the form
M., = (R —Rd,). 2)

Here R is a3 x 3 rotation matrix andfw Is the location of the nodal
point for the camera in world coordinates.

The inverse of this mapping is simply

X, = R"X. +d,. (3)

In terms of the camera coordinate frame, the perspectimsfmamation
of the 3D point)f’C (in the camera’s coordinates) to the image plane is

f L1
7, o= — X, = . 4
L ngc 'CUQ,C ( )
f

Here f is the nodal distance for the camera.
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| nternal Calibration Matrix

The internal calibration matrix transforms the 3D imageifms . to
pixel coordinates,
ﬁ — Minf& (5)

wherelM;, is a3 x 3 matrix.

For example, a camera with rectangular pixels of dize, by 1/s,,
with focal lengthf, and piercing pointo,, o,) (i.e., the intersection of
the optical axis with the image plane provided in pixel cooates) has
the internal calibration matrix

sy 0 o0./f
00 1/f

Note that, for a 3D poinf,. on the image plane, the third coordinate of
the pixel coordinate vectagris p3 = 1. As we see next, this redundancy
is useful.

Equations (1), (4) and (5) define the transformation fcopy the world
coordinates of a 3D point t@, the pixel coordinates of the image of
that point. The transformation is nonlinear, due to theisgaby X .

in equation (4).
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Homogeneous Coordinates

It is useful to express this transformation in terms of hoer@pus co-
ordinates,

X =aX] 1)

w I

ﬁh — bp b(p17p271)T7

for arbitrary nonzero constanisb. The last coordinate of these homo-
geneous vectors provide the scale factors. It is therefasg & con-
vert back and forth between the homogeneous forms and thdasth
forms.

The mapping from world to pixel coordinates can then be amitis the
linear transformation,

ﬁh — MmMexX)u};L (7)

Essentially, the division operation in perspective proggcis now im-
plicit in the homogeneous vectgt. It is simply postponed untif” is
rescaled by its third coordinate to form the pixel coordenagctorp.

Due to its linearity, equation (7) is useful in many areas ahputa-
tional vision.
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Parallel LinesProject to Intersecting Lines

. |'|'“r‘ln'_,l¥'|'l):l'l:¢-_¢.-|. R

As an application of (7), consider a set of parallel linesin 8ay

Xl(s) = (Xl’f )—l—s(é)

HereX?, fork = 1,..., K, and are 3D vectors in the world coordinate frame. Hgi@the common
3D tangent direction for all the lines, atﬁf is an arbitrary point on thg*" line.

Then, according to equation (7), the images of these pairtisinogeneous coordinates are given by
Bi(s) = MX(s) = 7 (0) + s,

whereM = M;, M., is a3 x 4 matrix, 5* = M(t",0)” andp*(0) = M((X?)",1)”. Notep" and
p1(0) are both constant vectors, independent.acEonverting to standard pixel coordinates, we have

SR )
Pr(s) = B (0)+a(s)pt,

wherea(s) = pj. 5(s) is third component of;’(s). Therefore we have showfj(s) is in the subspace
spanned by two constant 3D vectors. It is also in the imageep}a. ; = 1. Therefore it is in the
intersection of these two planes, which is a line in the imadet is, lines in 3D are imaged as lines
in 2D. (Although, in practice, some lenses introduce “radistortion”, which causes the image of a
3D line to be bent. However, this distortion can be removet wareful calibration.)

In addition it follows thaty(s) = pf! 4(0) + 3s wheres = p'5 = (0,0,1)M (£, 0)". Assuming3 # 0,
we havel /a(s) — 0 ands/a(s) — 1/3 ass — oo. Therefore the image poin&(s) — (1/8)p7,
which is a constant image point dependent only on the tardjsgdtion of the 3D lines. This shows
that the images of the parallel 3D linas" (s) all intersect at the image poifit/3)7?".
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Exampleof Parallel Lines

£

A\ RiZanaiviini
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TheHorizon Line

Suppose the parallel lines discussed on the previous pagalaroplanar. Then the analysis above
shows that the images of these lines all intersect at thed(i.e., the image of points on the plane
infinitely far from the camera). This property is depictedhe left panel of the previous cartoon. As
another exercise in projective geometry, we will show thathorizon of a planar surface is a straight
line in the image.

Consider multiple families of parallel lines in the plangthweach family having the tan-
gent direction?j in 3D. From the previous analysis, tlié family must co-intersect at the image point
(in homogeneous coordinates)

P = M(E 0",
and these pointﬁjh must be on the horizon. However, since the tangent dirextawa all coplanar
in 3D, two distinct directions provide a basis. That is, as#g the first two directions are linearly
independent, we can write
t; = ajt; + bjta,
for some constanis; andb;. As a result, we have
ﬁjh = M([ajﬂ + bj{2] T O)T = ajﬁlh + bj272h

Dividing through by the third coordinatggﬁg, we find the points of intersection of thg" family of
lines is at the image point

B 1 . apls\ . (biphs ) L
pi=\ 5 pjh == ]h =)+ | = == | P2 = a;p1 + Bpa.
Pj3 Djs Djs

From the third coefficient of this equation it follows that + 3; = 1. Hence the image point; is an
affine combination of the image poings andp,. Therefore the horizon must be the line in the image
passing througlp; andps.
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Physical Limitationsto | mage Resolution

1. Diffraction

Aperture
Dlar\rg‘ é ‘ D
Image
ND Plane

Even a properly focussed pointmet imaged to a point. Rather,
there is gpoint spread function (PSF).

For diffraction alone, this PSF can be modelled using they'Al
disk’, which has diameter
1.22\|ND|
n d
whered is the aperture diameter. Lens imperfections and imperfect

D =~

focusing lead to larger blur diameters.
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Diffraction Limit (cont.)

For example, for human eyes (see Wyszecki & Stiles, Coloerga,
1982):

e the index of refraction within the eye is = 1.33;
e the nodal distance iSVD| ~ 16.7mm (accommodated abt);
e the pupil diameter ig ~ 2mm (adapted to bright conditions);

e a typical wavelength i ~ 500nm.

Therefore the diameter of the Airy disk is
D~4p=4x10"%mn

This compares closely to the diameter of a foveal cone fiesinallest
pixel), which is between and4u. So, human vision operates at the
diffraction limit.

By the way, & pixel spacing in the human eye corresponds to having
a 300 x 300 pixel resolution of the image of your thumbnail at arm’s
length. Compare this to the typical sizes of images used lghma
vision systems, usually abot0 x 500 or less.
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2. Photon Noise

The average photon flux (spectral density) at the image (s oh

photons per sec, per unit wavelength, per image area) is

L4 A
I()\,JZ'],TL])%

Hereh is Planck’s constant andis the speed of light.

The photon arrivals can be modelled with Poisson statisticshe
variance is equal to the mean photon catch.

Even in bright conditions, foveal cones have a significartph
noise component (a std. dex 10% of the signal, for unshaded
scenes).

3. Defocus
An improperly focussed lens causes the PSF to broaden. Geome
rical optics can be used to get a rough estimate of the size.

4. Motion Blur

Given temporal averaging, the image of a moving point forms a
streak in the image, causing further blur.

Conclude: There is a limit to how small standard cameras and eyes can
be made (but note multi-faceted insect eyes). Human vispmnaies

close to the physical limits of resolution (ditto for insgct
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