
Linear Filters and Sampling

Goal: Mathematical foundations for digital image analysis, repre-

sentation and transformation.

Outline:

� Sampling Continuous Signals

� Linear Filters and Convolution

Readings: Chapters 1 and 7 of the text.

Matlab Tutorials: linSysTutorial.m, samplingTutorial.m and im-

ageTutorial.m.
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Sampling

Approximate continuous signals with a discrete sequence ofsamples

from the continuous signal, taken at regularly spaced intervals.

Useful approximations require that the coninuous signal be sufficiently

smooth relative to the sampling interval so that one can approximately

reconstruct the continuous signal (we’ll discuss the Fourier sampling

theorem and interpolation in greater detail later).
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We will often express a 1D discrete signal,s(n), for n = 0:::N�1, as

real-valued vector,~s 2 RN .
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Introduction to Linear Filters

A filter transforms one signal into another, often to enhance certain

properties (e.g., edges), remove noise, or compute signal statistics.

A transformationT , is linear iff, for inputssi(n), responsesri(n) =

T [si(n)], and scalarsa andb, T satisfiessuperposition:

T [as1(n) + bs2(n)] = a T [s1(n)] + b T [s2(n)] 8a; b 2 C

In 1D, a linear filter can be represented by a matrix,A, and its re-

sponse~r to input~s is given by matrix multiplication:

~r = A~s

Themth element of~r is the inner product of themth row ofA and~s.
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Shift Invariance

Often we want to apply the same operation to every point in an image

(e.g., smoothing). IfT is shift-invariant, then8m 2 I

r(n) = T [s(n)] iff r(n�m) = T [s(n�m)]

Linear, shift-invariant filters can be expressed as Toeplitz matrices

(i.e., constant along diagonals), so each row is equal to the row above,

but shifted right by one.

� E.g.: Let’s smooth a signal by computing a weighted average of

each input sample and its two neighbours with weights 0.25, 0.5,

and 0.25 (i.e., with a sliding window). The corresponding matrix

has the form:

A =
1

4

2
66666664

: : : 0 1 2 1 0 : : :

: : : 0 1 2 1 0 : : :

: : : 0 1 2 1 0 : : :

3
77777775

Local filterscompute responses using only small neighborhoods of

pixels from the input, like the smoothing filter. For 1D signals this

produces a banded Toeplitz matrix. The width of nonzero entries in a

row is called the filter’ssupport.
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Boundary Conditions

With finite length signals we need to handle boundaries carefully.

1. Shift-invariance is preserved if we assume periodic signals and

cyclical shifts. For local filters this introduces nonzero entries in

the upper-right and lower-left corners of the matrix. E.g.:
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2. We could instead assume that the input is always zero beyond its

endpoints. In practice, the number of zeros we use topad the

input depends on the filter’s support width. If the support isM

samples, then we needM�1 zeros on each end.

The response is then longer than the input byM�1 samples, so

people often just truncate the response. The transform is then:
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3. Often it is more desirable to assume a constant signal beyond the

boundary, i.e., pad the ends by repeating the two end samples.

This can also be viewed as a linear shift-invariant filter.
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Impulse Response

One can also characterize a linear, shift-invariant operator with its

impulse response, i.e., the response to an impulse,Æ:

� Kronecker delta function (discrete)

Æ(n) =

(
1 n = 0

0 otherwise

� Dirac delta function (continuous)

Æ(x) = 0 8x 6= 0; and
Z

Æ(x)f(x) dx = f(0)

for sufficiently smoothf(x)

In the discrete case, multiplyingA by the delta functionÆ(n) simply

extracts the first column fromA:

~h = A [1; 0; : : : ; 0]t

h(n) is called theimpulse response. (If we pad boundaries of the input

and truncate the result, then we should move the origin to the middle

of the vector so we don’t get a truncated impulse response!)

� If we applyA to a shifted impulse signal, then we just get a dif-

ferent column ofA, which is a shifted version of the impulse re-

sponse. Therefore, from the impulse response one can construct

the matrix; i.e., it completely defines the filter.
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Convolution

The conventional way to express a linear shift-invariant filter mathe-

matically is with the convolution operator. Let the scalarwp denote

the signal value at positionp, i.e.,wp = S(p). Then we writes(n) as

s(n) =

1X
p=�1

wp Æ(n� p)

For a linear, shift-invariant operatorT it follows that

T [s(n)] = T

"
1X

p=�1

wp Æ(n� p)

#

=

1X
p=�1

wp T [Æ(n� p)]

=

1X
p=�1

wp h(n� p)

whereh is the impulse response. Thus the responser(n) = T [s(n)] is

just a weighted sum of shifted impulse responses, that is:

r(n) =

1X
p=�1

s(p)h(n� p) (1)

Eqn (1) is called convolution, and is expressed as a binary operator

(often with�):
s � h �

1X
p=�1

s(p)h(n� p) :

For continuous signals,h(x) ands(x), convolution is written as

s � h =

Z
1

�1

s(�)h(x� �) d�
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Properties of Convolution

Commutativity: s � h = h � s

Not all matrix operations commute, but this does.

Associativity: (h1 � h2) � h3 = h1 � (h2 � h3)

This is true of all matrix multiplication.

Distributivity over Addition: (h1 + h2) � h3 = h1 � h3 + h2 � h3

This is true of all matrix multiplication.

Local Support: Often the support of the filter is limited. Ifh(m) is

only nonzero for�M=2 � m �M=2, then we rewrite Eqn (1) as

s � h =

M=2X
p=�M=2

s(n + p)h(�p) :

In words, for each signal position,n, center the reflected impulse

response at positionn, and then take its inner product with the image.

This is a better way to implement the filter than matrix multiplication!

Inverse: One way to find the inverse of a convolution operator is

to create the effective Toeplitz matrix, and invert it. The inverse of

a cyclic Toepliz matrix is also cyclic Toepliz, which shows that the

inverse of a discrete linear shift-invariant operator, if it exists, is also

linear and shift-invariant. A better way to find the inverse uses the

Fourier transform.
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2D Image Convolution

In 2D the convolution equation is given by

r(n;m) =

1X
p=�1

1X
q=�1

s(p; q)h(n� p;m� q)

Computational Expense: In general, 2D convolution requires

O(N 2M 2) multiplications and additions whereN 2 is the number of

image pixels, andM 2 is the 2D support of the impulse response.

Separability: If a 2D impulse response can be expressed ash(x; y) =

h1(x)h2(y) for someh1(x) and someh2(y), thenh is called separa-

ble. In the discrete case, the impulse response is separable if it can be

written as an outer product:

][ h[n,m] ( (h [n]1

( (h [m]2

=

With separability, 2D convolution can be expressed as a cascade of

1D convolutions, first along the rows, and then along the columns (or

along the columns and then the rows).

� Each 1D convolution, and hence the separable 2D filter, isO(N 2M).

This is important if the filter support is more than 4 or 5 pixels.
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Example: Smoothing Filters

Al and a blurred version of Al are shown. The impulse response was
separable, composed of the same horizontal and vertical 5-tap 1D im-
pulse response, that is,1

16
(1; 4; 6; 4; 1).

This shows Al and the difference between Al and the blurred version
of Al. The image is only non-zero where the blurred version is differ-
ent from the original, i.e., where there are significant local intensity
variations. The impulse response for this filter isÆ(n)�h(n;m) where
h(n;m) is the separable blurring filter used above.
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Example: Derivative Filters

Derivative filters are common in image processing. Here we use crude
separable approximations to horizontal and vertical derivatives. They
composed of a smoothing filter in one direction (i.e.,1

4
(1; 2; 1)) and a

first-order central difference (i.e.,1
2
(�1; 0; 1)) in the other.

Sum of squared derivative responses (the squared magnitude of the
image gradient at each pixel), when clipped, this gives a rough idea
of where edges might be found.
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Example: Down-Sampling and Up-Sampling

Down-sampling(or decimation) is the process of collapsing a signal

by removing everynth sample.

Up-samplingrefers to the expansion of a signal by adding new sam-

ples to make it longer. One introducesn zeros in between every pair

of adjacent samples in the original signal.

Both of these operators are linear.

Example: down-sampling a signal~s by a factor of 2 to create~s2.

~s2 =

2
64

1 0 0 0 0 0 : : : 0

0 0 1 0 0 0 : : : 0

0 0 0 0 1 0 : : : 0

...

3
75 ~s

Example: up-sampling a signal~s by a factor of 2 to create~s1.

~s1 =

2
64

1 0 0 0 0 0 : : : 0

0 0 0 0 0 0 : : : 0

0 1 0 0 0 0 : : : 0

...

3
75 ~s

Up-sampling is often a precursor to smoothing for signal interpola-

tion.
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Further Readings

Texts on Image Processing and Computer Vision

Castleman, K.R.,Digital Image Processing, Prentice Hall, 1995

Gonzalez, R.C. and Wintz, P.,Digital Image Processing 2nd ed., Addison-Wesley, 1987

Rosenfeld, A. and Kak, A.,Digital Picture Processing 2nd ed., Academic Press, 1982

Wolberg, G.,Digital Image Warping , IEEE Computer Society Press, 1990

Wandell, B.A.,Foundations of Vision, Sinauer Press, 1995
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